WO2017210853A1 - 数据传输的方法及装置 - Google Patents

数据传输的方法及装置 Download PDF

Info

Publication number
WO2017210853A1
WO2017210853A1 PCT/CN2016/085054 CN2016085054W WO2017210853A1 WO 2017210853 A1 WO2017210853 A1 WO 2017210853A1 CN 2016085054 W CN2016085054 W CN 2016085054W WO 2017210853 A1 WO2017210853 A1 WO 2017210853A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
time domain
control signaling
data
Prior art date
Application number
PCT/CN2016/085054
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to CN201680084665.2A priority Critical patent/CN109417430B/zh
Priority to EP16904306.4A priority patent/EP3432497B1/en
Priority to US16/085,131 priority patent/US10972330B2/en
Priority to PCT/CN2016/085054 priority patent/WO2017210853A1/zh
Priority to TW106117718A priority patent/TWI716599B/zh
Publication of WO2017210853A1 publication Critical patent/WO2017210853A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and apparatus for data transmission.
  • a self-contained subframe structure means that various signals related to one downlink (DL) transmission or one uplink (UL) transmission of a certain terminal device are limited to one subframe period. Without relying on interpolation and other joint operations between adjacent subframes.
  • the design of self-contained sub-frame structures is an important technical improvement in 5G systems. On the one hand, forward compatibility of the 5G air interface can be guaranteed. Since adjacent sub-frames may be used for new business technologies (such as vertical industry applications such as the Internet of Things) that 5G will introduce in the future, and these new business new technologies may adopt completely different designs, they should be as new as possible for these unknowns. The technology leaves a "completely blank" sub-frame resource, avoiding any pre-defined constraints.
  • a low latency uplink and downlink loopback operation can be implemented.
  • the downlink resource configuration (DL SA), the downlink data, and the downlink ACK/NACK are placed in one subframe, or the uplink resource allocation (UL Grant) and the uplink data are placed in one subframe, thereby maximizing downlink data transmission and uplink.
  • the delay of data transmission; or the channel information information (CSI) reference signal (Reference Signal, RS) (such as CSI-RS), CSI report in a sub-frame, can minimize the channel measurement feedback Delay.
  • CSI channel information information
  • RS Reference Signal
  • the self-contained subframe structure can be roughly divided into two types of subframes: a downlink-based (DL-dominant) subframe and an uplink-primary (UL-dominant) subframe.
  • the DL-dominant subframe may further include an uplink control channel carrying a downlink ACK/NACK.
  • the UL-dominant subframe can transmit related downlink control signaling (such as UL Grant) in addition to the main part for transmitting uplink control signaling and uplink data (UL data).
  • this associated tightly coupled structure has certain drawbacks, that is, the problem of processing delay is not considered.
  • the terminal After the terminal receives the downlink data, it needs to go down. The data is demodulated and decoded to determine the ACK/NACK content. This processing delay requires tens or even hundreds of microseconds ( ⁇ s).
  • the terminal can start the uplink data transmission after demodulating the UL Grant signaling in the downlink control signaling, and also requires a processing delay of several tens of microseconds ( ⁇ s). Therefore, the preliminary Self-contained subframe structure currently formed needs to maintain a certain processing time interval between the downlink data and the corresponding ACK/NACK, and between the UL Grant and the corresponding uplink data.
  • a guard interval is included between the downlink and the uplink.
  • the GP can be used to provide a part of the processing time interval, the length of the GP is shorter than the processing time interval, which causes waste of time domain resources. .
  • the embodiment of the invention provides a method for data transmission, which can fully utilize time domain resources and avoid waste of time domain resources.
  • a method of data transmission comprising:
  • a time domain structure including, in chronological order, a first downlink portion, a second downlink portion, a first uplink portion, and a second uplink portion, wherein the second downlink portion and the first uplink portion GP is also included between the parts;
  • the information transmitted by the first uplink part corresponds to information transmitted by the first downlink part
  • the information transmitted by the second uplink part corresponds to information transmitted by the second downlink part
  • the first downlink part is used to transmit downlink data
  • the second downlink part is used to transmit downlink control signaling
  • the first uplink part is used to transmit and downlink data.
  • Corresponding uplink control signaling where the second uplink part is used to transmit uplink data scheduled by the downlink control signaling.
  • the first downlink part may be used to transmit the first downlink control signaling and the downlink data, and correspondingly, the first uplink part may be used to transmit the first uplink control signaling corresponding to the downlink data.
  • the first downlink control signaling is SA (Scheduling Assignment)
  • the first uplink control signaling may be ACK/NACK (Acknowledge/Non Acknowledge) information.
  • the second downlink part may be used to transmit the second downlink control signaling, and the second uplink part may be used to transmit the second uplink control signaling and the uplink data scheduled by the second downlink control signaling.
  • second The downlink control signaling may be uplink grant signaling (UL Grant) information of the second uplink control signaling and the uplink data.
  • UL Grant uplink grant signaling
  • the time domain structure includes a first time domain unit and a second time domain unit.
  • the first time domain unit includes the first downlink portion and the first uplink portion
  • the second time domain unit includes the second downlink portion and the second uplink portion.
  • a first blank portion is included between the first downlink portion and the first uplink portion; and in the second time domain unit, the second a second blank portion is included between the downlink portion and the second uplink portion; wherein a time domain length of the first blank portion is equal to a time domain length occupied by the second downlink portion and a time domain length of the GP And a time domain length of the second blank portion is equal to a sum of a time domain length of the GP and a time domain length occupied by the first uplink portion.
  • the second uplink portion is not used to transmit information.
  • the first downlink part is configured to transmit downlink data
  • the second downlink part is used to transmit downlink information
  • the first uplink part is used to transmit uplink control signaling corresponding to the downlink data
  • the first downlink part is used for transmitting downlink control signaling
  • the second downlink part is used for transmitting downlink information
  • the first uplink part is used for transmitting uplink data scheduled by the downlink control signaling.
  • the first downlink part is not used to transmit information
  • the second downlink part is configured to transmit downlink data
  • the first uplink part is used to transmit uplink information
  • the second uplink part is used to transmit uplink control signaling corresponding to the downlink data
  • the second downlink part is configured to transmit downlink control signaling, where the first uplink part is used for transmitting uplink information, and the second uplink part is used for transmitting uplink data scheduled by the downlink control signaling.
  • an apparatus for data transmission including:
  • a determining unit configured to determine a time domain structure, the time domain structure sequentially includes a first downlink portion, a second downlink portion, a first uplink portion, and a second uplink portion in chronological order, wherein the second downlink portion is The protection interval GP is further included between the first uplink portions;
  • a transmission unit configured to perform data transmission according to the time domain structure determined by the determining unit
  • the apparatus can be used to implement a method of data transmission in the method of the first aspect.
  • an apparatus for data transmission comprising: a processor, a memory, a receiver, and a transmitter.
  • the memory is for storing code
  • the processor is for executing code in the memory, and when the code is executed, the processor can implement the method of data transmission described in the first aspect and the respective implementations.
  • a computer readable storage medium in a fourth aspect, storing a program that causes a device for data transmission to perform the first aspect described above, and any of its various implementations The method of data transmission.
  • FIG. 1 is a schematic diagram of a downlink as a primary subframe.
  • FIG. 2 is a schematic diagram of an uplink as a primary subframe.
  • FIG. 3 is a schematic diagram of a time domain structure of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a first time domain unit and a second time domain unit according to an embodiment of the present invention.
  • 5(a) and (b) are another schematic views of a time domain structure of an embodiment of the present invention.
  • Figure 6 (a) and (b) are another schematic diagram of the time domain structure of the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of two adjacent subframes in the prior art.
  • Figure 8 is a flow diagram of a method of data transmission in accordance with one embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a time domain structure in data transmission according to an embodiment of the present invention.
  • Figure 10 is a block diagram showing the structure of an apparatus for data transmission according to an embodiment of the present invention.
  • Figure 11 is a block diagram showing the structure of an apparatus for data transmission according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural block diagram of a system chip according to another embodiment of the present invention.
  • the current self-contained subframe structure includes a downlink as a primary subframe and an uplink as a primary subframe.
  • FIG. 1 is a schematic diagram of a downlink primary subframe for transmitting downlink control signaling (DL SA), DL data, and an uplink control channel carrying a downlink ACK/NACK.
  • DL SA downlink control signaling
  • DL data downlink data
  • uplink control channel carrying a downlink ACK/NACK.
  • FIG. 2 a schematic diagram of an uplink as a primary subframe for transmitting uplink control signaling, UL data, and related downlink control signaling (such as UL Grant).
  • UL Grant downlink control signaling
  • a time domain structure is provided in the embodiment of the present invention. As shown in FIG. 3, the time domain structure includes a first downlink part 101, a second downlink part 102, a first uplink part 103, and a second uplink part 104, where The GP 105 is further included between the second downlink portion 102 and the first uplink portion 103.
  • the information transmitted by the first uplink part 101 corresponds to the information transmitted by the first downlink part 103, and the information transmitted by the second uplink part 102 and the information transmitted by the second downlink part 104 The information corresponds. As indicated by the arrows in Figure 3.
  • the information transmitted in the embodiment of the present invention may be at least one of signaling, a signal, and a channel.
  • the channel can carry signaling and/or data.
  • the time domain structure in the embodiment of the present invention includes, in chronological order, a first downlink part, a second downlink part, a first uplink part, and a second uplink part, where the second downlink part and the first uplink part Between GP.
  • the time domain structure in the embodiment of the present invention includes, in chronological order, a first downlink portion, a second downlink portion, a GP, a first uplink portion, and a second uplink portion.
  • the time domain structure in the embodiment of the present invention includes: a first downlink part, a second downlink part, a GP, a first uplink part, and a second uplink part that are consecutively arranged in chronological order.
  • the time domain structure in the embodiment of the present invention includes the following parts closely connected in time series: a first downlink part, a second downlink part, a GP, a first uplink part, and a second uplink part. .
  • the end time of the first downlink part and the start time of the second downlink part are the same time, and the end time of the first uplink part and the start time of the second uplink part are the same time.
  • the difference between the start time of the first uplink portion and the end time of the second downlink portion is equal to the time length of the GP.
  • the first downlink part 101 may be configured to transmit downlink data
  • the first uplink part 103 may be configured to transmit an uplink control signal corresponding to the downlink data.
  • the second downlink part 102 can be used to transmit downlink control signaling.
  • the second uplink part 104 can be used to transmit uplink data scheduled by the downlink control signaling.
  • the uplink control signaling may include ACK/NACK information
  • the downlink control signaling may include UL Grant information.
  • the information transmitted by the first uplink part corresponds to the information transmitted by the first downlink part, that is, the uplink control signaling transmitted by the first uplink part corresponds to the transmission of the first downlink part.
  • the information transmitted by the second uplink part corresponds to the information transmitted by the second downlink part, which means that the uplink data transmitted by the second uplink part is scheduled by the downlink control signaling transmitted by the second downlink part. .
  • the first uplink part does not transmit data (uplink data).
  • the first uplink part may be used only for transmitting uplink control signaling corresponding to the downlink data.
  • the second downlink part does not transmit data (downlink data).
  • the second downlink part may be used only for transmitting downlink control signaling.
  • the first downlink part 101 may be configured to transmit the first downlink control signaling and the downlink data
  • the first uplink part 103 may be configured to transmit the first uplink corresponding to the downlink data.
  • Control signaling is an SA (Scheduling Assignment)
  • the first uplink control signaling may include ACK/NACK (Acknowledge/Non Acknowledge) information.
  • the second downlink part 102 can be used to transmit the second downlink control signaling
  • the second uplink part 104 can be used to transmit the second uplink control signaling and the uplink data scheduled by the second downlink control signaling.
  • the second downlink control signaling may include second uplink control signaling and uplink resource allocation (UL Grant) information of the uplink data.
  • UL Grant uplink resource allocation
  • the first uplink part does not transmit data (uplink data).
  • the first uplink part may be used only for transmitting the first uplink control signaling corresponding to the downlink data.
  • the second downlink part does not transmit data (downlink data).
  • the second downlink part may be used only for transmitting the second downlink control signaling.
  • the time domain structure in the embodiment of the present invention may include a first time domain unit and a second time domain unit.
  • the time domain unit in the embodiment of the present invention may refer to a minimum time domain scheduling unit for transmitting data.
  • the length of the time domain unit can be the length of the minimum time domain scheduling unit.
  • the minimum time domain scheduling unit for transmitting data only includes a continuous downlink data transmission time and/or a continuous uplink data transmission time.
  • it may be a minimum time domain scheduling unit of downlink data or a minimum time domain scheduling unit of uplink data.
  • the minimum time domain scheduling unit of the transmission data may be a subframe, and the real-time domain unit is a subframe.
  • the length of the time domain unit may be the length of the subframe.
  • the embodiment of the present invention does not limit the time domain length of the time domain unit, for example, the length of the time domain unit may be equal to 1 ms or large. At 1 ms, for example, the length of the time domain unit may be equal to 0.5 ms or 0.2 ms or the like.
  • the first time domain unit may include the first downlink part and the first uplink part
  • the second time domain unit includes the second downlink part and the second uplink part
  • a first blank portion is included between the first downlink portion and the first uplink portion; and in the second time domain unit, the second A second blank portion is included between the downstream portion and the second upstream portion.
  • the time domain length of the first blank portion is equal to the sum of the time domain length occupied by the second downlink portion and the time domain length of the GP
  • the time domain length of the second blank portion is equal to The length of the time domain of the GP is the sum of the length of the time domain occupied by the first uplink portion.
  • the first time domain unit may include a first downlink portion, a first blank portion, and a first uplink portion.
  • the first blank portion refers to a blank time period between the uplink and the downlink.
  • the second time domain unit may include a second downlink portion, a second blank portion, and a second uplink portion.
  • the second blank portion refers to a blank time period between the uplink and the downlink.
  • the first time domain unit sequentially includes the first downlink portion, the first blank portion, and the first uplink portion in chronological order.
  • the second time domain unit sequentially includes a second downlink portion, a second blank portion, and a second uplink portion in chronological order.
  • the first time domain unit and the second time domain unit partially overlap in time.
  • the first downlink part in the first time domain unit and the second uplink part and the second uplink part in the first uplink part and the second time domain unit are alternately transmitted, that is, the first time domain is transmitted first.
  • a first downlink part of the unit retransmitting a second downlink part of the second time domain unit, transmitting a first uplink part of the first time domain unit, and finally transmitting a second uplink part of the second time domain unit .
  • the first time domain unit and the second time domain unit are two adjacent time domain units.
  • the first time domain unit may be the Nth time domain unit in the entire transmission process
  • the second time domain unit may be the N+1th time domain unit in the entire transmission process.
  • the second time domain unit is the next subframe adjacent to the first time domain unit. It should be noted that the proximity here should not be interpreted as: any information transmission of the second time domain unit is after all information transmissions in the first time domain unit.
  • the adjacent position here can be understood as: the start time of the information transmission in the second time domain unit is located after the start time of the information transmission in the first time domain unit, and/or the end time of the information transmission in the second time domain unit is located After the end of the information transmission in the first time domain unit.
  • the time domain resource occupied by the first blank part is occupied by the second downlink part and the GP.
  • the time domain resources are the same.
  • the time domain resource occupied by the second blank part is the same as the time domain resource occupied by the first uplink part and the GP.
  • a segment of the first blank portion is occupied by the second downlink portion of the second time domain unit, and another segment of the first blank portion that is not occupied is the GP; it is understood that the GP is the first time domain unit and the first Two time domain units common to the GP.
  • a segment of the second blank portion is occupied by the first uplink portion of the first time domain unit, and another segment of the second blank portion that is not occupied is the GP; it is understood that the GP is the first time domain unit and the second Time domain units are common to the GP.
  • a part of the signal of the second time domain unit ie, the signal transmitted by the second downlink part
  • the unoccupied part For the GP between the uplink and the downlink.
  • the portion where the first blank portion overlaps the second blank portion is GP.
  • the first downlink part in the first time domain unit may be used to transmit the first downlink control signaling and the downlink data, where the first uplink part in the first time domain unit may be used for transmitting and the downlink
  • the first uplink control signaling corresponding to the data is an SA
  • the first uplink control signaling may include ACK/NACK information.
  • the embodiment of the present invention does not limit the time domain length of the first blank portion.
  • the time domain length of the first blank portion may be equal to the processing time interval of the downlink data.
  • the time domain length of the first blank portion may be determined according to an operation process of demodulating and decoding downlink data according to a receiving end (for example, a terminal) of the downlink data.
  • the second downlink part of the second time domain unit may be used for transmitting the second downlink control signaling, and the second uplink part of the second time domain unit may be used for transmitting the second uplink scheduled by the second downlink control signaling.
  • Control signaling and uplink data may include second uplink control signaling and UL Grant information of the uplink data.
  • the embodiment of the present invention does not limit the time domain length of the second blank portion.
  • the time domain length of the second blank portion may be equal to the processing time interval of the UL Grant.
  • the operation process of demodulating and decoding the second downlink control signaling according to the receiving end (for example, the terminal) of the second downlink control signaling determines a time domain length of the second blank portion.
  • the first time domain unit is a self-contained time domain unit
  • the second time domain unit is also a self-contained time domain unit.
  • the time domain structure in the embodiment of the present invention is determined based on the TDD self-inclusive time domain unit of the discontinuous symbol.
  • the first time domain unit and the second time domain unit are arranged alternately. For example, if the time domain unit is a subframe, the first time domain unit is the first self-contained subframe, and the second time domain unit is the second self-contained subframe.
  • the second uplink part in the time domain structure may not be transmitted. Lose any information.
  • the second uplink portion does not exist. That is, the time domain structure includes a first downlink portion, a second downlink portion, and a first uplink portion, wherein the GP is further included between the second downlink portion and the first uplink portion. And, the information transmitted by the first uplink part corresponds to the information transmitted by the first downlink part.
  • the time domain structure in the embodiment of the present invention includes, in chronological order, a first downlink portion, a second downlink portion, and a first uplink portion, wherein the second downlink portion and the first uplink portion are GPs.
  • the time domain structure in the embodiment of the present invention includes, in chronological order, a first downlink portion, a second downlink portion, a GP, and a first uplink portion.
  • the time domain structure in the embodiment of the present invention includes: a first downlink part, a second downlink part, a GP, and a first uplink part that are consecutively arranged in chronological order.
  • the time domain structure in the embodiment of the present invention includes the following parts closely connected in time series: a first downlink part, a second downlink part, a GP, and a first uplink part.
  • the end time of the first downlink part is the same time as the start time of the second downlink part, and the difference between the start time of the first uplink part and the end time of the second downlink part is equal to the time length of the GP.
  • the first downlink part is used for transmitting downlink data
  • the second downlink part is used for transmitting downlink information
  • the first uplink part is used for transmitting an uplink control signal corresponding to the downlink data.
  • the uplink control signaling may include ACK/NACK information.
  • the information transmitted by the first uplink part corresponds to the information transmitted by the first downlink part, that is, the uplink control signaling transmitted by the first uplink part corresponds to the transmission of the first downlink part.
  • Downstream data corresponds to the information transmitted by the first downlink part, that is, the uplink control signaling transmitted by the first uplink part corresponds to the transmission of the first downlink part.
  • the downlink information transmitted by the second downlink part may include downlink control signaling and/or data, that is, the second downlink part may transmit downlink control signaling and/or data, which is not limited by the present invention.
  • the second downlink part may not transmit data, and the second downlink part may be used only for transmitting downlink control signaling, that is, the downlink information transmitted by the second downlink part includes only downlink control signaling.
  • the second downlink part may transmit data and downlink control signaling, and the downlink control signaling of the data transmitted by the second downlink part does not need to be immediately fed back.
  • the first downlink part may be used to transmit the first downlink control signaling and the first downlink data
  • the first uplink part may be used to transmit the first uplink corresponding to the first downlink data.
  • Control signaling For example, the first downlink control signaling is an SA, and the first uplink control signaling may be ACK/NACK information.
  • the second downlink part may only transmit the second downlink control signaling, or the second downlink part may transmit the second downlink data and the second downlink control signaling that do not need to obtain the ACK/NACK feedback immediately.
  • the first downlink part is used for transmitting downlink control signaling
  • the second downlink part is used for transmitting downlink information
  • the first uplink part is used for transmitting the downlink control signaling station.
  • Scheduled upstream data may include UL Grant information.
  • the information transmitted by the first uplink part corresponds to the information transmitted by the first downlink part, that is, the uplink data transmitted by the first uplink part is the downlink control transmitted by the first downlink part. Signaling is scheduled.
  • the downlink information transmitted by the second downlink part may include downlink control signaling and/or data, that is, the second downlink part may transmit downlink control signaling and/or data, which is not limited by the present invention.
  • the second downlink part may not transmit data, and the second downlink part may be used only for transmitting downlink control signaling, that is, the downlink information transmitted by the second downlink part includes only downlink control signaling.
  • the second downlink part may transmit data and downlink control signaling, and the data and downlink control signaling transmitted by the second downlink part do not need to be immediately fed back.
  • the first downlink part may be used to transmit the second downlink control signaling
  • the first uplink part may be used to transmit the second uplink control signaling and the uplink data scheduled by the second downlink control signaling
  • the second downlink control signaling may be uplink resource allocation (UL Grant) information of the second uplink control signaling and the uplink data.
  • UL Grant uplink resource allocation
  • the second downlink part may only transmit the second downlink control signaling, or the second downlink part may transmit the second downlink data and the second downlink control signaling that do not need to obtain the ACK/NACK feedback immediately.
  • the first downlink part of the time domain structure may not transmit any information.
  • the first downlink portion does not exist. That is, the time domain structure includes a second downlink portion, a first uplink portion, and a second uplink portion, wherein the GP is further included between the second downlink portion and the first uplink portion. And, the information transmitted by the second uplink part corresponds to the information transmitted by the second downlink part.
  • the time domain structure in the embodiment of the present invention includes, in chronological order, a second downlink portion, a first uplink portion, and a second uplink portion, wherein a GP is between the second downlink portion and the first uplink portion.
  • the time domain structure in the embodiment of the present invention includes, in chronological order, a second downlink portion, a GP, a first uplink portion, and a second uplink portion.
  • the time domain structure in the embodiment includes: a second downlink portion, a GP, a first uplink portion, and a second uplink portion that are consecutively arranged in chronological order.
  • the time domain structure in the embodiment of the present invention includes the following parts closely connected in time series: a second downlink part, a GP, a first uplink part, and a second uplink part.
  • the end time of the first uplink part and the start time of the second uplink part are the same time.
  • the difference between the start time of the first uplink portion and the end time of the second downlink portion is equal to the time length of the GP.
  • the second downlink part is used for transmitting downlink data
  • the first uplink part is used for transmitting uplink information
  • the second uplink part is used for transmitting uplink control signaling corresponding to downlink data.
  • the uplink control signaling may include ACK/NACK information.
  • the information transmitted by the second uplink part corresponds to the information transmitted by the second downlink part, that is, the uplink control signaling transmitted by the second uplink part corresponds to the downlink transmitted by the second downlink part. data.
  • the uplink information transmitted by the first uplink part may include uplink control signaling and/or data, that is, the first uplink part may transmit uplink control signaling and/or data, which is not limited by the disclosure.
  • the first uplink part may not transmit data, and the first uplink part may be used only for transmitting uplink control signaling, that is, the uplink information transmitted by the first uplink part includes only uplink control signaling.
  • the first uplink portion may transmit data and uplink control signaling, and the data and uplink control signaling transmitted by the first uplink portion are not dependent on the UL Grant information.
  • the second downlink part may be used to transmit the first downlink control signaling and the downlink data, and correspondingly, the second uplink part may be used to transmit the first uplink control signaling corresponding to the downlink data.
  • the first downlink control signaling is an SA
  • the first uplink control signaling may be ACK/NACK information.
  • the first uplink part may only transmit the first uplink control signaling, or the first uplink part may transmit the first uplink data and the first uplink control signaling that are not dependent on the UL Grant information.
  • the second downlink part is used for transmitting downlink control signaling
  • the first uplink part is used for transmitting uplink information
  • the second uplink part is used for transmitting the Uplink data scheduled by downlink control signaling.
  • the downlink control signaling may include UL Grant information.
  • the information transmitted by the second uplink part corresponds to the information transmitted by the second downlink part, that is, the uplink data transmitted by the second uplink part is transmitted by the second downlink part. Dispatched by downlink control signaling.
  • the uplink information transmitted by the first uplink part may include uplink control signaling and/or data, that is, the first uplink part may transmit uplink control signaling and/or data, which is not limited by the disclosure.
  • the first uplink part may not transmit data, and the first uplink part may be used only for transmitting uplink control signaling, that is, the uplink information transmitted by the first uplink part includes only uplink control signaling.
  • the first uplink portion may transmit data and uplink control signaling, and the data and uplink control signaling transmitted by the first uplink portion are not dependent on the UL Grant information.
  • the second downlink part may be used to transmit the second downlink control signaling
  • the second uplink part may be used to transmit the second uplink control signaling and the second uplink data scheduled by the second downlink control signaling.
  • the second downlink control signaling may be uplink resource allocation (UL Grant) information of the second uplink control signaling and the second uplink data.
  • UL Grant uplink resource allocation
  • the first uplink part may only transmit the first uplink control signaling, or the first uplink part may transmit the first uplink data and the first uplink control signaling that are not dependent on the UL Grant information.
  • the time domain structure shown in FIG. 5(a), FIG. 5(b), FIG. 6(a), and FIG. 6(b) may be a subframe, for example, may be a special subframe.
  • the time domain length of the time domain structure is not limited in the embodiment of the present invention.
  • the time domain length may be equal to 1 ms, or may be greater than 1 ms, and for example, the length of the time domain unit may be equal to 0.5 ms or 0.2 ms.
  • a time domain structure as shown in FIG. 5(a) or FIG. 6(a) when performing downlink data transmission, a time domain structure as shown in FIG. 5(a) or FIG. 6(a) can be used.
  • a time domain structure as shown in FIG. 5(b) or FIG. 6(b) when performing uplink data transmission, a time domain structure as shown in FIG. 5(b) or FIG. 6(b) can be used.
  • a time domain structure as shown in FIG. 3 can be used.
  • the downlink control signaling in the embodiment of the present invention may include downlink control information, and the downlink control information is not limited to the information listed in the embodiment of the present invention.
  • the uplink control signaling in the embodiment of the present invention may include uplink control information, and the uplink control information is not limited to the information listed in the embodiment of the present invention.
  • the downlink control signaling may include Downlink Control Information (DCI), the DCI may be DCI for indicating downlink transmission, or DCI for indicating uplink transmission, and the uplink control signaling may include a scheduling request ( Scheduling Report, SR), etc.
  • DCI Downlink Control Information
  • SR Scheduling Report
  • the time domain structure in the embodiment of the present invention can fully utilize the processing time of downlink data/control signaling. Specifically, in the existing DL-dominant Self-contained subframe, after the terminal receives the downlink data, the ACK/NACK content is determined by demodulating and decoding the downlink data. That is to say, the terminal needs to send the corresponding ACK/NACK information after a certain processing time interval. If this processing time interval is longer than GP, it will cause no data to be sent within a certain period of time, resulting in wasted time domain resources. In the embodiment of the present invention, the time domain structure shown in FIG.
  • the 3 can utilize the downlink control signaling such as the UL Grant that transmits the subsequent uplink data (for example, the next self-contained subframe) beyond the processing time of the GP, and fully utilizes the downlink control signaling.
  • This processing time interval is shown in Figure 4.
  • the data or control signaling that does not need to obtain the ACK/NACK feedback immediately may be sent by using the processing interval, and the processing time interval may be fully utilized, as shown in FIG. 5(a) or 6(a).
  • the downlink control signaling in which the UL Grant is located can be demodulated and decoded to know the resource allocation of the uplink data.
  • Information that is to say, the terminal needs to send the corresponding uplink data after a certain processing time interval. If this interval is longer than GP, it will cause no data to be sent within a certain period of time, resulting in wasted time domain resources.
  • the time domain structure shown in FIG. 3 may utilize downlink control signaling such as ACK/NACK information of downlink data (for example, the last self-contained subframe) before the processing time of the GP is exceeded.
  • This processing time interval is utilized, as shown in FIG.
  • data or control signaling that does not depend on the UL Grant may be sent by using the processing interval, and the processing time interval may be fully utilized, as shown in FIG. 5(b) or FIG. 6(b). Shown.
  • the time domain structure in the embodiment of the present invention can save GP overhead.
  • the Nth subframe is a DL-dominant self.
  • the sub-frame is included, and the N+1th sub-frame is a self-contained sub-frame of UL-dominant, in which case two GPs need to be reserved.
  • the time domain structure in the embodiment of the present invention interleaves two time domain units, and the two time domain units share one GP, as shown in FIG. 4, which can save the overhead of one GP, thereby saving time domain resources.
  • FIG. 8 is a flowchart of a method of data transmission according to an embodiment of the present invention. The method shown in Figure 8 includes:
  • S110 Determine a time domain structure, where the time domain structure includes a first downlink part, a second downlink part, a first uplink part, and a second uplink part in chronological order, wherein the second downlink part and the first part A GP is also included between the upstream portions.
  • the information transmitted by the first uplink part corresponds to information transmitted by the first downlink part
  • the information transmitted by the second uplink part corresponds to information transmitted by the second downlink part.
  • the time domain structure may include a first time domain unit and a second time domain unit, as shown in FIG. 4 above.
  • the first time domain unit may be the Nth time domain unit in the whole transmission process
  • the second time domain unit may be the N+1th time domain unit in the entire transmission process.
  • the first time domain unit may be the Nth subframe
  • the second time domain unit may be the N+1th subframe.
  • the first to N-1th subframes may be previously transmitted, and the N+1th subframes and the like transmitted thereafter are also included.
  • the N-1th subframe is a downlink subframe.
  • All subframes after the N+1th subframe in the time domain structure are used for uplink transmission only, that is, only uplink information is transmitted, which is a pure uplink subframe, and the N+1th subframe is shown in FIG. Uplink subframe.
  • the determined time domain structure in S110 may be as shown in any of the foregoing FIGS. 5(a), 5(b), 6(a), and 6(b).
  • S120 if information is transmitted in the first downlink part, the second downlink part, the first uplink part, and the second uplink part, data, signaling, etc. as described in the foregoing part of FIG. 3 or FIG. 4 may be transmitted. . In S120, if information is not transmitted in the second uplink portion, data, signaling, and the like as described in the foregoing section of FIG. 5 may be transmitted. In S120, if information is not transmitted in the first downlink portion, data, signaling, and the like as described in the foregoing section of FIG. 6 may be transmitted. To avoid repetition, we will not repeat them here.
  • the method shown in FIG. 8 can be performed by a transmission device, such as a base station, a terminal, or the like.
  • the transmission device may select a time domain structure as shown in FIG. 3 from a plurality of time domain structures.
  • the protocol may predefine a plurality of time domain structures, and one of the plurality of time domain structures is a time domain structure as shown in FIG.
  • the time domain structure in the embodiment of the present invention can fully utilize the processing time interval, thereby avoiding waste of time domain resources.
  • FIG. 10 is a block diagram showing the structure of an apparatus for data processing according to an embodiment of the present invention.
  • the apparatus 20 shown in FIG. 10 includes a determining unit 201 and a transmitting unit 202.
  • a determining unit 201 configured to determine a time domain structure, where the time domain structure is sequentially included in chronological order a first downlink portion, a second downlink portion, a first uplink portion, and a second uplink portion, wherein a guard interval GP is further included between the second downlink portion and the first uplink portion;
  • the transmitting unit 202 is configured to perform data transmission according to the time domain structure determined by the determining unit 201;
  • the information transmitted by the first uplink part corresponds to information transmitted by the first downlink part
  • the information transmitted by the second uplink part corresponds to information transmitted by the second downlink part
  • the determining unit 201 may be implemented by a processor, and the transmitting unit 202 is implemented by a receiver and a transmitter.
  • the apparatus 200 for data transmission may include a processor 210, a receiver 220, a transmitter 230, and a memory 240.
  • the memory 240 can be used to store code and the like executed by the processor 210.
  • the device 20 for data transmission in FIG. 10 and the device 200 for data transmission in FIG. 11 may be network devices (eg, base stations) or terminals.
  • the receiver 220 may be configured to receive uplink information sent by the terminal in the first uplink part and the second uplink part, where the uplink information may include uplink control signaling. And/or uplink data, regarding the uplink information transmitted in the first uplink portion and the second uplink portion, refer to the description in the foregoing embodiment.
  • the transmitter 230 may be configured to send downlink information to the terminal in the first downlink part and the second downlink part, where the downlink information may include downlink control information and/or downlink data, where the sending is performed in the first downlink part and the second downlink part.
  • the downlink information can be referred to the description in the foregoing embodiment.
  • the receiver 220 may be configured to receive downlink information that is sent by the network device (for example, the base station) in the first downlink part and the second downlink part, where the downlink information may include downlink control information. And/or downlink data, for the downlink information transmitted in the first downlink part and the second downlink part, refer to the description in the foregoing embodiment.
  • the transmitter 230 may be configured to send uplink information to the network device (for example, the base station) in the first uplink part and the second uplink part, where the uplink information may include uplink control signaling and/or uplink data, in the first uplink part and the first For the uplink information of the uplink component transmission, refer to the description in the foregoing embodiment.
  • bus system 250 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • the device 20 shown in FIG. 10 or the device 200 shown in FIG. 11 can implement the various processes in the foregoing method embodiment of FIG. 8. To avoid repetition, details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 30 of FIG. 12 includes an input interface 310, an output interface 320, at least one processor 330, and a memory 340.
  • the input interface 310, the output interface 320, the processor 330, and the memory 340 are connected by a bus.
  • the processor 330 is configured to execute code in the memory 340, and when the code is executed, the processor 330 implements the method of data transmission performed by the data processing apparatus of FIG.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM Direct Memory Bus Random Access Memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention is essentially or a part contributing to the prior art or a part of the technical solution.
  • the points may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention All or part of the steps of the method.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

提出了一种数据传输的方法,包括:确定时域结构,所述时域结构按时间顺序依次包括第一下行部分(101)、第二下行部分(102)、第一上行部分(103)和第二上行部分(104),其中,第二下行部分(102)与第一上行部分(103)之间还包括GP(105);根据所述时域结构进行数据传输。其中,第一上行部分(103)所传输的信息与第一下行部分(101)所传输的信息对应,第二上行部分(104)所传输的信息与第二下行部分(102)所传输的信息对应。该方法能够充分利用时域资源,避免由于处理时间间隔大于GP的时长而造成的时域资源的浪费。

Description

数据传输的方法及装置 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法及装置。
背景技术
自包含(self-contained)子帧结构是指,将与某一个终端设备的一次下行(Downlink,DL)传输或一次上行(Uplink,UL)传输相关的各种信号都限制在一个子帧周期内,而无需依赖相邻的子帧之间的插值和其他联合操作。自包含子帧结构的设计是5G系统中的一个重要技术改进。一方面,可以保证5G空中接口(air interface)的前向兼容性(forward compatibility)。由于相邻的子帧可能用于5G未来将引入的新业务新技术(如物联网等垂直行业应用),而这些新业务新技术可能采用完全不同的设计,因此应尽可能为这些未知的新技术留出“完全空白”的子帧资源,避免任何预设的束缚。如果当前5G设计要求基于多子帧间联合操作,就可能限制5G新技术的发展空间。再一方面,可以实现低时延的上下行环回操作。针对5G的低时延要求,加快各种上下行环回操作节奏是一个有效的改进手段。将下行资源配置(DL SA)、下行数据、下行ACK/NACK放在一个子帧内,或将上行资源分配(UL Grant)、上行数据放在一个子帧内,可以最大限度下行数据传输和上行数据传输的时延;或将下行信道状态信息(Channel State Information,CSI)参考信号(Reference Signal,RS)(如CSI-RS)、CSI报告放在一个子帧内,可以最大限度缩短信道测量反馈的时延。
自包含子帧结构大致可以分为两种子帧:下行为主(DL-dominant)的子帧和上行为主(UL-dominant)子帧。DL-dominant子帧除了主要部分用于传输下行控制信令(如DL SA)、下行数据(DL data)外,还可以包含携带下行ACK/NACK的上行控制信道。UL-dominant子帧除了主要部分用于传输上行控制信令、上行数据(UL data)外,还可以传输相关的下行控制信令(如UL Grant)。
但是这种相关联的紧密衔接的结构存在一定的缺陷,即没有考虑处理时延的问题。针对DL-dominant子帧,在终端收到下行数据后,由于要对下行 数据进行解调解码才能决定ACK/NACK内容,这一处理时延需要几十甚至上百微秒(μs)。同样道理,针对UL-dominant子帧,终端在对下行控制信令中的UL Grant信令进行解调后才能开始上行数据的发送,也需要几十微秒(μs)的处理时延。因此目前形成的初步的Self-contained子帧结构,在下行数据和相应的ACK/NACK之间、UL Grant和相应的上行数据之间需要保留一定的处理时间间隔(processing time interval)。
现有技术中,下行与上行之间包括保护间隔(Guard Period,GP),虽然该GP可以用于提供一部分处理时间间隔,但是GP的长度短于处理时间间隔时,会造成时域资源的浪费。
发明内容
本发明实施例提供了一种数据传输的方法,能够充分利用时域资源,避免时域资源的浪费。
第一方面,提供了一种数据传输的方法,包括:
确定时域结构,所述时域结构按时间顺序依次包括第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括GP;
根据所述时域结构进行数据传输;
其中,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应。
可选地,作为一个实施例,所述第一下行部分用于传输下行数据,所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输与所述下行数据对应的上行控制信令,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。
具体地,第一下行部分可以用于传输第一下行控制信令以及下行数据,相应地,第一上行部分可以用于传输与所述下行数据对应的第一上行控制信令。例如,第一下行控制信令为SA(Scheduling Assignment),第一上行控制信令可以为ACK/NACK(Acknowledge/Non Acknowledge)信息。第二下行部分可以用于传输第二下行控制信令,相应地,第二上行部分可以用于传输该第二下行控制信令所调度的第二上行控制信令及上行数据。例如,第二 下行控制信令可以为第二上行控制信令及上行数据的上行资源分配(UL Grant)信息。
作为一例,所述时域结构包括第一时域单位和第二时域单位。所述第一时域单位包括所述第一下行部分和所述第一上行部分,所述第二时域单位包括所述第二下行部分和所述第二上行部分。
可选地,在所述第一时域单位中,所述第一下行部分与所述第一上行部分之间包括第一空白部分;在所述第二时域单位中,所述第二下行部分与所述第二上行部分之间包括第二空白部分;其中,所述第一空白部分的时域长度等于所述第二下行部分所占用的时域长度与所述GP的时域长度之和,所述第二空白部分的时域长度等于所述GP的时域长度与所述第一上行部分所占用的时域长度与之和。
可选地,作为另一个实施例,所述第二上行部分不用于传输信息,
所述第一下行部分用于传输下行数据,所述第二下行部分用于传输下行信息,所述第一上行部分用于传输与所述下行数据对应的上行控制信令;或者,
所述第一下行部分用于传输下行控制信令,所述第二下行部分用于传输下行信息,所述第一上行部分用于传输所述下行控制信令所调度的上行数据。
可选地,作为另一个实施例,所述第一下行部分不用于传输信息,
所述第二下行部分用于传输下行数据,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输与所述下行数据对应的上行控制信令;或者,
所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。
第二方面,提供了一种数据传输的装置,包括:
确定单元,用于确定时域结构,所述时域结构按时间顺序依次包括第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括保护间隔GP;
传输单元,用于根据所述确定单元确定的所述时域结构进行数据传输;
其中,所述第一上行部分所传输的信息与所述第一下行部分所传输的信 息对应,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应。该装置能够用于实现第一方面的方法中数据传输的方法。
第三方面,提供了一种数据传输的装置,该装置包括:处理器、存储器、接收器和发送器。该存储器用于存储代码,处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器可以实现前述第一方面及各个实现方式所述的数据传输的方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得数据传输的装置执行上述第一方面,及其各种实现方式中的任一种数据传输的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是下行为主子帧的一个示意图。
图2是上行为主子帧的一个示意图。
图3是本发明实施例的时域结构的一个示意图。
图4是本发明实施例的第一时域单位与第二时域单位的一个示意图。
图5(a)和(b)是本发明实施例的时域结构的另一个示意图。
图6(a)和(b)是本发明实施例的时域结构的另一个示意图.
图7是现有技术中两个相邻子帧的示意图。
图8是本发明一个实施例的数据传输的方法的流程图。
图9是本发明一个实施例的数据传输中的时域结构的示意图。
图10是本发明一个实施例的数据传输的装置的结构框图。
图11是本发明另一个实施例的数据传输的装置的结构框图。
图12是本发明另一个实施例的系统芯片的示意性的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前的自包含子帧结构包括下行为主子帧以及上行为主子帧。如图1所示为下行为主子帧的一个示意图,该下行为主子帧用于传输下行控制信令(DL SA)、DL数据,以及携带下行ACK/NACK的上行控制信道。如图2所示为上行为主子帧的一个示意图,该上行为主子帧用于传输上行控制信令、UL数据,以及相关的下行控制信令(如UL Grant)。如图1和图2所示,当GP的长度小于处理时间间隔时,会造成时域资源的浪费。
本发明实施例中提供了一种时域结构,如图3所示,该时域结构包括第一下行部分101、第二下行部分102、第一上行部分103和第二上行部分104,其中,所述第二下行部分102与所述第一上行部分103之间还包括GP 105。
其中,所述第一上行部分101所传输的信息与所述第一下行部分103所传输的信息对应,所述第二上行部分102所传输的信息与所述第二下行部分104所传输的信息对应。如图3中的箭头所示。
应注意,本发明实施例中所传输的信息可以是信令、信号、信道中的至少一种。其中,信道可以承载信令和/或数据。
具体地,本发明实施例中的时域结构按时间顺序依次包括:第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,第二下行部分与第一上行部分之间为GP。换句话说,本发明实施例中的时域结构按时间顺序依次包括:第一下行部分、第二下行部分、GP、第一上行部分和第二上行部分。或者也可以说,本发明实施例中的时域结构包括:按照时间先后顺序连续排列的第一下行部分、第二下行部分、GP、第一上行部分和第二上行部分。或者,也可以理解为,本发明实施例中的时域结构包括按时间顺序紧密衔接的以下几个部分:第一下行部分、第二下行部分、GP、第一上行部分和第二上行部分。
其中,第一下行部分的结束时刻与第二下行部分的开始时刻为同一时刻,第一上行部分的结束时刻与第二上行部分的开始时刻为同一时刻。第一上行部分的开始时刻与第二下行部分的结束时刻的差值等于GP的时间长度。
可选地,作为一种实现方式,第一下行部分101可以用于传输下行数据,相应地,第一上行部分103可以用于传输与所述下行数据对应的上行控制信 令;第二下行部分102可以用于传输下行控制信令,相应地,第二上行部分104可以用于传输所述下行控制信令所调度的上行数据。作为一例,上行控制信令可以包括ACK/NACK信息,下行控制信令可以包括UL Grant信息。
可理解,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,是指:第一上行部分所传输的上行控制信令对应于第一下行部分所传输的下行数据。所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应,是指:第二上行部分所传输的上行数据是第二下行部分所传输的下行控制信令所调度的。
其中,第一上行部分不传输数据(上行数据),例如,第一上行部分可以仅用于传输与所述下行数据对应的上行控制信令。其中,第二下行部分不传输数据(下行数据),例如,第二下行部分可以仅用于传输下行控制信令。
可选地,作为一例,第一下行部分101可以用于传输第一下行控制信令以及下行数据,相应地,第一上行部分103可以用于传输与所述下行数据对应的第一上行控制信令。例如,第一下行控制信令为SA(Scheduling Assignment),第一上行控制信令可以包括ACK/NACK(Acknowledge/Non Acknowledge)信息。第二下行部分102可以用于传输第二下行控制信令,相应地,第二上行部分104可以用于传输该第二下行控制信令所调度的第二上行控制信令及上行数据。例如,第二下行控制信令可以包括第二上行控制信令及上行数据的上行资源分配(UL Grant)信息。
其中,第一上行部分不传输数据(上行数据),例如,第一上行部分可以仅用于传输与所述下行数据对应的第一上行控制信令。其中,第二下行部分不传输数据(下行数据),例如,第二下行部分可以仅用于传输第二下行控制信令。
本发明实施例中的时域结构可以包括第一时域单位和第二时域单位。本发明实施例中的时域单位可以是指传输数据的最小时域调度单位。相应地,时域单位的长度可以为最小时域调度单位的长度。可见,传输数据的最小时域调度单位只包含一段连续的下行数据传输时间和/或一段连续的上行数据传输时间。例如,可以是下行数据的最小时域调度单位或上行数据的最小时域调度单位。举例来说,该传输数据的最小时域调度单位可以是子帧,即时域单位为子帧,相应地,时域单位的长度可以是子帧的长度。本发明实施例对时域单位的时域长度不作限定,例如时域单位的长度可以等于1ms或者大 于1ms,再例如时域单位的长度可以等于0.5ms或0.2ms等。
其中,第一时域单位可以包括所述第一下行部分和所述第一上行部分,所述第二时域单位包括所述第二下行部分和所述第二上行部分。
可选地,在所述第一时域单位中,所述第一下行部分与所述第一上行部分之间包括第一空白部分;在所述第二时域单位中,所述第二下行部分与所述第二上行部分之间包括第二空白部分。如图4所示,第一空白部分的时域长度等于所述第二下行部分所占用的时域长度与所述GP的时域长度之和,所述第二空白部分的时域长度等于所述GP的时域长度与所述第一上行部分所占用的时域长度与之和。
也就是说,第一时域单位可以包括第一下行部分、第一空白部分和第一上行部分。其中,第一空白部分是指上下行之间的空白时间段。第二时域单位可以包括第二下行部分、第二空白部分和第二上行部分。其中,第二空白部分是指上下行之间的空白时间段。
或者,也可以理解为,第一时域单位按照时间顺序依次包括第一下行部分、第一空白部分和第一上行部分。第二时域单位按照时间顺序依次包括第二下行部分、第二空白部分和第二上行部分。并且第一时域单位与第二时域单位在时间上有部分重叠。或者,第一时域单位中的第一下行部分与第一上行部分以及第二时域单位中的第二下行部分与第二上行部分是交替进行传输的,即,先传输第一时域单位中的第一下行部分,再传输第二时域单位中的第二下行部分,再传输第一时域单位中的第一上行部分,最后传输第二时域单位中的第二上行部分。
本发明实施例中,第一时域单位和第二时域单位为相邻的两个时域单位。举例来说,第一时域单位可以为整个传输过程中的第N个时域单位,第二时域单位可以是整个传输过程中的第N+1个时域单位。例如,当第一时域单位为第一子帧,第二时域单位为第二子帧时,第二时域单位是与第一时域单位相邻的下一个子帧。应注意,此处的相邻不应解释为:第二时域单位的任何信息传输位于第一时域单位中的所有信息传输之后。此处的相邻可以理解为:第二时域单位中信息传输的开始时刻位于第一时域单位中信息传输的开始时刻之后,和/或,第二时域单位中信息传输的结束时刻位于第一时域单位中信息传输的结束时刻之后。
可见,第一空白部分所占用的时域资源与第二下行部分及GP所占用的 时域资源相同。第二空白部分所占用的时域资源与第一上行部分及GP所占用的时域资源相同。换句话说,第一空白部分的一段由第二时域单位的第二下行部分占用,第一空白部分中未被占用的另一段为GP;可理解,该GP为第一时域单位与第二时域单位共同的GP。同样地,第二空白部分的一段由第一时域单位的第一上行部分占用,第二空白部分中未被占用的另一段为GP;可理解,该GP为第一时域单位与第二时域单位共同的GP。或者,也可以理解为,第二时域单位的一部分信号(即第二下行部分所传输的信号)占用第一时域单位的空白时间段(即第一空白部分)的一部分,没有占用的部分为上下行之间的GP。或者,结合图4可以理解为,第一空白部分与第二空白部分重叠的部分为GP。
可选地,第一时域单位中的第一下行部分可以用于传输第一下行控制信令以及下行数据,第一时域单位中的第一上行部分可以用于传输与所述下行数据对应的第一上行控制信令。例如,第一下行控制信令为SA,第一上行控制信令可以包括ACK/NACK信息。本发明实施例对第一空白部分的时域长度不作限定。作为一例,第一空白部分的时域长度可以等于下行数据的处理时间间隔。具体地,可以根据下行数据的接收端(例如终端)对下行数据进行解调解码的操作过程决定该第一空白部分的时域长度。
第二时域单位中的第二下行部分可以用于传输第二下行控制信令,第二时域单位中的第二上行部分可以用于传输该第二下行控制信令所调度的第二上行控制信令及上行数据。例如,第二下行控制信令可以包括第二上行控制信令及上行数据的UL Grant信息。本发明实施例对第二空白部分的时域长度不作限定。作为另一例,本发明实施例中,第二空白部分的时域长度可以等于UL Grant的处理时间间隔。具体地,可以根据第二下行控制信令的接收端(例如终端)对该第二下行控制信令进行解调解码的操作过程决定该第二空白部分的时域长度。
可见,在该实施例中,第一时域单位为自包含时域单位,第二时域单位也为自包含时域单位。本发明实施例中的时域结构是基于不连续符号的TDD自包含时域单位所确定的。并且第一时域单位与第二时域单位是交错地进行排列的。举例来说,若时域单位为子帧,那么第一时域单位为第一自包含子帧,第二时域单位为第二自包含子帧。
可选地,作为另一种实现方式,该时域结构中的第二上行部分可以不传 输任何信息。此时,可理解为,该第二上行部分不存在。即,时域结构包括第一下行部分、第二下行部分和第一上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括GP。并且,第一上行部分所传输的信息与第一下行部分所传输的信息对应。
具体地,本发明实施例中的时域结构按时间顺序依次包括:第一下行部分、第二下行部分和第一上行部分,其中,第二下行部分与第一上行部分之间为GP。换句话说,本发明实施例中的时域结构按时间顺序依次包括:第一下行部分、第二下行部分、GP和第一上行部分。或者也可以说,本发明实施例中的时域结构包括:按照时间先后顺序连续排列的第一下行部分、第二下行部分、GP和第一上行部分。或者,也可以理解为,本发明实施例中的时域结构包括按时间顺序紧密衔接的以下几个部分:第一下行部分、第二下行部分、GP和第一上行部分。
其中,第一下行部分的结束时刻与第二下行部分的开始时刻为同一时刻,第一上行部分的开始时刻与第二下行部分的结束时刻的差值等于GP的时间长度。
作为一例,如图5(a)所示,第一下行部分用于传输下行数据,第二下行部分用于传输下行信息,第一上行部分用于传输与所述下行数据对应的上行控制信令。作为一例,上行控制信令可以包括ACK/NACK信息。
可理解,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,是指:第一上行部分所传输的上行控制信令对应于第一下行部分所传输的下行数据。
其中,第二下行部分所传输的下行信息可以包括下行控制信令和/或数据,也就是说,第二下行部分可以传输下行控制信令和/或数据,本发明对此不作限定。作为一例,第二下行部分可以不传输数据,第二下行部分可以仅用于传输下行控制信令,即第二下行部分所传输的下行信息仅包括下行控制信令。作为另一例,第二下行部分可以传输数据和下行控制信令,并且第二下行部分所传输的数据的下行控制信令不需要马上得到反馈。
具体地,第一下行部分可以用于传输第一下行控制信令以及第一下行数据,相应地,第一上行部分可以用于传输与所述第一下行数据对应的第一上行控制信令。例如,第一下行控制信令为SA,第一上行控制信令可以为ACK/NACK信息。
可选地,第二下行部分可以只传输第二下行控制信令,或者,第二下行部分可以传输不需要马上得到ACK/NACK反馈的第二下行数据和第二下行控制信令。
作为另一例,如图5(b)所示,第一下行部分用于传输下行控制信令,第二下行部分用于传输下行信息,第一上行部分用于传输所述下行控制信令所调度的上行数据。作为一例,下行控制信令可以包括UL Grant信息。
可理解,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,是指:第一上行部分所传输的上行数据是第一下行部分所传输的下行控制信令所调度的。
其中,第二下行部分所传输的下行信息可以包括下行控制信令和/或数据,也就是说,第二下行部分可以传输下行控制信令和/或数据,本发明对此不作限定。作为一例,第二下行部分可以不传输数据,第二下行部分可以仅用于传输下行控制信令,即第二下行部分所传输的下行信息仅包括下行控制信令。作为另一例,第二下行部分可以传输数据和下行控制信令,并且第二下行部分所传输的数据和下行控制信令不需要马上得到反馈。
具体地,第一下行部分可以用于传输第二下行控制信令,相应地,第一上行部分可以用于传输该第二下行控制信令所调度的第二上行控制信令及上行数据。例如,第二下行控制信令可以为第二上行控制信令及上行数据的上行资源分配(UL Grant)信息。
可选地,第二下行部分可以只传输第二下行控制信令,或者,第二下行部分可以传输不需要马上得到ACK/NACK反馈的第二下行数据和第二下行控制信令。
可选地,作为另一种实现方式,该时域结构中的第一下行部分可以不传输任何信息。此时,可理解为,该第一下行部分不存在。即,时域结构包括第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括GP。并且,第二上行部分所传输的信息与第二下行部分所传输的信息对应。
具体地,本发明实施例中的时域结构按时间顺序依次包括:第二下行部分、第一上行部分和第二上行部分,其中,第二下行部分与第一上行部分之间为GP。换句话说,本发明实施例中的时域结构按时间顺序依次包括:第二下行部分、GP、第一上行部分和第二上行部分。或者也可以说,本发明实 施例中的时域结构包括:按照时间先后顺序连续排列的第二下行部分、GP、第一上行部分和第二上行部分。或者,也可以理解为,本发明实施例中的时域结构包括按时间顺序紧密衔接的以下几个部分:第二下行部分、GP、第一上行部分和第二上行部分。
其中,第一上行部分的结束时刻与第二上行部分的开始时刻为同一时刻。第一上行部分的开始时刻与第二下行部分的结束时刻的差值等于GP的时间长度。
作为一例,如图6(a)所示,第二下行部分用于传输下行数据,第一上行部分用于传输上行信息,第二上行部分用于传输与下行数据对应的上行控制信令。作为一例,上行控制信令可以包括ACK/NACK信息。
可理解,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应,是指:第二上行部分所传输的上行控制信令对应于第二下行部分所传输的下行数据。
其中,第一上行部分所传输的上行信息可以包括上行控制信令和/或数据,也就是说,第一上行部分可以传输上行控制信令和/或数据,本发明对此不作限定。作为一例,第一上行部分可以不传输数据,第一上行部分可以仅用于传输上行控制信令,即第一上行部分所传输的上行信息仅包括上行控制信令。作为另一例,第一上行部分可以传输数据和上行控制信令,并且第一上行部分所传输的数据和上行控制信令不依赖于UL Grant信息。
具体地,第二下行部分可以用于传输第一下行控制信令以及下行数据,相应地,第二上行部分可以用于传输与所述下行数据对应的第一上行控制信令。例如,第一下行控制信令为SA,第一上行控制信令可以为ACK/NACK信息。
可选地,第一上行部分可以只传输第一上行控制信令,或者,第一上行部分可以传输不依赖于UL Grant信息的第一上行数据和第一上行控制信令。
作为另一例,如图6(b)所示,所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。作为一例,下行控制信令可以包括UL Grant信息。
可理解,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应,是指:第二上行部分所传输的上行数据是第二下行部分所传输的 下行控制信令所调度的。
其中,第一上行部分所传输的上行信息可以包括上行控制信令和/或数据,也就是说,第一上行部分可以传输上行控制信令和/或数据,本发明对此不作限定。作为一例,第一上行部分可以不传输数据,第一上行部分可以仅用于传输上行控制信令,即第一上行部分所传输的上行信息仅包括上行控制信令。作为另一例,第一上行部分可以传输数据和上行控制信令,并且第一上行部分所传输的数据和上行控制信令不依赖于UL Grant信息。
具体地,第二下行部分可以用于传输第二下行控制信令,相应地,第二上行部分可以用于传输该第二下行控制信令所调度的第二上行控制信令及第二上行数据。例如,第二下行控制信令可以为第二上行控制信令及第二上行数据的上行资源分配(UL Grant)信息。
可选地,第一上行部分可以只传输第一上行控制信令,或者,第一上行部分可以传输不依赖于UL Grant信息的第一上行数据和第一上行控制信令。
本发明实施例中,如图5(a)、图5(b)、图6(a)和图6(b)所示的时域结构可以为子帧,例如可以为特殊子帧。本发明实施例对该时域结构的时域长度不作限定,例如该时域长度可以等于1ms,或者可以大于1ms,再例如时域单位的长度可以等于0.5ms或0.2ms等。
可见,本发明实施例中,在进行下行数据传输时,可以使用如图5(a)或图6(a)所示的时域结构。在进行上行数据传输时,可以使用如图5(b)或图6(b)所示的时域结构。在进行上下行的数据传输时,可以使用如图3所示的时域结构。
另外,应注意,本发明实施例中的下行控制信令可以包括下行控制信息,该下行控制信息不限于本发明实施例中所列举的信息。本发明实施例中的上行控制信令可以包括上行控制信息,该上行控制信息不限于本发明实施例中所列举的信息。
举例来说,下行控制信令可以包括下行控制信息(Downlink Control Information,DCI),DCI可以为用于指示下行传输的DCI或用于指示上行传输的DCI等,上行控制信令可以包括调度请求(Scheduling Report,SR)等。
本发明实施例中的时域结构可以充分利用下行数据/控制信令的处理时间。具体地,在现有的DL-dominant的Self-contained子帧中,在终端收到下行数据后,由于要对该下行数据进行解调解码后决定ACK/NACK内容,也 就是说终端需要在一定的处理时间间隔之后才能发送相应的ACK/NACK信息。如果这一处理时间间隔长于GP,则会造成一定时间段内没有任何数据发送,导致时域资源浪费。本发明实施例中,图3所示的时域结构可以利用这段超出GP的处理时间发送后续的(例如下一个自包含子帧的)上行数据的UL Grant等下行控制信令,充分利用了这一处理时间间隔,如图4所示。或者,本发明实施例中,可以利用这一处理间隔发送不需要马上得到上述ACK/NACK反馈的数据或控制信令,也可以充分利用了这一处理时间间隔,如图5(a)或图6(a)所示。
同样道理,在现有的UL-dominant的Self-contained子帧中,在终端收到UL Grant后,由于要对该UL Grant所在的下行控制信令进行解调解码才能获知发送上行数据的资源分配信息,也就是说终端需要在一定处理时间间隔之后才能发送上行相应的数据。如果这一时间间隔长于GP,则会造成一定时间段内没有任何数据发送,导致时域资源浪费。本发明实施例中,图3所示的时域结构可以利用这段超出GP的处理时间发送之前的(例如上一个自包含子帧的)下行数据的ACK/NACK信息等下行控制信令,充分利用了这一处理时间间隔,如图4所示。或者,本发明实施例中,可以利用这一处理间隔发送不依赖上述UL Grant的数据或控制信令,也可以充分利用了这一处理时间间隔,如图5(b)或图6(b)所示。
另一方面,本发明实施例中的时域结构可以节省GP开销。在现有技术中,如果一个DL-dominant的自包含子帧和一个UL-dominant的自包含子帧先后相邻发送时,如图7所示,其中的第N个子帧为DL-dominant的自包含子帧,第N+1个子帧为UL-dominant的自包含子帧,此时需要保留两个GP。但本发明实施例中的时域结构将两个时域单位交错放置,两个时域单位共用了一个GP,如图4所示,这样能够节省一个GP的开销,进而能够节省时域资源。
图8是本发明实施例的数据传输的方法的流程图。图8所示的方法包括:
S110,确定时域结构,所述时域结构按时间顺序依次包括第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括GP。其中,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应。
S120,根据所述时域结构进行数据传输。
可选地,作为一例,该时域结构可以包括第一时域单位和第二时域单位,如前述图4所示。其中,第一时域单位可以为整个传输过程中的第N个时域单位,第二时域单位可以是整个传输过程中的第N+1个时域单位。
举例来说,若时域单位为子帧,那么,第一时域单位可以为第N个子帧,第二时域单位可以为第N+1个子帧。相应地,在S120中,进行数据传输时,可以包括之前传输第1个至第N-1个子帧,还包括在此之后传输的第N+1个子帧等。
作为一例,如图9所示,在S120中进行数据传输时,该时域结构中的第N个子帧之前的全部子帧都只用于下行传输,即只传输下行信息,为纯下行子帧,如图9中示出了第N-1个子帧为下行子帧。该时域结构中的第N+1个子帧之后的全部子帧都只用于上行传输,即只传输上行信息,为纯上行子帧,如图9中示出了第N+1个子帧为上行子帧。
可选地,作为另一例,S110中所述确定的时域结构可以如前述图5(a)、图5(b)、图6(a)和图6(b)中的任一个所示。
在S120中,如果在第一下行部分、第二下行部分、第一上行部分和第二上行部分都传输信息,那么可以传输如前述图3或图4的部分所描述的数据、信令等。在S120中,如果在第二上行部分不传输信息,那么可以传输如前述图5的部分所描述的数据、信令等。在S120中,如果在第一下行部分不传输信息,那么可以传输如前述图6的部分所描述的数据、信令等。为避免重复,这里不再赘述。
可理解,图8所示的方法可以由传输设备执行,例如可以是基站、终端等。
在S110中,传输设备可以从多种时域结构中选择如图3所示的时域结构。例如,协议可以预先规定多种时域结构,并且多种时域结构中的一种时域结构为图3所示的时域结构。
本发明实施例中的时域结构可以充分利用处理时间间隔,从而能够避免时域资源的浪费。
图10是本发明一个实施例的数据处理的装置的结构框图。图10所示的装置20包括确定单元201和传输单元202。
确定单元201,用于确定时域结构,所述时域结构按时间顺序依次包括 第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括保护间隔GP;
传输单元202,用于根据确定单元201确定的所述时域结构进行数据传输;
其中,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应。
具体地,关于该时域结构,可以参见前述实施例中的相关描述,为避免重复,这里不再赘述。
应注意,本发明实施例中,确定单元201可以由处理器实现,传输单元202由接收器和发送器实现。如图11所示,数据传输的装置200可以包括处理器210、接收器220、发送器230和存储器240。其中,存储器240可以用于存储处理器210执行的代码等。
可选地,图10中的数据传输的装置20以及图11中的数据传输的装置200可以为网络设备(例如基站)或终端。
具体地,当该数据传输的装置为网络设备(例如基站)时,接收器220可以用于接收终端在第一上行部分和第二上行部分发送的上行信息,该上行信息可以包括上行控制信令和/或上行数据,关于在第一上行部分和第二上行部分传输的上行信息可以参见前述实施例中的描述。发送器230可以用于向终端在第一下行部分和第二下行部分发送下行信息,该下行信息可以包括下行控制信息和/或下行数据,关于在第一下行部分和第二下行部分发送的下行信息可以参见前述实施例中的描述。
具体地,当该数据传输的装置为终端时,接收器220可以用于接收网络设备(例如基站)在第一下行部分和第二下行部分发送的下行信息,该下行信息可以包括下行控制信息和/或下行数据,关于在第一下行部分和第二下行部分发送的下行信息可以参见前述实施例中的描述。发送器230可以用于向网络设备(例如基站)在第一上行部分和第二上行部分发送上行信息,该上行信息可以包括上行控制信令和/或上行数据,关于在第一上行部分和第二上行部分传输的上行信息可以参见前述实施例中的描述。
装置200中的各个组件通过总线系统250耦合在一起,其中总线系统250除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图10所示的装置20或图11所示的装置200能够实现前述图8的方法实施例中的各个过程,为避免重复,这里不再赘述。
图12是本发明实施例的系统芯片的示意性结构图。图12的系统芯片30包括输入接口310、输出接口320、至少一个处理器330、存储器340,所述输入接口310、输出接口320、所述处理器330以及存储器340之间通过总线相连,所述处理器330用于执行所述存储器340中的代码,当所述代码被执行时,所述处理器330实现图8中由数据处理的装置执行的数据传输的方法。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种数据传输的方法,其特征在于,包括:
    确定时域结构,所述时域结构按时间顺序依次包括:第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括保护间隔GP;
    根据所述时域结构进行数据传输;
    其中,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一下行部分用于传输下行数据,所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输与所述下行数据对应的上行控制信令,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述时域结构包括第一时域单位和第二时域单位,
    所述第一时域单位包括所述第一下行部分和所述第一上行部分,所述第二时域单位包括所述第二下行部分和所述第二上行部分。
  4. 根据权利要求3所述的方法,其特征在于,
    在所述第一时域单位中,所述第一下行部分与所述第一上行部分之间包括第一空白部分;
    在所述第二时域单位中,所述第二下行部分与所述第二上行部分之间包括第二空白部分;
    其中,所述第一空白部分的时域长度等于所述第二下行部分所占用的时域长度与所述GP的时域长度之和,所述第二空白部分的时域长度等于所述GP的时域长度与所述第一上行部分所占用的时域长度与之和。
  5. 根据权利要求1所述的方法,其特征在于,所述第二上行部分不用于传输信息,
    所述第一下行部分用于传输下行数据,所述第二下行部分用于传输下行信息,所述第一上行部分用于传输与所述下行数据对应的上行控制信令;或者,
    所述第一下行部分用于传输下行控制信令,所述第二下行部分用于传输 下行信息,所述第一上行部分用于传输所述下行控制信令所调度的上行数据。
  6. 根据权利要求1所述的方法,其特征在于,所述第一下行部分不用于传输信息,
    所述第二下行部分用于传输下行数据,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输与所述下行数据对应的上行控制信令;或者,
    所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。
  7. 一种数据传输的装置,其特征在于,包括:
    确定单元,用于确定时域结构,所述时域结构按时间顺序依次包括第一下行部分、第二下行部分、第一上行部分和第二上行部分,其中,所述第二下行部分与所述第一上行部分之间还包括保护间隔GP;
    传输单元,用于根据所述确定单元确定的所述时域结构进行数据传输;
    其中,所述第一上行部分所传输的信息与所述第一下行部分所传输的信息对应,所述第二上行部分所传输的信息与所述第二下行部分所传输的信息对应。
  8. 根据权利要求7所述的装置,其特征在于,
    所述第一下行部分用于传输下行数据,所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输与所述下行数据对应的上行控制信令,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。
  9. 根据权利要求7或8所述的装置,其特征在于,所述时域结构包括第一时域单位和第二时域单位,
    所述第一时域单位包括所述第一下行部分和所述第一上行部分,所述第二时域单位包括所述第二下行部分和所述第二上行部分。
  10. 根据权利要求9所述的装置,其特征在于,
    在所述第一时域单位中,所述第一下行部分与所述第一上行部分之间包括第一空白部分;
    在所述第二时域单位中,所述第二下行部分与所述第二上行部分之间包括第二空白部分;
    其中,所述第一空白部分的时域长度等于所述第二下行部分所占用的时域长度与所述GP的时域长度之和,所述第二空白部分的时域长度等于所述GP的时域长度与所述第一上行部分所占用的时域长度与之和。
  11. 根据权利要求7所述的装置,其特征在于,所述第二上行部分不用于传输信息,
    所述第一下行部分用于传输下行数据,所述第二下行部分用于传输下行信息,所述第一上行部分用于传输与所述下行数据对应的上行控制信令;或者,
    所述第一下行部分用于传输下行控制信令,所述第二下行部分用于传输下行信息,所述第一上行部分用于传输所述下行控制信令所调度的上行数据。
  12. 根据权利要求7所述的装置,其特征在于,所述第一下行部分不用于传输信息,
    所述第二下行部分用于传输下行数据,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输与所述下行数据对应的上行控制信令;或者,
    所述第二下行部分用于传输下行控制信令,所述第一上行部分用于传输上行信息,所述第二上行部分用于传输所述下行控制信令所调度的上行数据。
PCT/CN2016/085054 2016-06-07 2016-06-07 数据传输的方法及装置 WO2017210853A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084665.2A CN109417430B (zh) 2016-06-07 2016-06-07 数据传输的方法及装置
EP16904306.4A EP3432497B1 (en) 2016-06-07 2016-06-07 Data transmission method and device
US16/085,131 US10972330B2 (en) 2016-06-07 2016-06-07 Data transmission method and device
PCT/CN2016/085054 WO2017210853A1 (zh) 2016-06-07 2016-06-07 数据传输的方法及装置
TW106117718A TWI716599B (zh) 2016-06-07 2017-05-26 資料傳輸的方法及裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085054 WO2017210853A1 (zh) 2016-06-07 2016-06-07 数据传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2017210853A1 true WO2017210853A1 (zh) 2017-12-14

Family

ID=60578306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085054 WO2017210853A1 (zh) 2016-06-07 2016-06-07 数据传输的方法及装置

Country Status (5)

Country Link
US (1) US10972330B2 (zh)
EP (1) EP3432497B1 (zh)
CN (1) CN109417430B (zh)
TW (1) TWI716599B (zh)
WO (1) WO2017210853A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792328B (zh) * 2016-08-11 2021-08-24 松下电器(美国)知识产权公司 基站,终端和通信方法
WO2018082173A1 (zh) * 2016-11-03 2018-05-11 华为技术有限公司 传输上行控制信号的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162981A (zh) * 2006-10-12 2008-04-16 中兴通讯股份有限公司 时分双工通信系统的帧结构产生方法
CN103873183A (zh) * 2012-12-07 2014-06-18 电信科学技术研究院 一种数据传输方法及装置
US20160080133A1 (en) * 2013-05-08 2016-03-17 Panasonic Intellectual Property Corporation America Flexible tdd uplink-downlink configuration with flexible subframes

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300424B2 (en) * 2011-04-08 2016-03-29 Lg Electronics Inc. Method and apparatus for transmitting/receiving signals with a terminal in TDD wireless communication system
US9775151B2 (en) 2014-07-21 2017-09-26 Intel IP Corporation System and method for TDD communications
US10342012B2 (en) * 2015-03-15 2019-07-02 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure
US9992790B2 (en) * 2015-07-20 2018-06-05 Qualcomm Incorporated Time division duplex (TDD) subframe structure supporting single and multiple interlace modes
US10491334B2 (en) * 2015-10-16 2019-11-26 Intel IP Corporation Flexible universal extended frame structure
US10667243B2 (en) * 2015-11-18 2020-05-26 Lg Electronics Inc. Methods for transmitting and receiving reference signals in wireless communication system, and devices for same
EP3379785B1 (en) * 2015-11-18 2020-08-19 LG Electronics Inc. -1- Method for communication device to transmit/receive signals in wireless communication system
WO2017123276A1 (en) * 2016-01-15 2017-07-20 Intel IP Corporation 5g fdd low latency transmission subframe structure system and method of use
US10404332B2 (en) * 2016-01-28 2019-09-03 Qualcomm Incorporated Downlink common burst channelization
WO2017138689A1 (ko) * 2016-02-12 2017-08-17 엘지전자 주식회사 무선통신 시스템에서 신호를 수신하기 위한 방법 및 이를 위한 장치
JP6944927B2 (ja) * 2016-02-29 2021-10-06 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
WO2017150855A1 (ko) * 2016-03-03 2017-09-08 엘지전자 주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
US10122559B2 (en) * 2016-03-21 2018-11-06 Qualcomm Incorporated Uplink channel quality measurement using a subframe with high-intensity reference signal bursts
US10721036B2 (en) * 2016-03-29 2020-07-21 Lg Electronics Inc. Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
US10285189B2 (en) * 2016-04-10 2019-05-07 Qualcomm Incorporated Fifth generation (5G) time division duplex (TDD) legacy coexistence design
US11071105B2 (en) * 2016-04-26 2021-07-20 Lg Electronics Inc. Method and apparatus for configuring sensing gap in frame structure for new radio access technology in wireless communication system
US10932240B2 (en) * 2016-11-01 2021-02-23 Lg Electronics Inc. Method for transmitting SR in wireless communication system and terminal therefor
EP3547583B1 (en) * 2017-01-07 2023-12-20 LG Electronics Inc. Method for terminal resending data in wireless communication system, and communication device using same
US10091753B2 (en) * 2017-01-26 2018-10-02 Lg Electronics Inc. Method of transmitting signal by adaptively controlling windowing or filtering in wireless communication system and apparatus therefor
EP3585021A4 (en) * 2017-02-20 2020-11-25 LG Electronics Inc. -1- PROCESS FOR SENDING OR RECEIVING A SIGNAL IN A WIRELESS COMMUNICATIONS SYSTEM AND CORRESPONDING DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162981A (zh) * 2006-10-12 2008-04-16 中兴通讯股份有限公司 时分双工通信系统的帧结构产生方法
CN103873183A (zh) * 2012-12-07 2014-06-18 电信科学技术研究院 一种数据传输方法及装置
US20160080133A1 (en) * 2013-05-08 2016-03-17 Panasonic Intellectual Property Corporation America Flexible tdd uplink-downlink configuration with flexible subframes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "NR Frame Structure Considerations for Low Latency TDD Operation", 3GPP TSG RAN WG1 MEETING #85, RL-164332, 27 May 2016 (2016-05-27), XP051090159 *
See also references of EP3432497A4 *

Also Published As

Publication number Publication date
EP3432497A4 (en) 2019-03-20
CN109417430B (zh) 2020-01-24
EP3432497B1 (en) 2021-11-10
TW201743592A (zh) 2017-12-16
US20190089569A1 (en) 2019-03-21
TWI716599B (zh) 2021-01-21
CN109417430A (zh) 2019-03-01
EP3432497A1 (en) 2019-01-23
US10972330B2 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2019137481A1 (zh) Harq-ack反馈时间的确定方法和指示方法、终端设备和网络设备
TWI725139B (zh) 數據傳輸的方法、終端設備及網絡設備
US10594447B2 (en) Data transmission method, terminal, and ran device
WO2018201762A1 (zh) 一种资源调度方法及相关设备
TWI615000B (zh) 上行控制資訊傳輸方法及裝置
EP3823195B1 (en) Data transmission method and apparatus
JP2023507225A (ja) アップリンク同期方法、通信装置及び記憶媒体
WO2019154030A1 (zh) 传输方法和设备
WO2017101107A1 (zh) 用于数据传输的方法和终端
CN105376866A (zh) 利用不连续的周期性pusch传送的无线电接入技术
WO2017166984A1 (zh) 信息反馈方法、基站、终端及存储媒介
WO2020221271A1 (zh) 传输混合自动重传请求harq反馈信息的方法和通信装置
WO2020088466A1 (zh) 信息传输方法及装置
WO2021143786A1 (zh) 信道冲突处理方法、装置、设备和存储介质
TW201924256A (zh) Harq編號確定方法、網路設備、終端和電腦存儲媒介
CN106688300A (zh) 无线通信的方法、网络设备、用户设备和系统
WO2021016774A1 (zh) 无线通信方法和设备
JP6898035B2 (ja) クロスキャリアスケジューリング方法および装置
WO2019109765A1 (zh) 传输方法和设备
WO2017210853A1 (zh) 数据传输的方法及装置
US20170214492A1 (en) Method and apparatus for packet retransmission
WO2021035611A1 (zh) 资源请求的方法和通信装置
WO2022012433A1 (zh) Harq-ack的反馈方法和设备
WO2018058475A1 (zh) 一种数据传输方法及设备
EP3527023B1 (en) Methods and devices for transmitting/receiving scheduling commands

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016904306

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016904306

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE