WO2017210833A1 - 波束方向可重构的天线及波束扫描范围可重构的天线阵列 - Google Patents

波束方向可重构的天线及波束扫描范围可重构的天线阵列 Download PDF

Info

Publication number
WO2017210833A1
WO2017210833A1 PCT/CN2016/084970 CN2016084970W WO2017210833A1 WO 2017210833 A1 WO2017210833 A1 WO 2017210833A1 CN 2016084970 W CN2016084970 W CN 2016084970W WO 2017210833 A1 WO2017210833 A1 WO 2017210833A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
medium
beam direction
elastic film
reconfigurable
Prior art date
Application number
PCT/CN2016/084970
Other languages
English (en)
French (fr)
Inventor
张科峰
Original Assignee
武汉芯泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉芯泰科技有限公司 filed Critical 武汉芯泰科技有限公司
Priority to PCT/CN2016/084970 priority Critical patent/WO2017210833A1/zh
Publication of WO2017210833A1 publication Critical patent/WO2017210833A1/zh
Priority to US16/210,638 priority patent/US10998624B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path

Definitions

  • the present invention relates to the field of antenna technologies, and in particular, to a beam direction reconfigurable antenna and a beam scanning range reconfigurable antenna array.
  • a particular antenna For a particular antenna, it can receive beams in a certain direction in space or radiate beams in a certain direction to space.
  • One method is to mechanically change the geometric direction of the antenna; the other is to change the current of the antenna through a phase shifter to radiate beams of different directionality in space.
  • the antenna array formed by the first method is generally referred to as a mechanical antenna array, which changes the spatial scanning position of the antenna array by mechanical motion, thereby changing the beam scanning range.
  • An antenna array formed by the second method is generally referred to as a phased array antenna, which changes the direction of the radiation or the received beam by a phase shifter, thereby changing the beam scanning range.
  • mechanical antenna arrays have the disadvantages of inflexible beam pointing, inability to scan quickly, and short life.
  • the phased array antenna has the disadvantages of complicated structure, expensive cost and limited beam scanning range, and the maximum scanning angle is 90° ⁇ 120°.
  • the phased array antenna has the disadvantages of complicated structure, high cost, and limited beam scanning range, and the maximum scanning angle is 90° ⁇ 120°.
  • the present invention provides a beam direction reconfigurable antenna and a beam scanning range reconfigurable antenna array.
  • a beam direction reconfigurable antenna including:
  • the shape and size of the ionization region are designed to form an air antenna suitable for wireless communication.
  • the shape and size of the ionization region include:
  • the number, power, illumination period, laser exit angle, and laser device movement trajectory of the laser device are calculated according to the shape, size, and position of the air antenna to be formed.
  • the irradiating air with a laser device to ionize the air to form an ionization region includes: [0013] irradiating air of different regions with a laser device to ionize the air to form a plurality of ionization regions; The area is used to form an array of air antennas.
  • the shape of the air antenna includes a planar shape and a linear shape.
  • the linear shape includes a linear shape, a polygonal line shape, a planar spiral shape, a three-dimensional spiral shape, and a wave shape.
  • the beam direction reconfigurable antenna further includes:
  • the laser device is used to illuminate the air to ionize the air, thereby forming a reflective area adjacent to the air antenna.
  • the beam direction reconfigurable antenna further includes:
  • controlling the laser device by using a control device thereby automatically adjusting the number, power, and illumination of the laser device
  • a communication method comprising: communicating using an air antenna, wherein the air antenna is prepared by using the beam direction reconfigurable antenna.
  • the air antenna when the air antenna is a line ⁇ , the air antenna is used to receive and transmit a wireless signal; when the air antenna is a planar ⁇ , the air antenna is used to reflect a wireless signal.
  • Embodiments of the present invention have the following beneficial effects: Through the above-mentioned beam direction reconfigurable antenna, an antenna can be formed by using air for wireless communication. Air antenna has a long length and low location restrictions
  • the shape and height can be designed, ready to use, built and used without the need for manual removal.
  • Embodiments of the present invention have the following beneficial effects: Through the antenna capable of reconfiguring the beam direction, an antenna can be formed by using air for wireless communication.
  • the air antenna has the advantages of long length, low position limit, shape and height design, ready-to-use, and use without manual removal.
  • FIG. 1 is a schematic structural view of an antenna according to a first embodiment of the present invention
  • Figure 2 is a plan view of the antenna shown in Figure 1;
  • FIG. 3 is a schematic structural view of the body of FIG. 1;
  • FIG. 4 is a schematic structural view of an antenna according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an embodiment of the body of FIG. 4;
  • FIG. 6 is a schematic structural view of an antenna according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural view of the body of FIG. 6;
  • FIG. 8 is a schematic structural view of a body of a third embodiment provided by the present invention.
  • the antenna includes: a body 1 1 , a first elastic film 12 , a first medium 13 , a curvature adjusting unit 14 , and at least one Antenna unit 15.
  • the first elastic film 12 is bonded to the body 11, and the first elastic film 12 is enclosed with the body 11 to form a first variable volume chamber 16.
  • the first medium 13 is filled in the first variable volume chamber 16, and the first elastic film 12 can be according to the first medium 13
  • the volume or pressure changes and elastically deforms.
  • the curvature adjusting unit 14 is for changing the curvature of the first elastic film 12 by changing the pressure or volume of the first medium 13.
  • At least one antenna unit 15 is bonded to the outer surface 121 of the first elastic film 12 for receiving or transmitting a wireless signal.
  • the first medium is a 13 liquid or a gel such as water, a dielectric or a magnetic medium or the like.
  • the first medium 13 may contain a dopant 17.
  • the dopant can be used to change the electrical or magnetic properties of the first medium 13.
  • the antenna unit 15 is disposed on the outer surface of the first elastic film 12, and thus the direction of the antenna unit 15 changes as the curvature of the first elastic film 12 changes.
  • the curvature of the first elastic film 12 becomes larger, and the angle between the antenna unit 15 on both sides and the antenna unit 15 located in the middle becomes larger. Will become larger, then the beam scanning range of the entire antenna will become larger.
  • the curvature of the first elastic film 12 becomes small.
  • the curvature adjusting unit 14 can be passed.
  • the antenna of the present embodiment does not require mechanical rotation to adjust the direction, and does not require a high cost to achieve beamforming range reconfigurability.
  • the body 11 has a housing portion 112.
  • the housing portion 112 has a mouth end 111.
  • the first elastic film 12 seals the mouth end 111 to form a first variable volume chamber 16.
  • the first elastic film 12 can be bonded to the body 11 directly or through a sealant. In a preferred embodiment provided by the present invention, some reinforcement or protection means may be provided to ensure a tight connection between the first elastic film 12 and the body 11.
  • a plurality of antenna elements 15 may be disposed on the outer surface 121 of the first elastic film 12.
  • the antenna unit 15 can be randomly and randomly distributed on the first elastic film 12.
  • a plurality of antenna elements 15 are sequentially distributed on the outer surface 121 of the first elastic film 12.
  • the antenna unit 15 may be distributed along one or two curves (e.g., curves L1, L2, L3, or L4) or along a certain circumference (e.g., circumference L6).
  • Embodiment 2 provides another beam direction reconfigurable antenna.
  • the antenna includes: a body 21, a first elastic film 22, a first medium 23, a curvature adjusting unit 24, and at least one The antenna unit 25 and the second elastic film 27 .
  • the first elastic film 22 and the second elastic film 27 are adhered to the body 21, and the first elastic film 2, the second elastic film 27 and the body 21 are enclosed to form a first variable volume chamber 26.
  • the first medium 23 is filled in the first variable volume chamber 26, and the first elastic film 22 and the second elastic film 27 can be elastically deformed according to the volume or pressure change of the first medium 23.
  • the curvature adjusting unit 24 is for changing the curvature of the first elastic film 22 or the second elastic film 27 by changing the pressure or volume of the first medium 23 or the second elastic film 27, respectively.
  • At least one antenna unit 25 is bonded to the outer surfaces of the first elastic film 22 and the second elastic film 27, respectively, for receiving or transmitting a wireless signal.
  • the first medium is 23 liquid or colloid, such as water, dielectric or magnetic medium.
  • the first medium 23 may contain a dopant.
  • the dopant can be used to modify the electrical or magnetic properties of the first medium 23.
  • the plurality of antenna elements 25 are respectively disposed on the outer surfaces of the first elastic film 22 and the second elastic film 27, and thus by adjusting the thickness of the body 21 and the curvatures of the first and second elastic films, It is even possible to adjust the beam scanning range of the antenna to a maximum of 360°. Therefore, with the antenna provided by the present invention, the beam scanning range can be quickly adjusted in a wide range, so that the antenna of the present invention has high flexibility.
  • the body 21 has a receiving portion 212.
  • the housing portion 212 has two port ends 211 and 213.
  • the first elastic film 22 and the second elastic film 27 seal the jaw ends 211 and 213, respectively, thereby forming the first variable volume chamber 26.
  • the first elastic film 22 and the second elastic film 27 may be bonded to the body 21 directly or through a sealant. In a preferred embodiment provided by the present invention, some reinforcement or protection means may be provided to ensure a tight connection between the first elastic film 22 and the second elastic film 27 and the body 21.
  • the receiving portion 212 communicates with the two port ends 211 and 213, respectively, as shown by the arrow in Fig. 5, the upper port end 211 and the lower port end 213 are connected.
  • a partition 214 may be disposed in the accommodating portion 212 to divide the accommodating portion 212 into the first accommodating portion 212a and the second accommodating portion 212b that are not in communication.
  • the first elastic film 22 seals the first accommodation portion 212a, thereby forming the first variable volume chamber 261.
  • the second elastic film 27 seals the second accommodation portion 212b, thereby forming the second variable volume chamber 262.
  • the second variable volume chamber 262 fills the second medium 28.
  • the curvature adjusting unit 24 is also used to change the curvature of the second elastic film 27 by changing the pressure or volume of the second medium 28.
  • the second medium 28 may be the same as the first medium 23 or may be different from the first medium 23.
  • the optional first medium 23 is the same as the second medium 28.
  • the first medium 23 may be different from the second medium 28.
  • the first medium 23 may be selected as the dielectric, and the second medium 28 may be selected. Magnetic media.
  • the number of curvature adjusting units 24 may also be plural for adjusting the curvatures of the first medium 23 and the second medium 28, respectively.
  • the second medium 28 can be a liquid or a gel.
  • the body 211 of the partition 214 is integrally formed.
  • the partition 214 may also be a detachable structure.
  • This embodiment provides a schematic structural view of a body.
  • the body 31 has a receiving portion, and a plurality of partition plates 312 are disposed in the receiving portion, thereby partitioning the receiving portion into a plurality of having a mouth end 311.
  • a beam direction reconfigurable antenna employing such a body includes a plurality of elastic films (in conjunction with Fig. 4, such as elastic films 22 and 27).
  • the plurality of first elastic films are respectively used to seal the mouth ends 311 of the plurality of sub-receiving portions, thereby forming a plurality of variable volume cavities (in conjunction with Figs. 6, such as variable volume cavities 262 and 261).
  • the antenna using the body may include a plurality of antenna units respectively disposed on the plurality of first elastic films.
  • the plurality of variable volume chambers formed may be filled with one or more media.
  • the curvature adjusting unit may also be used in various ways depending on the kind of the medium to be filled, and may include, for example, a magnetic field applying unit, an electric field applying unit, and a medium injection/discharging unit. The volume or pressure of the medium can be changed in a targeted manner by means of a corresponding curvature adjustment unit.
  • the shapes of the bodies recited in the embodiments of the present invention are merely illustrative of the invention and are not intended to limit the invention.
  • the structure of the body of the present invention may be cylindrical, rectangular or spherical, and may have other irregular shapes.
  • the beam scanning range of the antennas in the respective directions can be individually controlled, so that the antenna can be applied to various needs.
  • This embodiment provides another beam direction reconfigurable antenna array, the antenna array comprising at least two beam direction reconfigurable antennas as described in any one of Embodiments 1 to 3 above.
  • an antenna array can be formed by reconfiguring at least two beam direction reconfigurable antennas, so that the beam scanning range can be adjusted in all directions, and is particularly suitable for use in a very large scale integrated circuit.
  • the phased array antenna is high in cost and high in power consumption.
  • the antenna array of the present application can not only achieve a large beam scanning range like a mechanical antenna, but also realize the flexibility of the phased array antenna, and the cost is still low, and is suitable for a very large scale integrated circuit.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种波束方向可重构的天线及波束扫描范围可重构的天线阵列。该天线包括:本体、第一弹性膜、第一介质、曲率调节单元以及至少一个天线单元;第一弹性膜粘接于本体上,第一弹性膜与本体围合形成第一可变容积腔;第一介质填充在第一可变容积腔中,第一弹性膜能够根据第一介质的体积或压力变化而弹性形变;曲率调节单元用于通过使第一介质的压力或体积变化而使第一弹性膜的曲率发生变化;至少一个天线单元粘接于所述第一弹性膜的外表面上,用于接收或发送无线信号。本发明提供的天线可以非常灵活地大范围改变天线的波束方向,采用该天线的天线阵列的波束扫描范围也很大,而且波束扫描范围可随时重构。

Description

说明书 发明名称:波束方向可重构的天线及波束扫描范围可重构的天线阵
技术领域
[0001] 本发明涉及天线技术领域, 尤其涉及一种波束方向可重构的天线及波束扫描范 围可重构的天线阵列。
背景技术
[0002] 对于一个特定的天线, 其能接收空间中某一方向的波束或向空间辐射某一方向 的波束。 在现有技术中, 改变该特定天线的波束的方向有两种方法。 一种方法 是机械地改变天线的几何方向; 另一种是通过移相器改变天线的电流, 从而在 空间辐射出不同方向性的波束。 采用第一种方法形成的天线阵列通常称为机械 式天线阵列, 这种天线阵列通过机械运动来改变天线阵列的空间位置及角度, 从而改变波束扫描范围。 采用第二种方法形成的天线阵列通常称为相控阵天线 , 这种天线通过移相器来改变辐射或接收波束的方向, 从而改变波束扫描范围 。 然而, 机械式天线阵列具有波束指向不灵活、 无法快速扫描以及使用寿命短 等缺点。 相控阵天线具有设备结构复杂、 造价昂贵、 波束扫描范围有限的缺点 , 其最大扫描角为 90°〜120°。
[0003] 因此, 现有技术的天线及天线阵列都各自存在一些缺陷。
技术问题
[0004] 机械式天线阵列具有波束指向不灵活、 无法快速扫描以及使用寿命短等缺点。
相控阵天线具有设备结构复杂、 造价昂贵、 波束扫描范围有限的缺点, 其最大 扫描角为 90°〜120°。
问题的解决方案
技术解决方案
[0005] 针对现有技术中的上述缺陷, 本发明提供一种波束方向可重构的天线及波束扫 描范围可重构的天线阵列。 [0006] 本发明就上述技术问题而提出的技术方案如下:
[0007] 一方面, 提供了一种波束方向可重构的天线, 包括:
[0008] 采用激光设备照射空气以使空气电离, 形成电离区域; 以及
[0009] 设计所述电离区域的形状和尺寸以形成适合无线通信的空气天线。
[0010] 优选地, 所述电离区域的形状和尺寸包括:
[0011] 根据所需形成的空气天线的形状、 尺寸以及位置计算激光设备的数量、 功率、 照射吋间、 激光出射角度及激光设备移动轨迹。
[0012] 优选地, 所述采用激光设备照射空气以使空气电离, 形成电离区域包括: [0013] 采用激光设备照射不同区域的空气以使空气电离, 形成多个电离区域; 所述多 个电离区域用于形成空气天线阵列。
[0014] 优选地, 所述空气天线的形状包括面状和线状。
[0015] 优选地, 所述线状包括直线状、 折线状、 平面螺旋状、 立体螺旋状以及波浪状 [0016] 优选地, 所述的波束方向可重构的天线还包括:
[0017] 采用激光设备照射空气以使空气电离, 从而在所述空气天线旁形成一反射区域 [0018] 优选地, 所述的波束方向可重构的天线还包括:
[0019] 采用控制设备控制激光设备, 从而自动调节激光设备的数量、 功率、 照射吋间
、 激光出射角度及激光设备移动轨迹。
[0020] 另一方面, 还提供了一种通信方法, 包括: 使用空气天线进行通信, 所述空气 天线采用上述波束方向可重构的天线制备而成。
[0021] 优选地, 当所述空气天线为线状吋, 所述空气天线用于接收和发射无线信号; 当所述空气天线为面状吋, 所述空气天线用于反射无线信号。
[0022] 实施本发明实施例, 具有如下有益效果: 通过上述波束方向可重构的天线, 可 利用空气形成天线, 用于进行无线通信。 空气天线具有长度长、 对地点限制低
、 形状和高度可设计、 即用即建、 用完也无需人工拆除的优点。
发明的有益效果
有益效果 [0023] 实施本发明实施例, 具有如下有益效果: 通过上述波束方向可重构的天线, 可 利用空气形成天线, 用于进行无线通信。 空气天线具有长度长、 对地点限制低 、 形状和高度可设计、 即用即建、 用完也无需人工拆除的优点。
对附图的简要说明
附图说明
[0024] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
[0025] 图 1是本发明提供的第一实施例天线结构示意图;
[0026] 图 2是图 1所示的天线的俯视图;
[0027] 图 3是图 1中的本体结构示意图;
[0028] 图 4是本发明提供的第二实施例天线结构示意图;
[0029] 图 5是图 4中的本体一个实施例结构示意图;
[0030] 图 6是本发明提供的第二实施例天线结构示意图;
[0031 ] 图 7是图 6中的本体结构示意图;
[0032] 图 8是本发明提供的第三实施例本体结构示意图。
本发明的实施方式
[0033] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部 的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳 动的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0034] 实施例一
[0035] 本实施例提供了一种波束方向可重构的天线, 参见图 1~3, 该天线包括: 本体 1 1、 第一弹性膜 12、 第一介质 13、 曲率调节单元 14以及至少一个天线单元 15。 第 一弹性膜 12粘接于本体 11上, 第一弹性膜 12与本体 11围合形成第一可变容积腔 1 6。 第一介质 13填充在第一可变容积腔 16中, 第一弹性膜 12能够根据第一介质 13 的体积或压力变化而弹性形变。 曲率调节单元 14用于通过使第一介质 13的压力 或体积变化而使第一弹性膜 12的曲率发生变化。 至少一个天线单元 15粘接于第 一弹性膜 12的外表面 121上, 用于接收或发送无线信号。
[0036] 进一步地, 第一介质为 13液体或胶体, 如水、 电介质或磁介质等。
[0037] 进一步地, 如图 1所示, 第一介质 13可包含惨杂剂 17。 惨杂剂可以用来改变第 一介质 13的电性质或磁性质。
[0038] 在本实施例中, 天线单元 15设置在第一弹性膜 12的外表面, 因此天线单元 15的 方向会随着第一弹性膜 12的曲率的变化而变化。 例如, 当在第一可变容积腔 16 中填充更多的第一介质 13吋, 第一弹性膜 12的曲率会变大, 位于两边的天线单 元 15与位于中间的天线单元 15之间的角度会变大, 那么整个天线的波束扫描范 围就变大。 相反, 当从第一可变容积腔内排出一些第一介质 13吋, 第一弹性膜 1 2的曲率就会变小, 当然, 当第一介质 13是电介质吋, 就可以通过曲率调节单元 14施加电场来改变第一介质 13所产生的压力, 从而改变第一弹性膜 12的曲率。 当第一介质 13是磁介质吋, 就可以通过曲率调节单元 14施加磁场来改变第一介 质 13所产生的压力, 从而改变第一弹性膜 12的曲率。 通过上述三个方法, 都可 以达到精确调节天线的波束方向的效果。 而且, 本实施例的天线无需通过机械 转动来调节方向, 也无需付出高昂的成本来实现波束扫描范围可重构。
[0039] 具体地, 如图 3所示, 本体 11具有容纳部 112。 容纳部 112具有一幵口端 111。 第 一弹性膜 12将幵口端 111密封, 从而形成第一可变容积腔 16。 第一弹性膜 12可以 直接或通过密封胶粘接到本体 11上。 在本发明提供的优选实施例中, 还可以设 置一些加固或保护装置来保证第一弹性膜 12与本体 11之间的紧密连接。
[0040] 进一步地, 如图 2所示, 可在第一弹性膜 12的外表面 121上设置多个天线单元 15 。 天线单元 15可以无规则地随意分布在第一弹性膜 12上。 在本发明提供的优选 实施例中, 多个天线单元 15有序地分布在第一弹性膜 12的外表面 121上。 例如, 天线单元 15可以沿着某一条或某两条曲线 (例如曲线 Ll、 L2、 L3或 L4) 分布, 也可以沿着某一个圆周 (例如圆周 L6) 分布。 当然, 还可以以中心点 0为中心, 对称地分布若干个天线单元 15。
[0041] 实施例二 [0042] 本实施例提供了另一种波束方向可重构的天线, 如图 4所示, 该天线包括: 本 体 21、 第一弹性膜 22、 第一介质 23、 曲率调节单元 24、 至少一个天线单元 25以 及第二弹性膜 27。 第一弹性膜 22和第二弹性膜 27粘接于本体 21上, 第一弹性膜 2 2、 第二弹性膜 27与本体 21围合形成第一可变容积腔 26。 第一介质 23填充在第一 可变容积腔 26中, 第一弹性膜 22与第二弹性膜 27能够根据第一介质 23的体积或 压力变化而弹性形变。 曲率调节单元 24用于通过使第一介质 23或第二弹性膜 27 的压力或体积变化而相应地使第一弹性膜 22或第二弹性膜 27的曲率发生变化。 至少一个天线单元 25分别粘接于第一弹性膜 22和第二弹性膜 27的外表面上, 用 于接收或发送无线信号。
[0043] 进一步地, 第一介质为 23液体或胶体, 如水、 电介质或磁介质等。
[0044] 进一步地, 如上述实施例一所阐述的, 第一介质 23可包含惨杂剂。 惨杂剂可以 用来改变第一介质 23的电性质或磁性质。
[0045] 在本实施例中, 多个天线单元 25分别设置在第一弹性膜 22和第二弹性膜 27的外 表面, 因此通过调节本体 21的厚度和第一、 第二弹性膜的曲率, 甚至可以将天 线的波束扫描范围最大调整到将近 360°。 因此, 通过本发明提供的天线, 可快速 地大范围调整波束扫描范围, 使得本发明的天线灵活度高。
[0046] 具体地, 如图 5所示, 本体 21具有容纳部 212。 容纳部 212具有两个幵口端 211和 213。 第一弹性膜 22和第二弹性膜 27分别将幵口端 211和 213密封, 从而形成第一 可变容积腔 26。 第一弹性膜 22和第二弹性膜 27可以直接或通过密封胶粘接到本 体 21上。 在本发明提供的优选实施例中, 还可以设置一些加固或保护装置来保 证第一弹性膜 22和第二弹性膜 27与本体 21之间的紧密连接。 容纳部 212分别与两 个幵口端 211和 213连通, 如图 5中的箭头所示, 上幵口端 211与下幵口端 213贯通
[0047] 进一步地, 如图 6和 7所示, 容纳部 212内还可设置隔板 214, 从而将容纳部 212 分成不连通的第一容纳部 212a和第二容纳部 212b。 第一弹性膜 22密封第一容纳部 212a, 从而形成第一可变容积腔 261。 第二弹性膜 27密封第二容纳部 212b, 从而 形成第二可变容积腔 262。 第二可变容积腔 262填充第二介质 28。 曲率调节单元 2 4还用于通过使第二介质 28的压力或体积变化而使第二弹性膜 27的曲率发生变化 [0048] 第二介质 28可以与第一介质 23相同, 也可以与第一介质 23不同。 当需要对天线 单元 25进行统一调节吋, 可选第一介质 23与第二介质 28相同。 当需要分别对位 于第一弹性膜 22和第二弹性膜 27进行调节吋, 可选用第一介质 23与第二介质 28 不同, 例如, 可选用第一介质 23为电介质, 选用第二介质 28为磁介质。 当然, 曲率调节单元 24的数量也可以为多个, 用于分别对第一介质 23和第二介质 28的 曲率进行调节。 应理解, 第二介质 28可以为液体或胶体。
[0049] 优选地, 隔板 214余本体 21—体成型。 在本发明提供的其他实施例中, 隔板 214 也可以是可拆卸的结构。
[0050] 实施例三
[0051] 本实施例提供了一种本体的结构示意图, 参见图 8, 本体 31具有容纳部, 容纳 部内设置有多个隔板 312, 从而将容纳部分隔成多个具有一幵口端 311的子容纳 部 313。 采用此种本体的波束方向可重构的天线包括多个弹性膜 (结合图 4, 如 弹性膜 22和 27) 。 所述多个第一弹性膜分别用于密封多个子容纳部的幵口端 311 , 从而形成多个可变容积腔 (结合图 6, 如可变容积腔 262和 261) 。
[0052] 采用该本体的天线可包括多个天线单元, 分别设置在多个第一弹性膜上。 所形 成的多个可变容积腔内可填充一种或多种介质。 根据所填充的介质的种类, 曲 率调节单元也可以相应地采用多种, 例如可包括磁场施加单元、 电场施加单元 和介质注入 /排出单元。 通过相应的曲率调节单元, 可针对性地改变介质的体积 或压力。
[0053] 应理解, 本发明实施例中所列举的本体的形状只是用于阐述本发明, 并不是用 来限制本发明。 本发明的本体的结构可以为圆柱、 长方体或球形, 还可以为其 他不规则的形状。
[0054] 通过设置多个弹性膜, 可以单独地控制各个方向的天线的波束扫描范围, 从而 使天线可以适用于多种需求的应用。
[0055] 实施例四
[0056] 本实施例提供了另一种波束方向可重构的天线阵列, 该天线阵列包括至少两个 如上述实施例一至三任意一个实施例所描述的波束方向可重构的天线。 [0057] 本实施例通过将至少两个波束方向可重构的天线组成天线阵列, 从而可以全方 位地调节波束扫描范围, 尤其适用于超大规模集成电路中。 在超大规模集成电 路中, 设置机械式天线阵列是不现实的, 采用相控阵天线成本高、 功耗也高。 而采用本申请的天线阵列, 不但可以实现如机械式天线那样大的波束扫描范围 , 又可以实现相控阵天线的灵活度, 而且成本还很低, 适用于超大规模集成电 路。
[0058] 以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 本领域普通技术人员可以理解实现上述实施例的全部或部分流程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权利要求书
[权利要求 1] 一种波束方向可重构的天线, 其特征在于, 包括:
本体、 第一弹性膜、 第一介质、 曲率调节单元以及至少一个天线单元
所述第一弹性膜粘接于所述本体上, 所述第一弹性膜与所述本体围合 形成第一可变容积腔;
所述第一介质填充在所述第一可变容积腔中, 所述第一弹性膜能够根 据第一介质的体积或压力变化而弹性形变;
所述曲率调节单元用于通过使所述第一介质的压力或体积变化而使所 述第一弹性膜的曲率发生变化; 所述至少一个天线单元粘接于所述第一弹性膜的外表面上, 用于接收 或发送无线信号。
[权利要求 2] 根据权利要求 1所述的波束方向可重构的天线, 其特征在于, 所述第
一介质为液体或胶体。
[权利要求 3] 根据权利要求 2所述的波束方向可重构的天线, 其特征在于, 所述第 一介质含有惨杂剂。
[权利要求 4] 根据权利要求 1所述的波束方向可重构的天线, 其特征在于, 所述天 线单元的个数为多个, 多个天线单元有序地分布在所述第一弹性膜的 外表面上。
[权利要求 5] 根据权利要求 1所述的波束方向可重构的天线, 其特征在于, 所述本 体具有容纳部, 所述容纳部具有一幵口端; 所述第一弹性膜将所述幵 口端密封, 从而形成所述第一可变容积腔。
[权利要求 6] 根据权利要求 1所述的波束方向可重构的天线, 其特征在于, 所述本 体具有容纳部, 所述容纳部具有两个幵口端; 所述波束方向可重构的 天线还包括第二弹性膜; 所述第一和第二弹性膜分别将所述两个幵口 端密封。
[权利要求 7] 根据权利要求 6所述的波束方向可重构的天线, 其特征在于, 所述容 纳部分别与所述两个幵口端连通, 所述第一弹性膜、 第二弹性膜和所 述本体围合形成所述第一可变容积腔。
根据权利要求 6所述的波束方向可重构的天线, 其特征在于, 所述容 纳部内设置有隔板, 将容纳部分成不连通的第一容纳部和第二容纳部 ; 所述第一弹性膜密封第一容纳部, 从而形成第一可变容积腔; 所述 第二弹性膜密封第二容纳部, 从而形成第二可变容积腔。
根据权利要求 8所述的波束方向可重构的天线, 其特征在于, 所述隔 板与所述本体一体成型。
根据权利要求 8所述的波束方向可重构的天线, 其特征在于, 所述第 二可变容积腔填充第二介质; 所述曲率调节单元还用于通过使所述第 二介质的压力或体积变化而使所述第二弹性膜的曲率发生变化。 根据权利要求 10所述的波束方向可重构的天线, 其特征在于, 所述第 二介质与所述第一介质相同。
根据权利要求 10所述的波束方向可重构的天线, 其特征在于, 所述第 二介质为胶体或液体。
根据权利要求 1所述的波束方向可重构的天线, 其特征在于, 所述本 体具有容纳部, 所述容纳部内设置有多个隔板, 从而将所述容纳部分 隔成多个具有一幵口端的子容纳部; 所述波束方向可重构的天线包括 多个第一弹性膜; 所述多个第一弹性膜分别用于密封多个子容纳部的 幵口端, 从而形成多个可变容积腔。
根据权利要求 1所述的波束方向可重构的天线, 其特征在于, 所述曲 率调节单元为磁场施加单元、 电场施加单元或介质注入 /排出单元。 一种波束扫描范围可重构的天线阵列, 其特征在于, 包括至少两个如 权利要求 1-14任意一项所述的波束方向可重构的天线。
PCT/CN2016/084970 2016-06-06 2016-06-06 波束方向可重构的天线及波束扫描范围可重构的天线阵列 WO2017210833A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/084970 WO2017210833A1 (zh) 2016-06-06 2016-06-06 波束方向可重构的天线及波束扫描范围可重构的天线阵列
US16/210,638 US10998624B2 (en) 2016-06-06 2018-12-05 Antenna with reconfigurable beam direction and antenna array with reconfigurable beam scanning range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084970 WO2017210833A1 (zh) 2016-06-06 2016-06-06 波束方向可重构的天线及波束扫描范围可重构的天线阵列

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/210,638 Continuation US10998624B2 (en) 2016-06-06 2018-12-05 Antenna with reconfigurable beam direction and antenna array with reconfigurable beam scanning range

Publications (1)

Publication Number Publication Date
WO2017210833A1 true WO2017210833A1 (zh) 2017-12-14

Family

ID=60578332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084970 WO2017210833A1 (zh) 2016-06-06 2016-06-06 波束方向可重构的天线及波束扫描范围可重构的天线阵列

Country Status (2)

Country Link
US (1) US10998624B2 (zh)
WO (1) WO2017210833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808223A (zh) * 2018-06-28 2018-11-13 袁涛 方向可重构天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352112A (en) * 1977-09-10 1982-09-28 Fritz Leonhardt Reflector with air pressure means
JPH11127026A (ja) * 1997-07-08 1999-05-11 Hughes Electron Corp 成形されたビーム反射アレイのパターン帯域幅の改善方法およびアンテナビーム成形用反射器
JP2013072815A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 湾曲センサ及びフェーズドアレイアンテナ
CN105846079A (zh) * 2016-06-06 2016-08-10 武汉芯泰科技有限公司 波束方向可重构的天线及波束扫描范围可重构的天线阵列
CN205692960U (zh) * 2016-06-06 2016-11-16 武汉芯泰科技有限公司 波束方向可重构的天线及波束扫描范围可重构的天线阵列

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3599218A (en) * 1968-09-11 1971-08-10 Trw Inc Lightweight collapsible dish structure and parabolic reflector embodying same
CA1235799A (en) * 1984-05-25 1988-04-26 Izumi Ochiai Parabola, antenna and manufacturing method for same
US6664939B1 (en) * 2001-03-28 2003-12-16 Mark Olinyk Foam-filled antenna and method of manufacturing same
US7382332B2 (en) * 2001-05-30 2008-06-03 Essig Jr John Raymond Modular inflatable multifunction field-deployable apparatus and methods of manufacture
JP3929442B2 (ja) * 2001-05-30 2007-06-13 エシッグ・ジョン・アール・ジュニア 膨張式多機能放物面反射鏡装置および製造方法
WO2007110713A1 (en) * 2006-03-28 2007-10-04 Capan Rahmi Oguz Parabolic solar trough systems with rotary tracking means
US7937983B2 (en) * 2007-05-01 2011-05-10 Ricoh Company, Ltd. Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
CN103026608A (zh) * 2010-04-13 2013-04-03 B·沙雷夫 太阳能接收器
US20140230807A1 (en) * 2013-02-21 2014-08-21 Karl von Kries Solar furnace and methods of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352112A (en) * 1977-09-10 1982-09-28 Fritz Leonhardt Reflector with air pressure means
JPH11127026A (ja) * 1997-07-08 1999-05-11 Hughes Electron Corp 成形されたビーム反射アレイのパターン帯域幅の改善方法およびアンテナビーム成形用反射器
JP2013072815A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 湾曲センサ及びフェーズドアレイアンテナ
CN105846079A (zh) * 2016-06-06 2016-08-10 武汉芯泰科技有限公司 波束方向可重构的天线及波束扫描范围可重构的天线阵列
CN205692960U (zh) * 2016-06-06 2016-11-16 武汉芯泰科技有限公司 波束方向可重构的天线及波束扫描范围可重构的天线阵列

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808223A (zh) * 2018-06-28 2018-11-13 袁涛 方向可重构天线

Also Published As

Publication number Publication date
US20190115655A1 (en) 2019-04-18
US10998624B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
US10742268B2 (en) Motion prediction for wireless power transfer
US10097050B2 (en) Receiving controller for wireless power transfer
US9537322B2 (en) Sub-apertures with interleaved transmit elements for wireless power transfer
CN103418542A (zh) 具有声窗的cmut组件
EP3033633A1 (en) Sub-array transducer apparatus and methods
US20180069602A1 (en) Beam interaction control for wireless power transfer
TWI752164B (zh) 電漿開關陣列天線及其操作方法
ATE403947T1 (de) Elektronisch abtastendes 2-d breitband-array mit kompakter cts-speisung und mems phasenschiebern
CN101675469B (zh) 利用可调流体透镜进行微波束形成的方法和装置
CN108711679B (zh) 一种可调谐液体平面反射阵列天线
EP3326307A1 (en) Motion prediction for wireless power transfer
CN105846079B (zh) 波束方向可重构的天线及波束扫描范围可重构的天线阵列
WO2017210833A1 (zh) 波束方向可重构的天线及波束扫描范围可重构的天线阵列
US20040047239A1 (en) Shaped piezoelectric composite array
EP2169762A3 (en) A tilt-dependent beam-shape system
CN113808877B (zh) 一种液态金属开关及可重构天线
US20240097326A1 (en) Reconfigurable antenna array of individual reconfigurable antennas
KR20180033221A (ko) 무선 파워 전송을 위한 파워 밀도 제어
CN205692960U (zh) 波束方向可重构的天线及波束扫描范围可重构的天线阵列
CN103403965A (zh) 天线装置以及平面型无线电设备
WO2016200701A1 (en) Sub-apertures with interleaved transmit elements for wireless power transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904286

Country of ref document: EP

Kind code of ref document: A1