WO2017208906A1 - Cultivation system and cultivation method for solanaceae seedlings - Google Patents

Cultivation system and cultivation method for solanaceae seedlings Download PDF

Info

Publication number
WO2017208906A1
WO2017208906A1 PCT/JP2017/019234 JP2017019234W WO2017208906A1 WO 2017208906 A1 WO2017208906 A1 WO 2017208906A1 JP 2017019234 W JP2017019234 W JP 2017019234W WO 2017208906 A1 WO2017208906 A1 WO 2017208906A1
Authority
WO
WIPO (PCT)
Prior art keywords
seedling
cultivation
seedlings
seedling cultivation
less
Prior art date
Application number
PCT/JP2017/019234
Other languages
French (fr)
Japanese (ja)
Inventor
布施 順也
徳 呉
中南 暁夫
Original Assignee
三菱ケミカルアグリドリーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカルアグリドリーム株式会社 filed Critical 三菱ケミカルアグリドリーム株式会社
Priority to CN201780027838.1A priority Critical patent/CN109152337B/en
Priority to JP2018520822A priority patent/JP7129906B2/en
Priority to AU2017274915A priority patent/AU2017274915A1/en
Publication of WO2017208906A1 publication Critical patent/WO2017208906A1/en
Priority to JP2021193396A priority patent/JP7238947B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present invention relates to a cultivation apparatus and a cultivation method for cultivating eggplant family seedlings, and more particularly, to a cultivation apparatus and a cultivation method for suppressing a growth disorder when cultivating eggplant family seedlings.
  • the seedling production is (A) a method of producing using natural light outdoors, (B) a method of producing using natural light in a greenhouse, And (C) a method of producing in a closed environment (Patent Document 1 or 2).
  • Patent Document 1 or 2 a method of producing in a closed environment
  • the greenhouse heats up due to strong solar radiation in the summer, making it difficult to produce seedlings smoothly, reducing the commercialization rate of seedlings, the operating rate of the greenhouse, and the like. To rise. Thus, seedling production and seedling quality are easily affected by the weather.
  • the seedling production method of (C) above is a closed type artificial environment equipped with an air conditioner, artificial light source, carbon dioxide fertilizer, and irrigation device in a structure closed with a heat insulating wall that does not transmit natural light. This is a method for producing high-quality seedlings.
  • the space required for seedling production is optimal for seedling growth under various environmental conditions such as light quality, light irradiation intensity, irradiation time, temperature, humidity, carbon dioxide concentration, irrigation amount, fertilization concentration, etc. It is possible to adjust to a different state.
  • An object of the present invention is to provide a seedling cultivation apparatus and a cultivation method capable of solving the above-mentioned problems, suppressing a growth disorder “phyllobacteriosis”, and stably producing seedlings of a good eggplant family.
  • the present inventor has a semiconductor lighting device that irradiates a wavelength region of at least 450 to 660 nm on the seedling cultivation surface, and has a wavelength region of 295 nm or more and less than 320 nm. It has been found that the use of an illuminating device having a UV intensity of 2.5 ⁇ W / cm 2 or more suppresses gallbladder that occurs on leaves and stems of seedlings of the family Eggplant. The present invention is based on such knowledge and has the following gist.
  • a cultivating apparatus equipped with an illuminating device for cultivating seedlings of plants belonging to the family Eggplant which illuminating device includes a semiconductor illuminating device that irradiates light in a wavelength region of at least 450 to 660 nm, Is a seedling cultivation apparatus in which the UV intensity in the wavelength region of 295 nm or more and less than 320 nm on the seedling cultivation surface is 2.5 ⁇ W / cm 2 or more.
  • the cultivation device is arranged in a closed structure, an air conditioner for air-conditioning the closed structure is provided, and an irrigation device for irrigating the seedlings is provided.
  • the seedling cultivation apparatus according to [1] or [2].
  • the lighting device has a ratio I 1 / I between the UV intensity I 1 in the wavelength region of 295 nm to less than 320 nm on the seedling cultivation surface and the light intensity I 2 in the wavelength region of 450 to 660 nm on the seedling cultivation surface.
  • the seedling cultivation apparatus according to any one of [1] to [5], wherein 2 is 0.0001 to 0.01.
  • [7] A seedling cultivation method for cultivating seedlings of the family Eggplant using the seedling cultivation apparatus according to any one of [1] to [6].
  • gallbladder occurring on the leaves and stems of the eggplant family can be suppressed, and high-quality seedlings can be stably produced.
  • FIG. 1a and 1b are horizontal sectional views of the cultivation apparatus according to the embodiment
  • FIG. 1a is a sectional view taken along line Ia-Ia in FIG. 2b
  • FIG. 1b is a sectional view taken along line Ib-Ib in FIG. 2a is a sectional view taken along line IIa-IIa in FIG. 1a
  • FIG. 2b is a sectional view taken along line IIb-IIb in FIG. 1a
  • FIG. 3 is a front view of the multi-shelf plant growing apparatus according to the embodiment.
  • 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a plan view of the tray of the multistage shelf type plant growing apparatus according to the embodiment.
  • FIG. 1a is a sectional view taken along line Ia-Ia in FIG. 2b
  • FIG. 1b is a sectional view taken along line Ib-Ib in FIG. 2a
  • FIG. 3 is a front view of the multi-sh
  • FIG. 6 is a perspective view of the tray of FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a bottom view of the artificial illuminator.
  • 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view of a tray of a multi-shelf plant growing apparatus according to another embodiment.
  • the seedling cultivation apparatus of the present invention is for cultivating seedlings of plants belonging to the family Eggplant, and includes a lighting device.
  • the illumination device includes a semiconductor illumination device that irradiates at least a wavelength region of 450 to 660 nm, and a UV intensity in a wavelength region of 295 nm or more and less than 320 nm on a seedling cultivation surface is 2.5 ⁇ W / cm 2 or more.
  • “light intensity on the cultivation surface of the seedling” such as UV light (hereinafter sometimes referred to as “cultivation surface UV intensity” or “cultivation surface light intensity”) is a spectral irradiance at the position of the seedling leaf. This is a value measured by placing the light receiving surface of the meter horizontally and upward.
  • the irradiation time of the light to the seedling by the lighting device is preferably 8 to 20 hours per day, particularly about 12 to 18 hours.
  • eggplants include tomato, eggplant, bell pepper, paprika, shishito, chili pepper, habanero, jalapeno, and in particular tomato, bell pepper and eggplant, especially tomato.
  • Lighting apparatus used in the seedling culture apparatus of the present invention is cultivated surface UV intensity in the wavelength region of less than 320nm or 295nm is 2.5 ⁇ W / cm 2 or more, preferably 3.0 ⁇ W / cm 2 or more, 4. more preferably 0 ⁇ W / cm 2 or more, still more preferably 6.0 ⁇ W / cm 2 or more, and particularly preferably 10 .mu.W / cm 2 or more.
