TWI752164B - 電漿開關陣列天線及其操作方法 - Google Patents

電漿開關陣列天線及其操作方法 Download PDF

Info

Publication number
TWI752164B
TWI752164B TW107103502A TW107103502A TWI752164B TW I752164 B TWI752164 B TW I752164B TW 107103502 A TW107103502 A TW 107103502A TW 107103502 A TW107103502 A TW 107103502A TW I752164 B TWI752164 B TW I752164B
Authority
TW
Taiwan
Prior art keywords
antenna
plasma
antenna feed
feed elements
switches
Prior art date
Application number
TW107103502A
Other languages
English (en)
Other versions
TW201840251A (zh
Inventor
拉里L 沙維治
泰德R 東布羅夫斯基
柯林A 迪爾
約翰D 威廉斯
安立奎J 魯伊斯
Original Assignee
美商波音公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商波音公司 filed Critical 美商波音公司
Publication of TW201840251A publication Critical patent/TW201840251A/zh
Application granted granted Critical
Publication of TWI752164B publication Critical patent/TWI752164B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/245Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching in the focal plane of a focussing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • H01Q1/366Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using an ionized gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0033Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective used for beam splitting or combining, e.g. acting as a quasi-optical multiplexer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Plasma Technology (AREA)

Abstract

本發明提供一種可重組態天線,其包含複數個天線饋送元件、分別與該等天線饋送元件相關聯的複數個電漿開關及控制電路系統,該控制電路系統用於獨立地操作該等電漿開關以選擇性地啟動及撤銷啟動該等天線饋送元件。每一電漿開關可包含一體積之惰性氣體,及跨過該各別體積之惰性氣體之一對電極。該可重組態天線可包含一電源供應器,該電源供應器用於供應一足夠電壓至電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場,以撤銷啟動該各別天線饋送元件。每一電漿開關可視情況操作以使每一天線饋送元件衰減。

Description

電漿開關陣列天線及其操作方法
本發明大體上係關於天線,且更特定言之,係關於可重組態天線。
可重組態天線係能夠以受控且可逆的方式動態地修改天線之頻帶、輻射型樣、極化及/或增益性質之天線,且應用於蜂巢式無線電通信、地理定位、雷達(地面、飛機及無人駕駛的空中載具)、智慧型武器等的領域中。本發明尤其受關注的係可重組態天線,其可例如藉由操控輻射波束或改變波束之寬度來動態地修改天線之輻射型樣。
相控陣列天線可用於以電子方式操控輻射波束達成不同角度,該等角度通常在相對於固定實體陣列之法線方向60度的範圍內。相控陣列天線需要天線陣列中之每一元件具有獨立天線元件及經聚集以提供總天線方向性之射頻(RF)電路,由此產生決定重要成本及電力消耗懲罰之N倍約束。另外,此N倍約束使天線陣列具有重要電路複雜度,此限制了製造產率及操作可靠性。
更簡單的方法使用機械可聯接(articulatable)之天線,該天線包括一機械平台,其使該天線實體地移動或傾斜以操控輻射波束達成不同角度,該等角度通常在高達±90度的範圍內。歸因於天線的需要僅一個天線元件 之簡單電氣設計,避免了通常強加於相控陣列天線之N倍約束通常。然而,機械可聯接之天線在聯接時通常緩慢,需要經歷降級之移動零件,實體上極大且極重,且相對昂貴,由此限制了此技術之應用。
基於透鏡之天線方法提供了相控陣列且機械可聯接之天線的可用且較低成本的替代物。舉例而言,在一個具體實例中,多個天線饋送元件可圍繞球面介電透鏡置放,且被選擇性地打開及關閉以產生寬波束場涵蓋範圍,其避免相控陣列及機械可聯接天線之工程化問題中的一些。然而,儘管技術上不比相控陣列天線複雜,但基於可重組態透鏡之天線需要多個天線饋送元件及相關聯開關,且因此,就重量、功率、大小以及成本而言仍然遭受N倍約束。
本發明尤其受關注的係用以選擇性地打開及關閉天線饋送元件之開關。可用於天線饋送元件的各種類型之習知開關包括伺服機械開關、鐵氧體(ferrite)開關及pin二極體開關。伺服機械開關相對緩慢,通常具有約10-3秒(或若干千赫茲)之開關速度。鐵氧體開關需要相對大量之電力用於操作。Pin二極體開關相對複雜且昂貴。所有已知習知開關(包括伺服機械開關、鐵氧體開關及pin二極體開關)需要自天線饋送元件至板或至連接器之某一類型的轉變,由此在可重組態天線設計中將引入插入損耗及額外設計複雜度。
因此,仍然需要經改良機構,其用於選擇性地切換可重組態天線中之天線饋送元件。
根據本發明之第一態樣,一種可重組態天線包含複數個天線饋送元件(例如,複數個波導)。在一個具體實例中,該等天線饋送元件係圓形的,但替代地,該等天線饋送元件可為矩形的。在一個具體實例中,該可重組態天線進一步包含具有一焦平面之一聚焦元件(例如,介電透鏡,諸如球面介 電透鏡),該等天線饋送元件位於該焦平面上。
該可重組態天線進一步包含分別與該等天線饋送元件相關聯的複數個電漿開關。該可重組態天線可進一步包含一射頻(RF)組合器,該RF組合器經由該等各別電漿開關耦接至該等天線饋送元件。在一個具體實例中,該等電漿開關中之每一者包含一體積之惰性氣體(例如,氖、氙、氬或其一組合),及跨過該各別惰性氣體體積之一對電極(例如,環形電極)。在此情況下,該可重組態天線可進一步包含含有該等惰性氣體體積之一介電腔室。此介電腔室可包含將該等各別惰性氣體體積彼此隔離的側壁,其中此等惰性氣體體積在小於大氣壓之一壓力下。該介電腔室可包含一頂部介電壁及一底部介電壁,每一電漿開關的該對電極中之一第一電極併入該頂部介電壁中,且每一電漿開關的該對電極中之一第二電極併入該底部介電壁中。該可重組態天線可進一步包含一電源供應器,該電源供應器用於供應一足夠電壓至該等電漿開關中之每一者的該對電極(例如,100V至300V DC/AC-RMS),以使該各別惰性氣體體積燃燒成一電漿場(例如,具有大於每cm3 109個自由電子之一電漿密度)。
該可重組態天線進一步包含控制電路系統,該控制電路系統用於獨立地操作該等電漿開關以選擇性地啟動及撤銷啟動該等天線饋送元件。為此目的,該控制電路系統可用於選擇性地控制該電壓自該電源供應器至該等各別電漿開關的該供應,以選擇性地打開或關閉該等各別天線饋送元件。在一個具體實例中,該控制電路系統可用於獨立地操作該等電漿開關以使該等天線饋送元件衰減。在另一具體實例中,該控制電路系統可用於獨立地操作該等電漿開關以動態操控一RF波束。舉例而言,該控制電路系統可用於獨立地操作該等電漿開關,從而以每次一個的方式選擇性地啟動、接著撤銷啟動該等各別天線饋送元件。作為另一實例,該控制電路系統可用於獨立地操作該等電漿開關以 交替地啟動、接著撤銷啟動該等天線饋送元件的兩個半部分。在再一具體實例中,該控制電路系統用於獨立地操作該等電漿開關以動態地修改一波束之一孔徑。在又一具體實例中,該控制電路系統可用於獨立地操作該等電漿開關以啟動、接著撤銷啟動不同群組大小的天線饋送元件。
根據本發明之第二態樣,一種天線包含至少一個饋送元件(例如,至少一個波導)。在一個具體實例中,該(該等)天線饋送元件係圓形的,但替代地,該(該等)天線饋送元件可為矩形的。在一個具體實例中,該可重組態天線進一步包含具有一焦平面之一聚焦元件(例如,介電透鏡,諸如球面介電透鏡),該(該等)天線饋送元件位於該焦平面上。
該天線進一步包含分別與該(該等)天線饋送元件相關聯的至少一個電漿開關。若存在多個天線饋送元件,則該可重組態天線可進一步包含一射頻(RF)組合器,該RF組合器經由該等各別電漿開關耦接至該等天線饋送元件。該(該等)電漿開關中之每一者包含一體積之惰性氣體(例如,氖、氙、氬或其一組合),及跨過該各別體積之惰性氣體之一對電極。在此情況下,該可重組態天線可進一步包含含有該(該等)惰性氣體體積之一介電腔室。在多個電漿開關之情況下,此介電腔室可包含將該等各別惰性氣體體積彼此隔離的側壁,其中此等惰性氣體體積在小於大氣壓之一壓力下。該介電腔室可包含一頂部介電壁及一底部介電壁,每一電漿開關的該對電極中之一第一電極併入該頂部介電壁中,且每一電漿開關的該對電極中之一第二電極併入該底部介電壁中。
該天線進一步包含一電源供應器,該電源供應器用於供應一足夠電壓至該(該等)電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場。在一個具體實例中,該電漿場能夠撤銷啟動該各別天線饋送元件(例如,在電漿密度大於每cm3 109個自由電子的情況下)。在另一具體 實例中,該電漿場能夠使該各別天線饋送元件衰減(例如,在電漿密度在每cm3 107至109個自由電子之間的情況下)。
根據本發明之第三態樣,一種天線包含至少一個饋送元件(例如,至少一個波導)。在一個具體實例中,該(該等)天線饋送元件係圓形的,但替代地,該(該等)天線饋送元件可為矩形的。在一個具體實例中,該可重組態天線進一步包含具有一焦平面之一聚焦元件(例如,介電透鏡,諸如球面介電透鏡),該(該等)天線饋送元件位於該焦平面上。
該天線進一步包含分別與該(該等)天線饋送元件相關聯的至少一個電漿開關,及控制電路系統,該控制電路系統用於操作該(該等)電漿開關中之每一者以使該(該等)天線饋送元件中之每一者衰減。若存在多個天線饋送元件,則該可重組態天線可進一步包含一射頻(RF)組合器,該RF組合器經由該等各別電漿開關耦接至該等天線饋送元件。該(該等)電漿開關中之每一者包含一體積之惰性氣體(例如,氖、氙、氬或其一組合),及跨過該各別體積之惰性氣體之一對電極。在此情況下,該可重組態天線可進一步包含含有該(該等)惰性氣體體積之一介電腔室。
在多個電漿開關之情況下,此介電腔室可包含將該等各別惰性氣體體積彼此隔離的側壁,其中此等惰性氣體體積在小於大氣壓之一壓力下。該介電腔室可包含一頂部介電壁及一底部介電壁,每一電漿開關的該對電極中之一第一電極併入該頂部介電壁中,且每一電漿開關的該對電極中之一第二電極併入該底部介電壁中。該天線可進一步包含一電源供應器,該電源供應器用於供應一足夠電壓至該等電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場(例如,具有在每cm3 107至109個自由電子之間的電漿密度)。
根據本發明之第四態樣,一種射頻(RF)系統包含上述天線中 之任一者,及經由該(該等)各別電漿開關耦接至天線饋送元件的傳輸及/或接收部件。
根據本發明之第五態樣,提供一種操作一天線之方法,該天線包含具有一焦平面之一聚焦元件、位於該焦平面上的複數個天線饋送元件(例如,波導)、分別與該等天線饋送元件相關聯的複數個電漿開關以及經由該等電漿開關耦接至該等天線饋送元件之一射頻(RF)組合器。在一個具體實例中,該等天線饋送元件係圓形的,但替代地,該等天線饋送元件可為矩形的。在一個具體實例中,該天線進一步包含具有一焦平面之一聚焦元件(例如,介電透鏡,諸如球面介電透鏡),該等天線饋送元件位於該焦平面上。
該方法包含:(a)在該聚焦元件與該RF組合器之間輸送RF能量;(b)選擇該等天線饋送元件之一子集(該子集可為一單一天線饋送元件);(c)獨立地操作該等電漿開關以啟動該等天線饋送元件之該子集,由此傳遞該RF能量經由該等電漿開關之該對應子集,且撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋該RF能量經由該等電漿開關之對應剩餘者,以使得該天線產生具有一特性之至少一個RF波束;(d)選擇該等天線饋送元件之一不同子集;及(e)關於天線饋送元件之該不同子集重複步驟(c),以使得該(該等)RF波束之特性經修改。作為一個實例,該經修改特性可為RF波束之方向角。作為另一實例,該經修改特性可為RF波束之孔徑。在再一實例中,該經修改特性係RF波束之群組大小。
在一個具體實例中,每一電漿開關可包含一體積之惰性氣體(例如,氖、氙、氬或其一組合),在此情況下,操作該等電漿開關以啟動該等天線饋送元件之該子集可包含:不施加一電場跨越電漿開關之該子集之每一惰性氣體體積,由此傳遞該RF能量經由電漿開關之該子集;及施加一電場跨越該等電漿開關之剩餘者之每一惰性氣體體積,以使該每一惰性氣體體積燃燒成 一各別電漿場(例如,具有大於每cm3 109個自由電子之電漿密度的電漿場),由此阻擋該RF能量經由該等電漿開關之該等剩餘者。
根據本發明之第六態樣,提供一種使用一天線地理定位一感興趣物體之方法,該天線包含具有一焦平面之一聚焦元件、位於該焦平面上的複數個天線饋送元件、分別與該等天線饋送元件相關聯的複數個電漿開關以及經由該等電漿開關耦接至該等天線饋送元件之一射頻(RF)組合器。在一個具體實例中,該等天線饋送元件係圓形的,但替代地,該等天線饋送元件可為矩形的。在一個具體實例中,該天線進一步包含具有一焦平面之一聚焦元件(例如,介電透鏡,諸如球面介電透鏡),該等天線饋送元件位於該焦平面上。
該方法包含:(a)在該聚焦元件處接收來自該感興趣物體之RF能量;(b)選擇該等天線饋送元件之一子集(該子集可為一單一天線饋送元件);(c)獨立地操作該等電漿開關以:啟動該等天線饋送元件之該子集,由此將該RF能量自天線饋送元件之該子集傳遞至該RF組合器,且撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋自該等剩餘天線饋送元件至該RF組合器的該RF能量,以使得產生相對於該聚焦元件具有一方向角的一RF波束;(d)量測由該RF組合器輸出之RF能量之一信號強度;(e)選擇該等天線饋送元件之一不同子集;(f)針對天線饋送元件之該不同子集重複步驟(c)至(d);及(g)基於對應於天線饋送元件之該等選定子集中之至少一者的該量測信號強度,地理定位該感興趣物體。可重複步驟(e)及(f),直至已選擇且啟動天線饋送元件之所有可能子集。
在一個具體實例中,地理定位該感興趣物體包含判定對應於該等最高的量測信號強度中之至少一者的天線饋送元件之至少一個子集,將該RF波束之該方向角關聯至天線饋送元件之該(該等)子集中之每一者,及基於該RF波束之該(該等)相關方向角,地理定位該感興趣物體。若判定對應於該最 高的量測信號強度的天線饋送元件之唯一一個子集,則可將該RF波束之該方向角關聯至天線饋送元件之該唯一一個子集,且可藉由將該RF波束之該方向角識別為該感興趣物體的位置來地理定位該感興趣物體。若判定對應於該等最高的量測信號強度的天線饋送元件之多個子集,可將該RF波束之該等方向角關聯至天線饋送元件之該等多個子集,且藉由以下操作來地理定位該感興趣物體:基於該等對應最高的量測信號強度,自該RF波束之該等方向角計算一內插方向角,及將該RF波束之該內插角識別為該感興趣物體的該位置。
在另一具體實例中,每一電漿開關可包含一體積之惰性氣體(例如,氖、氙、氬或其一組合),在此情況下,操作該等電漿開關以啟動該等天線饋送元件之該子集可包含:不施加一電場跨越電漿開關之該子集之每一惰性氣體體積,由此傳遞該RF能量經由電漿開關之該子集;及施加一電場跨越該等電漿開關之剩餘者之每一惰性氣體體積,以使該每一惰性氣體體積燃燒成一各別電漿場(例如,具有大於每cm3 109個自由電子之電漿密度的電漿場),由此阻擋該RF能量經由該等電漿開關之該等剩餘者。
本發明之其他及另外態樣及特徵將自閱讀所呈現具體實例之以下詳細描述顯而易見,該等具體實例意欲說明而非限制本發明。
10:可重組態天線
12:收發器
14:波導
20:聚焦元件/球面介電透鏡
20a:半球
20b:半球
22:天線饋入元件
24:電漿開關
26:射頻(RF)組合器
28:電源供應器
30:控制電路系統
31:點
32:球面焦平面
34:RF平面波
36a:傳入RF波束
36b:傳出RF波束
38a:感興趣目標
38b:感興趣目標
40:惰性氣體體積
42a:頂部電極
42b:底部電極
44:介電腔室
44a:頂壁(或層)/介電壁
44b:底壁(或層)/介電壁
44c:側壁
46:電漿場
48:電漿場
100:方法
102:步驟
104:步驟
106:步驟
108:步驟
110:步驟
112:步驟
200:方法
202:步驟
204:步驟
206:步驟
208:步驟
210:步驟
212:步驟
214:步驟
216:步驟
218:步驟
220:步驟
222:步驟
圖式說明本發明之所呈現具體實例的設計及效用,其中類似元件用共同元件符號來指代。為了更好地瞭解如何獲得本發明之以上所列舉優點及其他優點,上文簡要地描述的本發明之更特定描述將藉由參考其特定具體實例顯現,在隨附圖式中圖解了該等特定具體實例。在理解此等圖式僅描繪本發明之典型具體實例,且因此不應將其視為限制本發明之範疇的情況下,經由使用隨附圖 式藉由額外特異性及細節來描述並解釋本發明,在隨附圖式中:圖1係根據本發明之一個具體實例建構的射頻(RF)系統之方塊圖;圖2係用於圖1之RF系統中的可重組態天線之平面圖;圖3係用於圖2之可重組態天線中的球面介電透鏡之平面圖;圖4a係用於圖2之可重組態天線中的天線饋送元件之陣列的平面圖,特別地展示了經啟動天線饋送元件之一個組態;圖4b係用於圖2之可重組態天線中的天線饋送元件之陣列的平面圖,特別地展示了經啟動天線饋送元件之另一組態;圖4c係用於圖2之可重組態天線中的天線饋送元件之陣列的平面圖,特別地展示了經啟動天線饋送元件之再一組態;圖4d係用於圖2之可重組態天線中的天線饋送元件之陣列的平面圖,特別地展示了經啟動天線饋送元件之又一組態;圖5為用於圖2之可重組態天線中的電漿開關之一個具體實例的截面圖;圖6為沿著線6-6截取的圖5之電漿開關之截面圖;圖7為用於圖2之可重組態天線中的電漿開關之另一具體實例的截面圖;圖8為透射穿過兩種介質之間的界面且自該界面反射之電磁波的平面圖;圖9為說明操作圖2之可重組態天線以動態地產生具有不同特性的RF波束之一個方法的流程圖;且圖10為說明操作圖2之可重組態天線以地理定位感興趣物體之一個方法的流程圖。
參看圖1至圖3,現將描述根據本發明之一個具體實例建構之可重組態天線10。以習知方式,可重組態天線10耦接至呈收發器12之形式的傳輸 及/或接收部件,該收發器經由波導14傳輸RF信號至可重組態天線10及/或自可重組態天線10接收RF信號。可重組態天線10、收發器12及波導14形成諸如RF通信系統或地理定位系統之RF系統的至少一部分。在所說明之具體實例中,可重組態天線10係安裝至通信平台之結構主體,諸如建築物(例如,追蹤站)或航天器(例如,通信衛星)。
可重組態天線10包含一RF聚焦元件20,在所說明之具體實例中,RF聚焦元件採用介電透鏡且詳言之球面介電透鏡的形式。在其他具體實例中,RF聚焦元件20可採用平坦透鏡的形式,例如雙凸、平凸透鏡或梯度折射率(GRIN)透鏡。球面介電透鏡20係由具有合適介電常數及損耗正切之介電材料(諸如聚四氟乙烯或聚碳酸酯)組成。如圖3中最佳地展示,球面介電透鏡20遍及其半球20a展現有益的均勻性性質,使得自各別特定方向到達角入射於此半球20a上的RF平面波34可預測地沿著鄰近球面介電透鏡20之相對半球20b的球面焦平面32聚焦在對應點31,且相反地,自點31沿著焦平面32發射的入射於相對半球20b上的RF能量可預測地作為RF平面波34以對應方向離開角退出半球20a。如自以下論述可瞭解,與相控天線陣列相比,球面介電透鏡20之使用允許將單一波導14用於在可重組態天線10與收發器12之間導引RF信號,由此提供更簡單的天線設計,同時仍允許波束操控或波束孔徑修改。
可重組態天線10進一步包含可切換地可選擇的天線饋送元件22之陣列,該等元件之孔徑位於圍繞球面介電透鏡20之焦平面32的選定點31處。在所說明之具體實例中,每一天線饋送元件22採用波導之形式。焦平面32可與球面介電透鏡20的表面重合,以使得天線饋送元件22可直接地接合至球面介電透鏡20的表面,但在所呈現具體實例中,焦平面32可在空間上自球面介電透鏡20的表面偏移,在此情況下,天線饋送元件22可同樣地在空間上自球面介電透鏡20的表面偏移,從而允許球面介電透鏡20相對於天線饋送元件22移動以對準 天線饋送元件22之孔徑與焦平面32。
因此,自感興趣物體38a(在此情況下,RF輻射源)發射之傳入RF波束36a可入射於球面介電透鏡20的表面上且聚焦在天線饋送元件22中之一或多者上。相反地,由天線饋送元件22中之一或多者發射之RF能量可作為傳出RF波束36b自球面介電透鏡20的表面引導至感興趣物體38b。當可重組態天線10在接收模式下操作時,天線饋送元件22可被選擇性地且獨立地啟動,以允許收發器12接收由感興趣物體38a發射之RF能量,且當可重組態天線10以傳輸模式操作時,天線饋送元件22可被選擇性地且獨立地啟動,以允許收發器12將RF能量傳輸至感興趣物體38b。
為此目的,可重組態天線10進一步包含分別與天線饋送元件22相關聯的電漿開關24之陣列,耦接至天線饋送元件22的RF組合器26,該RF組合器用以在多個天線饋送元件22與耦接至收發器12的單一波導14之間輸送RF能量。在所說明之具體實例中,電漿開關24宜安置於各別天線饋送元件22與RF組合器26之間,但在替代性具體實例中,電漿開關24可位於天線饋送元件22之路徑中的任何位置。
在所說明之具體實例中,可重組態天線10經設計以傳輸及接收圓形極化RF能量(例如,左邊圓形極化(left hand circularly polarized,LHCP)及右手圓形極化(right hand circularly polarized,RHCP)兩者),但在替代性具體實例中,可重組態天線10可經設計以傳輸及接收線性極化RF能量(例如,水平極化(horizontally polarized,HP)及垂直極化(vertically polarized,VP)兩者)。在所說明之具體實例中,天線饋送元件22、電漿開關24、RF組合器26及波導14之截面輪廓係圓形,但在替代性具體實例中,該截面輪廓可為矩形。
如上文簡要地論述,天線饋送元件22可經由電漿開關24來選擇性地啟動。為此目的,可重組態天線10進一步包含用於向電漿開關24供應電力 的電源供應器28,及控制電路系統30,該控制電路系統用於獨立地操作電漿開關24,以藉由選擇性地控制電壓自電源供應器28至各別電漿開關24的供應而選擇性地啟動各別天線饋送元件22,如下文將更詳細地描述。在一可選具體實例中,並非打開或關閉天線饋送元件22,控制電路系統30可藉由選擇性地控制電壓自電源供應器28至各別電漿開關24的供應而獨立地使天線饋送元件22衰減。
控制電路系統30可用於經由電源供應器28來獨立地操作電漿開關24,以動態地操控RF波束。在圖4a中所說明之一個實例中,控制電路系統30可獨立地操作電漿開關24,以藉由一次啟動、接著撤銷啟動僅一個天線饋送元件22而朝向天空之一小部分引導RF波束。如圖4b中所說明之另一實例,控制電路系統30可獨立地操作電漿開關24,以藉由在撤銷啟動天線饋送元件22的第二相連半部分之同時啟動天線饋送元件22的第一相連半部分,接著在撤銷啟動天線饋送元件22的第一相連半部分之同時啟動天線饋送元件22的第二相連半部分而朝向一半的天空引導RF波束。
控制電路系統30亦可用於獨立地操作電漿開關24,以修改RF波束之孔徑。如圖4c中所說明之一個實例,控制電路系統30可獨立地操作電漿開關24,以藉由啟動天線饋送元件22之不同大小的橢圓形群組來修改RF波束之孔徑。控制電路系統30亦可用於獨立地操作電漿開關24,以動態地產生多個RF波束36之不同分組。如圖4d中所說明之一個實例,控制電路系統30可獨立地操作電漿開關24以藉由啟動十五個對應天線元件22來產生十五個RF波束。
自先前內容可瞭解,可重組態天線10可用於地理定位感興趣物體38,且視特定應用而定,用於與此等感興趣物體38通信。舉例而言,傳入RF波束36a之特定到達方向且因此感興趣物體38之角度位置可藉由以下操作來確定:詢問天線饋送元件22且詳言之藉由啟動及撤銷啟動天線饋送元件22之選定者,及判定接收來自感興趣物體38的RF能量之特定天線饋送元件22。接收來自 感興趣物體38的RF能量之天線饋送元件22接著可選定以與經地理定位之感興趣物體38通信(以接收RF能量的接收模式或傳輸RF能量的傳輸模式)。
現參看圖5及圖6,將更詳細地描述電漿開關24之一個具體實例。每一電漿開關24包含安置於各別天線饋送22之孔徑與RF組合器26之間的信號路徑中的一體積之惰性氣體40、跨越該惰性氣體體積40之一對電極42及含有惰性氣體體積40的介電腔室44。
在所說明之具體實例中,惰性氣體體積40位於天線饋送元件22的末端與RF組合器26之間,但惰性氣體體積40可視需要安置於天線饋送元件22的中間。惰性氣體體積40可包含例如氖、氙或氬或其一組合,以將對電極42之腐蝕減至最小,但若電極42未曝露於惰性氣體體積40,則惰性氣體體積40可替代地包含空氣。
在所說明之具體實例中,電極42均為圍繞各別天線饋送元件22之內部空腔的周邊安置之環形電極,以將對在天線饋送元件22經啟動時在其內傳播之RF信號的干擾減至最小。此係因為在所說明之具體實例中,天線饋送元件22之截面係圓形,所以環形電極42同樣將為圓形。然而,在天線饋送元件22之截面係矩形的情況下,環形電極42將為矩形。在替代性具體實例中,電極42可採用並不明顯干擾在天線饋送元件22經啟動時經由天線饋送元件傳播之RF信號的其他形式。
介電腔室44可由對RF能量基本上透明且能夠含有惰性氣體體積40的任何合適之介電材料(例如,玻璃)組成。介電腔室44包含:頂壁44a(或層),頂部電極42a併入其中;及底壁44b(或層),底部電極42b併入其中。電極42可經適當地圖案化至各別頂部及底部介電壁44上或內。值得注意地,介電腔室44之頂壁44a及底壁44b可跨過電漿開關24之整個陣列,以使得單一頂壁44a及單一底壁44b可用於將所有惰性氣體容積40含於電漿開關24之陣列 中。如圖7中所說明,介電腔室44可視情況包含側壁44c,該等側壁將用於電漿開關24之各別惰性氣體體積40彼此隔離。
每一電漿開關24能夠將各別惰性氣體體積40變換成電漿,電漿係由正離子及自由電子組成的離子化氣體,且係四種基本物質狀態中之一者。如同氣體,電漿不具有確切的形狀或體積。然而,不同於氣體,電漿係導電的。電漿可藉由將氣體加熱至高溫或藉由使氣體經受強電場而產生。
電源供應器28經由隔絕導線(圖中未示)電耦接在每一各別電漿開關24的電極42之間,該等隔絕導線併入至各別頂部及底部介電壁44a、44b中。在控制電路系統30控制下,電源供應器28能夠在每一各別電漿開關24之電極42之間供應電壓電位,以使各別惰性氣體體積40燃燒成電漿場48,且能夠終止電壓電位在電極42之間的供應以熄滅電漿場48。因此,電漿開關24如同各別天線饋送元件22內之虛擬「門」一樣操作,因為供能電漿場48產生虛擬壁,該虛擬壁阻擋經由電漿開關24在各別天線饋送元件22與RF組合器26之間的RF能量(由此撤銷啟動天線饋送元件22),且缺少供能電漿場48產生一窗口,該窗口允許RF信號順暢地通過各別天線饋送元件22與RF組合器26之間的電漿開關24(由此啟動天線饋送元件22)。在一些具體實例中,並非完全阻擋在天線饋送元件22內傳播之RF信號,電漿場48可使經由天線饋送元件22傳播至RF組合器26的RF能量衰減。
值得注意地,電漿係由三個參數定義,該三個參數必須符合三個條件。首先,電漿具有施加的電場可被中和的德拜長度,定義為λ D =
Figure 107103502-A0305-02-0016-23
,其中ε0係真空介電係數(permittivity),k係波茲曼常數,T e係電子溫度,n 0係電漿密度,且e係基本電荷。電漿需要λ D <<L,其中L係電漿之實體範圍。因此,電漿之實體範圍必須大於德拜長度許多倍,使得電漿可「掩蔽」施加的電場。其次,電漿具有一電漿參數,其係具有德拜長度λ D 時所含的電子之 數目,定義為
Figure 107103502-A0305-02-0017-3
。電漿需要Λ>>1,以使得電漿中存在許多自由電子。第三,電漿具有一電漿頻率,其係電子密度之振盪頻率,定義為ω pe =
Figure 107103502-A0305-02-0017-4
,其中m e係電子質量。電漿需要ω pe τ>>1,其中τ係電子碰撞時間,從而需要電漿之自然振盪以電漿頻率發生。
在一個具體實例中,電源供應器28係具有諸如900MHz、2.4GHz及13.56GHz之典型RF頻率的RF電源供應器28,但電源供應器28可採用用於標準氖照明燈泡的典型60Hz電源供應器之形式,或甚至可為DC。由電源供應器28供應至電極42之電壓電位較佳足夠高,且電極42之間的距離較佳足夠近,以使得根據上文闡述的用於產生電漿場46之三個條件,惰性氣體體積40在給定腔室壓力下會燃燒成電漿場48。
若各別電漿開關24之惰性氣體體積40彼此不隔離,如圖5中所說明,則惰性氣體體積40較佳維持在大氣壓下,且每一電漿開關24之電極42之間的距離較佳小於鄰近電漿開關24之間的距離的0.2,由此將一個電漿開關24之供能電極42會將鄰近電漿開關24之惰性氣體體積40燃燒成電漿場48的可能性減至最小;亦即,惰性氣體體積40燃燒成電漿場48將侷限於供能的電漿開關24。然而,若各別電漿開關24之惰性氣體體積40經由介電側壁44c彼此隔離,如圖7中所說明,則惰性氣體體積40燃燒成電漿場48自然地侷限於供能的電漿開關24,每一電漿開關24之電極42之間的距離可大於鄰近電漿開關24之間的距離的0.2。此外,惰性氣體體積40可維持在實質上小於大氣壓之壓力(例如,0.1至10托公分)下,由此促進回應於電壓電位至各別電極42的供應而將惰性氣體體積40燃燒成各別電漿場48。
基於啟動電漿場48所需之時間,電漿開關24之開關時間為約幾微秒至幾秒。理論上,電漿場48可在確立用於由電源供應器28產生之頻率的駐波之時間中啟動。用於離子化之典型離子化速率常數為約10-12s(1012Hz), 馳緩時間為10-8s(108Hz)或更快。較佳地,電源供應器28之操作頻率小於電漿場48之弛緩時間,從而省電。
需要電漿場48具有有效介電係數εn,以使得獲得關於在各別天線饋送元件22內傳播的RF信號的電漿場48之所要阻擋或衰減特性。詳言之,參看圖8,考慮沿著正z軸傳播之平面波,其電場定向於x方向中。此平面波入射於隔開兩種介質(區域1及區域2)之界面上,每一介質具有特有的介電係數ε、導磁係數(permeability)μ、導電係數(conductivity)σ。區域1可被視為天線饋送元件22內之介質(例如,空氣),而區域2可被視為電漿開關24內之電漿場48。為了滿足區域1與區域2之間的邊界條件,來自入射波之能量中的一些必須自界面反射,如圖5中所說明。
可產生預測透射波及反射波之振幅的兩個參數。一個參數被稱為透射係數
Figure 107103502-A0305-02-0018-7
,且另一參數被稱為反射係數
Figure 107103502-A0305-02-0018-6
,其中
Figure 107103502-A0305-02-0018-13
係基於介 質之性質的波阻抗,由
Figure 107103502-A0305-02-0018-10
給出。反射係數及透射係數根據
Figure 107103502-A0305-02-0018-22
相關,其中
Figure 107103502-A0305-02-0018-16
Figure 107103502-A0305-02-0018-17
。對於界面之全反射,
Figure 107103502-A0305-02-0018-18
=-1,從而使得
Figure 107103502-A0305-02-0018-19
=0,且對於無反射,
Figure 107103502-A0305-02-0018-20
=0,從而使得
Figure 107103502-A0305-02-0018-21
=1。
因此,可瞭解,電漿場48必須針對RF信號之完全阻擋提供界面處之反射係數1,且針對RF信號之衰減提供大於0、但小於1之反射係數。與電漿相關聯的係等於下式之有效介電係數ε n
Figure 107103502-A0305-02-0018-11
,其中ω=2πf
Figure 107103502-A0305-02-0018-12
。因此,電漿之有效介電係數ε n 係由碰撞頻率γ、電漿頻率ω pe 及電子數密度n e 控制。針對指定信號頻率f,存在對應的決定性電子密度n ec ,其中ωp=ω。電漿在電漿密度ne<nec時係「低緻密(underdense)」的,且在ne>nec時係「過度緻密(overdense)」的。過度緻密之介質具有反射常數一,使得RF信號被完全阻擋,且無RF信號經由電漿場48傳輸。低緻密介質仍可藉由反射一部分的入射 RF信號來提供RF信號之衰減(衰減隨所述密度增加)。一般情況下,若RF信號之頻率小於電漿場48之諧振頻率,則RF信號會被電漿開關24阻擋,且若RF信號之頻率大於電漿場48之諧振頻率,則RF信號會通過電漿開關24。
電漿場48之電漿密度通常會指示電漿開關24對經由各別天線饋送元件22傳播的RF能量之阻擋或衰減特性。舉例而言,針對頻率為若干GHz之RF能量,一般情況下,電漿密度大於每cm3 109個自由電子的電漿場48會完全阻擋入射於電漿場48上之RF能量,而電漿密度在每cm3 107至109個自由電子之範圍內的電漿場48會以變化程度使入射於電漿場48上之RF能量衰減。
出於本說明書之目的,若小於百分之十的RF能量通過電漿開關24,則阻擋RF能量;然而,較佳地,當阻擋RF能量時,小於百分之一的RF能量通過電漿開關24。可選擇由電源供應器28施加至電極42之電壓及電極42之間的距離,以經由電漿開關24提供對給定頻率之RF能量的所要阻擋或衰減(在各種衰減層級)。用於完全阻擋RF能量的由電源供應器28施加至電極42之電壓的位準,通常會高於用於使RF能量衰減的由電源供應器28施加至電極42之電壓。同樣地,由電源供應器28施加至電極42之電壓的位準愈高,RF能量的衰減愈大(在未另外被完全阻擋的情況下)。針對衰減,若干不同的電壓位準及對應的衰減等級可儲存於記憶體中,以使得控制電路系統30針對天線饋送元件22之任何所要衰減等級,控制電路系統30可自記憶體擷取對應的電壓位準,且命令電源供應器28將對應的電壓位準傳遞至對應於天線饋送元件22的電漿開關24之電極42。
在已描述可重組態天線10之配置、結構及功能後,現將關於圖9描述操作可重組態天線10之一個方法100。首先,在傳輸模式或接收模式下操作天線10(步驟102)。接下來,選擇天線饋送元件22之一子集(步驟104)。在所說明之具體實例中,由控制電路系統30來選擇天線饋送元件22之子集。天 線饋送元件22之子集可包括例如僅單一天線饋送元件,或可包含多個天線饋送元件。接著,根據傳輸模式或接收模式,在球面介電透鏡20與RF組合器26之間輸送RF能量(步驟106)。亦即,在接收模式下,在球面介電透鏡20處接收來自感興趣物體38a的RF能量,且在傳輸模式下,將RF能量自球面介電透鏡20傳輸至感興趣物體38b。
接著,獨立地操作電漿開關24以產生具有一特性(例如,RF波束36之方向角、孔徑或群組大小)的至少一個RF波束36。詳言之,藉由不為對應電漿開關24供能來啟動天線饋送元件22之子集,由此傳遞RF能量經由電漿開關24之對應子集(步驟108),且藉由為對應電漿開關24供能來撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋RF能量經由電漿開關24之對應剩餘者(步驟110)。
在所說明之具體實例中,控制電路系統30藉由命令電源供應器28不施加電壓跨越電漿開關24之子集的每一對電極42,來啟動電漿開關24之子集。結果,不施加一電場跨越電漿開關24之子集之每一惰性氣體體積40,以使得惰性氣體體積40不燃燒成一電漿場46,由此傳遞RF能量經由電漿開關24之子集。相比之下,控制電路系統30藉由命令電源供應器28施加電壓跨越剩餘電漿24之每一對電極42,來撤銷啟動剩餘電漿開關24。結果,施加一電場跨越剩餘電漿開關24之每一惰性氣體體積40,以使得惰性氣體體積40被燃燒成一電漿場46,由此阻擋RF能量經由剩餘電漿開關24。
接下來,選擇天線饋送元件22之一不同子集(步驟112),且在步驟108及110再次獨立地操作電漿開關24以修改RF波束36之特性。可重複步驟108及110,以視需要不斷地多次修改RF波束36之特性。
現將關於圖10描述操作可重組態天線10以地理定位感興趣物體38a之另一方法200。首先,以在接收模式下操作天線10(步驟202)。接下 來,選擇天線饋送元件22之一子集(步驟204)。在所說明之具體實例中,由控制電路系統30來選擇天線饋送元件22之子集。關於感興趣物體38a之詳細地理位置,天線饋送元件22之子集較佳地僅包括單一天線饋送元件(例如,若感興趣物體38a將位於天空之極小區域中),但在替代性具體實例中,天線饋送元件22之子集可包括多個天線饋送元件(例如,若感興趣物體38a將位於天空之很大區域中)。接著,在球面介電透鏡20處接收來自感興趣物體38a之RF能量(步驟206)。
接著,獨立地操作電漿開關24,以產生相對於聚焦元件20具有一方向角的RF波束36a。詳言之,藉由不為對應電漿開關24供能來啟動該等天線饋送元件之該子集,由此將RF能量自天線饋送元件22之子集傳遞至RF組合器26(步驟208),且藉由為對應電漿開關24供能來撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋自天線饋送元件22至RF組合器26的RF能量(步驟210)。
在所說明之具體實例中,控制電路系統30藉由命令電源供應器28不施加電壓跨越電漿開關24之子集的每一對電極42,來啟動電漿開關24之子集。結果,不施加一電場跨越電漿開關24之子集之每一惰性氣體體積40,以使得惰性氣體體積40不燃燒成一電漿場46,由此傳遞RF能量經由電漿開關24之子集。相比之下,控制電路系統30藉由命令電源供應器28施加電壓跨越剩餘電漿24之每一對電極42,來撤銷啟動剩餘電漿開關24。結果,施加一電場跨越剩餘電漿開關24之每一惰性氣體體積40,以使得惰性氣體體積40被燃燒成一電漿場46,由此阻擋RF能量經由剩餘電漿開關24。
接下來,例如藉由收發器12來量測由RF組合器26輸出之RF能量的信號強度(步驟212)。接著,判定是否已選擇天線饋送元件22之所有可能子集用於啟動(步驟214)。若未選擇所有可能子集,則選擇天線饋送元件22 之不同子集(步驟216),且在步驟208及210,再次獨立地操作電漿開關24以修改RF波束36a之方向角,且在步驟212,量測由RF組合器26輸出之RF能量。
若在步驟214已判定天線饋送元件22之所有可能子集已被選擇用於啟動,則例如藉由控制電路系統30,基於對應於天線饋送元件22之選定子集中之至少一者的量測信號強度來地理定位感興趣物體38a。詳言之,判定對應於最高的量測信號強度中之至少一者的天線饋送元件22之至少一個子集(步驟218),將RF波束36a之方向角關聯至天線饋送元件22之此等子集中之每一者(步驟220),且基於RF波束36a之相關方向角來地理定位感興趣物體38a。關聯可例如藉由以下操作來實現:將對應於天線饋送元件22之各別子集的方向角儲存於記憶體中,及擷取對應於與最高的量測信號強度對應之天線饋送元件22之子集的方向角。
在一個具體實例中,天線饋送元件22之唯一一個子集被判定成對應於最高的量測信號強度,在此情況下,可將RF波束36a之方向角關聯至天線饋送元件22之唯一此子集,且藉由將RF波束36a之方向角識別為感興趣物體38a的位置來地理定位感興趣物體38a。在另一具體實例中,天線饋送元件22之多個子集被判定成對應於最高的量測信號強度,在此情況下,將RF波束36a之方向角關聯至天線饋送元件22之多個子集,且藉由以下操作來地理定位感興趣物體38a:基於對應最高的量測信號強度,自RF波束36a之方向角計算一內插方向角,及將RF波束36a之該內插角識別為感興趣物體38a的位置。舉例而言,可根據對應於天線饋送元件22之多個子集的量測信號強度對方向角加權,接著對該等方向角求平均以獲得內插方向角。
此外,本發明包含根據以下條項之具體實例:
1.一種可重組態天線,其包含:複數個天線饋送元件; 分別與該等天線饋送元件相關聯的複數個電漿開關;及控制電路系統,其用於獨立地操作該等電漿開關以選擇性地啟動及撤銷啟動該等天線饋送元件。
2.如條項1之可重組態天線,其進一步包含具有一焦平面之一聚焦元件,該等天線饋送元件位於該焦平面上。
3.如條項2之可重組態天線,其中該聚焦元件係一介電透鏡。
4.如條項3之可重組態天線,其中該介電透鏡係一球面介電透鏡。
5.如條項1之可重組態天線,其中該等天線饋送元件中之每一者包含一波導。
6.如條項1之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以使該等天線饋送元件衰減。
7.如條項1之可重組態天線,其進一步包含一射頻(RF)組合器,該RF組合器經由該等各別電漿開關耦接至該等天線饋送元件。
8.如條項1之可重組態天線,其中該等電漿開關中之每一者包含:一體積之惰性氣體;及跨過該各別惰性氣體體積之一對電極。
9.如條項8之可重組態天線,其中該等電極中之至少一者係一環形電極。
10.如條項8之可重組態天線,其進一步包含含有該等惰性氣體體積之一介電腔室。
11.如條項10之可重組態天線,其中該介電腔室包含將該等各別惰性氣體體積彼此隔離的側壁。
12.如條項11之可重組態天線,其中該介電腔室含有在小於大氣壓之一壓力下的該等惰性氣體體積。
13.如條項10之可重組態天線,其中該介電腔室包含一頂部介電壁及一底 部介電壁,每一電漿開關的該對電極中之一第一電極併入該頂部介電壁中,且每一電漿開關的該對電極中之一第二電極併入該底部介電壁中。
14.如條項8之可重組態天線,其中該惰性氣體係氖、氙、氬或其一組合。
15.如條項8之可重組態天線,其進一步包含一電源供應器,該電源供應器用於供應一足夠電壓至該等電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場。
16.如條項15之可重組態天線,其中該電漿場具有大於每cm3 109個自由電子之一電漿密度。
17.如條項15之可重組態天線,其中該控制電路系統用於選擇性地控制該電壓自該電源供應器至該等各別電漿開關的該供應,以選擇性地打開或關閉該等各別天線饋送元件。
18.如條項1之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以動態地操控一RF波束。
19.如條項18之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關,從而以每次一個的方式選擇性地啟動、接著撤銷啟動該等各別天線饋送元件。
20.如條項18之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以交替地啟動、接著撤銷啟動該等各別天線饋送元件的兩個半部分。
21.如條項1之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以動態地修改一波束之一孔徑。
22.如條項1之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以啟動、接著撤銷啟動不同群組大小的天線饋送元件。
23.如條項1之可重組態天線,其中該等天線饋送元件中之每一者係圓形的。
24.一種射頻(RF)系統,其包含:如條項1之可重組態天線;及經由各別電漿開關耦接至天線饋送元件的傳輸及/或接收部件。
25.一種天線,其包含:至少一個天線饋送元件;分別與該至少一個天線饋送元件相關聯的至少一個電漿開關,其中該至少一個電漿開關中之每一者包含一體積之惰性氣體,及跨過該各別體積之惰性氣體之一對電極;及一電源供應器,其用於供應一足夠電壓至該至少一個電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場。
26.如條項25之天線,其進一步包含具有一焦平面之一聚焦元件,該天線饋送元件位於該焦平面上。
27.如條項26之天線,其中該聚焦元件為一介電透鏡。
28.如條項27之天線,其中該介電透鏡係一球面介電透鏡。
29.如條項25之天線,其中該至少一個天線饋送元件中之每一者包含相關聯於該各別電漿開關的一波導。
30.如條項25之天線,其中該電漿場能夠撤銷啟動該各別天線饋送元件。
31.如條項25之天線,其中該電漿場能夠使該各別天線饋送元件衰減。
32.如條項25之天線,其中該等電極中之至少一者係一環形電極。
33.如條項25之天線,其中該至少一個天線饋送元件包含複數個天線饋送元件,且該至少一個電漿開關包含複數個電漿開關。
34.如條項33之天線,其進一步包含耦接至該等天線饋送元件之一射頻(RF)組合器。
35.如條項33之天線,其進一步包含含有該等惰性氣體體積之一介電腔 室。
36.如條項35之天線,其中該介電腔室包含將該等各別惰性氣體體積彼此隔離的側壁。
37.如條項35之天線,其中該介電腔室含有在小於大氣壓之一壓力下的該等惰性氣體體積。
38.如條項35之天線,其中該介電腔室包含一頂部介電壁及一底部介電壁,每一電漿開關的該對電極中之一第一電極併入該頂部介電壁中,且每一電漿開關的該對電極中之一第二電極併入該底部介電壁中。
39.如條項25之天線,其中該惰性氣體係氖、氙、氬或其一組合。
40.如條項25之天線,其中該電漿場具有大於每cm3 109個自由電子之一電漿密度。
41.如條項25之天線,其中該電漿場具有介於每cm3 107至109個自由電子之間的一電漿密度。
42.如條項25之天線,其中該至少一個天線饋送元件中之每一者係圓形的。
43.一種射頻(RF)系統,其包含:如條項25之天線;及經由至少一個電漿開關耦接至至少一個天線饋送元件的傳輸及/或接收部件。
44.一種天線,其包含:至少一個天線饋送元件;分別與該至少一個天線饋送元件相關聯的至少一個電漿開關;及控制電路系統,其用於操作該至少一個電漿開關中之每一者以使該至少一個天線饋送元件中之每一者衰減。
45.如條項44之天線,其進一步包含具有一焦平面之一聚焦元件,該至少一個天線饋送元件位於該焦平面上。
46.如條項45之天線,其中該聚焦元件係一介電透鏡。
47.如條項46之天線,其中該介電透鏡係一球面介電透鏡。
48.如條項44之天線,其中該至少一個天線饋送元件中之每一者包含一波導。
49.如條項44之天線,其中該至少一個天線饋送元件包含複數個天線饋送元件,且該至少一個電漿開關包含複數個電漿開關。
50.如條項49之天線,其進一步包含一射頻(RF)組合器,該RF組合器經由該等各別電漿開關耦接至該等天線饋送元件。
51.如條項44之天線,其中該至少一個電漿開關中之每一者包含:一體積之惰性氣體;及跨過該各別惰性氣體體積之一對電極。
52.如條項51之天線,其中該等電極中之至少一者係一環形電極。
53.如條項51之天線,其進一步包含含有該至少一個電漿開關之該惰性氣體體積的一介電腔室。
54.如條項53之天線,其中該至少一個天線饋送元件包含複數個天線饋送元件,該至少一個電漿開關包含複數個電漿開關,且該介電腔室包含將該等各別惰性氣體體積彼此隔離的側壁。
55.如條項53之天線,其中該介電腔室含有在小於大氣壓之一壓力下的該至少一個電漿開關之該惰性氣體體積。
56.如條項53之天線,其中該介電腔室包含一頂部介電壁及一底部介電壁,該至少一個電漿開關中之每一者的該對電極中之一第一電極併入該頂部介電壁中,且該至少一個電漿開關中之每一者的該對電極中之一第二電極併入該 底部介電壁中。
57.如條項51之天線,其中該惰性氣體係氖、氙、氬或其一組合。
58.如條項51之天線,其進一步包含一電源供應器,該電源供應器用於供應一足夠電壓至該至少一個電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場。
59.如條項58之天線,其中該電漿場具有介於每cm3 107至109個自由電子之間的一電漿密度。
60.如條項44之天線,其中該至少一個天線饋送元件中之每一者係圓形的。
61.一種射頻(RF)系統,其包含:如條項44之天線;及經由各別電漿開關耦接至天線饋送元件的傳輸及/或接收部件。
62.一種操作一天線之方法,該天線包含具有一焦平面之一聚焦元件、位於該焦平面上的複數個天線饋送元件、分別與該等天線饋送元件相關聯的複數個電漿開關以及經由該等電漿開關耦接至該等天線饋送元件之一射頻(RF)組合器,該方法包含:(a)在該聚焦元件與該RF組合器之間輸送RF能量;(b)選擇該等天線饋送元件之一子集;(c)獨立地操作該等電漿開關以:啟動該等天線饋送元件之該子集,由此傳遞該RF能量經由該等電漿開關的對應子集,且撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋該RF能量經由該等電漿開關的對應剩餘電漿開關,以使得該天線產生具有一特性的至少一個RF波束;(d)選擇該等天線饋送元件之一不同子集;(e)對天線饋送元件之該不同子集重複步驟(c),以使得該至少一個RF 波束之該特性經修改。
63.如條項62之方法,其中該等天線饋送元件之該子集包含一單一天線饋送元件。
64.如條項62之方法,其中該至少一個RF波束之該特性係該至少一個RF波束的一方向角。
65.如條項62之方法,其中該至少一個RF波束之該特性係該至少一個RF波束的一孔徑。
66.如條項62之方法,其中該至少一個RF波束之該特性係該至少一個RF波束的一群組大小。
67.如條項62之方法,其中該聚焦元件係一介電透鏡。
68.如條項67之方法,其中該介電透鏡係一球面介電透鏡。
69.如條項62之方法,其中該等天線饋送元件中之每一者包含相關聯於該各別電漿開關的一波導。
70.如條項62之方法,其中每一電漿開關包含一體積之惰性氣體,且其中操作該等電漿開關以啟動該等天線饋送元件之該子集包含:不施加一電場跨越電漿開關之該子集的每一惰性氣體體積,由此傳遞該RF能量經由電漿開關之該子集;及施加一電場跨越該等電漿開關之剩餘者的每一惰性氣體體積,以使每一惰性氣體體積燃燒成一各別電漿場,由此阻擋該RF能量經由該等電漿開關之該等剩餘者。
71.如條項70之方法,其中該惰性氣體係氖、氙、氬或其一組合。
72.如條項70之方法,其中該各別電漿場具有大於每cm3 109個自由電子之一電漿密度。
73.一種使用一天線地理定位一感興趣物體的方法,該天線包含具有一焦平面之一聚焦元件、位於上該焦平面上的複數個天線饋送元件、分別與該等天 線饋送元件相關聯的複數個電漿開關以及經由該等電漿開關耦接至該等天線饋送元件之一射頻(RF)組合器,該方法包含:(a)在該聚焦元件處接收來自該感興趣物體之RF能量;(b)選擇該等天線饋送元件之一子集;(c)獨立地操作該等電漿開關以:啟動該等天線饋送元件之該子集,由此將該RF能量自天線饋送元件之該子集傳遞至該RF組合器,且撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋自該等剩餘天線饋送元件至該RF組合器的該RF能量,以使得產生相對於該聚焦元件具有一方向角的一RF波束;(d)量測由該RF組合器輸出之RF能量之一信號強度;(e)選擇該等天線饋送元件之一不同子集;(f)針對天線饋送元件之該不同子集重複步驟(c)至(d);及(g)基於對應於天線饋送元件之該等選定子集中之至少一者的該量測信號強度,地理定位該感興趣物體。
74.如條項73之方法,其中地理定位該感興趣物體包含判定對應於該等最高的量測信號強度中之至少一者的天線饋送元件之至少一個子集,將該RF波束之該方向角關聯至天線饋送元件之該至少一個子集中之每一者,及基於該RF波束之該至少一個相關方向角,地理定位該感興趣物體。
75.如條項74之方法,其中天線饋送元件之唯一一個子集被判定成對應於該最高的量測信號強度,將該RF波束之該方向角關聯至天線饋送元件之該唯一一個子集,且藉由將該RF波束之該方向角識別為該感興趣物體的位置來地理定位該感興趣物體。
76.如條項74之方法,其中天線饋送元件之多個子集被判定成對應於該等最高的量測信號強度,將該RF波束之該等方向角關聯至天線饋送元件之該等多 個子集,且藉由以下操作來地理定位該感興趣物體:基於該等對應最高的量測信號強度,自該RF波束之該等方向角計算一內插方向角,及將該RF波束之該內插角識別為該感興趣物體的該位置。
77.如條項73之方法,其中重複步驟(e)及(f),直至已選擇且啟動了天線饋送元件之所有可能子集。
78.如條項73之方法,其中該等天線饋送元件之該子集包含一單一天線饋送元件。
79.如條項73之方法,其中該聚焦元件係一介電透鏡。
80.如條項79之方法,其中該介電透鏡係一球面介電透鏡。
81.如條項73之方法,其中該等天線饋送元件中之每一者包含相關聯於該各別電漿開關的一波導。
82.如條項73之方法,其中每一電漿開關包含一體積之惰性氣體,且其中操作該等電漿開關以啟動該等天線饋送元件之該子集包含:不施加一電場跨越電漿開關之該子集的每一惰性氣體體積,由此傳遞該RF能量經由電漿開關之該子集;及施加一電場跨越該等電漿開關之剩餘者的每一惰性氣體體積,以使每一惰性氣體體積燃燒成一各別電漿場,由此阻擋該RF能量經由該等電漿開關之該等剩餘者。
83.如條項82之方法,其中該惰性氣體係氖、氙、氬或其一組合。
84.如條項82之方法,其中該各別電漿場具有大於每cm3 109個自由電子之一電漿密度。
儘管本文中已揭示某些說明性具體實例及方法,但熟習此項技術者可自前述揭示顯而易見,可在不脫離所揭示之技術之真實精神及範疇範圍的情況下進行此等具體實例及方法之變化及修改。存在所揭示之技術之許多其他實例,該等實例僅在細節上各自不同於其他實例。因此,希望所揭示之技術 應僅限於所附申請專利範圍及可適用法律之法則及原理所需的程度。
10:可重組態天線
12:收發器
14:波導
20:聚焦元件/球面介電透鏡
22:天線饋入元件
24:電漿開關
26:射頻(RF)組合器
28:電源供應器
30:控制電路系統

Claims (12)

  1. 一種可重組態天線,其包含:複數個天線饋送元件;分別與該等天線饋送元件相關聯的複數個電漿開關,其中該等電漿開關中之每一者包含一體積之惰性氣體,及跨過該各別惰性氣體體積之一對電極;控制電路系統,其用於獨立地操作該等電漿開關以選擇性地啟動及撤銷啟動該等天線饋送元件;及具有一焦平面之一聚焦元件,該等天線饋送元件位於該焦平面上,其中該聚焦元件係一球面介電透鏡。
  2. 如請求項1所述之可重組態天線,其中該等電極係圍繞各別該等天線饋送元件之一內部空腔的一周邊而安置之環形電極。
  3. 如請求項1所述之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以使該等天線饋送元件衰減。
  4. 如請求項1所述之可重組態天線,其進一步包含一射頻(RF)組合器,該RF組合器經由該等各別電漿開關耦接至該等天線饋送元件。
  5. 如請求項1所述之可重組態天線,其進一步包含一電源供應器,該電源供應器用於供應一足夠電壓至該等電漿開關中之每一者的該對電極,以使該各別惰性氣體體積燃燒成一電漿場。
  6. 如請求項5所述之可重組態天線,其中該控制電路系統用於選擇性地控制該電壓自該電源供應器至該等各別電漿開關的該供應,以選擇性地打開或關閉該等各別天線饋送元件。
  7. 如請求項1所述之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關以動態地操控一RF波束。
  8. 如請求項7所述之可重組態天線,其中該控制電路系統用於獨立地操作該等電漿開關,從而以每次一個的方式選擇性地啟動、接著撤銷啟動該等各別天線饋送元件。
  9. 一種操作一天線之方法,該天線包含具有一焦平面之一聚焦元件、位於該焦平面上的複數個天線饋送元件、分別與該等天線饋送元件相關聯的複數個電漿開關以及經由該等電漿開關耦接至該等天線饋送元件之一射頻(RF)組合器,該方法包含:(a)在該聚焦元件與該RF組合器之間輸送RF能量;(b)選擇該等天線饋送元件之一子集;(c)獨立地操作該等電漿開關以:啟動該等天線饋送元件之該子集,由此傳遞該RF能量經由該等電漿開關的對應子集,且撤銷啟動該等天線饋送元件之剩餘的天線饋送元件,由此阻擋該RF能量經由該等電漿開關的對應剩餘電漿開關,以使得該天線產生具有一特性的至少一個RF波束;(d)選擇該等天線饋送元件之一不同子集;(e)對天線饋送元件之該不同子集重複步驟(c),以使得該至少一個RF波束之該特性經修改。
  10. 如請求項9所述之方法,其中該至少一個RF波束之該特性係該至少一個RF波束的一方向角。
  11. 如請求項9所述之方法,其中該至少一個RF波束之該特性係該至少一個RF波束的一孔徑。
  12. 如請求項9所述之方法,其中該至少一個RF波束之該特性係該至少一個RF波束的一群組大小。
TW107103502A 2017-04-18 2018-01-31 電漿開關陣列天線及其操作方法 TWI752164B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/490,750 2017-04-18
US15/490,750 US10230166B2 (en) 2017-04-18 2017-04-18 Plasma switched array antenna

Publications (2)

Publication Number Publication Date
TW201840251A TW201840251A (zh) 2018-11-01
TWI752164B true TWI752164B (zh) 2022-01-11

Family

ID=61188657

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107103502A TWI752164B (zh) 2017-04-18 2018-01-31 電漿開關陣列天線及其操作方法

Country Status (6)

Country Link
US (1) US10230166B2 (zh)
EP (1) EP3392964B1 (zh)
JP (1) JP7066428B2 (zh)
KR (1) KR102399040B1 (zh)
CN (1) CN108736174B (zh)
TW (1) TWI752164B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532891B2 (en) * 2017-09-20 2022-12-20 Cohere Technologies, Inc. Low cost electromagnetic feed network
US20200137713A1 (en) * 2018-10-26 2020-04-30 Rohde & Schwarz Gmbh & Co. Kg Method and system for beam assisted positioning
KR20220037508A (ko) 2019-07-30 2022-03-24 룬웨이브 인코퍼레이티드 굴절률 분포형 렌즈 기반 통신 시스템
US11101872B2 (en) * 2019-09-23 2021-08-24 Amphenol Antenna Solutions, Inc. High gain single lens repeater platform
US20210234270A1 (en) * 2020-01-24 2021-07-29 Gilat Satellite Networks Ltd. System and Methods for Use With Electronically Steerable Antennas for Wireless Communications
US20240291144A1 (en) * 2021-06-10 2024-08-29 Viasat, Inc. Thinned array fed reflector and beam peak adjustment method thereof
US11894612B2 (en) * 2022-02-25 2024-02-06 Qualcomm Incorporated Antenna array having a curved configuration
CN116315664B (zh) * 2023-05-11 2023-07-25 微网优联科技(成都)有限公司 一种可重构天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041741A1 (en) * 2000-06-28 2004-03-04 David Hayes Antenna
US20150188210A1 (en) * 2013-12-31 2015-07-02 Motorola Mobility Llc Systems and methods for a reconfigurable antenna using design elements on an electronic device housing
US20160149287A1 (en) * 2014-11-20 2016-05-26 The Boeing Company Plasma-integrated switching devices

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748151A (en) * 1980-12-17 1998-05-05 Lockheed Martin Corporation Low radar cross section (RCS) high gain lens antenna
JPH0738562A (ja) * 1993-06-25 1995-02-07 Mitsubishi Electric Corp 無線lan用アンテナシステム
KR970029291A (ko) * 1995-11-16 1997-06-26 이데이 노부유키 전기광학표시장치 및 그 구동방법
JPH10163730A (ja) * 1996-11-27 1998-06-19 Murata Mfg Co Ltd 自動追尾アンテナおよび自動追尾アンテナの追尾方法
JP2001094330A (ja) * 1999-09-21 2001-04-06 Toshiba Corp アレイアンテナ装置
JP2004500779A (ja) * 2000-03-20 2004-01-08 サーノフ コーポレイション 再構成可能アンテナ
US6801790B2 (en) * 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7132655B2 (en) * 2002-12-02 2006-11-07 Raytheon Company Passive millimeter wave sensor using high temperature superconducting leads
US7292191B2 (en) * 2004-06-21 2007-11-06 Theodore Anderson Tunable plasma frequency devices
US7145512B2 (en) * 2005-03-30 2006-12-05 Lucent Technologies Inc. Reconfigurable plasma antenna with interconnected gas enclosures
US7151499B2 (en) * 2005-04-28 2006-12-19 Aramais Avakian Reconfigurable dielectric waveguide antenna
WO2008115881A1 (en) * 2007-03-16 2008-09-25 Rayspan Corporation Metamaterial antenna arrays with radiation pattern shaping and beam switching
US7756471B2 (en) * 2007-03-31 2010-07-13 Intel Corporation Systems and methods for multi-element antenna arrays with aperture control shutters
KR100880892B1 (ko) * 2007-04-11 2009-01-30 한국전자통신연구원 다중 모드 안테나 및 그 안테나의 모드 제어방법
US20110175791A1 (en) * 2008-09-19 2011-07-21 Delphi Technologies, Inc. Multi-beam, polarization diversity narrow-band cognitive antenna
KR101266698B1 (ko) * 2008-11-28 2013-05-28 히타치가세이가부시끼가이샤 멀티빔 안테나 장치
WO2012080375A2 (en) * 2010-12-14 2012-06-21 Fasmetrics Ltd Antenna system to control rf radiation exposure
US9166290B2 (en) * 2011-12-21 2015-10-20 Sony Corporation Dual-polarized optically controlled microwave antenna
US10056698B2 (en) 2014-10-20 2018-08-21 Honeywell International Inc. Multiple beam antenna systems with embedded active transmit and receive RF modules
JP2016082517A (ja) * 2014-10-21 2016-05-16 シャープ株式会社 無線装置
US10553943B2 (en) * 2015-09-22 2020-02-04 Qualcomm Incorporated Low-cost satellite user terminal antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041741A1 (en) * 2000-06-28 2004-03-04 David Hayes Antenna
US20150188210A1 (en) * 2013-12-31 2015-07-02 Motorola Mobility Llc Systems and methods for a reconfigurable antenna using design elements on an electronic device housing
US20160149287A1 (en) * 2014-11-20 2016-05-26 The Boeing Company Plasma-integrated switching devices

Also Published As

Publication number Publication date
JP2018182723A (ja) 2018-11-15
TW201840251A (zh) 2018-11-01
EP3392964B1 (en) 2021-06-02
KR102399040B1 (ko) 2022-05-16
EP3392964A1 (en) 2018-10-24
US20180301803A1 (en) 2018-10-18
US10230166B2 (en) 2019-03-12
CN108736174B (zh) 2021-02-19
JP7066428B2 (ja) 2022-05-13
KR20180117038A (ko) 2018-10-26
CN108736174A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
TWI752164B (zh) 電漿開關陣列天線及其操作方法
CN111819733B (zh) 用可重构的超表面天线增强的mimo通信系统及其使用方法
Zhang et al. A dual-polarized reconfigurable reflectarray antenna based on dual-channel programmable metasurface
Dadgarpour et al. One-and two-dimensional beam-switching antenna for millimeter-wave MIMO applications
Tubbal et al. A survey and study of planar antennas for pico-satellites
Dadgarpour et al. Passive beam switching and dual-beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter-waves
US6252553B1 (en) Multi-mode patch antenna system and method of forming and steering a spatial null
KR20190127738A (ko) 렌즈 안테나 시스템
Mabrouk et al. A novel design of radiation pattern-reconfigurable antenna system for millimeter-wave 5G applications
JP3534410B2 (ja) 放射センサ
CA2389161A1 (en) Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections
Li et al. A gain enhancement and flexible control of beam numbers antenna based on frequency selective surfaces
Ansari et al. A highly efficient spherical Luneburg lens for low microwave frequencies realized with a metal-based artificial medium
US7081858B2 (en) Radial constrained lens
Vilar et al. Q-band millimeter-wave antennas: An enabling technology for multigigabit wireless backhaul
El-Refay et al. Plasma-based Intelligent Omni-surfaces
Swapna et al. Three-port pattern diversity antenna module for 5.2 GHz ceiling-mounted WLAN access points
Kilic et al. Rotman lens beam formers for Army multifunction RF antenna applications
Zhao et al. A compact full 90° cone-metric-space beam-scanning antenna array using resonant-type phase-shifters
Dadgarpour et al. Two-dimensional millimeter-wave beam-switching antenna using an ELC meta-lens
Anderson et al. An overview of experimental and numerical results on the performance of plasma antennas arrays
JPH0722833A (ja) 交差スロットマイクロ波アンテナ
US3544998A (en) Plasma coated antenna
Anderson et al. New Smart Plasma Antenna with Radiation Patterns and VSWR Measurements
Zaghloul et al. Realization of Rotman's concepts of beamformer lenses and artificial dielectric materials