WO2017212619A1 - 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム - Google Patents

3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム Download PDF

Info

Publication number
WO2017212619A1
WO2017212619A1 PCT/JP2016/067278 JP2016067278W WO2017212619A1 WO 2017212619 A1 WO2017212619 A1 WO 2017212619A1 JP 2016067278 W JP2016067278 W JP 2016067278W WO 2017212619 A1 WO2017212619 A1 WO 2017212619A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
additive manufacturing
unit
positional deviation
irradiation position
Prior art date
Application number
PCT/JP2016/067278
Other languages
English (en)
French (fr)
Inventor
浩一 天谷
敏彦 加藤
英人 松原
光慶 吉田
岳志 山田
Original Assignee
技術研究組合次世代3D積層造形技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合次世代3D積層造形技術総合開発機構 filed Critical 技術研究組合次世代3D積層造形技術総合開発機構
Priority to JP2016547122A priority Critical patent/JP6351735B2/ja
Priority to PCT/JP2016/067278 priority patent/WO2017212619A1/ja
Priority to EP16823144.7A priority patent/EP3278962A4/en
Priority to US15/125,116 priority patent/US20180215102A1/en
Publication of WO2017212619A1 publication Critical patent/WO2017212619A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a technique for correcting the irradiation position of light in three-dimensional additive manufacturing.
  • a measurement point is provided in a stereolithography table, the laser irradiation position and measurement point which were irradiated from the laser beam generator were imaged, and a laser irradiation position and measurement were carried out.
  • a technique for controlling a galvano scanner by a scanner control unit based on a deviation from a point is disclosed.
  • the technique described in the above document can adjust the laser irradiation position before additive manufacturing with an optical modeling apparatus, it corresponds to, for example, mechanical system change, thermal change, posture change, etc. during additive manufacturing.
  • the laser irradiation position could not be corrected.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • the additive manufacturing control apparatus includes: A laminate modeling control apparatus that has a squeezing blade for laying a laminate material on top of a laminate model and an irradiation unit that irradiates the laminate material, and controls a laminate model unit that models the laminate model, A position shift acquisition means for acquiring a position shift of the irradiation position of the irradiation light on the surface of the squeezing blade that receives the irradiation light from the irradiation means; An irradiation position correcting means for correcting an irradiation position by the irradiation means based on the positional deviation; Is provided.
  • the additive manufacturing control method includes: It has a squeezing blade for laying a layered material on an upper layer of a layered product and an irradiation means for irradiating the layered material, and is a layered model control method for controlling a layered model part for modeling the layered model, A position shift acquisition step for acquiring a position shift of the irradiation position of the irradiation light on the surface of the squeezing blade that receives the irradiation light from the irradiation means; An irradiation position correction step of correcting an irradiation position by the irradiation means based on the positional deviation; including.
  • the additive manufacturing control program is: An additive manufacturing control program having a squeezing blade for laying an additive material on an upper layer of an additive manufacturing object and an irradiating means for irradiating the additive material, and causing a computer to control an additive manufacturing apparatus for forming the additive object to be executed Because A position shift acquisition step for acquiring a position shift of the irradiation position of the irradiation light on the surface of the squeezing blade that receives the irradiation light from the irradiation means; An irradiation position correction step of correcting an irradiation position by the irradiation means based on the positional deviation; Is executed on the computer.
  • a three-dimensional additive manufacturing system includes: A squeezing blade for laying the layered material on top of the layered object and an irradiation unit for irradiating the layered material, and a layered unit for modeling the layered object, A position shift acquisition means for acquiring a position shift of the irradiation position of the irradiation light on the surface of the squeezing blade that receives the irradiation light from the irradiation means; An irradiation position correcting means for correcting an irradiation position by the irradiation means based on the positional deviation; Is provided.
  • the laser irradiation position can be corrected in response to the change of the laser irradiation position during the layered modeling in the optical modeling apparatus.
  • the additive manufacturing control apparatus 100 includes a squeezing blade 111 for laying the laminate material on the upper layer of the additive manufacturing object 113 and an irradiation unit 112 that irradiates the additive material, and includes an additive manufacturing part 110 that forms the additive manufacturing object 113. It is a device to control.
  • the additive manufacturing control apparatus 100 includes a positional deviation acquisition unit 101 and an irradiation position correction unit 102.
  • the positional deviation acquisition unit 101 acquires the positional deviation of the irradiation position of the irradiation light on the surface of the squeezing blade 111 that receives the irradiation light from the irradiation unit 112.
  • the irradiation position correction unit 102 corrects the irradiation position by the irradiation unit 112 based on the positional deviation.
  • the position of the irradiation position of the irradiation light on the surface of the squeezing blade is acquired, and the irradiation position by the irradiation unit is corrected, so that the laser irradiation position during additive manufacturing in the optical modeling apparatus
  • the laser irradiation position can be corrected in response to the change of the above.
  • the additive manufacturing control apparatus acquires a positional deviation of light irradiation based on reception of irradiation light of an optical position sensor installed on the upper surface of the squeezing blade, and corrects the positional deviation by correcting the irradiation position coordinates. to correct.
  • FIG. 2 is a conceptual diagram showing a modeling state by the additive manufacturing control apparatus according to the present embodiment.
  • the optical position sensor is greatly illustrated ignoring the dimensional relationship of the constituent elements.
  • the position shift detection at the minimum of 4 points and the position shift detection at 9 points are shown, but the number of detection points may be appropriately selected in consideration of correction accuracy and cost.
  • the upper part of FIG. 2 detects irradiation position deviations at the four corner points of the layered modeling surface with the two optical position sensors 211 and 212 installed at both end portions of the squeezing blade 210 to correct the irradiation position.
  • This is an example 201.
  • the upper left is the case where the entire position shifts to the lower right.
  • the irradiation position coordinates are corrected by the irradiation position correction map based on the four position shift data from the two optical position sensors 211 and 212, and the position shift is corrected as shown in the upper right.
  • the middle stage and the lower stage of FIG. 2 detect the positional deviation of the irradiation at nine points on the layered modeling surface with the three optical position sensors 211 to 213 installed at both end portions and the central portion of the squeezing blade 210,
  • the middle left is a case where a position shift occurs in which the whole is rotated clockwise around the upper left.
  • the lower left is a case where a positional shift occurs in which the central portion of each side is contracted.
  • the irradiation position coordinates are corrected by the irradiation position correction map based on the nine position shift data from the three optical position sensors 211 to 213, and the position shift is corrected as shown in the middle lower right.
  • the number of optical position sensors arranged on the squeezing blade 210 and the number of positions on which the positional deviation is detected by irradiating the squeezing blade 210 are not limited to this example, and the correction accuracy and cost are taken into consideration. Selected.
  • FIG. 3 is a block diagram illustrating a functional configuration of the additive manufacturing unit 310 in the three-dimensional additive manufacturing system 300 including the additive manufacturing control unit 320 according to the present embodiment.
  • the three-dimensional additive manufacturing system 300 includes an additive manufacturing unit 310, an additive manufacturing control unit 320 as an additive manufacturing control device, and an information processing device 330.
  • the additive manufacturing unit 310 generates a three-dimensional additive manufacturing object according to various control commands of the additive manufacturing control unit 320.
  • the layered modeling control unit 320 generates various control commands for controlling the layered modeling unit 310 according to the three-dimensional modeling data generated by the information processing device 330.
  • the control command includes an irradiation command for controlling the irradiation unit 312 by the irradiation amplifier 311, a scanning command for controlling the scanning direction via the mirror unit 314 rotated by the rotation step motor by the scanning amplifier 313, and a ski A movement command for controlling movement of the ging blade 210 and the modeling table 318.
  • the information processing apparatus 330 acquires information on the layered object to be three-dimensionally shaped and generates three-dimensional modeling data. Note that the information processing apparatus 330 may be a general-purpose computer or a special computer corresponding to the
  • the laminate modeling unit 310 includes an irradiation amplifier 311 and an irradiation unit 312.
  • the layered modeling unit 310 includes a scanning amplifier 313 and a biaxial rotating step motor and mirror unit 314.
  • the layered modeling unit 310 includes a movement amplifier 317, a squeezing blade 210, and a modeling table 318.
  • Optical position sensors (PSD: Position Sensitive Detector) 211 to 213 are installed on the upper surface of the squeezing blade 210.
  • the additive manufacturing unit 310 converts the analog optical position signals from the optical position sensors 211 to 213 into digital signals and transmits them to the additive manufacturing control unit 320.
  • the laser beam 315 emitted from the irradiation unit 312 irradiates the upper surface of the modeling object 220 that has already been layered on the modeling table 318 by the mirror unit 314 rotated by the rotary step motor to generate a modeling surface.
  • a three-dimensional layered object is generated.
  • the positional deviation of the irradiation position by the laser beam 315 emitted from the irradiation unit 312 can be corrected not only before the additive manufacturing but also during the additive manufacturing. That is, when the squeezing blade 210 moves on the modeling surface, the X and Y coordinate positions corresponding to the coordinate position in the X direction of the squeezing blade 210 and the coordinate position in the Y direction of the optical position sensors 211 to 213 are irradiated. Irradiation is performed with laser light 315 emitted from the unit 312. At this time, the additive manufacturing control unit 320 reduces the irradiation intensity (energy) and sets the X and Y coordinate positions.
  • the optical position sensors 211 to 213 detect the positions where the laser beams 315 irradiated to the X and Y coordinate positions are actually irradiated by the optical position sensors 211 to 213.
  • the analog optical position signals from the optical position sensors 211 to 213 are converted into digital data by the optical position sensor A / D converter 316 and transmitted to the additive manufacturing control unit 320 to correct the irradiation position coordinates. used.
  • FIG. 4 is a block diagram illustrating a functional configuration of the additive manufacturing control unit 320 in the three-dimensional additive manufacturing system 300 according to the present embodiment. 4, functional configurations of the additive manufacturing control unit 320 and the information processing apparatus 330 in FIG. 3 are shown.
  • the layered modeling unit 310 and the layered modeling control unit 320 may constitute a three-dimensional modeling apparatus 420, a so-called 3D printer.
  • the structure of the layered modeling part 310 is the same as that of FIG. 3, and the overlapping description is omitted.
  • the three-dimensional modeling apparatus 420 including the additive manufacturing control unit 320 and the information processing apparatus 330 are illustrated as separate apparatuses, but the additive manufacturing control unit 320 may be configured as one apparatus. May be combined with the information processing apparatus 330.
  • the additive manufacturing control unit 320 includes a communication control unit 421, a three-dimensional modeling data storage unit 422, a positional deviation acquisition unit 423, a positional deviation correction database 424, an irradiation position correction unit 425, and an additive manufacturing command unit 426. .
  • the communication control unit 421 controls communication between the additive manufacturing control unit 320 and the information processing device 330, receives three-dimensional modeling data, instruction commands, and the like from the information processing device 330, and includes the additive manufacturing control unit 320 and the additive manufacturing unit.
  • the status of 310 is transmitted to the information processing apparatus 330.
  • the three-dimensional modeling data storage unit 422 stores the three-dimensional modeling data received from the information processing device 330.
  • the storage of the three-dimensional modeling data may be a unit of a three-dimensional modeled object or a layer unit to be stacked, or a layered modeling speed of the three-dimensional modeling apparatus 420, a processing speed of the information processing apparatus 330, or This is appropriately determined based on the communication capacity between the information processing device 330 and the additive manufacturing control unit 320.
  • the position shift acquisition unit 423 acquires the position shift data of the light detected by the optical position sensors 211 to 213 with predetermined X and Y coordinates from the optical position sensor A / D converter 316 of the layered modeling unit 310.
  • the predetermined X and Y coordinates can be set to two or three points in the Y direction and a desired number of points can be set in the X direction. .
  • the positional deviation correction database 424 stores positional deviation correction data based on a set of light positional deviation data acquired by the positional deviation acquisition unit 423.
  • the irradiation position correction unit 425 corrects the irradiation position coordinates corresponding to the positional deviation with respect to the three-dimensional modeling data currently being layered, and changes the mechanical system and heat during the layered modeling. Absorb changes, posture changes, etc.
  • the layered modeling instruction unit 426 issues a command to each unit of the layered modeling unit 310 based on the three-dimensional modeling data whose irradiation position coordinates are corrected by the irradiation position correcting unit 425.
  • the position shift acquisition unit 423, the position shift correction database 424, the irradiation position correction unit 425, and the additive manufacturing command unit 426 constitute all or a part of the irradiation control unit.
  • the information processing apparatus 330 may be a general-purpose computer such as a PC (personal computer).
  • the information processing apparatus 330 includes a communication control unit 431, a three-dimensional modeling data generation unit 432, a display unit 433, an operation unit 434, a three-dimensional modeling database 435, and a three-dimensional modeling target data acquisition unit 436.
  • the 3D modeling target data acquisition unit 436 serves as a 3D modeling target data generation unit.
  • the communication control unit 431 controls communication with the 3D modeling apparatus 420 or the 3D modeling target data generation apparatus which is an external device.
  • the three-dimensional modeling data generation unit 432 uses the data stored in the three-dimensional modeling database 435 according to the input or operation by the operator from the operation unit 434 according to the operation instruction displayed on the display unit 433, and the three-dimensional modeling apparatus 420. Generates 3D modeling data for layered modeling of a 3D modeling object.
  • the display unit 433 notifies the status of the three-dimensional modeling apparatus 420 and the information processing apparatus 330 and requests the operator to input parameters necessary for the layered modeling of the three-dimensional modeled object.
  • the operation unit 434 includes a keyboard, a pointing device, a touch panel, and the like, and accepts an input and an operation instruction from an operator according to an instruction displayed on the display unit 433.
  • the three-dimensional modeling database 435 stores data of a three-dimensional modeling object, a generation algorithm, a generation parameter, and the like, which are data used by the three-dimensional modeling data generation unit 432 to generate three-dimensional modeling data.
  • the 3D modeling target data acquisition unit 436 acquires the 3D modeling target data provided from the 3D modeling target data generation apparatus via the communication control unit 431 or from a storage medium or the like via the I / O interface. To do.
  • FIG. 5A is a block diagram illustrating a functional configuration of the positional deviation acquisition unit 423 according to the present embodiment.
  • the position deviation acquisition unit 423 includes an optical position data acquisition unit 511 and a position deviation data generation unit 512.
  • the optical position data acquisition unit 511 receives the optical position signal detected by the optical position sensors 211 to 213 at the predetermined position (X coordinate) of the squeezing blade 210 from the optical position sensor A / D converter 316 of the layered modeling unit 310. Get digital data.
  • the positional deviation data generation unit 512 includes a positional deviation data generation table 512a, and generates a set of deviation data of optical position data of predetermined coordinates of the modeling surface acquired by the optical position data acquisition unit 511.
  • the generated set of deviation data of the optical position data is output to the position deviation correction database 424 and used to search for an irradiation position correction map used by the irradiation position correction unit 425.
  • FIG. 5B is a block diagram illustrating a functional configuration of the irradiation position correction unit 425 according to the present embodiment.
  • the irradiation position correction unit 425 includes a modeling data reception unit 521 and an irradiation position coordinate correction unit 522.
  • the modeling data receiving unit 521 receives the modeling data of each layer from the three-dimensional modeling data storage unit 422.
  • the irradiation position coordinate correction unit 522 has an irradiation position coordinate correction table 522 a, and the irradiation position coordinates of the modeling data received by the modeling data reception unit 521 are stored in the positional deviation correction database 424 and are received from the position deviation acquisition unit 423. Correction is performed based on the irradiation position correction map searched by the position shift data.
  • the modeling data in which the irradiation position coordinates are corrected corresponding to the positional deviation is output to the layered modeling command unit 426.
  • the layered modeling instruction unit 426 issues a scanning command to the layered modeling unit 310 based on the corrected irradiation position coordinates.
  • FIG. 6 is a diagram showing the configuration of the positional deviation correction database 424 according to this embodiment.
  • the positional deviation correction database 424 stores an irradiation position correction map to be searched using the positional deviation data set generated by the positional deviation acquisition unit 423 as a search key, and corrects positional deviation by the irradiation position correction unit 425. Used for.
  • the positional deviation correction database 424 is not limited to the configuration shown in FIG.
  • the positional deviation correction database 424 stores an irradiation position correction map 602 using the positional deviation data set 601 as a search key.
  • the number of tables 612 is not limited. This depends on the number of optical position sensors installed on the squeezing blade 210 and the number of detection positions of the optical position data at the time of positional deviation acquisition.
  • the irradiation position correction map 602 stores the corrected irradiation position coordinates corresponding to each of the irradiation position coordinates before correction in the modeling data.
  • FIG. 7 is a diagram showing a configuration of the positional deviation data generation table 512a according to the present embodiment.
  • the positional deviation data generation table 512a includes an irradiation position stored in the positional deviation correction database 424 by the positional deviation acquisition unit 423 storing a set of positional deviation data from the optical position sensors 211 to 213 installed in the squeezing blade 210. Used to generate the correction map 602 as a search key for searching.
  • the same reference numerals are assigned to the same elements as in FIG.
  • FIG. 7 illustrates a positional deviation of 4 points and a positional deviation of 9 points, the present invention is not limited to this.
  • a table 611 in the case of four points in the position deviation data generation table 512a generates a set of first light position data 711 to fourth light position data 714 each consisting of an X coordinate deviation and a Y coordinate deviation, thereby correcting the position deviation. Output to the database 424 as a search key.
  • the table 612 in the case of nine points of the position shift data generation table 512a generates a set of first light position data 721 to ninth light position data 729 each consisting of an X coordinate shift and a Y coordinate shift, thereby correcting the position shift. Output to the database 424 as a search key.
  • FIG. 8 is a diagram showing a configuration of the irradiation position coordinate correction table 522a according to the present embodiment.
  • the irradiation position coordinate correction table 522a is used by the irradiation position correction unit 425 to correct the irradiation position coordinates of the modeling data to the irradiation position coordinates in which the positional deviation is corrected.
  • the irradiation position coordinate correction table 522a is a correction data as correction data based on an irradiation position coordinate 801 before correction having an X coordinate and a Y coordinate and an irradiation position correction map 602 searched using a set of positional deviation data as a search key. It includes a later irradiation position coordinate 802 and a flag 803 as to whether or not to irradiate the irradiation position. In addition, when only the area
  • FIG. 9 is a block diagram illustrating a hardware configuration of the additive manufacturing control unit 320 according to the present embodiment.
  • a CPU (Central Processing Unit) 910 is a processor for arithmetic control, and implements a functional component of the additive manufacturing control unit 320 of FIG. 4 by executing a program.
  • a ROM (Read Only Memory) 920 stores initial data and fixed data such as a program.
  • the communication control unit 421 communicates with the information processing device 330 via a network or the like. Note that the number of CPUs 910 is not limited to one, and may be a plurality of CPUs or may include a GPU (Graphics Processing Unit) for image processing.
  • a processor for acquiring positional deviation data based on the received three-dimensional modeling data, a processor for correcting the irradiation position, and a processor for generating various commands for controlling the layered modeling unit 310 are different processors. It is desirable that The communication control unit 421 preferably includes a CPU independent of the CPU 910 and writes or reads transmission / reception data in a RAM (Random Access Memory) 940 area.
  • the RAM 940 is a random access memory that the CPU 910 uses as a work area for temporary storage. In the RAM 940, an area for storing data necessary for realizing the present embodiment is secured.
  • the three-dimensional modeling data 941 is data of a three-dimensional model that is currently layered.
  • the optical position data 942 is data acquired from the optical position sensors 211 to 213.
  • the positional deviation data generation table 512a is a table for the positional deviation acquisition unit 423 described with reference to FIG. 7 to generate a positional deviation data set.
  • the irradiation position coordinate correction table 522a is a table for the irradiation position correction unit 425 described in FIG. 8 to correct the irradiation position coordinates corresponding to the positional deviation.
  • the transmission / reception data 943 is data transmitted / received via the communication control unit 421.
  • the storage 950 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
  • the positional deviation correction database 424 stores an irradiation position correction map that is searched using the positional deviation data set as a search key, which has been described with reference to FIG.
  • the three-dimensional modeling data 951 is data for layered modeling of a three-dimensional modeled object received from the information processing device 330 via the communication control unit 421 and stored.
  • the position deviation correction algorithm 952 is an algorithm for correcting the irradiation position coordinates based on the position deviation data set.
  • the storage 950 stores the following programs.
  • the additive manufacturing control unit control program 953 is a control program that controls the entire additive manufacturing control unit 320.
  • the three-dimensional modeling data acquisition module 954 is a module that communicates with the information processing apparatus 330 and acquires three-dimensional modeling data.
  • the position shift data generation module 955 is a module that generates a search key based on the position shift data acquired from the optical position sensors 211 to 213.
  • the irradiation position correction module 956 is a module for correcting the irradiation position coordinates based on the searched irradiation position correction map.
  • RAM 940 and the storage 950 in FIG. 9 do not show programs and data related to general-purpose functions and other realizable functions that the additive manufacturing control unit 320 has.
  • FIG. 10A is a flowchart illustrating a processing procedure of the additive manufacturing control unit 320 according to the present embodiment. This flowchart is executed by the CPU 910 in FIG. 9 using the RAM 940, and realizes a functional configuration unit of the additive manufacturing control unit 320 in FIG.
  • the layered modeling control unit 320 receives and stores the three-dimensional modeling data from the information processing apparatus 330 in step S1001.
  • the additive manufacturing control unit 320 acquires a positional deviation from the optical position sensor installed on the squeezing blade 210 and executes a positional deviation data generation process.
  • the layered modeling control unit 320 performs an irradiation position correction process that compensates for the position shift, using the irradiation position correction map searched using the position shift data set as a search key.
  • the layered modeling control unit 320 performs three-dimensional layered modeling in the layered modeling unit 310 using the corrected irradiation position coordinates.
  • FIG. 10B is a flowchart showing a procedure of position shift data generation processing (S1003) according to the present embodiment.
  • the switching unit of the additive manufacturing control unit 320 reduces the laser irradiation intensity (energy) to an intensity (energy) that can be irradiated on the squeezing blade 210 in step S1011.
  • i is the number of detected position shifts in the moving direction (X direction) of the squeezing blade 210
  • M is the number of optical position sensors on the squeezing blade 210
  • N is the maximum number of position shift detection times
  • the additive manufacturing control unit 320 waits for the squeezing blade 210 to move to the position (Xi) where the irradiation position deviation is detected in step S1015.
  • the additive manufacturing control unit 320 sets the irradiation position (Xi, Yj) for laser irradiation in step S1017, and in step S1019. Instruct laser irradiation.
  • the additive manufacturing control unit 320 receives the optical position data from the optical position sensor corresponding to the irradiation position (Xi, Yj) and holds it as positional deviation data.
  • the additive manufacturing control unit 320 stores each irradiation position (Xi, Yj) and the positional deviation data in association with each other in step S1031. Then, the switching unit of the additive manufacturing control unit 320 returns the laser irradiation intensity (energy) to the normal state, and ends the positional deviation data generation process.
  • FIG. 10C is a flowchart illustrating a procedure of irradiation position correction processing (S1005) according to the present embodiment.
  • step S1041 the additive manufacturing control unit 320 searches the irradiation position correction map stored in the position shift correction database 424 using the correspondence data between the irradiation position (Xi, Yj) and the position shift data as a search key.
  • the layered modeling control unit 320 acquires the irradiation position coordinates included in the modeling data from the three-dimensional modeling data storage unit 422 in step S1043.
  • step S1044 the additive manufacturing control unit 320 corrects the irradiation position coordinates acquired using the searched irradiation position correction map.
  • the positional deviation of the light irradiation is acquired, and the positional deviation is corrected by correcting the irradiation position coordinates.
  • the laser irradiation position can be corrected in response to the change of the laser irradiation position during the layered modeling in the optical modeling apparatus. That is, since highly accurate laser positioning correction is possible even during additive manufacturing, positioning in the subsequent process is also facilitated.
  • the additive manufacturing control apparatus is not receiving the irradiation light of the optical position sensor installed on the upper surface of the squeegee blade, but the reference mark (mark) on the upper surface of the squeegee blade. ) And the irradiated light are different in that a positional shift is detected. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 11 is a conceptual diagram showing a modeling state by the additive manufacturing control apparatus according to the present embodiment.
  • FIG. 11 in order to clarify the modeling state according to the present embodiment, the dimensional relationship between the constituent elements is ignored, and the reference sign is illustrated greatly.
  • the position shift detection at the minimum 4 points and the position shift detection at 9 points are shown, but the number of detection points may be appropriately selected in consideration of correction accuracy, cost, and the like.
  • FIG. 11 shows two reference marks 1111 and 1112 attached to both end portions of the squeezing blade 1110 and irradiation light for irradiating the squeezing blade 1110 with respect to the positional deviation of irradiation at the four corner points of the layered modeling surface.
  • This is an example 1101 in which the irradiation position correction is performed by detecting the positional deviation from the captured image.
  • the upper left is the case where the entire position shifts to the lower right.
  • the irradiation position coordinates based on the positional deviation data of the four points extracted from the captured images of the two reference signs 1111 and 1112 and the irradiation light that irradiates the squeezing blade 1110 are used as the irradiation position correction map. Is corrected, and the positional deviation is corrected as shown in the upper right.
  • the middle stage and the lower stage of FIG. 11 include three reference marks 1111 to 1113 and squeezing blades 1110 arranged at both end portions and the central portion of the squeezing blade 1110 with respect to the positional deviation of irradiation at nine points on the layered modeling surface.
  • the middle left is a case where a position shift occurs in which the whole is rotated clockwise around the upper left.
  • the lower left is the case where a misalignment occurs in the center of each change.
  • the irradiation position coordinates are determined by the irradiation position correction map based on the positional deviation data of nine points from the captured image of the three reference signs 1111 to 1113 and the irradiation light that irradiates the squeezing blade 1110. It is corrected and the positional deviation is corrected as shown in the middle lower right.
  • the reference sign (mark) is not limited to “+”. A shape that can be imaged together with the laser beam and that can detect the positional deviation with higher accuracy is selected. Further, the number of reference marks (marks) attached to the squeezing blade 1110 and the number of positions where the squeezing blade 1110 is irradiated to detect positional deviation are not limited to this example, and correction accuracy and cost are considered. To be selected.
  • FIG. 12 is a block diagram illustrating a functional configuration of the additive manufacturing unit 1210 in the three-dimensional additive manufacturing system 1200 including the additive manufacturing control unit 1220 according to the present embodiment.
  • the three-dimensional additive manufacturing system 1200 includes an additive manufacturing unit 1210, an additive manufacturing control unit 1220, and an information processing device 330.
  • the layered modeling part 1210 has a squeezing blade 1110. Reference signs 1111 to 1113 are attached to the upper surface of the squeezing blade 1110.
  • the layered modeling unit 1210 includes a positional deviation detection imaging unit (camera) 1216 that captures an image including the reference markers 1111 to 1113 and the irradiation position of the laser beam 315 emitted from the irradiation unit 312.
  • the additive manufacturing control unit 1220 detects an irradiation position shift from a captured image including the reference markers 1111 to 1113 and the irradiation position of the laser beam 315.
  • the positional deviation of the irradiation position by the laser beam 315 emitted from the irradiation unit 312 can be corrected not only before the additive manufacturing but also during the additive manufacturing. That is, when the squeezing blade 1110 moves on the modeling surface, the X and Y coordinate positions corresponding to the coordinate position in the X direction of the squeezing blade 1110 and the coordinate position in the Y direction of the reference signs 1111 to 1113 are set as the irradiation unit. Irradiation is performed with laser light 315 emitted from 312. At this time, the additive manufacturing control unit 1220 reduces the irradiation intensity (energy) and sets the X and Y coordinate positions.
  • the positional deviation detection imaging unit 1216 captures the irradiation positions actually irradiated by the laser light 315 irradiated on the X and Y coordinate positions on the squeezing blade 1110 and the reference signs 1111 to 1113 to obtain the position. Detect misalignment. Based on the positional deviation data set, the irradiation position coordinates can be corrected as in the second embodiment.
  • FIG. 13 is a block diagram illustrating a functional configuration of the additive manufacturing control unit 1220 in the three-dimensional additive manufacturing system 1200 according to the present embodiment.
  • FIG. 13 functional configurations of the additive manufacturing control unit 1220 and the information processing apparatus 330 in FIG. 12 are illustrated.
  • the layered modeling unit 1210 and the layered modeling control unit 1220 may constitute a three-dimensional modeling apparatus 1320, a so-called 3D printer.
  • the structure of the layered modeling part 1210 is the same as that shown in FIG.
  • the three-dimensional modeling apparatus 1320 including the additive manufacturing control unit 1220 and the information processing apparatus 330 are illustrated as separate apparatuses, but the additive manufacturing control unit 1220 may be configured as one apparatus. May be combined with the information processing apparatus 330.
  • the same components as those in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.
  • the additive manufacturing control unit 1220 includes a communication control unit 421, a three-dimensional modeling data storage unit 422, a positional deviation acquisition unit 1323, a positional deviation correction database 424, an irradiation position correction unit 425, and an additive manufacturing command unit 426. .
  • the position shift acquisition unit 1323 receives a predetermined X based on the captured image including the reference marks 1111 to 1113 on the squeezing blade 1110 and the light irradiation position received from the position shift detection imaging unit 1216 of the layered modeling unit 1210. , The positional deviation data of the light in the Y coordinate is acquired.
  • the predetermined X and Y coordinates can be set to two or three points in the Y direction and a desired number of points can be set in the X direction. . However, there is no limit on the number of points in both the X direction and the Y direction.
  • the positional deviation acquisition unit 423, the positional deviation correction database 424, the irradiation position correction unit 425, and the additive manufacturing command unit 426 constitute all or a part of the irradiation control unit.
  • FIG. 14 is a block diagram illustrating a functional configuration of the positional deviation acquisition unit 1323 according to the present embodiment.
  • the positional deviation acquisition unit 1323 includes a captured image acquisition unit 1411, a reference sign extraction unit 1412, an irradiation position extraction unit 1413, and a positional deviation data generation unit 1414.
  • the captured image acquisition unit 1411 acquires a captured image from the position shift detection imaging unit 1216.
  • the reference sign extraction unit 1412 extracts reference signs 1111 to 1113 on the squeegee blade 1110 from the acquired captured image.
  • the irradiation position extraction unit 1413 extracts the irradiation position of the laser beam on the squeezing blade 1110 from the acquired captured image.
  • the positional deviation data generation unit 1414 has a positional deviation data generation table 1414a, the extraction positions of the reference signs 1111 to 1113 from the reference sign extraction part 1412, the irradiation extraction position of the laser light from the irradiation position extraction part 1413, The positional coordinates of the points are compared to determine the positional deviation of each point. Then, a position shift data set is generated as a search key for searching the irradiation position correction map from the position shift correction database 424.
  • FIG. 15 is a diagram showing a configuration of the positional deviation data generation table 1414a according to the present embodiment.
  • the positional deviation data generation table 1414a includes the positional deviation data based on the positional deviation between the positions of the reference marks 1111 to 1113 attached to the squeezing blade 210 and the light irradiation position extracted by the positional deviation acquisition unit 423 from the captured image. Used to generate tuples.
  • the same reference numerals are given to the same elements as those in FIG. 6 or FIG. Further, FIG. 15 illustrates a positional shift of nine points, but is not limited to this.
  • the table of nine positions in the position deviation data generation table 1414a is associated with the nine light positions 1511, the coordinates 1512 of the reference marker center (the intersection point if +) consisting of X coordinates and Y coordinates, and X ′.
  • the irradiation position coordinates (the center of the irradiation point) 1513 composed of the coordinates and the Y ′ coordinates are stored.
  • a table 612 of position shift data composed of an X coordinate shift and a Y coordinate shift, which is associated with each of the nine light positions 1511, is generated. And output to the positional deviation correction database 424 as a search key.
  • FIG. 16A is a flowchart illustrating a procedure of position shift data generation processing (S1003) according to the present embodiment.
  • steps similar to those in FIG. 10B are denoted by the same step numbers, and redundant description is omitted.
  • the layered modeling control unit 1220 executes position deviation acquisition processing from the captured image instead of step S1021 in FIG. 10B in step S1621.
  • FIG. 16B is a flowchart illustrating a procedure of position shift acquisition processing (S1621) according to the present embodiment.
  • step S1631 the additive manufacturing control unit 1220 acquires captured images including the reference markers 1111 to 1113 on the squeegee blade 1110 and the light irradiation positions from the positional deviation detection imaging unit 1216.
  • step S1633 the additive manufacturing control unit 1220 extracts a reference mark on the squeezing blade 1110 and determines a coordinate position.
  • step S ⁇ b> 1635 the additive manufacturing control unit 1220 extracts the irradiation position on the squeezing blade 1110 and determines the coordinate position.
  • step S ⁇ b> 1637 the additive manufacturing control unit 1220 detects a positional deviation between the reference marker position and the irradiation position, and stores the positional deviation in association with the target position coordinates.
  • the optical position sensor is provided on the upper surface of the squeezing blade by acquiring the positional deviation of the light irradiation based on the image including the reference mark attached to the upper surface of the squeezing blade and the irradiation position.
  • the laser irradiation position can be corrected by simple adjustment corresponding to the change of the laser irradiation position during the layered modeling in the optical modeling apparatus. That is, if a reference mark is attached at the time of manufacturing the squeegee blade, the trouble of adjusting the installation position of the optical position sensor is eliminated.
  • the additive manufacturing control apparatus irradiates the laminated material with the irradiation light in parallel by a plurality of irradiation units instead of one irradiation unit, and is three-dimensional. It differs in that the layered object is formed. Since other configurations and operations are the same as those of the second embodiment or the third embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 17 is a conceptual diagram showing a modeling state by the additive manufacturing control apparatus according to the present embodiment.
  • the optical position sensor is greatly illustrated ignoring the dimensional relationship of the constituent elements.
  • FIG. 17 the same components as those in FIG. Further, in FIG. 17, positional deviation detection at 9 points is shown, but the number of detection points may be appropriately selected in consideration of correction accuracy and cost.
  • FIG. 17 shows the irradiation position correction by detecting the positional deviation of the irradiation at the nine points on the layered modeling surface by the three optical position sensors 211 to 213 installed at both end portions and the central portion of the squeezing blade 210. This is an example. In FIG. 17, only four points at the four corners are shown, but in actuality, it is assumed that positional deviations by the optical position sensors 211 to 213 are detected at nine points.
  • the upper left is a case where the entire light is irradiated by, for example, four irradiation units and the positional deviation is detected by the three optical position sensors 211 to 213.
  • the lower left is a case where, for example, four irradiation units irradiate a part divided into four parts, and the positional deviations are detected by the three optical position sensors 211 to 213.
  • ⁇ , ⁇ , ⁇ , and X are irradiation positions.
  • the irradiation position coordinates are corrected by the irradiation position correction map on the basis of the positional deviation data of nine points from the three optical position sensors 211 to 213 for each irradiation unit, as shown in the right figure. Misalignment is corrected.
  • the irradiation position coordinates are corrected by the irradiation position correction map based on the positional deviation data of four points of the irradiation range among the three optical position sensors 211 to 213 for each irradiation unit. Then, the positional deviation is corrected as shown in the right figure.
  • the number of optical position sensors arranged on the squeezing blade 210 and the number of positions on which the positional deviation is detected by irradiating the squeezing blade 210 are not limited to this example, and the correction accuracy and cost are taken into consideration. Selected.
  • FIG. 18 is a block diagram illustrating a functional configuration of the additive manufacturing unit 1810 in the three-dimensional additive manufacturing system 1800 including the additive manufacturing control unit 320 according to the present embodiment.
  • the layered modeling unit 1810 includes a plurality of scanning amplifiers 313 and a plurality of corresponding two-axis rotary step motors and mirror units 314. Although not shown, it is assumed that a plurality of irradiation amplifiers 311 and a plurality of irradiation units (laser transmitters) 312 are also provided. In addition, the modeled object 1820 is divided into, for example, four partial areas A to D, and each laser beam 1815 irradiates the partial areas A to D in parallel to shorten the layered modeling time.
  • the laser irradiation positions are corrected in a unified manner corresponding to the transition of the laser irradiation positions during additive manufacturing in the optical modeling apparatus. Can do. That is, it is possible to correct the positional deviation between the irradiation positions from the plurality of irradiation units.
  • this embodiment shows the area
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention is also applicable to the case where the additive manufacturing control program that realizes the functions of the embodiment is supplied directly or remotely to the system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本発明は、光造形装置での積層造形中のレーザ照射位置の変移に対応して、レーザ照射位置を補正する積層造形制御装置である。この積層造形制御装置は、積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと積層材料を照射する照射部とを有し、積層造形物を造形する積層造形部を制御する積層造形制御装置であって、照射部から照射光を受けるスキージングブレードの面上における、照射光の照射位置の位置ズレを取得する位置ズレ取得部と、位置ズレに基づいて、照射部による照射位置を補正する照射位置補正部と、を備える。

Description

3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム
 本発明は、3次元積層造形における光の照射位置を補正する技術に関する。
 上記技術分野において、特許文献1には、光造形装置において、光造形用テーブルに測定点を設け、レーザ光発生装置から照射したレーザ照射位置と測定点とを撮像して、レーザ照射位置と測定点とのズレに基づいて、スキャナ制御部によりガルバノスキャナを制御する技術が開示されている。
特開2002-103459号公報
 しかしながら、上記文献に記載の技術は、光造形装置での積層造形前にレーザ照射位置を調整することはできるが、積層造形中の、例えば、機械系の変化、熱変移、姿勢変移などに対応してレーザ照射位置を補正することができなかった。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明に係る積層造形制御装置は、
 積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形部を制御する積層造形制御装置であって、
 前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得手段と、
 前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正手段と、
 を備える。
 上記目的を達成するため、本発明に係る積層造形制御方法は、
 積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形部を制御する積層造形制御方法であって、
 前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得ステップと、
 前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正ステップと、
 を含む。
 上記目的を達成するため、本発明に係る積層造形制御プログラムは、
 積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形装置を制御するコンピュータに実行させる積層造形制御プログラムであって、
 前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得ステップと、
 前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正ステップと、
 をコンピュータに実行させる。
 上記目的を達成するため、本発明に係る3次元積層造形システムは、
 積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形手段と、
 前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得手段と、
 前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正手段と、
 を備える。
 本発明によれば、光造形装置での積層造形中のレーザ照射位置の変移に対応して、レーザ照射位置を補正することができる。
本発明の第1実施形態に係る積層造形制御装置の構成を示すブロック図である。 本発明の第2実施形態に係る積層造形制御装置による造形状態を示す概念図である。 本発明の第2実施形態に係る積層造形制御部を含む3次元積層造形システムにおける積層造形部の機能構成を示すブロック図である。 本発明の第2実施形態に係る3次元積層造形システムにおける積層造形制御部の機能構成を示すブロック図である。 本発明の第2実施形態に係る位置ズレ取得部の機能構成を示すブロック図である。 本発明の第2実施形態に係る照射位置補正部の機能構成を示すブロック図である。 本発明の第2実施形態に係る位置ズレ補正用データベースの構成を示す図である。 本発明の第2実施形態に係る位置ズレデータ生成テーブルの構成を示す図である。 本発明の第2実施形態に係る照射位置座標補正テーブルの構成を示す図である。 本発明の第2実施形態に係る積層造形制御部のハードウェア構成を示すブロック図である。 本発明の第2実施形態に係る積層造形制御部の処理手順を示すフローチャートである。 本発明の第2実施形態に係る位置ズレデータ生成処理の手順を示すフローチャートである。 本発明の第2実施形態に係る照射位置補正処理の手順を示すフローチャートである。 本発明の第3実施形態に係る積層造形制御装置による造形状態を示す概念図である。 本発明の第3実施形態に係る積層造形制御部を含む3次元積層造形システムにおける積層造形部の機能構成を示すブロック図である。 本発明の第3実施形態に係る3次元積層造形システムにおける積層造形制御部の機能構成を示すブロック図である。 本発明の第3実施形態に係る位置ズレ取得部の機能構成を示すブロック図である。 本発明の第3実施形態に係る位置ズレデータ生成テーブルの構成を示す図である。 本発明の第3実施形態に係る位置ズレデータ生成処理の手順を示すフローチャートである。 本発明の第3実施形態に係る撮像画像からの位置ズレ取得処理の手順を示すフローチャートである。 本発明の第4実施形態に係る積層造形制御装置による造形状態を示す概念図である。 本発明の第4実施形態に係る積層造形制御部を含む3次元積層造形システムにおける積層造形部の機能構成を示すブロック図である。
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素は単なる例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。
 [第1実施形態]
 本発明の第1実施形態としての積層造形制御装置100について、図1を用いて説明する。積層造形制御装置100は、積層材料を積層造形物113の上層に敷き詰めるためのスキージングブレード111と積層材料を照射する照射部112とを有し、積層造形物113を造形する積層造形部110を制御する装置である。
 図1に示すように、積層造形制御装置100は、位置ズレ取得部101と、照射位置補正部102と、を含む。位置ズレ取得部101は、照射部112から照射光を受けるスキージングブレード111の面上における、照射光の照射位置の位置ズレを取得する。照射位置補正部102は、位置ズレに基づいて、照射部112による照射位置を補正する。
 本実施形態によれば、スキージングブレードの面上における照射光の照射位置の位置ズレを取得して、照射部による照射位置を補正することにより、光造形装置での積層造形中のレーザ照射位置の変移に対応して、レーザ照射位置を補正することができる。
 [第2実施形態]
 次に、本発明の第2実施形態に係る積層造形制御装置による積層造形について説明する。本実施形態に係る積層造形制御装置は、スキージングブレードの上面に設置された光位置センサの照射光の受光に基づいて、光照射の位置ズレを取得し、位置ズレを照射位置座標の補正による補正する。
 《積層造形制御装置の造形概念》
 図2は、本実施形態に係る積層造形制御装置による造形状態を示す概念図である。図2においては、本実施形態に係る造形状態を明瞭とするため、構成要素の寸法関係は無視して、光位置センサを大きく図示している。なお、図2においては、最小の4点での位置ズレ検出と、9点での位置ズレ検出を示すが、検出点の数は補正精度や費用などを考慮して適切に選択されてよい。
 図2の上段は、積層造形面の4隅の点での照射の位置ズレを、スキージングブレード210の両端部分に設置した2つの光位置センサ211と212とで検出して、照射位置補正を行なった例201である。上段左は全体が右下方に位置ズレを起こした場合である。本実施形態によれば、2つの光位置センサ211と212とからの4点の位置ズレデータに基づいて、照射位置補正マップにより照射位置座標が補正され、上段右のように位置ズレが修正される。
 図2の中段および下段は、積層造形面の9点での照射の位置ズレを、スキージングブレード210の両端部分と中央部分とに設置した3つの光位置センサ211~213とで検出して、照射位置補正を行なった例202である。中段左は左上を中心に全体が時計回りに回転した位置ズレを起こした場合である。また、下段左は各辺の中央部分が縮んだ位置ズレを起こした場合である。本実施形態によれば、3つの光位置センサ211~213からの9点の位置ズレデータに基づいて、照射位置補正マップにより照射位置座標が補正され、中下段右のように位置ズレが修正される。
 なお、スキージングブレード210に配置される光位置センサの数や、スキージングブレード210を照射して位置ズレを検出する位置の数は、本例に限定されず、補正精度や費用を考慮して選択される。
 《積層造形部の機能構成》
 図3は、本実施形態に係る積層造形制御部320を含む3次元積層造形システム300における積層造形部310の機能構成を示すブロック図である。
 3次元積層造形システム300は、積層造形部310と、積層造形制御装置としての積層造形制御部320と、情報処理装置330と、を備える。積層造形部310は、積層造形制御部320の各種の制御指令に従って、3次元積層造形物を生成する。積層造形制御部320は、情報処理装置330が生成した3次元造形データに従って、積層造形部310を制御するための各種の制御指令を生成する。制御指令は、照射用アンプ311により照射部312を制御するための照射指令と、走査用アンプ313により回転ステップモータにより回転するミラー部314を介して走査方向を制御するための走査指令と、スキージングブレード210や造形テーブル318の移動を制御するための移動指令と、を含む。情報処理装置330は、3次元造形対象の積層造形物の情報を取得して、3次元造形データを生成する。なお、情報処理装置330は、汎用のコンピュータであっても、本実施形態に対応する特殊なコンピュータであってもよい。
 積層造形部310は、照射用アンプ311と、照射部312と、を有する。また、積層造形部310は、走査用アンプ313と、2軸の回転ステップモータおよびミラー部314と、を有する。また、積層造形部310は、移動用アンプ317と、スキージングブレード210と、造形テーブル318と、を有する。スキージングブレード210の上面には、光位置センサ(PSD:Position Sensitive Detector)211~213が設置されている。そして、積層造形部310は、光位置センサ211~213からのアナログの光位置信号をデジタルに変換して、積層造形制御部320に伝達する光位置センサ用A/D(Analogue Digital Convertor)変換器316を有する。
 照射部312から放射されるレーザ光315は、回転ステップモータにより回転するミラー部314により、造形テーブル318上の既に積層造形された造形物220の上面を照射して、造形面を生成する。1つの層を造形後は、造形テーブル318を所定幅(=層厚)下降させ、スキージングブレード210により次層の積層材料を積層造形物の上層に敷き詰める。かかる動作を3次元造形データに従って繰り返すことにより、3次元積層造形物が生成される。
 本実施形態においては、積層造形前ばかりでなく、積層造形中においても、照射部312から放射されるレーザ光315による照射位置の位置ズレを補正することができる。すなわち、スキージングブレード210が造形面上を移動する時に、スキージングブレード210のX方向の座標位置と光位置センサ211~213のY方向の座標位置とに対応するX,Y座標位置を、照射部312から放射されるレーザ光315で照射させる。この時、積層造形制御部320によって、照射強度(エネルギー)を低減させてX,Y座標位置を設定する。光位置センサ211~213は、X,Y座標位置に照射させたレーザ光315が実際に照射している位置を、光位置センサ211~213により検出する。そして、光位置センサ211~213からのアナログの光位置信号は、光位置センサ用A/D変換器316によってデジタルデータに変換されて、積層造形制御部320に伝達され、照射位置座標の補正に使用される。
 《積層造形制御部の機能構成》
 図4は、本実施形態に係る3次元積層造形システム300における積層造形制御部320の機能構成を示すブロック図である。図4においては、図3の積層造形制御部320と情報処理装置330の機能構成を示す。ここで、積層造形部310と積層造形制御部320とは、3次元造形装置420、いわゆる3Dプリンタを構成してもよい。積層造形部310の構成は図3と同様であり、重複する説明は省略する。なお、図4においては、積層造形制御部320を含む3次元造形装置420と情報処理装置330とを別の装置として図示しているが、1つの装置として構成されても、積層造形制御部320を情報処理装置330に合体させてもよい。
 積層造形制御部320は、通信制御部421と、3次元造形データ記憶部422と、位置ズレ取得部423と、位置ズレ補正用データベース424と、照射位置補正部425と、積層造形指令部426と、を備える。
 通信制御部421は、積層造形制御部320と情報処理装置330との通信を制御し、3次元造形データや指示コマンドなどを情報処理装置330から受信したり、積層造形制御部320や積層造形部310の状況を情報処理装置330へ送信したりする。3次元造形データ記憶部422は、情報処理装置330から受信した3次元造形データを記憶する。なお、3次元造形データの記憶は、3次元造形物単位であったり、積層する層単位であったりしてよく、3次元造形装置420の積層造形速度や情報処理装置330の処理速度、あるいは、情報処理装置330と積層造形制御部320との通信容量などに基づいて、適切に決定される。
 位置ズレ取得部423は、積層造形部310の光位置センサ用A/D変換器316から、光位置センサ211~213が所定のX,Y座標で検出した光の位置ズレデータを取得する。なお、所定のX,Y座標は、本例では、Y方向に2点あるいは3点でX方向には所望の点数が設定可能であるが、4点や9点の例を代表させて説明する。しかしながら、X方向およびY方向共に、点数に制限はない。
 位置ズレ補正用データベース424は、位置ズレ取得部423が取得した光の位置ズレデータの組に基づいて、位置ズレ補正用データを格納する。照射位置補正部425は、現在積層造形中の3次元造形データに対して、本実施形態においては、位置ズレに対応して照射位置座標を補正して、積層造形中における機械系の変化、熱変移、姿勢変移などを吸収する。積層造形指令部426は、照射位置補正部425によって照射位置座標が補正された3次元造形データに基づいて、積層造形部310の各部への指令を行なう。ここで、位置ズレ取得部423と、位置ズレ補正用データベース424と、照射位置補正部425と、積層造形指令部426と、が照射制御部の全てあるいはその一部を構成する。
 情報処理装置330は、PC(パーソナルコンピュータ)などの汎用コンピュータでよい。情報処理装置330は、通信制御部431と、3次元造形データ生成部432と、表示部433と、操作部434と、3次元造形データベース435と、3次元造形対象データ取得部436と、を備える。なお、情報処理装置330が3次元造形対象データの生成機能を含む場合、3次元造形対象データ取得部436は3次元造形対象データ生成部となる。
 通信制御部431は、外部装置である3次元造形装置420または3次元造形対象データ生成装置との通信を制御する。3次元造形データ生成部432は、表示部433に表示された操作指示に従い操作部434からのオペレータによる入力あるいは操作に従って、3次元造形データベース435に格納されたデータを用いて、3次元造形装置420が3次元造形対象物を積層造形するための3次元造形データを生成する。表示部433は、3次元造形装置420や情報処理装置330の状況を報知すると共に、オペレータに対して3次元造形物の積層造形に必要となるパラメータの入力を要請する。操作部434は、キーボード、ポインティングデバイス、タッチパネルなどを含み、表示部433に表示された指示に従い、オペレータからの入力や操作指示を受け付ける。3次元造形データベース435は、3次元造形データ生成部432が3次元造形データを生成するために用いるデータである、3次元造形対象物のデータや生成アルゴリズム、生成パラメータなどを格納する。3次元造形対象データ取得部436は、3次元造形対象データ生成装置から提供される3次元造形対象データを、通信制御部431を介して、あるいは、記憶媒体などからI/Oインタフェースを介して取得する。
 (位置ズレ取得部)
 図5Aは、本実施形態に係る位置ズレ取得部423の機能構成を示すブロック図である。
 位置ズレ取得部423は、光位置データ取得部511と、位置ズレデータ生成部512と、を有する。光位置データ取得部511は、積層造形部310の光位置センサ用A/D変換器316から、光位置センサ211~213がスキージングブレード210の所定位置(X座標)で検出した光位置信号のデジタルデータを取得する。位置ズレデータ生成部512は、位置ズレデータ生成テーブル512aを有し、光位置データ取得部511が取得した造形面の所定座標の光位置データのズレデータの組を生成する。生成された光位置データのズレデータの組は、位置ズレ補正用データベース424に出力されて、照射位置補正部425が用いる照射位置補正マップを検索するために使用される。
 (照射位置補正部)
 図5Bは、本実施形態に係る照射位置補正部425の機能構成を示すブロック図である。
 照射位置補正部425は、造形データ受信部521と、照射位置座標補正部522と、を有する。造形データ受信部521は、3次元造形データ記憶部422から各層の造形データを受信する。照射位置座標補正部522は、照射位置座標補正テーブル522aを有し、造形データ受信部521が受信した造形データの照射位置座標を、位置ズレ補正用データベース424に格納され位置ズレ取得部423からの位置ズレデータにより検索された、照射位置補正マップに基づいて補正する。そして、位置ズレに対応して照射位置座標を補正した造形データを、積層造形指令部426に出力する。積層造形指令部426は、補正された照射位置座標により積層造形部310への走査指令を行なう。
 (位置ズレ補正用データベース)
 図6は、本実施形態に係る位置ズレ補正用データベース424の構成を示す図である。位置ズレ補正用データベース424は、位置ズレ取得部423が生成した位置ズレデータ組を検索キーとして、検索される照射位置補正マップを格納しており、照射位置補正部425による位置ズレを補正するために使用される。なお、位置ズレ補正用データベース424は、図6の構成に限定されない。
 位置ズレ補正用データベース424は、位置ズレデータ組601を検索キーとして、照射位置補正マップ602を格納する。位置ズレデータ組601としては、図2に示した第1光位置データから第4光位置データの4点の組のテーブル611や、第1光位置データから第9光位置データの9点の組のテーブル612、などがあるがその数に制限はない。スキージングブレード210に設置する光位置センサの数や、位置ズレ取得時の光位置データの検出位置の数に依存する。照射位置補正マップ602は、造形データ中の補正前の照射位置座標の各々に対応して、補正後の照射位置座標を格納する。
 (位置ズレデータ生成テーブル)
 図7は、本実施形態に係る位置ズレデータ生成テーブル512aの構成を示す図である。位置ズレデータ生成テーブル512aは、位置ズレ取得部423が、スキージングブレード210に設置された光位置センサ211~213からの位置ズレデータの組を、位置ズレ補正用データベース424に格納された照射位置補正マップ602を検索する検索キーとして生成するために使用される。なお、図7で図6と同様の要素には同じ参照番号を付与する。また、図7には、4点の位置ズレと9点の位置ズレとを説明するが、これに限定されない。
 位置ズレデータ生成テーブル512aの4点の場合のテーブル611は、それぞれX座標ズレとY座標ズレとからなる第1光位置データ711~第4光位置データ714の組を生成して、位置ズレ補正用データベース424に検索キーとして出力する。位置ズレデータ生成テーブル512aの9点の場合のテーブル612は、それぞれX座標ズレとY座標ズレとからなる第1光位置データ721~第9光位置データ729の組を生成して、位置ズレ補正用データベース424に検索キーとして出力する。
 (照射位置座標補正テーブル)
 図8は、本実施形態に係る照射位置座標補正テーブル522aの構成を示す図である。照射位置座標補正テーブル522aは、照射位置補正部425が、造形データの照射位置座標を位置ズレが補正された照射位置座標に補正するために使用される。
 照射位置座標補正テーブル522aは、X座標とY座標とを有する補正前の照射位置座標801と、位置ズレデータの組を検索キーに検索された照射位置補正マップ602による、補正データとしての、補正後の照射位置座標802と、その照射位置を照射するか否かのフラグ803と、を含む。なお、造形する領域のみを記憶する場合は、造形するか否かのフラグは必要としない。
 《積層造形制御部のハードウェア構成》
 図9は、本実施形態に係る積層造形制御部320のハードウェア構成を示すブロック図である。
 図9で、CPU(Central Processing Unit)910は演算制御用のプロセッサであり、プログラムを実行することで図4の積層造形制御部320の機能構成部を実現する。ROM(Read Only Memory)920は、初期データおよびプログラムなどの固定データを記憶する。また、通信制御部421は、ネットワークなどを介して情報処理装置330と通信する。なお、CPU910は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPU(Graphics Processing Unit)を含んでもよい。特に、受信した3次元造形データに基づいて、位置ズレデータを取得するためのプロセッサと、照射位置を補正するプロセッサと、積層造形部310を制御する各種指令を生成するプロセッサとは、別のプロセッサであるのが望ましい。また、通信制御部421は、CPU910とは独立したCPUを有して、RAM(Random Access Memory)940の領域に送受信データを書き込みあるいは読み出しするのが望ましい。
 RAM940は、CPU910が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM940には、本実施形態の実現に必要なデータを記憶する領域が確保されている。3次元造形データ941は、現在積層造形されている3次元造形物のデータである。光位置データ942は、光位置センサ211~213から取得したデータである。位置ズレデータ生成テーブル512aは、図7において説明された、位置ズレ取得部423が位置ズレデータ組を生成するためのテーブルである。照射位置座標補正テーブル522aは、図8において説明された、照射位置補正部425が位置ズレに対応して照射位置座標を補正するためのテーブルである。送受信データ943は、通信制御部421を介して送受信されるデータである。
 ストレージ950には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。位置ズレ補正用データベース424は、図6において説明された、位置ズレデータ組を検索キーとして検索される照射位置補正マップを格納する。3次元造形データ951は、情報処理装置330から通信制御部421を介して受信して格納した3次元造形物の積層造形用のデータである。位置ズレ補正アルゴリズム952は、位置ズレデータ組に基づいて照射位置座標を補正するためのアルゴリズムである。
 ストレージ950には、以下のプログラムが格納される。積層造形制御部制御プログラム953は、本積層造形制御部320の全体を制御する制御プログラムである。3次元造形データ取得モジュール954は、情報処理装置330と通信して3次元造形データを取得するモジュールである。位置ズレデータ生成モジュール955は、光位置センサ211~213から取得した位置ズレデータに基づいて検索キーを生成するモジュールである。照射位置補正モジュール956は、検索された照射位置補正マップに基づいて照射位置座標を補正するモジュールである。
 なお、図9のRAM940やストレージ950には、積層造形制御部320が有する汎用の機能や他の実現可能な機能に関連するプログラムやデータは図示されていない。
 《積層造形制御部の処理手順》
 図10Aは、本実施形態に係る積層造形制御部320の処理手順を示すフローチャートである。このフローチャートは、図9のCPU910がRAM940を使用して実行し、図4の積層造形制御部320の機能構成部を実現する。
 積層造形制御部320は、ステップS1001において、情報処理装置330から3次元造形データを受信して記憶する。積層造形制御部320は、ステップS1003において、スキージングブレード210上に設置した光位置センサからの位置ズレを取得して、位置ズレデータ生成処理を実行する。積層造形制御部320は、ステップS1005において、位置ズレデータ組を検索キーに検索された照射位置補正マップを用いて、位置ズレを補償する照射位置補正処理を実行する。そして、積層造形制御部320は、ステップS1007において、補正された照射位置座標を用いて、積層造形部310において3次元積層造形を行なう。
 (位置ズレデータ生成処理)
 図10Bは、本実施形態に係る位置ズレデータ生成処理(S1003)の手順を示すフローチャートである。
 積層造形制御部320の切替部は、ステップS1011において、レーザ照射強度(エネルギー)を、スキージングブレード210上を照射可能な強度(エネルギー)に低減する。積層造形制御部320は、ステップS1013において、初期化(i=1,j=1)を行なう。なお、ここで、iはスキージングブレード210の移動方向(X方向)の位置ズレ検出回数、jはスキージングブレード210の軸方向(Y方向)の位置ズレ検出数(=光位置センサ数)である。また、Mはスキージングブレード210上の光位置センサの数、Nは位置ズレ検出回数の最大数であり、i≧Nである。
 積層造形制御部320は、ステップS1015において、スキージングブレード210が照射位置ズレを検出する位置(Xi)に移動するのを待つ。スキージングブレード210が照射位置ズレを検出する位置(Xi)に移動すると、積層造形制御部320は、ステップS1017において、レーザを照射する照射位置(Xi,Yj)を設定して、ステップS1019において、レーザの照射を指示する。そして、積層造形制御部320は、ステップS1021において、照射位置(Xi,Yj)に対応する光位置センサから光位置データを受信して位置ズレデータとして保持する。
 積層造形制御部320は、ステップS1023において、jを1つ加算してj+1とする。そして、積層造形制御部320は、ステップS1025において、j>Mを判定する。なお、スキージングブレード210に3つの光位置センサが設置されている場合は、M=3となる。j>Mでなければ、積層造形制御部320は、ステップS1017に戻って、スキージングブレード210上の次の光位置センサを照射して、位置ズレを検出する。なお、実際には、スキージングブレード210の移動や照射部の照射位置設定によるズレが発生するので、造形精度に影響がある場合は照射部の照射位置設定を調整するのが望ましい。
 j>Mになれば、積層造形制御部320は、ステップS1027において、j=1としてjを1つ加算してj+1として、スキージングブレード210の次の位置(i)に向かう。なお、積層造形制御部320は、ステップS1029において、i>Nを判定する。なお、スキージングブレード210に3つの光位置センサが設置されており、9点で位置ズレを検出する場合は、N=3となる。i>Nでなければ、積層造形制御部320は、ステップS1015に戻って、スキージングブレード210の次の位置(i=i+1)において、光位置センサを照射して、位置ズレを検出する。
 i>Nになれば、積層造形制御部320は、ステップS1031において、各照射位置(Xi,Yj)と位置ズレデータとを対応付けて記憶する。そして、積層造形制御部320の切替部は、レーザ照射強度(エネルギー)を通常状態に戻して、位置ズレデータ生成処理を終了する。
 (照射位置補正処理)
 図10Cは、本実施形態に係る照射位置補正処理(S1005)の手順を示すフローチャートである。
 積層造形制御部320は、ステップS1041において、照射位置(Xi,Yj)と位置ズレデータとの対応データを検索キーとして、位置ズレ補正用データベース424に格納された照射位置補正マップを検索する。積層造形制御部320は、ステップS1043において、3次元造形データ記憶部422からの造形データに含まれる照射位置座標を取得する。そして、積層造形制御部320は、ステップS1044において、検索された照射位置補正マップを用いて取得した照射位置座標を補正する。
 本実施形態によれば、スキージングブレードの上面に設置された光位置センサの照射光の受光に基づいて、光照射の位置ズレを取得し、位置ズレを照射位置座標の補正による補正することにより、光造形装置での積層造形中のレーザ照射位置の変移に対応して、レーザ照射位置を補正することができる。すなわち、高精度なレーザ位置決め補正が積層造形中にも可能なので、後工程での位置決めも容易となる。
 [第3実施形態]
 次に、本発明の第3実施形態に係る積層造形制御装置を含む3次元積層造形システムによる積層造形について説明する。本実施形態に係る積層造形制御装置は、上記第2実施形態と比べると、スキージングブレードの上面に設置された光位置センサの照射光の受光でなく、スキージングブレードの上面の基準標識(マーク)と照射光とを撮像することにより位置ズレを検出する点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 《積層造形制御装置の造形概念》
 図11は、本実施形態に係る積層造形制御装置による造形状態を示す概念図である。図11においては、本実施形態に係る造形状態を明瞭とするため、構成要素の寸法関係は無視して、基準標識を大きく図示している。なお、図11においては、最小の4点での位置ズレ検出と、9点での位置ズレ検出を示すが、検出点の数は補正精度や費用などを考慮して適切に選択されてよい。
 図11の上段は、積層造形面の4隅の点での照射の位置ズレを、スキージングブレード1110の両端部分に付した2つの基準標識1111および1112と、スキージングブレード1110を照射する照射光との撮像画像から位置ズレで検出して、照射位置補正を行なった例1101である。上段左は全体が右下方に位置ズレを起こした場合である。本実施形態によれば、2つの基準標識1111および1112と、スキージングブレード1110を照射する照射光との撮像画像から抽出した4点の位置ズレデータに基づいて、照射位置補正マップにより照射位置座標が補正され、上段右のように位置ズレが修正される。
 図11の中段および下段は、積層造形面の9点での照射の位置ズレを、スキージングブレード1110の両端部分と中央部分とに設置した3つの基準標識1111~1113と、スキージングブレード1110を照射する照射光との撮像画像から位置ズレで検出して、照射位置補正を行なった例1102である。中段左は左上を中心に全体が時計回りに回転した位置ズレを起こした場合である。また、下段左は各変の中央部分が縮んだ位置ズレを起こした場合である。本実施形態によれば、3つの基準標識1111~1113と、スキージングブレード1110を照射する照射光との撮像画像からの9点の位置ズレデータに基づいて、照射位置補正マップにより照射位置座標が補正され、中下段右のように位置ズレが修正される。
 なお、基準標識(マーク)は“+”に限定されない。レーザ光と共に撮像して位置ズレをより精度よく検出できる形状が選ばれる。また、スキージングブレード1110に付される基準標識(マーク)の数や、スキージングブレード1110を照射して位置ズレを検出する位置の数は、本例に限定されず、補正精度や費用を考慮して選択される。
 《積層造形部の機能構成》
 図12は、本実施形態に係る積層造形制御部1220を含む3次元積層造形システム1200における積層造形部1210の機能構成を示すブロック図である。なお、図12において、図2または図3と同様の構成要素には同じ参照番号を付して、重複する説明を省略する。
 3次元積層造形システム1200は、積層造形部1210と、積層造形制御部1220と、情報処理装置330と、を備える。積層造形部1210は、スキージングブレード1110を有する。スキージングブレード1110の上面には、基準標識1111~1113が付されている。そして、積層造形部1210は、基準標識1111~1113と、照射部312から放射されたレーザ光315の照射位置とを含む画像を撮像する位置ズレ検出用撮像部(カメラ)1216を有する。積層造形制御部1220は、基準標識1111~1113と、レーザ光315の照射位置とを含む撮像画像から照射の位置ズレを検出する。
 本実施形態においては、積層造形前ばかりでなく、積層造形中においても、照射部312から放射されるレーザ光315による照射位置の位置ズレを補正することができる。すなわち、スキージングブレード1110が造形面上を移動する時に、スキージングブレード1110のX方向の座標位置と基準標識1111~1113のY方向の座標位置とに対応するX,Y座標位置を、照射部312から放射されるレーザ光315で照射させる。この時、積層造形制御部1220によって、照射強度(エネルギー)を低減させてX,Y座標位置を設定する。位置ズレ検出用撮像部1216は、スキージングブレード1110上のX,Y座標位置に照射させたレーザ光315が実際に照射している照射位置と、基準標識1111~1113とを撮像して、位置ズレを検出する。その位置ズレデータ組に基づいて、第2実施形態と同様に、照射位置座標の補正ができる。
 《積層造形制御部の機能構成》
 図13は、本実施形態に係る3次元積層造形システム1200における積層造形制御部1220の機能構成を示すブロック図である。図13においては、図12の積層造形制御部1220と情報処理装置330の機能構成を示す。ここで、積層造形部1210と積層造形制御部1220とは、3次元造形装置1320、いわゆる3Dプリンタを構成してもよい。積層造形部1210の構成は図12と同様であり、重複する説明は省略する。なお、図13においては、積層造形制御部1220を含む3次元造形装置1320と情報処理装置330とを別の装置として図示しているが、1つの装置として構成されても、積層造形制御部1220を情報処理装置330に合体させてもよい。なお、図13において、図4と同様の構成要素には同じ参照番号を付して、重複する説明を省略する。
 積層造形制御部1220は、通信制御部421と、3次元造形データ記憶部422と、位置ズレ取得部1323と、位置ズレ補正用データベース424と、照射位置補正部425と、積層造形指令部426と、を備える。
 位置ズレ取得部1323は、積層造形部1210の位置ズレ検出用撮像部1216から受信した、スキージングブレード1110上の基準標識1111~1113と光照射位置とを含む撮像画像に基づいて、所定のX,Y座標における光の位置ズレデータを取得する。なお、所定のX,Y座標は、本例では、Y方向に2点あるいは3点でX方向には所望の点数が設定可能であるが、4点や9点の例を代表させて説明する。しかしながら、X方向およびY方向共に、点数に制限はない。
 ここで、位置ズレ取得部423と、位置ズレ補正用データベース424と、照射位置補正部425と、積層造形指令部426と、が照射制御部の全てあるいはその一部を構成する。
 (位置ズレ取得部)
 図14は、本実施形態に係る位置ズレ取得部1323の機能構成を示すブロック図である。
 位置ズレ取得部1323は、撮像画像取得部1411と、基準標識抽出部1412と、照射位置抽出部1413と、位置ズレデータ生成部1414と、を有する。撮像画像取得部1411は、位置ズレ検出用撮像部1216から撮像画像を取得する。基準標識抽出部1412は、取得した撮像画像からスキージングブレード1110上の基準標識1111~1113を抽出する。また、照射位置抽出部1413は、取得した撮像画像からスキージングブレード1110上のレーザ光の照射位置を抽出する。
 位置ズレデータ生成部1414は、位置ズレデータ生成テーブル1414aを有し、基準標識抽出部1412からの基準標識1111~1113の抽出位置と、照射位置抽出部1413からのレーザ光の照射抽出位置と、の位置座標を比較して、各点の位置ズレを求める。そして、位置ズレ補正用データベース424から照射位置補正マップを検索する検索キーとしての位置ズレデータ組を生成する。
 (位置ズレデータ生成テーブル)
 図15は、本実施形態に係る位置ズレデータ生成テーブル1414aの構成を示す図である。位置ズレデータ生成テーブル1414aは、位置ズレ取得部423が、撮像画像から抽出した、スキージングブレード210に付された基準標識1111~1113の位置と、光照射位置との位置ズレから位置ズレデータの組を生成するために使用される。なお、図15で図6または図7と同様の要素には同じ参照番号を付与する。また、図15には、9点の位置ズレを説明するが、これに限定されない。
 位置ズレデータ生成テーブル1414aの9点の場合のテーブルは、9点の光位置1511に対応付けて、X座標とY座標からなる基準標識中心(+であれば交点)の座標1512と、X’座標とY’座標とからなる照射位置座標(照射点の中心)1513と、を記憶する。そして、位置ズレデータ生成テーブル1414aの9点の場合のテーブルは、9点の光位置1511にそれぞれが対応付けられた、X座標ズレとY座標ズレとからなる位置ズレデータのテーブル612が生成され、位置ズレ補正用データベース424に検索キーとして出力する。
 (位置ズレデータ生成処理)
 図16Aは、本実施形態に係る位置ズレデータ生成処理(S1003)の手順を示すフローチャートである。なお、図16Aにおいて、図10Bと同様のステップには同じステップ番号を付して、重複する説明は省略する。
 積層造形制御部1220は、ステップS1621において、図10BのステップS1021に代えて、撮像画像からの位置ズレ取得処理を実行する。
 (位置ズレ取得処理)
 図16Bは、本実施形態に係る位置ズレ取得処理(S1621)の手順を示すフローチャートである。
 積層造形制御部1220は、ステップS1631において、位置ズレ検出用撮像部1216からスキージングブレード1110上の基準標識1111~1113と光照射位置とを含む撮像画像を取得する。積層造形制御部1220は、ステップS1633において、スキージングブレード1110上の基準標識を抽出して座標位置を判定する。積層造形制御部1220は、ステップS1635において、スキージングブレード1110上の照射位置を抽出して座標位置を判定する。そして、積層造形制御部1220は、ステップS1637において、基準標識位置と照射位置との位置ズレを検出して目標の位置座標に対応付けて保持する。
 本実施形態によれば、スキージングブレードの上面に付された基準標識と照射位置とを含む画像に基づいて、光照射の位置ズレを取得することにより、スキージングブレードの上面に光位置センサを設置する作業無しに、簡単な調整により、光造形装置での積層造形中のレーザ照射位置の変移に対応して、レーザ照射位置を補正することができる。すなわち、スキージングブレードの製造時に基準標識を付せば、光位置センサの設置位置の調整などの手間がなくなる。
 [第4実施形態]
 次に、本発明の第4実施形態に係る積層造形制御装置を含む3次元積層造形システムによる積層造形について説明する。本実施形態に係る積層造形制御装置は、上記第2実施形態および第3実施形態と比べると、1つの照射部でなく複数の照射部によって並行して照射光を積層材料に照射して3次元積層造形物を造形する点で異なる。その他の構成および動作は、第2実施形態または第3実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。なお、以下ではスキージングブレードに光位置センサを設置した第2実施形態の変形例を示すが、スキージングブレードに基準標識を付した第3実施形態への適用も同様である。
 《積層造形制御装置の造形概念》
 図17は、本実施形態に係る積層造形制御装置による造形状態を示す概念図である。図17においては、本実施形態に係る造形状態を明瞭とするため、構成要素の寸法関係は無視して、光位置センサを大きく図示している。なお、図17において、図2と同様の構成要素には同じ参照番号を付して、重複する説明を省略する。また、図17においては、9点での位置ズレ検出を示すが、検出点の数は補正精度や費用などを考慮して適切に選択されてよい。
 図17は、積層造形面の9点での照射の位置ズレを、スキージングブレード210の両端部分と中央部分とに設置した3つの光位置センサ211~213とで検出して、照射位置補正を行なった例である。なお、図17では4隅の4点のみを示すが、実際には9点で光位置センサ211~213による位置ズレが検出されるものとする。
 上段左は、例えば4つの照射部により全体を照射して、3つの光位置センサ211~213で位置ズレを検出した場合である。下段左は、例えば4つの照射部によりそれぞれ4分割した一部分を照射して、3つの光位置センサ211~213で位置ズレを検出した場合である。図17において、○、△、□、Xがそれぞれの照射位置である。
 上段左の例によれば、各照射部ついて、3つの光位置センサ211~213からの9点の位置ズレデータに基づいて、照射位置補正マップにより照射位置座標が補正され、右図のように位置ズレが修正される。一方、下段左の例によれば、各照射部ついて、3つの光位置センサ211~213の内、その照射範囲の4点の位置ズレデータに基づいて、照射位置補正マップにより照射位置座標が補正され、右図のように位置ズレが修正される。
 なお、スキージングブレード210に配置される光位置センサの数や、スキージングブレード210を照射して位置ズレを検出する位置の数は、本例に限定されず、補正精度や費用を考慮して選択される。
 《積層造形部の機能構成》
 図18は、本実施形態に係る積層造形制御部320を含む3次元積層造形システム1800における積層造形部1810の機能構成を示すブロック図である。なお、図18において、図2または図3と同様の構成要素には同じ参照番号を付して、重複する説明を省略する。
 積層造形部1810は、複数の走査用アンプ313と、対応する複数組の2軸の回転ステップモータおよびミラー部314と、を備える。また、図示しないが、照射用アンプ311および照射部(レーザ発信器)312も複数備えられているものとする。また、造形物1820は、例えば、4つの部分領域AからDに分割されて、各レーザ光1815が部分領域AからDを並行して照射し、積層造形時間を短縮する。
 本実施形態によれば、複数の照射部からの照射位置に対しても、統一的に、光造形装置での積層造形中のレーザ照射位置の変移に対応して、レーザ照射位置を補正することができる。すなわち、複数の照射部からの照射位置間の位置ズレも補正することが可能である。
 [他の実施形態]
 なお、本実施形態は、3次元積層造形において各層の造形領域を微細に分割した領域を示す(例えば、0.1mm四方の矩形など)“セル領域”単位で造形する3次元積層造形システムに対しても、同様に適用されて同様の効果を奏する。
 また、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する積層造形制御プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。

Claims (10)

  1.  積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形部を制御する積層造形制御装置であって、
     前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得手段と、
     前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正手段と、
     を備える積層造形制御装置。
  2.  前記位置ズレ取得手段は、前記スキージングブレードの面上に軸方向に離れて配置された少なくとも2つの光位置センサを有し、前記少なくとも2つの光位置センサの出力に基づいて前記照射光の照射位置の位置ズレを取得する、請求項1に記載の積層造形制御装置。
  3.  前記位置ズレ取得手段は、前記スキージングブレードの面上に軸方向に離れて設置された少なくとも2つの基準標識と、前記基準標識の設置位置と前記照射光の照射位置とを含む画像を撮像する撮像手段とを有し、前記撮像された画像における前記基準標識の設置位置と前記照射光の照射位置との位置ズレに基づいて前記照射光の照射位置の位置ズレを取得する、請求項1に記載の積層造形制御装置。
  4.  前記位置ズレ取得手段は、移動する前記スキージングブレードの異なる位置において少なくとも4つの照射位置の位置ズレを取得し、
     前記照射位置補正手段は、前記少なくとも4つの照射位置の位置ズレの情報に基づいて、前記前記照射手段による照射位置を補正する、請求項1乃至3のいずれか1項に記載の積層造形制御装置。
  5.  前記照射位置補正手段は、前記位置ズレ取得手段が取得した照射位置の位置ズレの情報に基づいて、全ての照射位置を補正する照射位置座標の補正データを生成して前記照射位置座標に対応付けて記憶する記憶手段を有し、前記記憶手段を用いて前記前記照射手段による照射位置を補正する、請求項1乃至4のいずれか1項に記載の積層造形制御装置。
  6.  前記積層造形制御装置は複数の照射手段により並行して前記積層造形物を造形し、
     前記位置ズレ取得手段は、前記複数の照射手段の各々による前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得し、
     前記照射位置補正手段は、前記位置ズレに基づいて、前記複数の照射手段の各々による照射位置を補正する、請求項1乃至5のいずれか1項に記載の積層造形制御装置。
  7.  前記照射手段による照射強度を、前記スキージングブレードの面上を照射して前記照射光の照射位置の位置ズレを取得する場合に、低減するように切り替える切替手段を、さらに備える請求項1乃至6のいずれか1項に記載の積層造形制御装置。
  8.  積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形部を制御する積層造形制御方法であって、
     前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得ステップと、
     前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正ステップと、
     を含む積層造形制御方法。
  9.  積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形装置を制御するコンピュータに実行させる積層造形制御プログラムであって、
     前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得ステップと、
     前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正ステップと、
     をコンピュータに実行させる積層造形制御プログラム。
  10.  積層材料を積層造形物の上層に敷き詰めるためのスキージングブレードと前記積層材料を照射する照射手段とを有し、前記積層造形物を造形する積層造形手段と、
     前記照射手段から照射光を受ける前記スキージングブレードの面上における、前記照射光の照射位置の位置ズレを取得する位置ズレ取得手段と、
     前記位置ズレに基づいて、前記照射手段による照射位置を補正する照射位置補正手段と、
     を備える3次元積層造形システム。
PCT/JP2016/067278 2016-06-09 2016-06-09 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム WO2017212619A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016547122A JP6351735B2 (ja) 2016-06-09 2016-06-09 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム
PCT/JP2016/067278 WO2017212619A1 (ja) 2016-06-09 2016-06-09 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム
EP16823144.7A EP3278962A4 (en) 2016-06-09 2016-06-09 3d additive manufacturing system, additive manufacturing control device, additive manufacturing control method, and additive manufacturing control program
US15/125,116 US20180215102A1 (en) 2016-06-09 2016-06-09 Three-dimensional laminating and fabricating system, laminating and fabricating control apparatus, laminating and fabricating control method, and laminating and fabricating control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067278 WO2017212619A1 (ja) 2016-06-09 2016-06-09 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム

Publications (1)

Publication Number Publication Date
WO2017212619A1 true WO2017212619A1 (ja) 2017-12-14

Family

ID=60578982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067278 WO2017212619A1 (ja) 2016-06-09 2016-06-09 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム

Country Status (4)

Country Link
US (1) US20180215102A1 (ja)
EP (1) EP3278962A4 (ja)
JP (1) JP6351735B2 (ja)
WO (1) WO2017212619A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110116497A (zh) * 2018-02-07 2019-08-13 Cl产权管理有限公司 用于添加式地制造三维物体的设备
JP2021511226A (ja) * 2018-01-15 2021-05-06 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 三次元コンポーネントの付加製造における製造精度を監視するシステム及び方法
JP2021123761A (ja) * 2020-02-06 2021-08-30 日本電子株式会社 3次元積層造形装置
WO2022107238A1 (ja) * 2020-11-18 2022-05-27 株式会社ニコン 撮像ヘッド、制御システム及び加工システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3542994B1 (en) * 2018-03-23 2021-08-18 United Grinding Group Management AG Doctor blade device
EP3581297A1 (de) * 2018-06-12 2019-12-18 Siemens Aktiengesellschaft Verfahren zum bestimmen von bauvorschriften für ein additives fertigungsverfahren, verfahren zum erstellen einer datenbank mit korrekturmassnahmen für die prozessführung eines additiven fertigungsverfahrens, speicherformat für bauanweisungen und computer-programmprodukt
US11666988B2 (en) * 2019-07-22 2023-06-06 Hamilton Sundstrand Corporation Additive manufacturing machine condensate monitoring
EP4025426A4 (en) * 2019-09-04 2024-01-03 Vulcanforms Inc. LASER ARRAY POSITION DETECTION

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318574A (ja) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd 三次元形状の形成方法
JP2000326416A (ja) * 1999-04-23 2000-11-28 Eos Gmbh Electro Optical Systems 3次元物体を製造する装置を校正する方法、校正装置、及び3次元物体を製造する装置および方法
JP2002103459A (ja) 2000-09-29 2002-04-09 Sanyo Electric Co Ltd 光造形装置及び光造形品の制作方法
JP2005133120A (ja) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd 光造形用加工基準補正方法及び光造形装置
JP2005336547A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd 三次元形状造形物の製造装置及びその光ビーム照射位置及び加工位置の補正方法
JP2009006509A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法及び製造装置
JP2016060131A (ja) * 2014-09-18 2016-04-25 株式会社ソディック 積層造形装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711899B2 (ja) * 2010-05-13 2015-05-07 株式会社スギノマシン アライメント調整方法、アライメント調整装置、及びアライメント調整装置を備えたレーザー加工装置
DE102015226722A1 (de) * 2015-12-23 2017-06-29 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Kalibrieren einer Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318574A (ja) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd 三次元形状の形成方法
JP2000326416A (ja) * 1999-04-23 2000-11-28 Eos Gmbh Electro Optical Systems 3次元物体を製造する装置を校正する方法、校正装置、及び3次元物体を製造する装置および方法
JP2002103459A (ja) 2000-09-29 2002-04-09 Sanyo Electric Co Ltd 光造形装置及び光造形品の制作方法
JP2005133120A (ja) * 2003-10-28 2005-05-26 Matsushita Electric Works Ltd 光造形用加工基準補正方法及び光造形装置
JP2005336547A (ja) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd 三次元形状造形物の製造装置及びその光ビーム照射位置及び加工位置の補正方法
JP2009006509A (ja) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法及び製造装置
JP2016060131A (ja) * 2014-09-18 2016-04-25 株式会社ソディック 積層造形装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278962A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511226A (ja) * 2018-01-15 2021-05-06 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 三次元コンポーネントの付加製造における製造精度を監視するシステム及び方法
JP7160928B2 (ja) 2018-01-15 2022-10-25 フラウンホーファー-ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 三次元コンポーネントの付加製造における製造精度を監視するシステム及び方法
CN110116497A (zh) * 2018-02-07 2019-08-13 Cl产权管理有限公司 用于添加式地制造三维物体的设备
EP3524410A1 (en) * 2018-02-07 2019-08-14 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
JP2019137911A (ja) * 2018-02-07 2019-08-22 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 3次元の物体を付加製造する装置
US11155033B2 (en) 2018-02-07 2021-10-26 Concept Laser Gmbh Apparatus for additively manufacturing three-dimensional objects
JP2021123761A (ja) * 2020-02-06 2021-08-30 日本電子株式会社 3次元積層造形装置
WO2022107238A1 (ja) * 2020-11-18 2022-05-27 株式会社ニコン 撮像ヘッド、制御システム及び加工システム

Also Published As

Publication number Publication date
JPWO2017212619A1 (ja) 2018-06-14
JP6351735B2 (ja) 2018-07-04
EP3278962A4 (en) 2018-06-13
EP3278962A1 (en) 2018-02-07
US20180215102A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6351735B2 (ja) 3次元積層造形システム、積層造形制御装置、積層造形制御方法および積層造形制御プログラム
US11440119B2 (en) System and method for weld path generation
CN108698164B (zh) 处理3d激光扫描仪系统中的校准数据的方法
JP5928114B2 (ja) ロボットシステム、ロボットシステムのキャリブレーション方法、ロボット
JP5911934B2 (ja) 輪郭線計測装置およびロボットシステム
KR102631717B1 (ko) 복합재 부품을 제조하기 위한 증강 현실 시스템
KR20140008262A (ko) 로봇 시스템, 로봇, 로봇 제어 장치, 로봇 제어 방법 및 로봇 제어 프로그램
US11654571B2 (en) Three-dimensional data generation device and robot control system
JP2009006410A (ja) 遠隔操作支援装置および遠隔操作支援プログラム
WO2022163580A1 (ja) 視覚センサにて取得される3次元の位置情報から断面画像を生成する処理装置および処理方法
Preissler et al. Approach for process control in additive manufacturing through layer-wise analysis with 3-dimensional pointcloud information
JP2010060556A (ja) 曲面部材計測システム及び方法
Wu et al. Viewpoint planning for freeform surface inspection using plane structured light scanners
Klumper et al. Orientation control of Atlas: A novel motion simulation platform
Schubert et al. How to build and customize a high-resolution 3D laserscanner using off-the-shelf components
KR20170123390A (ko) 3차원 정렬 오차 측정용 입체형 캘리브레이터와, 이를 이용한 3차원 정렬 오차 산출 방법
JP2021513924A (ja) 付加製造のための方法及び装置
KR20200116711A (ko) 갠트리탑재형 카메라를 이용한 곡부재 제작 장치
US20230130816A1 (en) Calibration system, calibration method, and calibration apparatus
US8488200B2 (en) System and method for reproducing images onto surfaces
KR102573019B1 (ko) 학습 데이터셋 생성 장치 및 방법
Han et al. An Intuitive Modeling and Calibration Method of Galvo-Based Variable Boresight Imaging System
KR102424378B1 (ko) 3차원 스캐너를 이용한 로봇의 위치 보정 방법 및 장치
Song et al. LTF robot: Binocular robot with laser-point tracking and focusing function
Dinc et al. Vision-based trajectory tracking approach for mobile platforms in 3D world using 2D image space

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016547122

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125116

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016823144

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE