WO2017211179A1 - Structure de superposition de modules de cellule solaire - Google Patents

Structure de superposition de modules de cellule solaire Download PDF

Info

Publication number
WO2017211179A1
WO2017211179A1 PCT/CN2017/085601 CN2017085601W WO2017211179A1 WO 2017211179 A1 WO2017211179 A1 WO 2017211179A1 CN 2017085601 W CN2017085601 W CN 2017085601W WO 2017211179 A1 WO2017211179 A1 WO 2017211179A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
edge
eva
eva layer
solar cell
Prior art date
Application number
PCT/CN2017/085601
Other languages
English (en)
Chinese (zh)
Inventor
林瀚琪
王旭辉
Original Assignee
刘申冉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘申冉 filed Critical 刘申冉
Publication of WO2017211179A1 publication Critical patent/WO2017211179A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of solar cell technologies, and in particular, to a laying structure in a packaging process of a solar cell module.
  • the solar cell module is a power generation unit that is framed by glass, EVA (abbreviation of Ethylene-vinyl acetate, ethylene-vinyl acetate copolymer), battery, and back sheet, and is packaged and laminated.
  • EVA abbreviation of Ethylene-vinyl acetate, ethylene-vinyl acetate copolymer
  • Battery and back sheet, and is packaged and laminated.
  • Packaging is a key step in the production of solar cells. Without a good packaging process, a good battery can not produce a good component board. The battery package not only ensures the battery life, but also enhances the battery's impact strength. The high quality and longevity of the product is the key to winning customer satisfaction, so the package quality of the component board is very important.
  • the packaging process commonly used in solar cell modules is: battery testing - front welding - back series - laying - lamination - mounting frame - welding junction box - component testing - visual inspection - packaging Storage.
  • the laying mainly refers to laminating the glass, the EVA, the battery, and the backing plate, and generally stacking the glass, the first layer of EVA, the battery, the second layer of EVA, and the backing plate in this order from bottom to top.
  • Lamination refers to the combination of the various components that have been laid down using a hot press to form a unit, specifically the first layer of EVA and the second layer in the laminated structure under a certain degree of vacuum and a certain temperature. The EVA is hot melted and cured, so that the functional layers constituting the solar cell module are well combined.
  • the laying structure mainly has the following two problems: (1) the area of the first layer EVA and the second layer EVA are large, the amount of EVA is large, which leads to an increase in production cost of the product; (2) after the lamination process, There are more EVA residues on the laminating equipment, resulting in increased equipment wear.
  • the present invention provides a laying structure of a solar cell module, through the packager
  • the improvement of the laying structure in the art can effectively reduce the amount of EVA in the production process of solar modules, reduce the production cost and product unit consumption, and also reduce the residual of EVA in the laminating machine during the lamination process of solar modules. Equipment loss.
  • a laying structure of a solar cell module is applied to a laying process of a solar cell module packaging process, wherein the laying structure comprises sequentially laminating a glass plate, a first EVA layer, a battery board, a second EVA layer, and a back sheet
  • a width of an edge of the first EVA layer beyond an edge of the glass sheet is a first value
  • the second The width of the edge of the EVA layer beyond the edge of the glass sheet is a second value
  • the first EVA layer is on a third side of the glass sheet opposite the first side and a fourth side opposite the second side
  • the width of the edge beyond the edge of the glass sheet is a second value
  • the width of the edge of the second EVA layer beyond the edge of the glass sheet is a first value
  • the width of the edge of the second EVA layer beyond the edge of the glass sheet is a first value
  • the first value is smaller than the second value by 1 to 3 mm.
  • the first value is 1 to 2 mm
  • the second value is 3 to 4 mm.
  • the laying structure of the solar cell module is applied to the laying process of the solar cell module packaging process, in the laying structure, on the first side and the first side of the glass plate Adjacent second side, the width of the edge of the first EVA layer beyond the edge of the glass sheet is a first value, and the width of the edge of the second EVA layer beyond the edge of the glass sheet is a second value;
  • the third side opposite to the other side and the fourth side opposite to the second side the edge of the first EVA layer extends beyond the edge of the glass sheet to a second value, and the edge of the second EVA layer extends beyond the edge of the glass sheet.
  • the first value is smaller than the second value, whereby the first EVA layer and the second EVA layer adopt a misaligned complementary laying structure, and the first EVA layer and the first
  • the two EVA layers can respectively reduce the width of the edges of the glass sheets on both sides thereof, which can effectively reduce the amount of EVA in the production process of the solar module, reduce the production cost and the unit consumption, and can also reduce the solar modules. Producing the lamination process, EVA remaining in the laminating machine, to reduce equipment wear and tear.
  • FIG. 1 is an exemplary illustration of a laying structure of a solar cell module according to an embodiment of the present invention
  • FIG. 2 is an exemplary illustration of a relative position of a first EVA layer and a glass sheet in an embodiment of the present invention
  • FIG 3 is an exemplary illustration of the relative position of a second EVA layer to a glass sheet in an embodiment of the present invention.
  • the method mainly comprises the following steps:
  • the performance of the produced battery is not the same, so in order to effectively combine the batteries with the same performance or similar performance, it should be classified according to its performance parameters; the battery test passes the test battery output.
  • the parameters current and voltage are categorized to improve battery utilization and to make quality qualified battery components.
  • the bus bar is soldered to the main grid line on the front side (negative electrode) of the battery.
  • the bus bar is a tinned copper strip, and the extra solder strip is connected to the back electrode of the rear cell when soldered on the back side.
  • the back side soldering is to connect a plurality of batteries in series to form a component string, and the operator solders the front electrode (negative electrode) of the "front battery” to the back electrode (positive electrode) of the "back battery” by using a soldering iron and a solder wire, so that The plurality of sheets are connected in series and the leads are welded to the positive and negative electrodes of the component string to form a battery panel.
  • the panel, the glass plate and the cut EVA and the back sheet are laid at a certain level to prepare for lamination.
  • the laid battery is placed in a laminator, the air in the assembly is evacuated by vacuuming, and then heated to fuse the EVA to bond the battery, the glass, and the backing plate together, and finally the assembly is cooled.
  • Solder a box at the back of the assembly to facilitate connection between the battery and other equipment or batteries.
  • the purpose of the test is to calibrate the parameters such as the output power of the battery, test its output characteristics, and determine the quality level of the components.
  • the present invention mainly improves the laying structure in the laying process of step S4.
  • the laying structure comprises, in order from bottom to top, a glass plate 1, a first EVA layer 2, a battery panel 3, a second EVA layer 4, and a backing plate 5.
  • FIG. 2 shows the relative positional relationship between the first EVA layer 2 and the glass sheet 1
  • FIG. 3 shows the relative positional relationship between the second EVA layer 4 and the glass sheet 1.
  • the edge of the first EVA layer 2 is beyond the width of the edge of the glass sheet 1.
  • the edge of the first EVA layer 2 exceeds the edge of the first EVA layer 2 exceeds the width of the edge of the glass plate 1 is a second value d2, wherein the first value d1 is smaller than the second value d2, and the value of the second value d2 is opposite to the edge of the glass plate of the four peripheral edges of the EVA layer in the prior art.
  • the width is quite.
  • the laying of the second EVA layer 4 is complementary to the misalignment of the first EVA layer 2, as shown in FIG.
  • the width of the edge of the second EVA layer 4 beyond the edge of the glass sheet 1 is a second value d2
  • the width of the edge of the second EVA layer 4 beyond the edge of the glass sheet 1 is a second value d2
  • the width of the edge of the second EVA layer 4 beyond the edge of the glass sheet 1 is a second value d2
  • the width of the edge of the second EVA layer 4 beyond the edge of the glass sheet 1 is a second value d2
  • the width of the edge of the second EVA layer 4 beyond the edge of the glass sheet 1 is a second value d2
  • the second value d2 is equivalent to the existing value, the first value d1 Less than the second value d2, although the area of the single EVA layer (the first EVA layer 2 or the second EVA layer 4) is reduced, the first EVA layer 2 and the second EVA layer 4 are stacked and misaligned and complementary, which is still The package requirement of the component can be satisfied; and since the first EVA layer 2 and the second EVA layer 4 can respectively reduce the width of the edge of the glass plate 1 on both sides thereof, the amount of EVA in the solar component production process can be effectively reduced and reduced. Production cost and product unit consumption, and can also reduce the residual of EVA in the laminating machine during the lamination process of solar modules, and reduce equipment loss.
  • the first value d1 is smaller than the second value d2 by 1 to 3 mm.
  • the first value d1 is selected to be between 1 and 2 mm
  • the second value d2 is selected to be between 3 and 4 mm.
  • the laying structure of the solar cell module provided by the embodiment of the present invention can effectively reduce the amount of EVA in the production process of the solar module, reduce the production cost and the unit consumption of the product by improving the laying structure in the packaging process, and It can also reduce the residual of EVA in the laminating machine during the lamination process of solar modules, and reduce equipment loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne une structure de superposition de modules de cellule solaire, la structure de superposition comprenant un panneau de verre (1), une première couche d'éthylène-acétate de vinyle (EVA pour Ethylene Vinyl Acetate) (2), un panneau de cellule (3), une seconde couche d'éthylène-acétate de vinyle (4) et un panneau arrière (5) empilés et disposés en séquence ; sur un premier côté du panneau de verre (1) et sur un deuxième côté adjacent au premier côté, le bord de la première couche d'éthylène-acétate de vinyle (2) s'étend au-delà du bord du panneau de verre (1) d'une largeur égale à une première valeur et le bord de la seconde couche d'éthylène-acétate de vinyle (4) s'étend au-delà du bord du panneau de verre (1) d'une largeur égale à une seconde valeur ; sur un troisième côté du panneau de verre (1) qui est opposé au premier côté, et sur un quatrième côté opposé au deuxième côté, le bord de la première couche d'éthylène-acétate de vinyle (2) s'étend au-delà du bord du panneau de verre (1) d'une largeur égale à la seconde valeur, et le bord de la seconde couche d'éthylène-acétate de vinyle (4) s'étend au-delà du bord du panneau de verre (1) d'une largeur égale à la première valeur ; la première valeur est inférieure à la seconde valeur.
PCT/CN2017/085601 2016-06-06 2017-05-24 Structure de superposition de modules de cellule solaire WO2017211179A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620542385.9 2016-06-06
CN201620542385.9U CN205845986U (zh) 2016-06-06 2016-06-06 一种太阳能电池组件的敷设结构

Publications (1)

Publication Number Publication Date
WO2017211179A1 true WO2017211179A1 (fr) 2017-12-14

Family

ID=57624096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085601 WO2017211179A1 (fr) 2016-06-06 2017-05-24 Structure de superposition de modules de cellule solaire

Country Status (2)

Country Link
CN (1) CN205845986U (fr)
WO (1) WO2017211179A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914263B (zh) * 2016-06-06 2018-01-19 黄河水电光伏产业技术有限公司 一种太阳能电池组件的封装工艺
CN205845986U (zh) * 2016-06-06 2016-12-28 黄河水电光伏产业技术有限公司 一种太阳能电池组件的敷设结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203398131U (zh) * 2013-07-01 2014-01-15 西安普瑞新特能源有限公司 一种具有叠层结构的太阳能光伏组件
CN105914263A (zh) * 2016-06-06 2016-08-31 黄河水电光伏产业技术有限公司 一种太阳能电池组件的封装工艺
CN205845986U (zh) * 2016-06-06 2016-12-28 黄河水电光伏产业技术有限公司 一种太阳能电池组件的敷设结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203398131U (zh) * 2013-07-01 2014-01-15 西安普瑞新特能源有限公司 一种具有叠层结构的太阳能光伏组件
CN105914263A (zh) * 2016-06-06 2016-08-31 黄河水电光伏产业技术有限公司 一种太阳能电池组件的封装工艺
CN205845986U (zh) * 2016-06-06 2016-12-28 黄河水电光伏产业技术有限公司 一种太阳能电池组件的敷设结构

Also Published As

Publication number Publication date
CN205845986U (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2017211180A1 (fr) Technique de conditionnement de modules de cellules solaires
CN114649443B (zh) 背接触太阳能电池串及其制备方法、电池组件及光伏系统
WO2023071065A1 (fr) Procédé d'assemblage de batterie au lithium-ion, et batterie au lithium-ion
CN109301004A (zh) 一种叠瓦光伏组件及制造方法
EP3444849B1 (fr) Ensemble à double vitrage
JP5452773B2 (ja) 太陽電池モジュールおよびその製造方法
WO2017161692A1 (fr) Module de cellule utilisant un processus de contact arrière et son procédé de fabrication
CN108574025B (zh) 叠瓦组件的制作方法
CN109560155B (zh) 太阳能电池组件及其制造方法
WO2017211179A1 (fr) Structure de superposition de modules de cellule solaire
CN111129220A (zh) 一种叠瓦组件的制备方法
WO2011130999A1 (fr) Structure de circuits empilés d'un ensemble photovoltaïque
CN114220879A (zh) 一种无主栅线电极的叠瓦电池组件及其制备方法
CN116995109A (zh) 一种低温焊接的背接触光伏组件及其制备方法
CN108649088A (zh) 一种hit太阳能电池片的连接方法及hit光伏组件
CN110165005A (zh) 一种光伏叠片组件、组装装置及其制造工艺
TW202021262A (zh) 太陽能板與太陽能電池模組
JP2013214717A (ja) 光電素子及び光電素子の製造方法
CN207705211U (zh) 一种适用于背接触式横排组件的导电芯板
CN210575972U (zh) 一种切片叠瓦组件
WO2019023820A1 (fr) Ensemble de cellules solaires à contact arrière et son procédé de fabrication
CN209852344U (zh) 一种光伏组件叠放周转装置
CN104952958A (zh) 免焊光伏组件与加工方法
JP6163014B2 (ja) 太陽電池モジュールの製造方法
CN216015383U (zh) 一种光伏组件封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809618

Country of ref document: EP

Kind code of ref document: A1