WO2017212599A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2017212599A1
WO2017212599A1 PCT/JP2016/067141 JP2016067141W WO2017212599A1 WO 2017212599 A1 WO2017212599 A1 WO 2017212599A1 JP 2016067141 W JP2016067141 W JP 2016067141W WO 2017212599 A1 WO2017212599 A1 WO 2017212599A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
opening
heat source
closing device
Prior art date
Application number
PCT/JP2016/067141
Other languages
French (fr)
Japanese (ja)
Inventor
隆直 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/067141 priority Critical patent/WO2017212599A1/en
Priority to GB1817686.7A priority patent/GB2564367B/en
Priority to JP2018522246A priority patent/JP6570745B2/en
Publication of WO2017212599A1 publication Critical patent/WO2017212599A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner, and more particularly to control when refrigerant leaks.
  • a compressor, a four-way valve, a heat source side heat exchanger, a use side expansion device, and a use side heat exchanger are sequentially connected by piping, and have a refrigerant circuit in which refrigerant circulates.
  • an air conditioner configured by connecting a heat source device including an exchanger and an indoor unit including a throttle device and a use-side heat exchanger with a gas pipe and a liquid pipe.
  • a pump-down operation is performed to collect the indoor unit side refrigerant in the heat source unit in order to prevent the room from becoming deficient.
  • an open / close valve is provided in the liquid pipe between the heat source side heat exchanger and the use side expansion device, and when a refrigerant leak is detected by the gas detector, the four-way valve is set to the cooling operation side.
  • the pump down operation is performed by starting the compressor with the use side throttle device fully opened and the on-off valve closed. Then, after this pump-down operation is completed, the piping constituting the refrigerant circuit is removed, and work such as failure repair is performed.
  • a conventional air conditioner such as Patent Document 1 cannot recover all of the refrigerant present in the indoor unit and piping in the refrigerant circuit in the heat source unit by refrigerant recovery by pump-down operation. Therefore, the refrigerant
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can reduce the amount of refrigerant leakage into the room at the time of refrigerant leakage.
  • An air conditioner includes a compressor, a first flow path switching device, a heat source device having a heat source side heat exchanger, an indoor unit having a throttle device and a use side heat exchanger, the heat source device, A liquid pipe and a gas pipe that connect an indoor unit, the compressor, the first flow path switching device, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected by piping, and a refrigerant A refrigerant circuit that circulates, a first bypass pipe that connects the liquid pipe and the gas pipe, a second bypass pipe that branches from the first bypass pipe and discharges the refrigerant to the outside, and a heat source device for the liquid pipe Side, a second flow path switching device that opens and closes the liquid pipe indoor unit side and the first bypass piping side, a first switching device provided in the gas pipe, and a second bypass piping provided in the second bypass piping Second switchgear and refrigerant leakage from the refrigerant circuit When the refrigerant leakage detector to
  • the second opening and closing device when refrigerant leakage is detected even after the pump-down operation is completed, the second opening and closing device is opened so that the refrigerant remaining in the indoor unit and the pipe in the refrigerant circuit is second bypassed. Release from piping to the outdoors. By doing so, the amount of refrigerant leakage into the room at the time of refrigerant leakage can be reduced.
  • FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air-conditioning apparatus according to Embodiment 1 includes a heat source unit 10 and a plurality of indoor units 20, and the indoor unit 20 is a liquid pipe 31 and a gas pipe with respect to the heat source unit 10. 32 are connected in parallel.
  • the air conditioner includes a refrigerant circuit in which the compressor 11, the first flow path switching device 12, the heat source side heat exchanger 13, the expansion device 22, and the use side heat exchanger 21 are sequentially connected by a pipe so that the refrigerant circulates. Have.
  • the air conditioner can perform a cooling operation or a heating operation by circulating the refrigerant in the refrigerant circuit.
  • the number of heat source units 10 may be two or more.
  • the number of indoor units 20 may be one or three or more.
  • the heat source device 10 includes a compressor 11, a first flow path switching device 12, and a heat source side heat exchanger 13, and has a function of supplying warm or cold to the indoor unit 20.
  • the compressor 11 compresses the sucked refrigerant into a high temperature / high pressure state.
  • the first flow path switching device 12 switches the refrigerant flow between the cooling operation and the heating operation.
  • the 1st flow-path switching apparatus 12 is a four-way valve, you may be comprised by combining a two-way valve or a three-way valve.
  • the heat source side heat exchanger 13 functions as a condenser or a radiator during cooling operation, functions as an evaporator during heating operation, and performs heat exchange between air supplied from a blower (not shown) and the refrigerant. Is.
  • the heat source device 10 is provided with a control device 50, a discharge pressure detector 61, and a suction pressure detector 62.
  • the control device 50 will be described later.
  • the discharge pressure detector 61 is provided in a pipe connecting the first flow path switching device 12 and the discharge side of the compressor 11, and detects the discharge pressure of the compressor 11.
  • the discharge pressure detector 61 includes, for example, a pressure sensor and outputs a detected discharge pressure signal to the control device 50.
  • the discharge pressure detector 61 may have a storage device or the like. In this case, the discharge pressure detector 61 accumulates the detected discharge pressure data in a storage device or the like for a predetermined period, and outputs a detected discharge pressure signal to the control device 50 at predetermined intervals.
  • the suction pressure detector 62 is provided in a pipe connecting the first flow path switching device 12 and the suction side of the compressor 11, and detects the suction pressure of the compressor 11.
  • the suction pressure detector 62 includes, for example, a pressure sensor and outputs a detected suction pressure signal to the control device 50.
  • the suction pressure detector 62 may have a storage device or the like. In this case, the suction pressure detector 62 accumulates the detected suction pressure data in a storage device or the like for a predetermined period, and outputs the detected suction pressure signal to the control device 50 at every predetermined cycle.
  • the indoor unit 20 includes a use-side heat exchanger 21 and an expansion device 22, and has a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the heat source device 10. .
  • the use side heat exchanger 21 functions as an evaporator during the cooling operation and functions as a condenser or a radiator during the heating operation, and performs heat exchange between the refrigerant and the air.
  • the expansion device 22 functions as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • a refrigerant leak detector 63 is provided in each pipe that branches from the liquid pipe 31 to each indoor unit 20.
  • the refrigerant leak detector 63 is a refrigerant leak detection unit that detects refrigerant leak and outputs a signal.
  • the refrigerant leak detector 63 detects a change in resistance value that occurs when the metal oxide semiconductor contacts the refrigerant gas. This is a semiconductor gas sensor that detects the concentration.
  • the refrigerant leak detector 63 is set in a 1: 1 relationship with respect to each indoor unit 20 so that it can be determined in which indoor unit 20 system the refrigerant leak has occurred.
  • the structure provided with one with respect to the air conditioning apparatus may be sufficient. Even with such a configuration, it is possible to determine whether refrigerant leakage has occurred in the air conditioner.
  • the liquid pipe 31 is provided with a second flow path switching device 33, and the gas pipe 32 is provided with a first opening / closing device 34. Further, between the heat source device 10 and the indoor unit 20, a first bypass pipe 41 connecting the liquid pipe 31 and the gas pipe 32, and a second bypass branching from the first bypass pipe 41 and having one end being an open end.
  • a bypass circuit 40 including a pipe 42 and a second opening / closing device 43 provided in the second bypass pipe 42 is provided.
  • the second flow path switching device 33 opens and closes the heat source device 10 side of the liquid pipe 31, the indoor unit 20 side of the liquid pipe 31, and the first bypass pipe 41 side, respectively, and switches the flow of the refrigerant.
  • the 2nd flow-path switching apparatus 33 illustrated about the case where it is a three-way valve you may be comprised by combining a two-way valve etc.
  • the first opening / closing device 34 and the second opening / closing device 43 are opened and closed to conduct the refrigerant or to block the refrigerant.
  • the broken line 70 has shown the boundary line of the outdoors and indoors, the heat-source equipment 10 and the bypass circuit 40 are arrange
  • the bypass circuit 40 is disposed outdoors.
  • the present invention is not limited thereto, and the other may be indoors as long as at least the open end of the second bypass pipe 42 is disposed outdoors.
  • FIG. 2 is a functional block diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control device 50 of the air-conditioning apparatus according to Embodiment 1 includes a measurement unit 51, a calculation unit 52, a determination unit 53, and a drive unit 54.
  • the control device 50 is configured to receive signals from the discharge pressure detector 61, the suction pressure detector 62, and the refrigerant leak detector 63.
  • a signal is output to the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43.
  • the measuring unit 51 acquires detection signals from the discharge pressure detector 61, the suction pressure detector 62, and the refrigerant leak detector 63.
  • the calculation unit 52 processes each detection signal acquired by the measurement unit 51.
  • the determination unit 53 performs various determinations based on the processing result of the calculation unit 52.
  • the drive part 54 outputs a drive signal to the 2nd flow-path switching apparatus 33, the 1st switching apparatus 34, and the 2nd switching apparatus 43 based on the determination result of the determination part 53, and drives them.
  • FIG. 3 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerant is indicated by a solid arrow, and among the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43, the closed portion is indicated by black.
  • FIG. 4 and FIGS. the flow of the refrigerant during the cooling operation of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG.
  • the first flow path switching device 12 is switched to the cooling operation side, that is, the discharge side of the compressor 11 and the heat source side heat exchanger 13 are connected to each other.
  • the first bypass pipe 41 side and the first opening / closing device 34 are closed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 of the heat source device 10 passes through the first flow path switching device 12 and is heat-exchanged with outdoor air blown by a blower (not shown) in the heat source side heat exchanger 13.
  • the condensed and liquefied refrigerant flows out of the heat source device 10.
  • the refrigerant that has flowed out of the heat source device 10 passes through the liquid pipe 31 and the second flow path switching device 33, and then branches to flow into the indoor units 20.
  • the refrigerant that has flowed into the indoor unit 20 is decompressed to a low pressure by the expansion device 22.
  • the decompressed refrigerant is heat-exchanged with room air in the use-side heat exchanger 21 to evaporate.
  • the refrigerants in the gas state respectively flow out from the indoor unit 20, merge in the gas pipe 32, pass through the first opening / closing device 34, and flow into the heat source unit 10.
  • the refrigerant flowing into the heat source device 10 is sucked into the compressor 11 through the first flow path switching device 12.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow during the heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the flow of the refrigerant during the heating operation of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG.
  • the first flow path switching device 12 is switched to the heating operation side, that is, the suction side of the compressor 11 and the heat source side heat exchanger 13 are connected.
  • the first bypass pipe 41 side and the first opening / closing device 34 are closed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 of the heat source device 10 flows out of the heat source device 10 through the first flow path switching device 12.
  • the refrigerant that has flowed out of the heat source device 10 passes through the gas pipe 32 and the first opening / closing device 34, and then branches to flow into the indoor units 20.
  • the refrigerant that has flowed into the indoor unit 20 is subjected to heat exchange with indoor air in the use-side heat exchanger 21 to be condensed and liquefied.
  • the condensed and liquefied refrigerant is decompressed to a low pressure by the expansion device 22.
  • the decompressed refrigerant flows out from the indoor unit 20, merges in the liquid pipe 31, passes through the second flow path switching device 33, and flows into the heat source unit 10.
  • the refrigerant that has flowed into the heat source device 10 is subjected to heat exchange with outdoor air blown by a blower (not shown) in the heat source side heat exchanger 13 to be evaporated and gasified.
  • the gasified refrigerant is sucked into the compressor 11 through the first flow path switching device 12.
  • FIG. 5 is a flowchart showing the operation at the time of refrigerant leakage detection of the air-conditioning apparatus according to Embodiment 1 of the present invention
  • FIG. 6 shows the state of the refrigerant circuit in step S6 of the flowchart shown in FIG.
  • FIG. 7 is a schematic diagram showing the state of the refrigerant circuit in step S9 of the flowchart shown in FIG. 5, and
  • FIG. 8 shows the state of the refrigerant circuit in step S12 of the flowchart shown in FIG.
  • FIG. 9 is a schematic diagram
  • FIG. 9 is a schematic diagram showing the state of the refrigerant circuit at step S14 in the flowchart shown in FIG.
  • the determination unit 53 determines whether or not refrigerant leakage has occurred based on the detection result of the refrigerant leakage detector 63 (step S1).
  • step S1 If the determination unit 53 determines that refrigerant leakage has not occurred (No in step S1), the determination unit 53 returns to step S1. On the other hand, the determination part 53 determines whether the present driving
  • Step S2 When the determination unit 53 determines that the current operation is the cooling operation (Yes in Step S2), the drive unit 54 switches the second flow path switching device 33 (Step S9) and starts the pump down operation (Step S10). ).
  • the determination unit 53 determines that the current operation is not the cooling operation, that is, the heating operation (No in Step S2)
  • the drive unit 54 switches the first flow path switching device 12 to the cooling operation side, and the compressor 11 is stopped (step S3).
  • the compressor 11 is stopped.
  • the current operation is the heating operation, the flow of the refrigerant is opposite to that of the cooling operation, so the compressor 11 is stopped once to switch the operation to the cooling operation. Because it is necessary to do.
  • the reference differential pressure P1 is a differential pressure that does not fail even when the compressor 11 is operated, and is 0, for example.
  • the reference differential pressure P1 is stored in advance in a storage device provided in the calculation unit 52 or a storage device separate from the calculation unit 52 (both not shown).
  • the air conditioner waits for pressure equalization in the refrigerant circuit so that the compressor 11 is not damaged. Therefore, the air conditioner does not restart the compressor 11 for a predetermined time, for example, 3 minutes. It is like that.
  • step S4 when the determination unit 53 determines that the pressure difference ⁇ P is smaller than the reference differential pressure P1 (Yes in step S4), the driving unit 54 operates the compressor 11 (step S5).
  • the drive unit 54 switches the second flow path switching device 33 as shown in FIG. Switching is performed and the second opening / closing device 43 is opened (step S6). That is, by opening the first bypass pipe 41 side of the second flow path switching device 33, the liquid pipe 31 and the gas pipe 32 are communicated to promote pressure equalization. Furthermore, by opening the second opening / closing device 43, the refrigerant in the refrigerant circuit is discharged from the second bypass pipe 42 to the outside, and the amount of refrigerant leakage from the leakage portion 71 is reduced.
  • step S6 when the determination unit 53 determines that the pressure difference ⁇ P is not a value smaller than the reference differential pressure P1 (No in step S7), the process returns to step S7.
  • the determination unit 53 determines that the pressure difference ⁇ P is smaller than the reference differential pressure P1 (Yes in step S7), the drive unit 54 closes the second opening / closing device 43 (step S8) and compresses it.
  • the machine 11 is operated (step S5).
  • step S5 the drive unit 54 switches the second flow path switching device 33 (step S9) and starts the pump-down operation (step S10).
  • step S9 the second flow path switching device 33 is closed on the heat source unit 10 side so that the refrigerant does not flow from the heat source unit 10 side to the indoor unit 20 side.
  • the refrigerant flows from the indoor unit 20 side to the heat source unit 10 side, and the refrigerant present in the indoor unit 20 and the piping in the refrigerant circuit is recovered to the heat source unit 10.
  • the determination unit 53 determines whether or not the refrigerant recovery has been completed (step S11).
  • coolant when a liquid level determination means (not shown) is attached in the heat source machine 10, for example, it can be determined that recovery is completed when a certain amount is exceeded. Or if it collects with liquid refrigerant, since the suction side of compressor 11 will be sucked in with gas refrigerant, suction pressure will fall. This can be detected by the suction pressure detector 62, and it can be determined that the recovery is completed when the pressure becomes a predetermined pressure, for example, less than 1 kg / cm 2 .
  • step S11 determines in step S11 that the refrigerant recovery has not been completed (No in step S11)
  • the process returns to step S11.
  • the determination part 53 determines that the recovery of the refrigerant has been completed (Yes in step S11)
  • the drive part 54 finishes the pump-down operation and closes the first opening / closing device 34 as shown in FIG. S12). By doing so, the refrigerant is confined in the heat source unit 10.
  • the determination unit 53 determines whether refrigerant leakage has occurred based on the result of the calculation unit 52 processing the detection signal of the refrigerant leakage detector 63 (step S13). If the determination unit 53 determines that refrigerant leakage has occurred (Yes in step S13), the drive unit 54 opens the second opening / closing device 43 as shown in FIG. 9 (step S14), and returns to step S13. .
  • the refrigerant leakage is detected even after the pump-down operation is completed, the refrigerant is released to the outdoors from the second bypass pipe 42 by opening the second opening / closing device 43.
  • the refrigerant discharge amount from the second bypass pipe 42 >> the refrigerant leak quantity from the leak location 71. Since the refrigerant is drawn toward the second bypass pipe 42, the refrigerant leak amount from the leak location 71 to the room is reduced. Can be reduced.
  • step S13 when the determination unit 53 determines that no refrigerant leakage has occurred (No in step S13), the drive unit 54 closes the second opening / closing device 43 (step S15) and returns to step S13. That is, the refrigerant circuit is brought into the state shown in FIG.
  • the drive unit 54 opens the second opening / closing device 43 (step S14) or closes the second opening / closing device 43 in accordance with the occurrence of refrigerant leakage (step S15).
  • the second opening / closing device 43 is opened to open the indoor unit 20 in the refrigerant circuit.
  • the refrigerant remaining in the pipe is discharged from the second bypass pipe 42 to the outside.
  • the air conditioner according to the first embodiment when the refrigerant leakage is detected during the heating operation, the first bypass pipe 41 side of the second flow path switching device 33 is opened. By doing so, the liquid pipe 31 and the gas pipe 32 are communicated with each other, the pressure equalization of the refrigerant can be promoted, the switching time to the cooling operation can be shortened, and the amount of refrigerant leakage into the room can be reduced. .
  • Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
  • FIG. 10 is a functional block diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air-conditioning apparatus according to Embodiment 2 includes a second control device 80 separately from the control device 50 provided in the heat source device 10.
  • the second control device 80 includes a second measurement unit 81, a second calculation unit 82, a second determination unit 83, and a second drive unit 84.
  • the control device 50 is configured to receive signals from the discharge pressure detector 61 and the suction pressure detector 62
  • the second control device 80 is configured to receive signals from the refrigerant leakage detector 63.
  • the second control device 80 outputs signals to the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43.
  • the second measuring unit 81 acquires the refrigerant leak detector 63 detection signal.
  • the second calculation unit 82 processes the detection signal acquired by the second measurement unit 81.
  • the second determination unit 83 performs various determinations based on the processing result of the second calculation unit 82.
  • the second drive unit 84 outputs a drive signal to the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43, and drives them. Is.
  • the second control device 80 can communicate with the control device 50. Therefore, the second control device 80 can drive the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 based on the processing result of the control device 50.
  • the second driving unit 84 drives the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 based on the driving signal of the driving unit 54.
  • the second control device 80 has a power supply system such as a private power generator, and is a power supply system different from the heat source device 10. Therefore, the air conditioner according to the second embodiment includes the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 even when the heat source unit 10 cannot operate due to a power failure, failure, or the like. Can be driven. And by driving them, the refrigerant in the refrigerant circuit can be discharged to the outdoors from the second bypass pipe 42 even when the heat source device 10 cannot operate due to a power failure, failure, or the like.
  • FIG. 11 is a flowchart showing an operation at the time of refrigerant leakage detection of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • coolant of the air conditioning apparatus which concerns on this Embodiment 2 is demonstrated with reference to FIG.
  • the second determination unit 83 determines whether or not refrigerant leakage has occurred based on the detection result of the refrigerant leakage detector 63 (step S21).
  • the second determination unit 83 determines that no refrigerant leakage has occurred (No in step S21)
  • the second determination unit 83 returns to step S21.
  • the 2nd determination part 83 determines whether the heat-source equipment 10 is operable (step S22). In addition, the 2nd determination part 83 determines based on the signal regarding the state of the heat-source equipment 10 received from the control apparatus 50, for example.
  • step S22 When the second determination unit 83 determines that the heat source apparatus 10 is operable (Yes in step S22), the process proceeds to step S2 in FIG. Note that the processing after step S2 in FIG. 5 is the same as that described in the first embodiment, and thus description thereof is omitted.
  • the second drive unit 84 switches the second flow path switching device 33 so that the heat source device 10 side is closed, The first opening / closing device 34 is closed, and the second opening / closing device 43 is opened. That is, the refrigerant is discharged from the second bypass pipe 42 to the outside by controlling the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 as shown in FIG.
  • the second control device 80 of the power supply system different from the heat source device 10 is provided. Therefore, even when the heat source device 10 cannot operate due to a power failure, failure, or the like, the second control device 80 drives the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43, whereby the refrigerant The refrigerant in the circuit can be discharged from the second bypass pipe 42 to the outside. By doing so, even when the heat source device 10 cannot operate, the amount of refrigerant leakage into the room at the time of refrigerant leakage can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This air-conditioning device comprises: a heat source unit which has a compressor, a first flow path switching device, and a heat-source-side heat exchanger; indoor units which each have a throttle device and a use-side heat exchanger; a liquid pipe and a gas pipe which connect the heat source unit and the indoor units; a refrigerant circuit which is configured from the compressor, the first flow path switching device, the heat-source side heat exchanger, the throttle device, and the use-side heat exchanger connected by pipes through which a refrigerant is circulated; a first bypass pipe which connects the liquid pipe and the gas pipe; a second bypass pipe which branches off from the first bypass pipe and discharges the refrigerant to the exterior; a second flow rate switching device which opens and closes the heat-source-unit-side of the liquid pipe, the indoor-unit-side of the liquid pipe, and the first bypass pipe side; a first opening-closing device which is provided in the gas pipe; a second opening-closing device which is provided in the second bypass pipe; a refrigerant leakage detector which detects the leakage of the refrigerant from the refrigerant circuit; and a control device which, upon detecting leakage of the refrigerant during a cooling operation, closes the second opening-closing device and starts a pump down operation. After the completion of the pump down operation, the control device closes the first opening-closing device, and, upon detecting leakage of the refrigerant, opens the second opening-closing device.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関し、特に冷媒漏洩時の制御に関するものである。 The present invention relates to an air conditioner, and more particularly to control when refrigerant leaks.
 従来、圧縮機、四方弁、熱源側熱交換器、利用側絞り装置、および、利用側熱交換器が順次配管で接続されて、冷媒が循環する冷媒回路を有し、圧縮機および熱源側熱交換器を備えた熱源機と、絞り装置および利用側熱交換器を備えた室内機とを、ガス管および液管で接続して構成した空気調和装置がある。この種の空気調和装置では、室内機に冷媒漏洩が発生した場合、室内が酸欠状態になるのを防ぐため、室内機側の冷媒を熱源機に回収するポンプダウン運転を行うようにしている(例えば、特許文献1参照)。 Conventionally, a compressor, a four-way valve, a heat source side heat exchanger, a use side expansion device, and a use side heat exchanger are sequentially connected by piping, and have a refrigerant circuit in which refrigerant circulates. There is an air conditioner configured by connecting a heat source device including an exchanger and an indoor unit including a throttle device and a use-side heat exchanger with a gas pipe and a liquid pipe. In this type of air conditioner, when refrigerant leakage occurs in the indoor unit, a pump-down operation is performed to collect the indoor unit side refrigerant in the heat source unit in order to prevent the room from becoming deficient. (For example, refer to Patent Document 1).
 特許文献1の空気調和装置では、熱源側熱交換器と利用側絞り装置との間の液管に開閉弁が設けられており、ガス検知器により冷媒漏洩を検知すると、四方弁を冷房運転側に切り替え、利用側絞り装置を全開し、開閉弁を閉止した状態で圧縮機を起動することによりポンプダウン運転を行っている。そして、このポンプダウン運転終了後、冷媒回路を構成する配管が取り外され、故障修理などの作業が行われることとなる。 In the air conditioner of Patent Document 1, an open / close valve is provided in the liquid pipe between the heat source side heat exchanger and the use side expansion device, and when a refrigerant leak is detected by the gas detector, the four-way valve is set to the cooling operation side. The pump down operation is performed by starting the compressor with the use side throttle device fully opened and the on-off valve closed. Then, after this pump-down operation is completed, the piping constituting the refrigerant circuit is removed, and work such as failure repair is performed.
特開2002-228281号公報JP 2002-228281 A
 特許文献1のような従来の空気調和装置は、ポンプダウン運転による冷媒回収では冷媒回路内の室内機および配管に存在する冷媒の全部を熱源機内に回収することはできない。そのため、ポンプダウン運転終了後に配管に残った冷媒は室内側に流出してしまうという課題があった。 A conventional air conditioner such as Patent Document 1 cannot recover all of the refrigerant present in the indoor unit and piping in the refrigerant circuit in the heat source unit by refrigerant recovery by pump-down operation. Therefore, the refrigerant | coolant which remained in piping after completion | finish of pump down operation had the subject that it would flow out indoors.
 本発明は、以上のような課題を解決するためになされたもので、冷媒漏洩時における室内への冷媒漏洩量を軽減することができる空気調和装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can reduce the amount of refrigerant leakage into the room at the time of refrigerant leakage.
 本発明に係る空気調和装置は、圧縮機、第一流路切替装置、および、熱源側熱交換器を有する熱源機と、絞り装置および利用側熱交換器を有する室内機と、前記熱源機と前記室内機とを接続する液管およびガス管と、前記圧縮機、前記第一流路切替装置、前記熱源側熱交換器、前記絞り装置、および、前記利用側熱交換器が配管で接続され、冷媒が循環する冷媒回路と、前記液管と前記ガス管とを接続する第一バイパス配管と、前記第一バイパス配管から分岐して冷媒を屋外へ放出する第二バイパス配管と、液管の熱源機側、液管の室内機側、および、第一バイパス配管側をそれぞれ開閉する第二流路切替装置と、前記ガス管に設けられた第一開閉装置と、前記第二バイパス配管に設けられた第二開閉装置と、前記冷媒回路からの冷媒漏洩を検知する冷媒漏洩検知器と、冷房運転中に冷媒漏洩を検知した場合、前記第二開閉装置を閉止してポンプダウン運転を開始し、ポンプダウン運転終了後、前記第一開閉装置を閉止するとともに、冷媒漏洩を検知した場合、前記第二開閉装置を開放する制御装置と、を備えたものである。 An air conditioner according to the present invention includes a compressor, a first flow path switching device, a heat source device having a heat source side heat exchanger, an indoor unit having a throttle device and a use side heat exchanger, the heat source device, A liquid pipe and a gas pipe that connect an indoor unit, the compressor, the first flow path switching device, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected by piping, and a refrigerant A refrigerant circuit that circulates, a first bypass pipe that connects the liquid pipe and the gas pipe, a second bypass pipe that branches from the first bypass pipe and discharges the refrigerant to the outside, and a heat source device for the liquid pipe Side, a second flow path switching device that opens and closes the liquid pipe indoor unit side and the first bypass piping side, a first switching device provided in the gas pipe, and a second bypass piping provided in the second bypass piping Second switchgear and refrigerant leakage from the refrigerant circuit When the refrigerant leakage detector to detect and refrigerant leakage is detected during the cooling operation, the second opening and closing device is closed to start the pump down operation, and after the pump down operation is completed, the first opening and closing device is closed. And a control device that opens the second opening / closing device when refrigerant leakage is detected.
 本発明に係る空気調和装置によれば、ポンプダウン運転終了後も冷媒漏洩を検知した場合、第二開閉装置を開放することで、冷媒回路内の室内機および配管に残留した冷媒を第二バイパス配管から屋外へ放出する。そうすることで、冷媒漏洩時における室内への冷媒漏洩量を軽減することができる。 According to the air conditioner of the present invention, when refrigerant leakage is detected even after the pump-down operation is completed, the second opening and closing device is opened so that the refrigerant remaining in the indoor unit and the pipe in the refrigerant circuit is second bypassed. Release from piping to the outdoors. By doing so, the amount of refrigerant leakage into the room at the time of refrigerant leakage can be reduced.
本発明の実施の形態1に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の機能ブロック図である。It is a functional block diagram of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の冷房運転時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の暖房運転時における冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of the heating operation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置の冷媒の漏洩検知時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the refrigerant | coolant leakage detection of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 図5に示すフローチャートのステップS6での冷媒回路の状態を示す概略図である。It is the schematic which shows the state of the refrigerant circuit in step S6 of the flowchart shown in FIG. 図5に示すフローチャートのステップS9での冷媒回路の状態を示す概略図である。It is the schematic which shows the state of the refrigerant circuit in step S9 of the flowchart shown in FIG. 図5に示すフローチャートのステップS12での冷媒回路の状態を示す概略図である。It is the schematic which shows the state of the refrigerant circuit in step S12 of the flowchart shown in FIG. 図5に示すフローチャートのステップS14での冷媒回路の状態を示す概略図である。It is the schematic which shows the state of the refrigerant circuit in step S14 of the flowchart shown in FIG. 本発明の実施の形態2に係る空気調和装置の機能ブロック図である。It is a functional block diagram of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置の冷媒の漏洩検知時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the refrigerant | coolant leakage detection of the air conditioning apparatus which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路図である。
 以下、本実施の形態1に係る空気調和装置の構成について、図1を用いて説明する。
 図1に示すように、本実施の形態1に係る空気調和装置は、熱源機10と、複数台の室内機20とを備え、熱源機10に対して室内機20が液管31およびガス管32でそれぞれ並列に接続されている。
 空気調和装置は、圧縮機11、第一流路切替装置12、熱源側熱交換器13、絞り装置22、および、利用側熱交換器21が順次配管で接続されて、冷媒が循環する冷媒回路を有している。空気調和装置は、この冷媒回路に冷媒を循環させることによって、冷房運転または暖房運転することができるようになっている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
Hereinafter, the configuration of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG.
As shown in FIG. 1, the air-conditioning apparatus according to Embodiment 1 includes a heat source unit 10 and a plurality of indoor units 20, and the indoor unit 20 is a liquid pipe 31 and a gas pipe with respect to the heat source unit 10. 32 are connected in parallel.
The air conditioner includes a refrigerant circuit in which the compressor 11, the first flow path switching device 12, the heat source side heat exchanger 13, the expansion device 22, and the use side heat exchanger 21 are sequentially connected by a pipe so that the refrigerant circulates. Have. The air conditioner can perform a cooling operation or a heating operation by circulating the refrigerant in the refrigerant circuit.
 なお、本実施の形態1では、1台の熱源機10に2台の室内機20が接続された場合について例示するが、熱源機10の台数は、2台以上でもよい。また、室内機20の台数は、1台または3台以上でもよい。 In the first embodiment, a case where two indoor units 20 are connected to one heat source unit 10 is illustrated, but the number of heat source units 10 may be two or more. The number of indoor units 20 may be one or three or more.
 熱源機10は、圧縮機11と、第一流路切替装置12と、熱源側熱交換器13と、を備えており、室内機20に温熱または冷熱を供給する機能を有している。
 圧縮機11は、吸入した冷媒を圧縮して高温・高圧の状態にするものである。第一流路切替装置12は、冷房運転時と暖房運転時とで冷媒の流れを切り替えるものである。なお、第一流路切替装置12は、四方弁である場合について例示しているが、二方弁または三方弁などを組み合わせることによって構成されてもよい。熱源側熱交換器13は、冷房運転時には凝縮器または放熱器として機能し、暖房運転時には蒸発器として機能し、送風機(図示せず)から供給される空気と冷媒との間で熱交換を行なうものである。
The heat source device 10 includes a compressor 11, a first flow path switching device 12, and a heat source side heat exchanger 13, and has a function of supplying warm or cold to the indoor unit 20.
The compressor 11 compresses the sucked refrigerant into a high temperature / high pressure state. The first flow path switching device 12 switches the refrigerant flow between the cooling operation and the heating operation. In addition, although illustrated about the case where the 1st flow-path switching apparatus 12 is a four-way valve, you may be comprised by combining a two-way valve or a three-way valve. The heat source side heat exchanger 13 functions as a condenser or a radiator during cooling operation, functions as an evaporator during heating operation, and performs heat exchange between air supplied from a blower (not shown) and the refrigerant. Is.
 また、熱源機10には、制御装置50と、吐出圧力検知器61と、吸入圧力検知器62とが設けられている。なお、制御装置50については後述する。
 吐出圧力検知器61は、第一流路切替装置12と圧縮機11の吐出側とを接続する配管に設けられており、圧縮機11の吐出圧力を検知するものである。吐出圧力検知器61は、例えば圧力センサなどで構成されており、検知した吐出圧力の信号を制御装置50に出力する。
Further, the heat source device 10 is provided with a control device 50, a discharge pressure detector 61, and a suction pressure detector 62. The control device 50 will be described later.
The discharge pressure detector 61 is provided in a pipe connecting the first flow path switching device 12 and the discharge side of the compressor 11, and detects the discharge pressure of the compressor 11. The discharge pressure detector 61 includes, for example, a pressure sensor and outputs a detected discharge pressure signal to the control device 50.
 なお、吐出圧力検知器61は、記憶装置などを有していてもよい。この場合、吐出圧力検知器61は、検知した吐出圧力のデータを記憶装置などに所定期間蓄積し、所定の周期毎に検知した吐出圧力の信号を制御装置50に出力する。 The discharge pressure detector 61 may have a storage device or the like. In this case, the discharge pressure detector 61 accumulates the detected discharge pressure data in a storage device or the like for a predetermined period, and outputs a detected discharge pressure signal to the control device 50 at predetermined intervals.
 吸入圧力検知器62は、第一流路切替装置12と圧縮機11の吸入側とを接続する配管に設けられており、圧縮機11の吸入圧力を検知するものである。吸入圧力検知器62は、例えば圧力センサなどで構成されており、検知した吸入圧力の信号を制御装置50に出力する。 The suction pressure detector 62 is provided in a pipe connecting the first flow path switching device 12 and the suction side of the compressor 11, and detects the suction pressure of the compressor 11. The suction pressure detector 62 includes, for example, a pressure sensor and outputs a detected suction pressure signal to the control device 50.
 なお、吸入圧力検知器62は、記憶装置などを有していてもよい。この場合、吸入圧力検知器62は、検知した吸入圧力のデータを記憶装置などに所定期間蓄積し、所定の周期毎に検知した吸入圧力の信号を制御装置50に出力する。 Note that the suction pressure detector 62 may have a storage device or the like. In this case, the suction pressure detector 62 accumulates the detected suction pressure data in a storage device or the like for a predetermined period, and outputs the detected suction pressure signal to the control device 50 at every predetermined cycle.
 室内機20は、利用側熱交換器21と絞り装置22とを備えており、熱源機10から供給される温熱または冷熱によって、室内などの空調対象空間を冷房または暖房する機能を有している。利用側熱交換器21は、冷房運転時には蒸発器、暖房運転時には凝縮器または放熱器として機能し、冷媒と空気との間で熱交換を行なうものである。絞り装置22は、減圧弁または膨張弁として機能し、冷媒を減圧して膨張させるものである。 The indoor unit 20 includes a use-side heat exchanger 21 and an expansion device 22, and has a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the heat source device 10. . The use side heat exchanger 21 functions as an evaporator during the cooling operation and functions as a condenser or a radiator during the heating operation, and performs heat exchange between the refrigerant and the air. The expansion device 22 functions as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
 また、液管31から各室内機20に分岐する配管には、冷媒漏洩検知器63がそれぞれ設けられている。
 冷媒漏洩検知器63は、冷媒漏洩を検知して信号を出力する冷媒の漏洩検知手段であり、例えば、金属酸化物半導体が冷媒ガスと接触した時に発生する抵抗値の変化を空気中の冷媒ガス濃度として検出する半導体式ガスセンサである。なお、本実施の形態1では、どの室内機20系統で冷媒漏洩が発生したかを判断することができるように、冷媒漏洩検知器63を個々の室内機20に対して1:1の関係で備えた構成であるが、空気調和装置に対して1個備えた構成でもよい。そのような構成でも、空気調和装置に冷媒漏洩が発生したかを判断することは可能である。
In addition, a refrigerant leak detector 63 is provided in each pipe that branches from the liquid pipe 31 to each indoor unit 20.
The refrigerant leak detector 63 is a refrigerant leak detection unit that detects refrigerant leak and outputs a signal. For example, the refrigerant leak detector 63 detects a change in resistance value that occurs when the metal oxide semiconductor contacts the refrigerant gas. This is a semiconductor gas sensor that detects the concentration. In the first embodiment, the refrigerant leak detector 63 is set in a 1: 1 relationship with respect to each indoor unit 20 so that it can be determined in which indoor unit 20 system the refrigerant leak has occurred. Although it is the structure provided, the structure provided with one with respect to the air conditioning apparatus may be sufficient. Even with such a configuration, it is possible to determine whether refrigerant leakage has occurred in the air conditioner.
 液管31には第二流路切替装置33が設けられており、ガス管32には第一開閉装置34が設けられている。
 また、熱源機10と室内機20との間には、液管31とガス管32とを接続する第一バイパス配管41と、第一バイパス配管41から分岐し一端が開放端である第二バイパス配管42と、第二バイパス配管42に設けられた第二開閉装置43とで構成されるバイパス回路40が設けられている。
The liquid pipe 31 is provided with a second flow path switching device 33, and the gas pipe 32 is provided with a first opening / closing device 34.
Further, between the heat source device 10 and the indoor unit 20, a first bypass pipe 41 connecting the liquid pipe 31 and the gas pipe 32, and a second bypass branching from the first bypass pipe 41 and having one end being an open end. A bypass circuit 40 including a pipe 42 and a second opening / closing device 43 provided in the second bypass pipe 42 is provided.
 第二流路切替装置33は、液管31の熱源機10側、液管31の室内機20側、および、第一バイパス配管41側をそれぞれ開閉し、冷媒の流れを切り替えるものである。なお、第二流路切替装置33は、三方弁である場合について例示しているが、二方弁などを組み合わせることによって構成されてもよい。
 第一開閉装置34および第二開閉装置43は、開閉されることで冷媒を導通する、または冷媒を遮断するものである。
The second flow path switching device 33 opens and closes the heat source device 10 side of the liquid pipe 31, the indoor unit 20 side of the liquid pipe 31, and the first bypass pipe 41 side, respectively, and switches the flow of the refrigerant. In addition, although the 2nd flow-path switching apparatus 33 illustrated about the case where it is a three-way valve, you may be comprised by combining a two-way valve etc.
The first opening / closing device 34 and the second opening / closing device 43 are opened and closed to conduct the refrigerant or to block the refrigerant.
 また、図1に示すように、破線70は屋外と室内との境界線を示しており、熱源機10およびバイパス回路40は屋外に配置されており、室内機20および冷媒漏洩検知器63は室内に配置されている。
 なお、本実施の形態1ではバイパス回路40は屋外に配置されているとしたが、それに限定されず、少なくとも第二バイパス配管42の開放端が屋外に配置されていれば他は室内でもよい。
Moreover, as shown in FIG. 1, the broken line 70 has shown the boundary line of the outdoors and indoors, the heat-source equipment 10 and the bypass circuit 40 are arrange | positioned outdoors, and the indoor unit 20 and the refrigerant | coolant leak detector 63 are indoors. Is arranged.
In the first embodiment, the bypass circuit 40 is disposed outdoors. However, the present invention is not limited thereto, and the other may be indoors as long as at least the open end of the second bypass pipe 42 is disposed outdoors.
 図2は、本発明の実施の形態1に係る空気調和装置の機能ブロック図である。
 本実施の形態1に係る空気調和装置の制御装置50は、測定部51と、演算部52と、判定部53と、駆動部54と、を備えている。制御装置50は、吐出圧力検知器61、吸入圧力検知器62、および、冷媒漏洩検知器63から信号が入力されるようになっている。また、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43に信号を出力するようになっている。
FIG. 2 is a functional block diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
The control device 50 of the air-conditioning apparatus according to Embodiment 1 includes a measurement unit 51, a calculation unit 52, a determination unit 53, and a drive unit 54. The control device 50 is configured to receive signals from the discharge pressure detector 61, the suction pressure detector 62, and the refrigerant leak detector 63. In addition, a signal is output to the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43.
 測定部51は、吐出圧力検知器61、吸入圧力検知器62、および、冷媒漏洩検知器63の検知信号を取得するものである。
 演算部52は、測定部51が取得した各検知信号を処理するものである。
 判定部53は、演算部52の処理結果に基づき、各種判定を行うものである。
 駆動部54は、判定部53の判定結果に基づき、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43に駆動信号を出力し、それらを駆動するものである。
The measuring unit 51 acquires detection signals from the discharge pressure detector 61, the suction pressure detector 62, and the refrigerant leak detector 63.
The calculation unit 52 processes each detection signal acquired by the measurement unit 51.
The determination unit 53 performs various determinations based on the processing result of the calculation unit 52.
The drive part 54 outputs a drive signal to the 2nd flow-path switching apparatus 33, the 1st switching apparatus 34, and the 2nd switching apparatus 43 based on the determination result of the determination part 53, and drives them.
 図3は、本発明の実施の形態1に係る空気調和装置の冷房運転時における冷媒の流れを示す冷媒回路図である。なお、図3において、冷媒を実線矢印で示し、また、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43のうち、閉止されている部分は黒塗りで示すものとし、後述する図4および図6~図9についても同様とする。
 以下、本実施の形態1に係る空気調和装置の冷房運転時における冷媒の流れについて、図3を参照して説明する。
FIG. 3 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling operation of the air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 3, the refrigerant is indicated by a solid arrow, and among the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43, the closed portion is indicated by black. The same applies to FIG. 4 and FIGS.
Hereinafter, the flow of the refrigerant during the cooling operation of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG.
 冷房運転時は、第一流路切替装置12が冷房運転側に、つまり圧縮機11の吐出側と熱源側熱交換器13とが接続されるように切り替えられて、第二流路切替装置33の第一バイパス配管41側と第一開閉装置34とがそれぞれ閉止される。
 熱源機10の圧縮機11から吐出された高温高圧のガス冷媒は、第一流路切替装置12を通り、熱源側熱交換器13において送風機(図示せず)によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、熱源機10から流出する。熱源機10から流出した冷媒は、液管31および第二流路切替装置33を通った後、分岐して各室内機20に流入する。
During the cooling operation, the first flow path switching device 12 is switched to the cooling operation side, that is, the discharge side of the compressor 11 and the heat source side heat exchanger 13 are connected to each other. The first bypass pipe 41 side and the first opening / closing device 34 are closed.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 of the heat source device 10 passes through the first flow path switching device 12 and is heat-exchanged with outdoor air blown by a blower (not shown) in the heat source side heat exchanger 13. To condense. The condensed and liquefied refrigerant flows out of the heat source device 10. The refrigerant that has flowed out of the heat source device 10 passes through the liquid pipe 31 and the second flow path switching device 33, and then branches to flow into the indoor units 20.
 室内機20に流入した冷媒は、それぞれ絞り装置22によって低圧まで減圧される。減圧された冷媒は、それぞれ利用側熱交換器21で室内空気と熱交換されて蒸発ガス化する。そして、ガス状態となった冷媒は、それぞれ室内機20から流出し、ガス管32で合流して第一開閉装置34を通り、熱源機10に流入する。熱源機10に流入した冷媒は、第一流路切替装置12を通って圧縮機11に吸入される。 The refrigerant that has flowed into the indoor unit 20 is decompressed to a low pressure by the expansion device 22. The decompressed refrigerant is heat-exchanged with room air in the use-side heat exchanger 21 to evaporate. Then, the refrigerants in the gas state respectively flow out from the indoor unit 20, merge in the gas pipe 32, pass through the first opening / closing device 34, and flow into the heat source unit 10. The refrigerant flowing into the heat source device 10 is sucked into the compressor 11 through the first flow path switching device 12.
 図4は、本発明の実施の形態1に係る空気調和装置の暖房運転時における冷媒の流れを示す冷媒回路図である。
 以下、本実施の形態1に係る空気調和装置の暖房運転時における冷媒の流れについて、図4を参照して説明する。
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow during the heating operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
Hereinafter, the flow of the refrigerant during the heating operation of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG.
 暖房運転時は、第一流路切替装置12が暖房運転側に、つまり圧縮機11の吸入側と熱源側熱交換器13とが接続されるように切り替えられて、第二流路切替装置33の第一バイパス配管41側と第一開閉装置34とがそれぞれ閉止される。
 熱源機10の圧縮機11から吐出された高温高圧のガス冷媒は、第一流路切替装置12を通り、熱源機10から流出する。熱源機10から流出した冷媒は、ガス管32および第一開閉装置34を通った後、分岐して各室内機20に流入する。
During the heating operation, the first flow path switching device 12 is switched to the heating operation side, that is, the suction side of the compressor 11 and the heat source side heat exchanger 13 are connected. The first bypass pipe 41 side and the first opening / closing device 34 are closed.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 of the heat source device 10 flows out of the heat source device 10 through the first flow path switching device 12. The refrigerant that has flowed out of the heat source device 10 passes through the gas pipe 32 and the first opening / closing device 34, and then branches to flow into the indoor units 20.
 室内機20に流入した冷媒は、それぞれ利用側熱交換器21で室内空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、それぞれ絞り装置22によって低圧まで減圧される。減圧された冷媒は、それぞれ室内機20から流出し、液管31で合流して第二流路切替装置33を通り、熱源機10に流入する。熱源機10に流入した冷媒は、熱源側熱交換器13において送風機(図示せず)によって送風される室外空気と熱交換されて蒸発ガス化する。ガス化した冷媒は、第一流路切替装置12を通って圧縮機11に吸入される。 The refrigerant that has flowed into the indoor unit 20 is subjected to heat exchange with indoor air in the use-side heat exchanger 21 to be condensed and liquefied. The condensed and liquefied refrigerant is decompressed to a low pressure by the expansion device 22. The decompressed refrigerant flows out from the indoor unit 20, merges in the liquid pipe 31, passes through the second flow path switching device 33, and flows into the heat source unit 10. The refrigerant that has flowed into the heat source device 10 is subjected to heat exchange with outdoor air blown by a blower (not shown) in the heat source side heat exchanger 13 to be evaporated and gasified. The gasified refrigerant is sucked into the compressor 11 through the first flow path switching device 12.
 図5は、本発明の実施の形態1に係る空気調和装置の冷媒の漏洩検知時の動作を示すフローチャートであり、図6は、図5に示すフローチャートのステップS6での冷媒回路の状態を示す概略図であり、図7は、図5に示すフローチャートのステップS9での冷媒回路の状態を示す概略図であり、図8は、図5に示すフローチャートのステップS12での冷媒回路の状態を示す概略図であり、図9は、図5に示すフローチャートのステップS14での冷媒回路の状態を示す概略図である。 FIG. 5 is a flowchart showing the operation at the time of refrigerant leakage detection of the air-conditioning apparatus according to Embodiment 1 of the present invention, and FIG. 6 shows the state of the refrigerant circuit in step S6 of the flowchart shown in FIG. FIG. 7 is a schematic diagram showing the state of the refrigerant circuit in step S9 of the flowchart shown in FIG. 5, and FIG. 8 shows the state of the refrigerant circuit in step S12 of the flowchart shown in FIG. FIG. 9 is a schematic diagram, and FIG. 9 is a schematic diagram showing the state of the refrigerant circuit at step S14 in the flowchart shown in FIG.
 以下、本実施の形態1に係る空気調和装置の冷媒の漏洩検知時の動作について、図5~図9を参照して説明する。
 判定部53は、冷媒漏洩検知器63の検知結果に基づいて、冷媒漏洩が発生しているかどうかを判定する(ステップS1)。
Hereinafter, the operation at the time of refrigerant leakage detection of the air-conditioning apparatus according to Embodiment 1 will be described with reference to FIGS.
The determination unit 53 determines whether or not refrigerant leakage has occurred based on the detection result of the refrigerant leakage detector 63 (step S1).
 判定部53は、冷媒漏洩が発生していないと判定した場合(ステップS1のNo)、ステップS1へ戻る。
 一方、判定部53は、冷媒漏洩が発生していると判定した場合(ステップS1のYes)、現在の運転が冷房運転であるかどうかを判定する(ステップS2)。
If the determination unit 53 determines that refrigerant leakage has not occurred (No in step S1), the determination unit 53 returns to step S1.
On the other hand, the determination part 53 determines whether the present driving | operation is a cooling operation, when it determines with the refrigerant | coolant leakage having generate | occur | produced (Yes of step S1) (step S2).
 判定部53は現在の運転が冷房運転であると判定した場合(ステップS2のYes)、駆動部54は第二流路切替装置33を切り替え(ステップS9)、ポンプダウン運転を開始する(ステップS10)。
 一方、判定部53は現在の運転が冷房運転でない、つまり暖房運転であると判定した場合(ステップS2のNo)、駆動部54は、第一流路切替装置12を冷房運転側に切り替え、圧縮機11を停止させる(ステップS3)。ここで、圧縮機11を停止させているが、現在の運転が暖房運転である場合は冷房運転と冷媒の流れが逆であるため、冷房運転に運転を切り替えるためには圧縮機11を一度停止する必要があるからである。
When the determination unit 53 determines that the current operation is the cooling operation (Yes in Step S2), the drive unit 54 switches the second flow path switching device 33 (Step S9) and starts the pump down operation (Step S10). ).
On the other hand, when the determination unit 53 determines that the current operation is not the cooling operation, that is, the heating operation (No in Step S2), the drive unit 54 switches the first flow path switching device 12 to the cooling operation side, and the compressor 11 is stopped (step S3). Here, the compressor 11 is stopped. However, when the current operation is the heating operation, the flow of the refrigerant is opposite to that of the cooling operation, so the compressor 11 is stopped once to switch the operation to the cooling operation. Because it is necessary to do.
 ステップS3の後、演算部52は、測定部51が取得した吐出圧力検知器61および吸入圧力検知器62の検知信号から、それらの圧力差ΔP(=吐出側圧力-吸入側圧力)を求める。そして、判定部53は、圧力差ΔPが基準差圧P1よりも小さい値であるかどうかを判定する(ステップS4)。ここで、基準差圧P1は、圧縮機11を運転しても故障しない差圧であり、例えば0である。基準差圧P1は、演算部52が備えた記憶装置、または演算部52とは別体の記憶装置(ともに図示せず)にあらかじめ記憶されている。一般的に空気調和装置は、圧縮機11が一度停止すると、圧縮機11が損傷しないように冷媒回路内の均圧を待つため、所定時間、例えば3分の間、圧縮機11を再運転しないようになっている。 After step S3, the calculation unit 52 obtains a pressure difference ΔP (= discharge side pressure−suction side pressure) from the detection signals of the discharge pressure detector 61 and the suction pressure detector 62 acquired by the measurement unit 51. And the determination part 53 determines whether the pressure difference (DELTA) P is a value smaller than the reference | standard differential pressure P1 (step S4). Here, the reference differential pressure P1 is a differential pressure that does not fail even when the compressor 11 is operated, and is 0, for example. The reference differential pressure P1 is stored in advance in a storage device provided in the calculation unit 52 or a storage device separate from the calculation unit 52 (both not shown). In general, when the compressor 11 is stopped once, the air conditioner waits for pressure equalization in the refrigerant circuit so that the compressor 11 is not damaged. Therefore, the air conditioner does not restart the compressor 11 for a predetermined time, for example, 3 minutes. It is like that.
 ステップS4において、判定部53が圧力差ΔPが基準差圧P1よりも小さい値であると判定した場合(ステップS4のYes)、駆動部54は圧縮機11を運転させる(ステップS5)。
 一方、判定部53が圧力差ΔPが基準差圧P1よりも小さい値ではないと判定した場合(ステップS4のNo)、駆動部54は、図6に示すように第二流路切替装置33を切り替え、第二開閉装置43を開放する(ステップS6)。つまり、第二流路切替装置33の第一バイパス配管41側を開放することで、液管31とガス管32とを連通させ、均圧を促進させている。さらに、第二開閉装置43を開放することで、冷媒回路内の冷媒を第二バイパス配管42から屋外へ放出し、漏洩箇所71からの冷媒漏洩量を減少させている。
In step S4, when the determination unit 53 determines that the pressure difference ΔP is smaller than the reference differential pressure P1 (Yes in step S4), the driving unit 54 operates the compressor 11 (step S5).
On the other hand, when the determination unit 53 determines that the pressure difference ΔP is not a value smaller than the reference differential pressure P1 (No in step S4), the drive unit 54 switches the second flow path switching device 33 as shown in FIG. Switching is performed and the second opening / closing device 43 is opened (step S6). That is, by opening the first bypass pipe 41 side of the second flow path switching device 33, the liquid pipe 31 and the gas pipe 32 are communicated to promote pressure equalization. Furthermore, by opening the second opening / closing device 43, the refrigerant in the refrigerant circuit is discharged from the second bypass pipe 42 to the outside, and the amount of refrigerant leakage from the leakage portion 71 is reduced.
 ステップS6の後、判定部53が圧力差ΔPが基準差圧P1よりも小さい値ではないと判定した場合(ステップS7のNo)、ステップS7へ戻る。
 一方、判定部53が圧力差ΔPが基準差圧P1よりも小さい値であると判定した場合(ステップS7のYes)、駆動部54は、第二開閉装置43を閉止し(ステップS8)、圧縮機11を運転させる(ステップS5)。
After step S6, when the determination unit 53 determines that the pressure difference ΔP is not a value smaller than the reference differential pressure P1 (No in step S7), the process returns to step S7.
On the other hand, when the determination unit 53 determines that the pressure difference ΔP is smaller than the reference differential pressure P1 (Yes in step S7), the drive unit 54 closes the second opening / closing device 43 (step S8) and compresses it. The machine 11 is operated (step S5).
 ステップS5の後、駆動部54は第二流路切替装置33を切り替え(ステップS9)、ポンプダウン運転を開始する(ステップS10)。このとき、図7に示すように第二流路切替装置33は熱源機10側が閉止されており、熱源機10側から室内機20側へ冷媒が流入しないようになっている。一方、室内機20側から熱源機10側へは冷媒が流入するようになっており、冷媒回路内の室内機20および配管に存在する冷媒は熱源機10へ回収される。 After step S5, the drive unit 54 switches the second flow path switching device 33 (step S9) and starts the pump-down operation (step S10). At this time, as shown in FIG. 7, the second flow path switching device 33 is closed on the heat source unit 10 side so that the refrigerant does not flow from the heat source unit 10 side to the indoor unit 20 side. On the other hand, the refrigerant flows from the indoor unit 20 side to the heat source unit 10 side, and the refrigerant present in the indoor unit 20 and the piping in the refrigerant circuit is recovered to the heat source unit 10.
 ステップS10の後、判定部53は、冷媒の回収が完了したかどうかを判定する(ステップS11)。なお、冷媒の回収判定については、例えば熱源機10内に液面判定手段(図示せず)を取り付けることで、一定量を超えた場合に回収完了と判断することができる。あるいは、液冷媒で回収すると、圧縮機11の吸入側はガス冷媒で吸入するため吸入圧力が低下する。これを吸入圧力検知器62によって検知し、所定の圧力、例えば1kg/cm未満となった場合に回収完了と判断することもできる。 After step S10, the determination unit 53 determines whether or not the refrigerant recovery has been completed (step S11). In addition, about recovery | restoration determination of a refrigerant | coolant, when a liquid level determination means (not shown) is attached in the heat source machine 10, for example, it can be determined that recovery is completed when a certain amount is exceeded. Or if it collects with liquid refrigerant, since the suction side of compressor 11 will be sucked in with gas refrigerant, suction pressure will fall. This can be detected by the suction pressure detector 62, and it can be determined that the recovery is completed when the pressure becomes a predetermined pressure, for example, less than 1 kg / cm 2 .
 ステップS11において、判定部53が冷媒の回収が完了していないと判定した場合(ステップS11のNo)、ステップS11へ戻る。
 一方、判定部53が冷媒の回収が完了したと判定した場合(ステップS11のYes)、駆動部54はポンプダウン運転を終了し、図8に示すように第一開閉装置34を閉止する(ステップS12)。こうすることで、冷媒が熱源機10に閉じ込められた状態となる。
If the determination unit 53 determines in step S11 that the refrigerant recovery has not been completed (No in step S11), the process returns to step S11.
On the other hand, when the determination part 53 determines that the recovery of the refrigerant has been completed (Yes in step S11), the drive part 54 finishes the pump-down operation and closes the first opening / closing device 34 as shown in FIG. S12). By doing so, the refrigerant is confined in the heat source unit 10.
 ステップS12の後、判定部53は、演算部52が冷媒漏洩検知器63の検知信号を処理した結果に基づいて、冷媒漏洩が発生しているかどうかを判定する(ステップS13)。
 判定部53が冷媒漏洩が発生していると判定した場合(ステップS13のYes)、駆動部54は、図9に示すように第二開閉装置43を開放し(ステップS14)、ステップS13へ戻る。このように、ポンプダウン運転終了後も冷媒漏洩を検知した場合、第二開閉装置43を開放することで、冷媒を第二バイパス配管42から屋外へ放出する。このとき、第二バイパス配管42からの冷媒放出量≫漏洩箇所71からの冷媒漏洩量であり、冷媒は第二バイパス配管42の方へ引き寄せられるため、漏洩箇所71から室内への冷媒漏洩量を軽減することができる。
After step S12, the determination unit 53 determines whether refrigerant leakage has occurred based on the result of the calculation unit 52 processing the detection signal of the refrigerant leakage detector 63 (step S13).
If the determination unit 53 determines that refrigerant leakage has occurred (Yes in step S13), the drive unit 54 opens the second opening / closing device 43 as shown in FIG. 9 (step S14), and returns to step S13. . Thus, when refrigerant leakage is detected even after the pump-down operation is completed, the refrigerant is released to the outdoors from the second bypass pipe 42 by opening the second opening / closing device 43. At this time, the refrigerant discharge amount from the second bypass pipe 42 >> the refrigerant leak quantity from the leak location 71. Since the refrigerant is drawn toward the second bypass pipe 42, the refrigerant leak amount from the leak location 71 to the room is reduced. Can be reduced.
 一方、判定部53が冷媒漏洩が発生していないと判定した場合(ステップS13のNo)、駆動部54は、第二開閉装置43を閉止し(ステップS15)、ステップS13へ戻る。つまり、冷媒回路を図8に示す状態にする。 On the other hand, when the determination unit 53 determines that no refrigerant leakage has occurred (No in step S13), the drive unit 54 closes the second opening / closing device 43 (step S15) and returns to step S13. That is, the refrigerant circuit is brought into the state shown in FIG.
 その後、駆動部54は、冷媒漏洩の発生に応じて、第二開閉装置43の開放(ステップS14)、または第二開閉装置43の閉止を行う(ステップS15)。 Thereafter, the drive unit 54 opens the second opening / closing device 43 (step S14) or closes the second opening / closing device 43 in accordance with the occurrence of refrigerant leakage (step S15).
 以上のように、本実施の形態1に係る空気調和装置によれば、ポンプダウン運転終了後も冷媒漏洩を検知した場合、第二開閉装置43を開放することで、冷媒回路内の室内機20および配管に残留した冷媒を第二バイパス配管42から屋外へ放出する。そうすることで、冷媒漏洩時における室内への冷媒漏洩量を軽減することができる。 As described above, according to the air-conditioning apparatus according to Embodiment 1, when refrigerant leakage is detected even after the end of the pump-down operation, the second opening / closing device 43 is opened to open the indoor unit 20 in the refrigerant circuit. The refrigerant remaining in the pipe is discharged from the second bypass pipe 42 to the outside. By doing so, the amount of refrigerant leakage into the room at the time of refrigerant leakage can be reduced.
 また、従来では、ポンプダウン運転は冷房運転で行われるため、暖房運転中に冷媒漏洩を検知した場合は冷房運転への切り替えに時間がかかり、冷媒漏洩量が増加してしまうという課題があった。
 そこで、本実施の形態1に係る空気調和装置では、暖房運転中に冷媒漏洩を検知した場合、第二流路切替装置33の第一バイパス配管41側を開放している。そうすることで、液管31とガス管32とを連通させ、冷媒の均圧を促進し、冷房運転への切り替え時間を短縮することができ、室内への冷媒漏洩量を軽減することができる。
Further, conventionally, since the pump-down operation is performed in the cooling operation, there is a problem that when refrigerant leakage is detected during the heating operation, it takes time to switch to the cooling operation and the amount of refrigerant leakage increases. .
Therefore, in the air conditioner according to the first embodiment, when the refrigerant leakage is detected during the heating operation, the first bypass pipe 41 side of the second flow path switching device 33 is opened. By doing so, the liquid pipe 31 and the gas pipe 32 are communicated with each other, the pressure equalization of the refrigerant can be promoted, the switching time to the cooling operation can be shortened, and the amount of refrigerant leakage into the room can be reduced. .
 実施の形態2.
 以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2. FIG.
Hereinafter, Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
 図10は、本発明の実施の形態2に係る空気調和装置の機能ブロック図である。
 本実施の形態2に係る空気調和装置は、図10に示すように、熱源機10に設けられている制御装置50とは別に、第二制御装置80を備えている。
 第二制御装置80は、第二測定部81と、第二演算部82と、第二判定部83と、第二駆動部84と、を備えている。制御装置50は吐出圧力検知器61および吸入圧力検知器62から信号が入力されるようになっており、第二制御装置80は、冷媒漏洩検知器63から信号が入力されるようになっている。また、第二制御装置80は、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43に信号を出力するようになっている。
FIG. 10 is a functional block diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention.
As shown in FIG. 10, the air-conditioning apparatus according to Embodiment 2 includes a second control device 80 separately from the control device 50 provided in the heat source device 10.
The second control device 80 includes a second measurement unit 81, a second calculation unit 82, a second determination unit 83, and a second drive unit 84. The control device 50 is configured to receive signals from the discharge pressure detector 61 and the suction pressure detector 62, and the second control device 80 is configured to receive signals from the refrigerant leakage detector 63. . Further, the second control device 80 outputs signals to the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43.
 第二測定部81は、冷媒漏洩検知器63検知信号を取得するものである。
 第二演算部82は、第二測定部81が取得した検知信号を処理するものである。
 第二判定部83は、第二演算部82の処理結果に基づき、各種判定を行うものである。
 第二駆動部84は、第二判定部83の判定結果に基づき、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43に駆動信号を出力し、それらを駆動するものである。
The second measuring unit 81 acquires the refrigerant leak detector 63 detection signal.
The second calculation unit 82 processes the detection signal acquired by the second measurement unit 81.
The second determination unit 83 performs various determinations based on the processing result of the second calculation unit 82.
Based on the determination result of the second determination unit 83, the second drive unit 84 outputs a drive signal to the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43, and drives them. Is.
 また、第二制御装置80は制御装置50と互いに通信可能となっている。そのため、制御装置50の処理結果に基づいて第二制御装置80が第二流路切替装置33、第一開閉装置34、および、第二開閉装置43を駆動することができるようになっている。例えば、駆動部54の駆動信号に基づいて第二駆動部84が、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43を駆動する、などである。 Further, the second control device 80 can communicate with the control device 50. Therefore, the second control device 80 can drive the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 based on the processing result of the control device 50. For example, the second driving unit 84 drives the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 based on the driving signal of the driving unit 54.
 また、第二制御装置80は、電源系統が例えば自家発電機などであり、熱源機10とは別電源系統となっている。そのため、本実施の形態2に係る空気調和装置は、熱源機10が停電、故障などで動作できない場合でも、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43を駆動することができる。そして、それらを駆動することにより、熱源機10が停電、故障などで動作できない場合でも冷媒回路内の冷媒を第二バイパス配管42から屋外へ放出することができる。 Further, the second control device 80 has a power supply system such as a private power generator, and is a power supply system different from the heat source device 10. Therefore, the air conditioner according to the second embodiment includes the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 even when the heat source unit 10 cannot operate due to a power failure, failure, or the like. Can be driven. And by driving them, the refrigerant in the refrigerant circuit can be discharged to the outdoors from the second bypass pipe 42 even when the heat source device 10 cannot operate due to a power failure, failure, or the like.
 図11は、本発明の実施の形態2に係る空気調和装置の冷媒の漏洩検知時の動作を示すフローチャートである。
 以下、本実施の形態2に係る空気調和装置の冷媒の漏洩検知時の動作について、図11を参照して説明する。
 第二判定部83は、冷媒漏洩検知器63の検知結果に基づいて、冷媒漏洩が発生しているかどうかを判定する(ステップS21)。
FIG. 11 is a flowchart showing an operation at the time of refrigerant leakage detection of the air-conditioning apparatus according to Embodiment 2 of the present invention.
Hereafter, the operation | movement at the time of the leak detection of the refrigerant | coolant of the air conditioning apparatus which concerns on this Embodiment 2 is demonstrated with reference to FIG.
The second determination unit 83 determines whether or not refrigerant leakage has occurred based on the detection result of the refrigerant leakage detector 63 (step S21).
 第二判定部83は、冷媒漏洩が発生していないと判定した場合(ステップS21のNo)、ステップS21へ戻る。
 一方、第二判定部83は、冷媒漏洩が発生していると判定した場合(ステップS21のYes)、熱源機10が動作可能であるかどうかを判定する(ステップS22)。なお、第二判定部83は、例えば、制御装置50から受信した熱源機10の状態に関する信号に基づいて判定する。
If the second determination unit 83 determines that no refrigerant leakage has occurred (No in step S21), the second determination unit 83 returns to step S21.
On the other hand, when it determines with the refrigerant | coolant leakage having generate | occur | produced, the 2nd determination part 83 determines whether the heat-source equipment 10 is operable (step S22). In addition, the 2nd determination part 83 determines based on the signal regarding the state of the heat-source equipment 10 received from the control apparatus 50, for example.
 第二判定部83が熱源機10が動作可能であると判定した場合(ステップS22のYes)、図5のステップS2へ進む。なお、図5のステップS2以降の処理は、実施の形態1で説明したものと同様であるため、説明を省略する。
 一方、判定部53が熱源機10が動作可能でないと判定した場合(ステップS22のNo)、第二駆動部84は、第二流路切替装置33を熱源機10側が閉止されるように切り替え、第一開閉装置34を閉止し、第二開閉装置43を開放する。つまり、第二流路切替装置33、第一開閉装置34、および、第二開閉装置43を図9に示すように制御することで、冷媒を第二バイパス配管42から屋外へ放出する。
When the second determination unit 83 determines that the heat source apparatus 10 is operable (Yes in step S22), the process proceeds to step S2 in FIG. Note that the processing after step S2 in FIG. 5 is the same as that described in the first embodiment, and thus description thereof is omitted.
On the other hand, when the determination unit 53 determines that the heat source device 10 is not operable (No in Step S22), the second drive unit 84 switches the second flow path switching device 33 so that the heat source device 10 side is closed, The first opening / closing device 34 is closed, and the second opening / closing device 43 is opened. That is, the refrigerant is discharged from the second bypass pipe 42 to the outside by controlling the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43 as shown in FIG.
 以上のように、本実施の形態2に係る空気調和装置によれば、熱源機10とは別電源系統の第二制御装置80を備えている。そのため、熱源機10が停電、故障などで動作できない場合でも、第二制御装置80で第二流路切替装置33、第一開閉装置34、および、第二開閉装置43を駆動することにより、冷媒回路内の冷媒を第二バイパス配管42から屋外へ放出することができる。そうすることで、熱源機10が動作できない場合でも、冷媒漏洩時における室内への冷媒漏洩量を軽減することができる。 As described above, according to the air-conditioning apparatus according to Embodiment 2, the second control device 80 of the power supply system different from the heat source device 10 is provided. Therefore, even when the heat source device 10 cannot operate due to a power failure, failure, or the like, the second control device 80 drives the second flow path switching device 33, the first opening / closing device 34, and the second opening / closing device 43, whereby the refrigerant The refrigerant in the circuit can be discharged from the second bypass pipe 42 to the outside. By doing so, even when the heat source device 10 cannot operate, the amount of refrigerant leakage into the room at the time of refrigerant leakage can be reduced.
 10 熱源機、11 圧縮機、12 第一流路切替装置、13 熱源側熱交換器、20 室内機、21 利用側熱交換器、22 絞り装置、31 液管、32 ガス管、33 第二流路切替装置、34 第一開閉装置、40 バイパス回路、41 第一バイパス配管、42 第二バイパス配管、43 第二開閉装置、50 制御装置、51 測定部、52 演算部、53 判定部、54 駆動部、61 吐出圧力検知器、62 吸入圧力検知器、63 冷媒漏洩検知器、70 破線、71 漏洩箇所、80 第二制御装置、81 第二測定部、82 第二演算部、83 第二判定部、84 第二駆動部。 10 heat source machine, 11 compressor, 12 first flow path switching device, 13 heat source side heat exchanger, 20 indoor unit, 21 usage side heat exchanger, 22 expansion device, 31 liquid pipe, 32 gas pipe, 33 second flow path Switching device, 34 1st switching device, 40 bypass circuit, 41 1st bypass piping, 42 2nd bypass piping, 43 2nd switching device, 50 control device, 51 measurement unit, 52 calculation unit, 53 determination unit, 54 drive unit , 61 discharge pressure detector, 62 suction pressure detector, 63 refrigerant leak detector, 70 broken line, 71 leak location, 80 second control device, 81 second measurement unit, 82 second calculation unit, 83 second determination unit, 84 Second drive section.

Claims (6)

  1.  圧縮機、第一流路切替装置、および、熱源側熱交換器を有する熱源機と、
     絞り装置および利用側熱交換器を有する室内機と、
     前記熱源機と前記室内機とを接続する液管およびガス管と、
     前記圧縮機、前記第一流路切替装置、前記熱源側熱交換器、前記絞り装置、および、前記利用側熱交換器が配管で接続され、冷媒が循環する冷媒回路と、
     前記液管と前記ガス管とを接続する第一バイパス配管と、
     前記第一バイパス配管から分岐して冷媒を屋外へ放出する第二バイパス配管と、
     液管の熱源機側、液管の室内機側、および、第一バイパス配管側をそれぞれ開閉する第二流路切替装置と、
     前記ガス管に設けられた第一開閉装置と、
     前記第二バイパス配管に設けられた第二開閉装置と、
     前記冷媒回路からの冷媒漏洩を検知する冷媒漏洩検知器と、
     冷房運転中に冷媒漏洩を検知した場合、前記第二開閉装置を閉止してポンプダウン運転を開始し、ポンプダウン運転終了後、前記第一開閉装置を閉止するとともに、冷媒漏洩を検知した場合、前記第二開閉装置を開放する制御装置と、を備えた
     空気調和装置。
    A heat source machine having a compressor, a first flow path switching device, and a heat source side heat exchanger;
    An indoor unit having an expansion device and a use side heat exchanger;
    A liquid pipe and a gas pipe connecting the heat source unit and the indoor unit;
    A refrigerant circuit in which the compressor, the first flow path switching device, the heat source side heat exchanger, the expansion device, and the use side heat exchanger are connected by piping and the refrigerant circulates;
    A first bypass pipe connecting the liquid pipe and the gas pipe;
    A second bypass pipe that branches off from the first bypass pipe and discharges the refrigerant to the outside;
    A second flow path switching device that opens and closes the heat source side of the liquid pipe, the indoor unit side of the liquid pipe, and the first bypass pipe side,
    A first opening and closing device provided in the gas pipe;
    A second opening / closing device provided in the second bypass pipe;
    A refrigerant leakage detector for detecting refrigerant leakage from the refrigerant circuit;
    When refrigerant leakage is detected during cooling operation, the second opening and closing device is closed and pump down operation is started.After the pump down operation is completed, the first opening and closing device is closed and refrigerant leakage is detected. An air conditioner comprising: a control device that opens the second opening / closing device.
  2.  前記制御装置は、
     前記冷媒漏洩検知器の検知信号を取得する測定部と、
     前記測定部が取得した検知信号を処理する演算部と、
     前記演算部の処理結果に基づき冷媒漏洩が発生しているかどうかを判定する判定部と、
     前記判定部が冷房運転中に冷媒漏洩が発生していると判定した場合、前記第二開閉装置を閉止してポンプダウン運転を開始し、ポンプダウン運転終了後、前記第一開閉装置を閉止するとともに、前記判定部が冷媒漏洩が発生していると判定した場合、前記第二開閉装置を開放する駆動部と、を備えた
     請求項1に記載の空気調和装置。
    The control device includes:
    A measurement unit for obtaining a detection signal of the refrigerant leak detector;
    A calculation unit for processing the detection signal acquired by the measurement unit;
    A determination unit that determines whether or not refrigerant leakage has occurred based on the processing result of the arithmetic unit;
    If the determination unit determines that refrigerant leakage has occurred during the cooling operation, the second switching device is closed to start the pump-down operation, and after the pump-down operation is completed, the first switching device is closed. The air conditioner according to claim 1, further comprising: a drive unit that opens the second opening / closing device when the determination unit determines that refrigerant leakage has occurred.
  3.  前記駆動部は、
     前記判定部が暖房運転中に冷媒漏洩が発生していると判定した場合、冷房運転に切り替え、前記第二流路切替装置の第一バイパス配管側を開放し、前記第二開閉装置を開放するものである
     請求項2に記載の空気調和装置。
    The drive unit is
    When it is determined that the refrigerant leakage has occurred during the heating operation, the determination unit switches to the cooling operation, opens the first bypass piping side of the second flow path switching device, and opens the second opening / closing device. The air conditioning apparatus according to claim 2.
  4.  前記圧縮機の吐出側の圧力を検知する吐出圧力検知器と、
     前記圧縮機の吸入側の圧力を検知する吸入圧力検知器と、を備え、
     前記第二流路切替装置の第一バイパス配管側が開放され、前記第二開閉装置が開放された後、
     前記演算部は、
     前記測定部が取得した前記吐出圧力検知器および前記吸入圧力検知器の検知信号から、それらの圧力差ΔPを求め、
     前記駆動部は、
     前記判定部が前記圧力差ΔPが基準差圧P1よりも小さい値であると判定した場合、前記第二流路切替装置の液管の室内機側を閉止し、前記第二開閉装置を閉止し、ポンプダウン運転を開始するものである
     請求項3に記載の空気調和装置。
    A discharge pressure detector for detecting the pressure on the discharge side of the compressor;
    A suction pressure detector for detecting the pressure on the suction side of the compressor,
    After the first bypass piping side of the second flow path switching device is opened and the second opening and closing device is opened,
    The computing unit is
    From the detection signal of the discharge pressure detector and the suction pressure detector acquired by the measurement unit, to determine the pressure difference ΔP,
    The drive unit is
    When the determination unit determines that the pressure difference ΔP is smaller than the reference differential pressure P1, the indoor unit side of the liquid pipe of the second flow path switching device is closed, and the second opening / closing device is closed. The air conditioner according to claim 3, wherein the pump down operation is started.
  5.  前記熱源機と別電源系統の第二制御装置を備え、
     前記第二制御装置は、
     前記熱源機が動作可能でない場合、前記第二流路切替装置の熱源機側を閉止し、前記第一開閉装置を閉止し、前記第二開閉装置を開放するものである
     請求項1~4のいずれか一項に記載の空気調和装置。
    A second control device of a separate power system from the heat source unit,
    The second control device includes:
    5. The heat source device side of the second flow path switching device is closed when the heat source device is not operable, the first switch device is closed, and the second switch device is opened. The air conditioning apparatus according to any one of claims.
  6.  前記第二制御装置は、
     前記冷媒漏洩検知器の検知信号を取得する第二測定部と、
     前記第二測定部が取得した検知信号を処理する第二演算部と、
     前記第二演算部の処理結果に基づき冷媒漏洩が発生しているかどうか、および、前記熱源機が動作可能であるかどうかを判定する第二判定部と、
     前記第二判定部が冷媒漏洩が発生していると判定し、かつ、前記熱源機が動作可能ではないと判定した場合、前記第二流路切替装置の熱源機側を閉止し、前記第一開閉装置を閉止し、前記第二開閉装置を開放する第二駆動部と、を備えた
     請求項5に記載の空気調和装置。
    The second control device includes:
    A second measuring unit for obtaining a detection signal of the refrigerant leak detector;
    A second calculation unit for processing the detection signal acquired by the second measurement unit;
    A second determination unit that determines whether refrigerant leakage has occurred based on the processing result of the second calculation unit, and whether the heat source unit is operable;
    When the second determination unit determines that a refrigerant leak has occurred and determines that the heat source device is not operable, the heat source device side of the second flow path switching device is closed, and the first The air conditioner according to claim 5, further comprising: a second drive unit that closes the opening / closing device and opens the second opening / closing device.
PCT/JP2016/067141 2016-06-08 2016-06-08 Air-conditioning device WO2017212599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/067141 WO2017212599A1 (en) 2016-06-08 2016-06-08 Air-conditioning device
GB1817686.7A GB2564367B (en) 2016-06-08 2016-06-08 Air-conditioning apparatus
JP2018522246A JP6570745B2 (en) 2016-06-08 2016-06-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067141 WO2017212599A1 (en) 2016-06-08 2016-06-08 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2017212599A1 true WO2017212599A1 (en) 2017-12-14

Family

ID=60578481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067141 WO2017212599A1 (en) 2016-06-08 2016-06-08 Air-conditioning device

Country Status (3)

Country Link
JP (1) JP6570745B2 (en)
GB (1) GB2564367B (en)
WO (1) WO2017212599A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132292A (en) * 2017-02-14 2018-08-23 ダイキン工業株式会社 Refrigeration device
CN110486963A (en) * 2019-08-02 2019-11-22 青岛海尔空调器有限总公司 Air handling system and window air conditioner
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115843328A (en) * 2020-06-08 2023-03-24 三菱电机株式会社 Refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2010002137A (en) * 2008-06-20 2010-01-07 Daikin Ind Ltd Air conditioner
JP2013122364A (en) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp Refrigeration and air conditioning device and refrigeration and air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2010002137A (en) * 2008-06-20 2010-01-07 Daikin Ind Ltd Air conditioner
JP2013122364A (en) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp Refrigeration and air conditioning device and refrigeration and air conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132292A (en) * 2017-02-14 2018-08-23 ダイキン工業株式会社 Refrigeration device
WO2018151178A1 (en) * 2017-02-14 2018-08-23 ダイキン工業株式会社 Refrigerating device
US11280523B2 (en) 2017-02-14 2022-03-22 Daikin Industries, Ltd. Refrigeration apparatus with leak detection on the usage side and a refrigerant release mechanism
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system
CN110486963A (en) * 2019-08-02 2019-11-22 青岛海尔空调器有限总公司 Air handling system and window air conditioner

Also Published As

Publication number Publication date
GB2564367B (en) 2020-11-04
GB2564367A8 (en) 2019-01-16
GB2564367A (en) 2019-01-09
GB201817686D0 (en) 2018-12-19
JP6570745B2 (en) 2019-09-04
JPWO2017212599A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US11015828B2 (en) Refrigeration system with utilization unit leak detection
JP6120979B2 (en) Air conditioner
US11231199B2 (en) Air-conditioning apparatus with leak detection control
EP3279580B1 (en) Air-conditioning device
WO2019198134A1 (en) Air conditioner
JP6570745B2 (en) Air conditioner
US20130167572A1 (en) Air-conditioning apparatus
US11536502B2 (en) Refrigerant cycle apparatus
GB2566201A (en) Air conditioning device
WO2018003096A1 (en) Air-conditioning device
AU2014411657B2 (en) Air-conditioning apparatus
US10598413B2 (en) Air-conditioning apparatus
CN114364925B (en) Refrigerant leakage determination system
JP2017502250A (en) Air conditioning apparatus and air conditioning system
JP4562650B2 (en) Air conditioner
JP2021055956A (en) Refrigeration cycle device and determination system
JP2018009768A (en) Refrigeration system
JP6762422B2 (en) Refrigeration cycle equipment
WO2017119105A1 (en) Air-conditioning device
JP2003056933A (en) Multiple air conditioner
WO2016203507A1 (en) Refrigeration cycle device
WO2015128899A1 (en) Air conditioner device
JP2017067397A (en) Refrigerator
JP2015105808A (en) Air conditioner
WO2022249424A1 (en) Refrigeration cycle system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018522246

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 201817686

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160608

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904634

Country of ref document: EP

Kind code of ref document: A1