  • the upper limit of the cultivation surface UV intensity in the wavelength region of 295 nm or more and less than 320 nm is not particularly limited, but 500 ⁇ W / cm 2 or less in consideration of damage to seedlings caused by ultraviolet rays and effects on the eyes and skin of workers during cultivation work
  • it is 400 ⁇ W / cm 2 or less, more preferably 300 ⁇ W / cm 2 or less, and particularly preferably 200 ⁇ W / cm 2 or less.
  • the illumination device used in the seedling cultivation apparatus of the present invention preferably has a cultivation surface UV intensity of 0.5 ⁇ W / cm 2 or more in a wavelength region of 320 nm or more, specifically 320 nm or more and less than 340 nm, and 1.0 ⁇ W. / Cm 2 or more is more preferable, 1.5 ⁇ W / cm 2 or more is further preferable, and 2.0 ⁇ W / cm 2 or more is particularly preferable.
  • the upper limit of the cultivation surface UV intensity in the wavelength region of 320 nm or more and less than 340 nm is not particularly defined, it may be 300 ⁇ W / cm 2 or less in consideration of the effect on the eyes and skin of the worker during the cultivation operation. preferably, more preferably 250 .mu.W / cm 2 or less, still more preferably 200 ⁇ W / cm 2 or less.
  • the illumination device used in the seedling cultivation apparatus of the present invention preferably has a cultivation surface UV intensity of 5.0 ⁇ W / cm 2 or less at a wavelength of less than 295 nm, specifically, 280 nm or more and less than 295 nm, and 3.0 ⁇ W / cm 2. Or less, more preferably 1.5 ⁇ W / cm 2 or less, and particularly preferably 1.0 ⁇ W / cm 2 or less.
  • the lower limit of the cultivation surface UV intensity in the wavelength region of 280 nm or more and less than 295 nm is not particularly limited, and is preferably closer to zero.
  • Lighting apparatus used in the seedling culture apparatus of the present invention is preferably cultivated surface light intensity of 450 ⁇ 660 nm wavelength region is 4000 W / cm 2 or more, more preferably 4500 ⁇ W / cm 2 or more, 5000 ⁇ W / cm 2 or more is more preferable, and 6000 ⁇ W / cm 2 or more is particularly preferable. Further, it is preferable that there is no wavelength region in which the light intensity is zero in the wavelength region of 450 to 660 nm.
  • the cultivation surface light intensity at a wavelength of 450 to 660 nm within the above range, it is possible to suppress the occurrence of gallbladder on the leaves and stems of the seedlings, and to suppress abnormal morphogenesis of the seedlings. Can be cultivated more stably.
  • the upper limit of the cultivation surface light intensity of the wavelength 450 ⁇ 660 nm is not particularly limited, from the viewpoint of suppressing the generation of growth disorders such as leaf scorch, is preferably 60000 ⁇ W / cm 2 or less, 50000 ⁇ W / cm 2 or less More preferably, it is more preferably 40000 ⁇ W / cm 2 or less, and particularly preferably 30000 ⁇ W / cm 2 or less.
  • the illumination device used in the seedling cultivation apparatus of the present invention has a value of the ratio K between the cultivation surface UV intensity I 1 in the wavelength region of 295 nm or more and less than 320 nm and the cultivation surface light intensity I 2 in the wavelength region of 450 to 660 nm, It is preferably 1/10000 to 1/100, that is, 0.0001 to 0.01.
  • the lighting device used in the seedling cultivation apparatus of the present invention includes a semiconductor lighting device that emits light in a wavelength region of at least 450 to 660 nm.
  • the semiconductor lighting device preferably has a first emission peak wavelength in the range of 400 to 480 nm. By having the first emission peak wavelength in the range of 400 to 480 nm, it is possible to suppress the internode elongation of the seedling and to grow a solid seedling with a short hypocotyl.
  • the semiconductor lighting device preferably has a second emission peak wavelength in the range of 500 to 620 nm, more preferably in the range of 500 to 610 nm, and still more preferably in the range of 500 to 600 nm.
  • the second emission peak wavelength preferably has a full width at half maximum of 100 nm or more, more preferably 120 nm or more, and still more preferably 140 nm or more.
  • the seedling cultivation apparatus of the present invention may be an illumination apparatus that irradiates the UV light described above with at least some of the illumination apparatuses.
  • all of the illumination devices to be used may be illumination devices having the above-described UV irradiation function, and among the illumination devices to be used, some of the illumination devices have the above-described UV irradiation function, and the remaining illuminations
  • the apparatus may not have the UV irradiation function described above. You may use together the illuminating device with high UV intensity, and the illuminating device with low UV intensity or not irradiating UV light.
  • the photosynthetic effective photon flux density measured on the cultivation surface of the seedling is preferably 50 ⁇ mol / m 2 / sec or more, more preferably 100 ⁇ mol / m 2 / sec or more. More preferably, it is 200 ⁇ mol / m 2 / sec or more.
  • the lighting device used in the seedling cultivation device of the present invention is not particularly limited, and a lighting device such as a fluorescent lamp, organic EL that is semiconductor lighting, a laser, or an LED can be used. Considering the power consumption and the point that finer wavelength control is easy, it is preferable to use an LED.
  • the cultivation apparatus is provided in an enclosed structure, includes an air conditioner that air-conditions the closed structure, and an irrigation apparatus that irrigates the seedling.
  • the humidity in the closed structure is preferably in the range of 30 to 100%, more preferably in the range of 40 to 99%, and still more preferably in the range of 40 to 95%.
  • the seedling cultivation apparatus has a growing module whose front surface is open, and the growing module arranges growing seedling shelves in multiple stages to form a raising seedling space.
  • FIGS. 1a and 2b A preferred embodiment of such a cultivation apparatus will be described with reference to FIGS.
  • a plurality of box-shaped (six in the illustrated example) multi-stage shelf-type plants are grown in a room of a closed type building structure 1 surrounded by a heat insulating wall and made completely light-shielding.
  • Devices (seedling growing modules) 3 to 8 are installed.
  • the room 1 has a rectangular shape in plan view, and a door 2 is provided on one short-side wall surface 1i.
  • the three multi-stage shelf-type plant growing apparatuses 3 to 5 are arranged in a row so that their open front faces in the same direction, and the three multi-stage shelf-type plant growing apparatuses 6 to 8 are also arranged.
  • One row is arranged so that the open front faces in the same direction, and two rows are arranged in the room so that the open front faces each other.
  • the extending direction (longitudinal direction of the room) of the rows of the multistage shelf type plant growing apparatuses 3 to 5 and 6 to 8 is referred to as the Y direction, and the short direction of the room (multistage shelf type plant growing apparatuses 3 to 5 and the multistage stage).
  • the direction in which the shelf-type plant growing devices 6 to 8 face each other is sometimes referred to as the X direction.
  • a space A is provided so that one or a plurality of workers can work.
  • a space B having a width of about 50 to 500 mm is provided between the longitudinal wall surfaces 1j and 1k of the room and the back surfaces of the multistage shelf type plant growing apparatuses 3 to 8, and passes through the multistage shelf type plant growing apparatuses 3 to 8. Air passages are formed.
  • One end of the row of the multi-shelf plant growing devices 3-5, 6-8 is in contact with the building wall 1h on the opposite side of the door 2.
  • the other end side of the row of the multi-stage shelf type plant growing apparatuses 3 to 5, 6 to 8 is slightly separated from the wall surface 1i on the door 2 side.
  • a control plate for suppressing this flow can be provided at an appropriate place.
  • each of the multistage shelf-type plant growing apparatuses 3 to 8 includes a pedestal 3c, left and right side panels 3a, a back panel 3b on the back, and a top panel 3e on the zenith, and the front is open. It has a box-shaped structure. Inside the box-shaped structure, a plurality of seedling racks 12 are arranged in multiple stages at regular intervals in the vertical direction.
  • each multi-stage shelf type plant growing device 3 to 8 is about 2000 mm, which is high enough for the operator to work, and the width of the seedling shelf 12 is a grid of tens to hundreds of cells (small bowls).
  • a plurality of resin cell trays arranged in a line can be placed side by side, and the temperature and humidity of the upper space of each shelf 12 can be adjusted to a constant width, for example, about 1000 mm to 2000 mm, and the depth of the seedling rack 12 is 500 mm to The thickness is preferably 1000 mm.
  • a plurality of cell trays 40 are placed almost horizontally on each seedling shelf 12. The size of one cell tray is generally about 300 mm in width and about 600 mm in depth.
  • the bottom nursery shelf 12 is placed on the pedestal 3c.
  • the adjuster (not shown) provided on the pedestal 3c is configured so that the level of the seedling rack 12 can be adjusted.
  • Each seedling shelf 12 is provided with a watering device 30 described later.
  • Artificial illuminators 13 are installed on the lower surfaces of the seedling shelves 12 and the top panel 3e that are the second and higher tiers from the bottom, and light is emitted to the plants that grow on the cell tray 40 of the seedling shelves 12 directly below each artificial illuminator 13. It is configured to In this embodiment, the artificial illuminators 13 other than the uppermost part are attached to the lower surface of an irrigation tray 31 described later.
  • FIGS. 8 is a bottom view of the artificial illuminator 13
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG.
  • the artificial illuminator 13 has a plurality of pairs (six pairs in this embodiment) of sockets 13b attached to the lower surface of the box 13a, and both ends of the fluorescent lamp 13c are attached to the sockets 13b and 13b.
  • a switch 13s is installed on the lower surface of the box 13a.
  • the box 13a is a box-like body having a top plate 13d and a bottom plate 13e, and the bottom plate 13e also serves as a reflector that reflects the light from the fluorescent lamp 13c.
  • a power supply unit 13g incorporating an electric circuit member 13f such as a ballast, an inverter, a constant current circuit, a constant voltage circuit, and a current limiting resistor is installed.
  • three power supply units 13g are provided between the fluorescent lamps 13c, that is, between the first and second fluorescent lamps 13c, between the third and fourth fluorescent lamps 13c, and 5th. It arrange
  • Each power supply unit 13g is attached to the bottom plate 13e of the box 13a.
  • a gap of about 3 to 30 mm is provided between each power supply unit 13g and the top plate 13d of the box 13a.
  • heat generated by the power supply unit 13g is transmitted to the bottom plate 13e and is dissipated from the bottom plate 13e. That is, it is transmitted to the air flowing through the nursery space below the artificial illuminator 13.
  • the heat from the fluorescent lamp 13c is also transmitted to this air flow.
  • vents are provided in the rear panel 3 b behind each of the nursery shelves 12 and between the uppermost nursery shelves 12 and the top panel 3 e (nursing seedling space).
  • An air fan 15 is attached to each.
  • an air conditioner 9 having a function of adjusting the temperature of the air in the room and circulating the temperature-controlled air according to the set conditions is installed.
  • the air conditioner 9 includes an air conditioner body (air conditioner) 9A having a heat exchanger, and a wind direction control plate 10 attached to the lower surface of the air conditioner body 9A.
  • the compressor of the air conditioner body 9 ⁇ / b> A is installed outside the building structure 1.
  • the air conditioner main body 9A is located in the upper part of the center of the room in a plan view of the room.
  • the intake port 9a of the air conditioner main body 9A is provided on the lower surface of the air conditioner main body 9A, and the wind direction control plate 10 is provided with an opening 10a at a position overlapping the intake port 9a.
  • the air conditioner body 9A is attached to the ceiling 1t of the building structure, and its side surface is exposed in the room.
  • Air discharge ports 9b are respectively provided on the four side surfaces of the air conditioner main body 9A.
  • the peripheral portion of the opening 10a overlaps the periphery of the intake port 9a of the air conditioner body 9A.
  • the opening 10a is the same size as or larger than the intake port 9a.
  • the wind direction control plate 10 is supported on the ceiling 1t by a hanging tool (not shown).
  • the one end side of the wind direction control plate 10 in the Y direction is in contact with the wall surface 1h.
  • the other end side in the Y direction of the wind direction control plate 10 extends to the wall surface 1i side from the multi-stage shelf type plant growing apparatuses 3 to 5 and 6 to 8, but is slightly separated from the wall surface 1i.
  • the upright plate 10r is erected over the entire length of the side portion on the other end side of the wind direction control plate 10, and the upper end of the upright plate 10r is in contact with the ceiling 1t.
  • the wind direction control plate 10 extends in the X direction between the ceiling 1t and the top surfaces of the multi-shelf plant growing apparatuses 3 to 8.
  • both ends of the wind direction control plate 10 in the X direction are vertically above the front of the space A side of the multistage shelf type plant growing apparatuses 3 to 5 and the multistage shelf type plant growing apparatuses 6 to 8, or behind them.
  • the horizontal distance L between both ends in the X direction of the wind direction control plate 10 and the front surfaces of the multistage shelf type plant growing apparatuses 3 to 5 and 6 to 8 may be 0 mm, preferably 30 mm or more, and more preferably 40 mm. As mentioned above, More preferably, it is 90 mm or more, More preferably, it is 140 mm or more.
  • the air outlet 9f of the air conditioner 9 is between the X direction ends of the wind direction control plate 10 and the ceiling 1t.
  • the air outlet 9f may overlap with the front surfaces of the multi-stage shelf type plant growing apparatuses 3 to 8 in a plan view of the cultivation apparatus, but is preferably located rearward by the distance L.
  • the intake port 9a of the air conditioner body 9A serves as the air intake port of the air conditioner 9.
  • the air inlet is located in front of the front surface of the multi-shelf-type plant growing devices 3 to 8, that is, on the space A side in a plan view of the cultivation device.
  • FIGS. 1a to 2b when two rows of multi-tiered plant growing devices 3 to 5 and multi-tiered plant growing devices 6 to 8 are arranged so that a work space is formed between them,
  • the work space also functions as a space A for air circulation, and an effective circulation flow is formed.
  • the flow rate of the air flowing through the nursery space is preferably 0.1 m / sec or more, more preferably 0.2 m / sec or more, and further preferably 0.3 m / sec or more. If the air flow rate is too high, there is a possibility that a problem may occur in plant growth, and therefore it is generally preferably 2.0 m / sec or less.
  • airflow is passed from the front of the nursery space through the fan 15 to the space B on the back side of the shelf in a negative pressure state, but conversely, the airflow is passed from the back side of the shelf to the front side in a positive pressure state. Also good. However, the airflow in the nursery space becomes more uniform when flowing from the front side to the back side of the shelf in a negative pressure state.
  • a shelf plate of each seedling shelf 12 is configured by the irrigation tray 31 of the irrigation device (bottom irrigation device) 30, and irrigation is performed from the bottom surface of the cell tray 40 placed on the irrigation tray 31. ing.
  • a configuration example of the irrigation apparatus 30 will be described with reference to FIGS. 5 is a plan view of the irrigation apparatus, FIG. 6 is a perspective view, and FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • the irrigation apparatus 30 includes a rectangular irrigation tray 31 having a bottom plate 31d with side walls 31a, 31b, 31c standing on the rear side and the left and right sides.
  • a drainage groove 32 is provided on the front side of the irrigation tray 31 without a side wall and connected to the bottom plate 31 d, and a drainage port 32 a is formed at one end of the drainage groove 32.
  • the drainage groove 32 and the bottom plate 31 d are partitioned by a weir 34, and the nutrient solution flows into the drainage groove 32 from the notches 34 a at both ends of the weir 34.
  • a water supply pipe 33 for supplying nutrient solution into the irrigation tray 31 is provided along the side wall 31 a on the rear side of the irrigation tray 31, and the nutrient solution is supplied to the tray from a plurality of small holes 33 a provided in the water supply pipe 33. 31 is supplied.
  • a plurality of ribs 35 having a height of about 7 mm extend in parallel to each other toward the drainage grooves 32 on the upper surface of the irrigation tray bottom plate 31d, and the cell tray 40 is placed on these ribs 35. ing.
  • the drainage groove 32 protrudes from the open front of the growing apparatuses 3-8. It is a dimension. By projecting the drainage groove 32 from the open front surface of the growing device, the nutrient solution discharged from the drainage port 32a of the drainage groove 32 of the irrigation tray 31 placed on each stage of the seedling rack 12 is collected to the outside of the building structure 1 It becomes easy to discharge.
  • the nutrient solution When the nutrient solution is continuously supplied from the small hole 33a provided in the water supply pipe 33 of the irrigation apparatus 30, the nutrient solution is blocked by the weir 34 and accumulated to a predetermined water level to be in a pool state. While supplying the nutrient solution from the water supply pipe 33, the nutrient solution gradually flows out from the notch 34 a into the drainage groove 32. It is preferable to maintain a pool state with a water level of, for example, about 10 to 12 mm in the irrigation tray 31 by adjusting the nutrient solution supply amount and the outflow amount from the notch 34a.
  • the artificial illuminator 13 is attached to the lower surface of the bottom plate 31d of the irrigation tray 31.
  • the top plate 13d of the box 13a of the artificial illuminator 13 is in direct contact with the lower surface of the irrigation tray 31, but a spacer or a heat insulating material may be interposed.
  • the upper surface of the bottom plate 31d of the irrigation tray 31 is inclined in the direction of the drainage groove 32 as shown in FIG. Thereby, the nutrient solution can be discharged to the drain groove 32 in a short time when irrigation is stopped. Further, when the upper surface of the bottom plate 31d is inclined, the height of the rib 35 is changed so that the top portion 35a of the rib becomes horizontal, whereby the cell tray 40 placed on the rib 35 is horizontally placed. Can be retained.
  • FIG. 10 shows another example of the irrigation apparatus used in the present invention.
  • the same members as those in FIGS. 5 to 7 are given the same reference numerals.
  • this irrigation apparatus 30 ′ when the cell tray 40 is placed on the bottom plate 31 d of the irrigation tray 31, the under tray 50 is interposed between the bottom plate 31 d and the cell tray 40.
  • the under tray 50 has such a rigidity that it can support the cell tray 40 in which the culture medium is put in each cell 41.
  • a plurality of small holes 51 are formed on the bottom wall surface, and a plurality of small holes 51 are formed on the back surface.
  • the projection 52 is formed. These protrusions 52 function as gap holding means for holding a gap between the bottom plate 31 d and the bottom surface of the cell tray 40 when the cell tray 40 is accommodated in the irrigation tray 31 together with the under tray 50.
  • the irrigation apparatus 30 ′ of FIG. 10 when the nutrient solution is supplied from the water supply pipe 33 and becomes a pool state at a predetermined water level, the nutrient solution is guided into the under tray 50 from the small hole 51 of the under tray 50. Water is sucked up by the capillary action from the cell hole 42 formed on the bottom surface of each cell 41 of the cell tray 40 to the medium in the cell.
  • the artificial illuminator 13 is attached to the lower surface of the bottom plate 31d of the irrigation tray 31.
  • the cell tray 40 placed on the irrigation tray 31 is formed by arranging several tens to several hundreds of cells 41 in a lattice shape and integrating them into a tray shape. Although it is set as 300 mm and depth is around 600 mm, it is not limited to this.
  • Carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 so that the carbon dioxide gas concentration in the inside becomes constant.
  • this seedling cultivation device By cultivating seedlings using this seedling cultivation device, it is possible to automatically adjust environmental conditions such as light quantity, temperature, humidity, carbon dioxide gas, and moisture suitable for seedling growth. Moreover, since all the seedlings in each nursery shelf can grow under the same environment, the uniformity of the obtained seedling quality can be enhanced.
  • the air outlet 9f of the air conditioner 9 is 30 mm or more behind the front of the multi-stage shelf type plant growing apparatuses 3 to 8, the multi-stage shelf type plant growing apparatuses 3 to 8 (growth modules) are installed.
  • the air that has passed through and warmed and the air that has been cooled by the air conditioner 9 are mixed into the space A.
  • the air flowing into the space A becomes air of a uniform temperature and is taken into the multistage shelf type plant growing apparatuses 3 to 8.
  • the heat of the artificial illuminator 13 is transmitted to the box bottom plate 13e which also serves as a reflector, and is transmitted from the bottom plate 13e to the air flowing through the seedling raising space.
  • the heat transferred from the artificial illuminator 13 to the upper irrigation tray 31 is extremely small. Therefore, the temperature of the nutrient solution on the irrigation tray 31 is controlled within a predetermined range.
  • the ratio Wb / Wa between the total cooling capacity (Wb) of all the air conditioners 9 and the total power consumption (Wa) of all the lighting devices (fluorescent lamps 13c in the above embodiment) is 1 or more and 5 Is preferably 1 or more, 4 or less, more preferably 1 or more and 3 or less, and particularly preferably 1 or more and 2 or less.
  • the power consumption per lighting device such as a fluorescent lamp
  • the number of lighting devices is n
  • the cooling capacity of one air conditioning device is Wk
  • the number of installed air conditioning devices is m
  • Wb / Wa Is represented by A in the following formula.
  • the size of the room of the closed type building structure and the number of installed multi-stage shelf type plant growing devices may be other than the above.
  • the air conditioner main body may be installed other than the central portion. Although two or more air conditioner main bodies may be installed, it is preferable that the number is as small as possible.
  • UV intensity, light intensity, photosynthesis effective photon flux density Using a spectral irradiance meter (product name: S-2431 model II) manufactured by Soma Optical Co., Ltd., UV intensity, light intensity, and photosynthetic effective photon flux density in the range of each wavelength region on the cultivation surface were measured. Measurement was performed by placing the light-receiving surface of the spectral irradiance meter horizontally upward at the position of the leaves of the seedlings.
  • Examples 1, 2, and 7 did not develop lobulation, and could grow seedlings in a very good growth state.
  • Examples 3 to 6 although gallbladder was slightly developed, it did not lead to yellowing of leaves or defoliation, but only mild symptoms were observed.
  • Comparative Examples 1 to 4 where the UV intensity of the cultivated surface of 295 nm or more and less than 320 nm was lower than 2.5 ⁇ W / cm 2 , good results were not obtained.
  • gallbladder develops, severe growth failure occurs that leaves yellow and leaves fall, and Comparative Example 3 has a high UV intensity of less than 295 nm. Together, the result was that the leaves shrunk and died.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

Provided are a cultivation system and a cultivation method whereby Solanaceae seedlings with good qualities can be stably produced while minimizing growth disturbance caused by Corynebacterium sp. The cultivation system for seedlings of a Solanaceae plant is provided with a light emitting device, wherein: the light emitting device at least comprises a semiconductor light emitting device irradiating light in a wavelength range of 450-660 nm; and the UV strength in the wavelength range of 295 nm or more and less than 320 nm of the light emitting device is 2.5 μW/cm2 or greater on the cultivation surface of the seedlings. Preferably, the photosynthesis-effective photon flux density of the light emitting device is 50 μmol/m2/sec or greater when measured on the cultivation surface of the seedlings.

Description

なす科の苗栽培装置及び栽培方法Eggplant family seedling cultivation apparatus and cultivation method
 本発明は、なす科の苗を栽培するための栽培装置及び栽培方法に関し、より詳しくは、なす科の苗を栽培する際の生育障害を抑制する栽培装置及び栽培方法に関する。 The present invention relates to a cultivation apparatus and a cultivation method for cultivating eggplant family seedlings, and more particularly, to a cultivation apparatus and a cultivation method for suppressing a growth disorder when cultivating eggplant family seedlings.
 各種植物の苗の生産は、従来は、園芸作物農家では自家生産が主流であった。しかしながら、各種植物の苗の生産に要する技術が高度であり、手間がかかり繁雑であることから、購入苗を利用するように変化してきた。これは、近年の農家の高齢化や労働力不足の進行、園芸作物農家の企業化や規模の拡大化の進行に起因しており、農業は購入苗の利用による省力化や、園芸作物の生産のみに専念する専業化の傾向が同時に進んでいるからである。このような状況下で、近年、購入苗に対する需要が増加しており、苗の生産のみに専念する農家や苗の生産を業とする企業も増加してきた。 In the past, the production of seedlings of various plants has been mainly in-house production by horticultural crop farmers. However, since the technology required for the production of seedlings of various plants is sophisticated, laborious and complicated, it has been changed to use purchased seedlings. This is due to the recent aging of farmers and the labor shortage, the horticultural crop farmer becoming a business enterprise and the expansion of the scale. Agriculture is labor-saving through the use of purchased seedlings and the production of horticultural crops. This is because there is a tendency toward specialization that only concentrates on it. Under these circumstances, the demand for purchased seedlings has increased in recent years, and the number of farmers who concentrate exclusively on seedling production and companies that are engaged in seedling production have increased.
 苗生産者が専業農家や大規模な企業であっても、苗の生産は、(A)屋外で自然光を利用して生産する方法、(B)温室内で自然光を利用して生産する方法、および、(C)閉鎖型環境下で生産する方法(特許文献1または2)、などによって行われている。(A)および(B)の方法で苗を生産する際には、天候、特に日射量の多寡によって大きな影響を受けていた。例えば、夏季の強い日射と高温は苗生産を困難とし、それを避けるために高冷地で育苗しなければならない植物もある。また、(B)の方法では、夏季の強い日射で温室内が高温となり、苗の順調な生産が困難となり、苗の商品化率、温室の稼働率などが低下し、ひいては苗の生産コストが上昇する。このように、苗の生産及び苗質は、天候の影響を受け易い。 Even if the seedling producer is a full-time farmer or a large-scale enterprise, the seedling production is (A) a method of producing using natural light outdoors, (B) a method of producing using natural light in a greenhouse, And (C) a method of producing in a closed environment (Patent Document 1 or 2). When seedlings were produced by the methods (A) and (B), they were greatly affected by the weather, particularly the amount of solar radiation. For example, there are some plants that have to be raised in a high-cold area to avoid seedling production due to intense solar radiation and high temperatures in summer. In addition, in the method (B), the greenhouse heats up due to strong solar radiation in the summer, making it difficult to produce seedlings smoothly, reducing the commercialization rate of seedlings, the operating rate of the greenhouse, and the like. To rise. Thus, seedling production and seedling quality are easily affected by the weather.
 上記(C)の苗生産方法は、自然光を透過しない断熱壁で閉鎖された構造物の中で、空調装置、人工光源、炭酸ガス施肥装置や灌水装置を備えた閉鎖型の人工的な環境下で、高品質な苗を生産する方法である。閉鎖型環境下では、苗生産に必要な空間は、光質、光照射強度、照射時間、温度、湿度、炭酸ガス濃度、灌水量、施肥濃度などの種々の環境条件を、苗の生育に最適な状態に調節することが可能である。 The seedling production method of (C) above is a closed type artificial environment equipped with an air conditioner, artificial light source, carbon dioxide fertilizer, and irrigation device in a structure closed with a heat insulating wall that does not transmit natural light. This is a method for producing high-quality seedlings. In a closed environment, the space required for seedling production is optimal for seedling growth under various environmental conditions such as light quality, light irradiation intensity, irradiation time, temperature, humidity, carbon dioxide concentration, irrigation amount, fertilization concentration, etc. It is possible to adjust to a different state.
 近年、なす科の苗の栽培においても、上記(C)の生産方法の普及が進みつつあるなかで、さまざまな生育障害が発生することが報告され始めている。なかでも、原因が明確となっていない生育障害として、苗の葉や茎などに突起状のこぶが生じ、重症化すると葉の縮れや、葉の黄化から落葉にいたる症状が見られる生育障害である、いわゆる「葉こぶ症」が報告されるようになってきた。 In recent years, it has begun to be reported that various growth disorders occur in the cultivation of eggplant seedlings as the production method (C) is spreading. Above all, as a growth disorder whose cause has not been clarified, a protruding hump occurs on the leaves or stems of seedlings, and when it becomes severe, the growth disorder causes symptoms such as leaf curl and leaf yellowing to leaf fall The so-called “fob” is now being reported.
特開2001-346450号公報JP 2001-346450 A 特開2008-212078号公報JP 2008-212078 A
 本発明は、上記の問題を解決し、生育障害「葉こぶ症」を抑制し、品質の良いなす科の苗を安定して生産することができる苗栽培装置及び栽培方法を提供することを目的とする。 An object of the present invention is to provide a seedling cultivation apparatus and a cultivation method capable of solving the above-mentioned problems, suppressing a growth disorder “phyllobacteriosis”, and stably producing seedlings of a good eggplant family. And
 本発明者は、上記課題を解決すべく研究を重ねた結果、苗の栽培面において、照明装置が少なくとも450~660nmの波長領域を照射する半導体照明装置を備え、295nm以上320nm未満の波長領域のUV強度が2.5μW/cm以上の照明装置を用いることにより、なす科の苗の葉や茎に発生する葉こぶ症が抑制されることを見出した。本発明はかかる知見に基づくものであり、下記を要旨とする。 As a result of repeated research to solve the above problems, the present inventor has a semiconductor lighting device that irradiates a wavelength region of at least 450 to 660 nm on the seedling cultivation surface, and has a wavelength region of 295 nm or more and less than 320 nm. It has been found that the use of an illuminating device having a UV intensity of 2.5 μW / cm 2 or more suppresses gallbladder that occurs on leaves and stems of seedlings of the family Eggplant. The present invention is based on such knowledge and has the following gist.
[1] なす科の植物の苗を栽培する、照明装置を備えた栽培装置であって、該照明装置は、少なくとも450~660nmの波長領域の光を照射する半導体照明装置を含み、前記照明装置は、苗の栽培面における295nm以上320nm未満の波長領域のUV強度が2.5μW/cm以上である苗栽培装置。 [1] A cultivating apparatus equipped with an illuminating device for cultivating seedlings of plants belonging to the family Eggplant, which illuminating device includes a semiconductor illuminating device that irradiates light in a wavelength region of at least 450 to 660 nm, Is a seedling cultivation apparatus in which the UV intensity in the wavelength region of 295 nm or more and less than 320 nm on the seedling cultivation surface is 2.5 μW / cm 2 or more.
[2] 前記照明装置は、前記苗の栽培面で測定される光合成有効光量子束密度が50μmol/m/sec以上である[1]に記載の苗栽培装置。 [2] The seedling cultivation device according to [1], wherein the lighting device has a photosynthetic effective photon flux density of 50 μmol / m 2 / sec or more measured on the seedling cultivation surface.
[3] 前記栽培装置は、閉鎖型構造物の中に配置されており、前記閉鎖型構造物内を空調する空調装置が設けられており、前記苗に灌水する灌水装置が設けられている[1]または[2]に記載の苗栽培装置。 [3] The cultivation device is arranged in a closed structure, an air conditioner for air-conditioning the closed structure is provided, and an irrigation device for irrigating the seedlings is provided. The seedling cultivation apparatus according to [1] or [2].
[4] 前記閉鎖構造物内の湿度は30~100%である[3]に記載の苗栽培装置。 [4] The seedling cultivation apparatus according to [3], wherein the humidity in the closed structure is 30 to 100%.
[5] 前記照明装置は、苗の栽培面における295nm以上320nm未満の波長領域のUV強度が500μW/cm以下である[1]~[4]のいずれかに記載の苗栽培装置。 [5] The lighting device according to any one of [1] to [4], wherein the UV intensity in a wavelength region of 295 nm to less than 320 nm on the seedling cultivation surface is 500 μW / cm 2 or less.
[6] 前記照明装置は、苗の栽培面における295nm以上320nm未満の波長領域のUV強度Iと、苗の栽培面における450~660nmの波長領域の光強度Iとの比I/Iが0.0001~0.01である[1]~[5]のいずれかに記載の苗栽培装置。 [6] The lighting device has a ratio I 1 / I between the UV intensity I 1 in the wavelength region of 295 nm to less than 320 nm on the seedling cultivation surface and the light intensity I 2 in the wavelength region of 450 to 660 nm on the seedling cultivation surface. The seedling cultivation apparatus according to any one of [1] to [5], wherein 2 is 0.0001 to 0.01.
[7] [1]~[6]のいずれかに記載の苗栽培装置を使用して、なす科の苗を栽培する苗栽培方法。 [7] A seedling cultivation method for cultivating seedlings of the family Eggplant using the seedling cultivation apparatus according to any one of [1] to [6].
[8] 前記苗は、トマト、ピーマン又はナスの苗である[7]に記載の苗栽培方法。 [8] The seedling cultivation method according to [7], wherein the seedling is a seedling of tomato, pepper or eggplant.
 本発明のなす科の苗栽培装置によると、なす科の苗の葉や茎に発生する葉こぶ症を抑制し、高品質な苗を安定して生産することができる。 According to the eggplant seedling cultivation apparatus of the present invention, gallbladder occurring on the leaves and stems of the eggplant family can be suppressed, and high-quality seedlings can be stably produced.
図1a,1bは、実施の形態に係る栽培装置の水平断面図であり、図1aは図2bのIa-Ia線断面図、図1bは図2bのIb-Ib線断面図である。1a and 1b are horizontal sectional views of the cultivation apparatus according to the embodiment, FIG. 1a is a sectional view taken along line Ia-Ia in FIG. 2b, and FIG. 1b is a sectional view taken along line Ib-Ib in FIG. 図2aは図1aのIIa-IIa線断面図、図2bは図1aのIIb-IIb線断面図である。2a is a sectional view taken along line IIa-IIa in FIG. 1a, and FIG. 2b is a sectional view taken along line IIb-IIb in FIG. 1a. 図3は実施の形態に係る多段棚式植物育成装置の正面図である。FIG. 3 is a front view of the multi-shelf plant growing apparatus according to the embodiment. 図4は図3のIV-IV線断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 図5は実施の形態に係る多段棚式植物育成装置のトレイの平面図である。FIG. 5 is a plan view of the tray of the multistage shelf type plant growing apparatus according to the embodiment. 図6は図5のトレイの斜視図である。FIG. 6 is a perspective view of the tray of FIG. 図7は図5のVII-VII線断面図である。7 is a sectional view taken along line VII-VII in FIG. 図8は人工照明器の底面図である。FIG. 8 is a bottom view of the artificial illuminator. 図9は図8のIX-IX線断面図である。9 is a cross-sectional view taken along the line IX-IX in FIG. 図10は別の実施の形態に係る多段棚式植物育成装置のトレイの断面図である。FIG. 10 is a cross-sectional view of a tray of a multi-shelf plant growing apparatus according to another embodiment.
 本発明の苗栽培装置は、なす科の植物の苗を栽培するためのものであり、照明装置を備える。該照明装置は、少なくとも450~660nmの波長領域を照射する半導体照明装置を備え、苗の栽培面における295nm以上320nm未満の波長領域のUV強度が2.5μW/cm以上である。
 本発明では、UV光等の「苗の栽培面における光強度」(以下、「栽培面UV強度」又は「栽培面光強度」ということがある。)は、苗の葉の位置に分光放射照度計の受光面を水平かつ上向きに配置して測定された値である。
 照明装置による苗への光の照射時間は、1日当り8~20時間、特に12~18時間程度が好ましい。
The seedling cultivation apparatus of the present invention is for cultivating seedlings of plants belonging to the family Eggplant, and includes a lighting device. The illumination device includes a semiconductor illumination device that irradiates at least a wavelength region of 450 to 660 nm, and a UV intensity in a wavelength region of 295 nm or more and less than 320 nm on a seedling cultivation surface is 2.5 μW / cm 2 or more.
In the present invention, “light intensity on the cultivation surface of the seedling” such as UV light (hereinafter sometimes referred to as “cultivation surface UV intensity” or “cultivation surface light intensity”) is a spectral irradiance at the position of the seedling leaf. This is a value measured by placing the light receiving surface of the meter horizontally and upward.
The irradiation time of the light to the seedling by the lighting device is preferably 8 to 20 hours per day, particularly about 12 to 18 hours.
 なす科の植物としては、トマト、ナス、ピーマン、パプリカ、シシトウ、トウガラシ、ハバネロ、ハラペーニョなどが挙げられるが、特にトマト、ピーマン及びナスとりわけトマトが好適である。 Examples of eggplants include tomato, eggplant, bell pepper, paprika, shishito, chili pepper, habanero, jalapeno, and in particular tomato, bell pepper and eggplant, especially tomato.
 本発明の苗栽培装置で用いる照明装置は、295nm以上320nm未満の波長領域における栽培面UV強度が2.5μW/cm以上であり、3.0μW/cm以上であることが好ましく、4.0μW/cm以上であることがより好ましく、6.0μW/cm以上であることが更に好ましく、10μW/cm以上であることが特に好ましい。295nm以上320nm未満の波長領域の栽培面UV強度を上記範囲とすることで、なす科の苗の葉や茎に発生する葉こぶ症を抑制し、正常な苗を安定して生産することができる。 Lighting apparatus used in the seedling culture apparatus of the present invention is cultivated surface UV intensity in the wavelength region of less than 320nm or 295nm is 2.5μW / cm 2 or more, preferably 3.0μW / cm 2 or more, 4. more preferably 0μW / cm 2 or more, still more preferably 6.0μW / cm 2 or more, and particularly preferably 10 .mu.W / cm 2 or more. By setting the cultivation surface UV intensity in the wavelength region of 295 nm or more and less than 320 nm within the above range, gallbladder occurring on the leaves and stems of solanaceae seedlings can be suppressed, and normal seedlings can be stably produced. .
 295nm以上320nm未満の波長領域における栽培面UV強度の上限は、特に限定されないが、紫外線による苗へのダメージや栽培作業中の作業者の眼や皮膚への影響を考慮すると、500μW/cm以下であることが好ましく、400μW/cm以下であることがより好ましく、300μW/cm以下であることが更に好ましく、200μW/cm以下であることが特に好ましい。 The upper limit of the cultivation surface UV intensity in the wavelength region of 295 nm or more and less than 320 nm is not particularly limited, but 500 μW / cm 2 or less in consideration of damage to seedlings caused by ultraviolet rays and effects on the eyes and skin of workers during cultivation work Preferably, it is 400 μW / cm 2 or less, more preferably 300 μW / cm 2 or less, and particularly preferably 200 μW / cm 2 or less.
 本発明の苗栽培装置で用いる照明装置は、波長が320nm以上、具体的には320nm以上340nm未満の波長領域における栽培面UV強度が0.5μW/cm以上であることが好ましく、1.0μW/cm以上であることがより好ましく、1.5μW/cm以上であることが更に好ましく、2.0μW/cm以上であることが特に好ましい。320nm以上340nm未満の波長領域の栽培面UV強度を上記範囲とすることで、苗の葉や茎に発生する葉こぶ症をさらに抑制することができる。 The illumination device used in the seedling cultivation apparatus of the present invention preferably has a cultivation surface UV intensity of 0.5 μW / cm 2 or more in a wavelength region of 320 nm or more, specifically 320 nm or more and less than 340 nm, and 1.0 μW. / Cm 2 or more is more preferable, 1.5 μW / cm 2 or more is further preferable, and 2.0 μW / cm 2 or more is particularly preferable. By making the cultivation surface UV intensity in the wavelength region of 320 nm or more and less than 340 nm in the above range, gallbladder occurring on the leaves and stems of seedlings can be further suppressed.
 320nm以上340nm未満の波長領域の栽培面UV強度の上限は、特に規定することはないが、栽培作業中の作業者の眼や皮膚への影響を考慮すると、300μW/cm以下であることが好ましく、250μW/cm以下であることがより好ましく、200μW/cm以下であることが更に好ましい。 Although the upper limit of the cultivation surface UV intensity in the wavelength region of 320 nm or more and less than 340 nm is not particularly defined, it may be 300 μW / cm 2 or less in consideration of the effect on the eyes and skin of the worker during the cultivation operation. preferably, more preferably 250 .mu.W / cm 2 or less, still more preferably 200μW / cm 2 or less.
 本発明の苗栽培装置で用いる照明装置は、波長が295nm未満、具体的には280nm以上295nm未満における栽培面UV強度が5.0μW/cm以下であることが好ましく、3.0μW/cm以下であることがより好ましく、1.5μW/cm以下であることが更に好ましく、1.0μW/cm以下であることが特に好ましい。280nm以上295nm未満の波長領域の栽培面UV強度を上記範囲とすることで、紫外線による苗へのダメージにより、葉の丸まり、縮れ、死滅などのUV障害の発生を抑制することができる。 The illumination device used in the seedling cultivation apparatus of the present invention preferably has a cultivation surface UV intensity of 5.0 μW / cm 2 or less at a wavelength of less than 295 nm, specifically, 280 nm or more and less than 295 nm, and 3.0 μW / cm 2. Or less, more preferably 1.5 μW / cm 2 or less, and particularly preferably 1.0 μW / cm 2 or less. By setting the cultivation surface UV intensity in the wavelength region of 280 nm or more and less than 295 nm within the above range, UV damage such as curling, curling, and death of leaves can be suppressed due to damage to the seedling by ultraviolet rays.
 280nm以上295nm未満の波長領域の栽培面UV強度の下限値は、特に限定されることはなく、ゼロに近い程好ましい。 The lower limit of the cultivation surface UV intensity in the wavelength region of 280 nm or more and less than 295 nm is not particularly limited, and is preferably closer to zero.
 本発明の苗栽培装置で用いる照明装置は、450~660nmの波長領域の栽培面光強度が4000μW/cm以上であることが好ましく、4500μW/cm以上であることがより好ましく、5000μW/cm以上であることが更に好ましく、6000μW/cm以上であることが特に好ましい。また、450~660nmの波長領域において光強度がゼロとなる波長領域がないことが好ましい。波長450~660nmの栽培面光強度を上記範囲とすることで、苗の葉や茎への葉こぶ症の発症を抑制しつつ、苗の形態形成に異常をきたすことを抑制し、正常な苗をより安定して栽培することが可能となる。 Lighting apparatus used in the seedling culture apparatus of the present invention is preferably cultivated surface light intensity of 450 ~ 660 nm wavelength region is 4000 W / cm 2 or more, more preferably 4500μW / cm 2 or more, 5000μW / cm 2 or more is more preferable, and 6000 μW / cm 2 or more is particularly preferable. Further, it is preferable that there is no wavelength region in which the light intensity is zero in the wavelength region of 450 to 660 nm. By setting the cultivation surface light intensity at a wavelength of 450 to 660 nm within the above range, it is possible to suppress the occurrence of gallbladder on the leaves and stems of the seedlings, and to suppress abnormal morphogenesis of the seedlings. Can be cultivated more stably.
 波長450~660nmの栽培面光強度の上限は、特に限定されないが、葉焼けなどの生育障害の発生を抑制するという観点から、60000μW/cm以下であることが好ましく、50000μW/cm以下であることがより好ましく、40000μW/cm以下であることが更に好ましく、30000μmW/cm以下であることが特に好ましい。 The upper limit of the cultivation surface light intensity of the wavelength 450 ~ 660 nm is not particularly limited, from the viewpoint of suppressing the generation of growth disorders such as leaf scorch, is preferably 60000μW / cm 2 or less, 50000μW / cm 2 or less More preferably, it is more preferably 40000 μW / cm 2 or less, and particularly preferably 30000 μW / cm 2 or less.
 本発明の苗栽培装置で用いる照明装置は、295nm以上、320nm未満の波長領域における栽培面UV強度Iと、450~660nmの波長領域における栽培面光強度Iとの比Kの値が、1/10000~1/100すなわち0.0001~0.01であることが好ましい。Kを上記の範囲とすることで、苗の葉や茎への葉こぶ症の発症を抑制しつつ、苗の形態形成に異常をきたすことを抑制し、より正常な苗を栽培することが可能となり好ましい。Kは下記式で表される。
 K =I/I
The illumination device used in the seedling cultivation apparatus of the present invention has a value of the ratio K between the cultivation surface UV intensity I 1 in the wavelength region of 295 nm or more and less than 320 nm and the cultivation surface light intensity I 2 in the wavelength region of 450 to 660 nm, It is preferably 1/10000 to 1/100, that is, 0.0001 to 0.01. By setting K to the above range, it is possible to cultivate more normal seedlings while suppressing the occurrence of gallbladder to the leaves and stems of seedlings and suppressing abnormalities in morphogenesis of seedlings. It is preferable. K is represented by the following formula.
K = I 1 / I 2
 本発明の苗栽培装置で用いる照明装置は、少なくとも450~660nmの波長領域の光を照射する半導体照明装置を備えている。該半導体照明装置は、400~480nmの範囲に第1発光ピーク波長を有していることが好ましい。400~480nmの範囲に第1の発光ピーク波長を有することで、苗の節間伸長を抑制し、胚軸が短くしっかりした苗を栽培することが可能となる。 The lighting device used in the seedling cultivation apparatus of the present invention includes a semiconductor lighting device that emits light in a wavelength region of at least 450 to 660 nm. The semiconductor lighting device preferably has a first emission peak wavelength in the range of 400 to 480 nm. By having the first emission peak wavelength in the range of 400 to 480 nm, it is possible to suppress the internode elongation of the seedling and to grow a solid seedling with a short hypocotyl.
 該半導体照明装置は、好ましくは、500~620nmの範囲、より好ましくは500~610nmの範囲、更に好ましくは500~600nmの範囲に第2の発光ピーク波長を有する。第2の発光ピーク波長は、半値幅が100nm以上であることが好ましく、120nm以上であることがより好ましく、140nm以上であることが更に好ましい。半導体照明装置の第2の発光ピーク波長を上記の範囲とすることで、苗の形態形成に異常をきたすことを抑制し、正常な苗をより効率よく栽培することが可能となる。 The semiconductor lighting device preferably has a second emission peak wavelength in the range of 500 to 620 nm, more preferably in the range of 500 to 610 nm, and still more preferably in the range of 500 to 600 nm. The second emission peak wavelength preferably has a full width at half maximum of 100 nm or more, more preferably 120 nm or more, and still more preferably 140 nm or more. By setting the second emission peak wavelength of the semiconductor lighting device in the above range, it is possible to suppress abnormal formation of seedling morphogenesis and to cultivate normal seedlings more efficiently.
 本発明の苗栽培装置は、少なくとも一部の照明装置が上述するUV光を照射する照明装置であればよい。例えば、使用する照明装置の全てが上述するUV照射機能を有する照明装置であってもよく、使用する照明装置のうち、いくつかの照明装置は上述するUV照射機能を有するものとし、残りの照明装置は上述のUV照射機能を有しないものであってもよい。UV強度が高い照明装置と、UV強度が低い又はUV光を照射しない照明装置とを併用してもよい。 The seedling cultivation apparatus of the present invention may be an illumination apparatus that irradiates the UV light described above with at least some of the illumination apparatuses. For example, all of the illumination devices to be used may be illumination devices having the above-described UV irradiation function, and among the illumination devices to be used, some of the illumination devices have the above-described UV irradiation function, and the remaining illuminations The apparatus may not have the UV irradiation function described above. You may use together the illuminating device with high UV intensity, and the illuminating device with low UV intensity or not irradiating UV light.
 本発明の苗栽培装置は、前記苗の栽培面で測定される光合成有効光量子束密度が、50μmol/m/sec以上であることが好ましく、100μmol/m/sec以上であることがより好ましく、200μmol/m/sec以上であることが更に好ましい。栽培面の光合成有効光量子束密度を上記下限以上とすることで、苗の光合成をより効率よくすることができ、葉こぶ症の発生をより抑制することができ好ましい。 In the seedling cultivation apparatus of the present invention, the photosynthetic effective photon flux density measured on the cultivation surface of the seedling is preferably 50 μmol / m 2 / sec or more, more preferably 100 μmol / m 2 / sec or more. More preferably, it is 200 μmol / m 2 / sec or more. By setting the photosynthesis effective photon flux density on the cultivated surface to the above lower limit or more, photosynthesis of seedlings can be made more efficient, and the occurrence of gallbladder can be further suppressed, which is preferable.
 本発明の苗栽培装置に使用する照明装置は、特に限定されるものではなく、蛍光灯や、半導体照明である有機EL、レーザーやLEDなどの照明装置を利用することができる。電力の消費量や、より細かい波長の制御を行い易い点を考慮すると、LEDを使用することが好ましい。 The lighting device used in the seedling cultivation device of the present invention is not particularly limited, and a lighting device such as a fluorescent lamp, organic EL that is semiconductor lighting, a laser, or an LED can be used. Considering the power consumption and the point that finer wavelength control is easy, it is preferable to use an LED.
 栽培装置は、閉鎖型構造物の中に配置され、前記閉鎖型構造物内を空調する空調装置を備え、前記苗に灌水する灌水装置を備えることが好ましい。 It is preferable that the cultivation apparatus is provided in an enclosed structure, includes an air conditioner that air-conditions the closed structure, and an irrigation apparatus that irrigates the seedling.
 この閉鎖構造物内の湿度は、30~100%の範囲であることが好ましく、40~99%の範囲であることがより好ましく、40~95%の範囲であることが更に好ましい。閉鎖構造内の湿度を上記範囲とすることで、なす科の苗に発生するさまざまな生育障害の発生を抑制することができる。 The humidity in the closed structure is preferably in the range of 30 to 100%, more preferably in the range of 40 to 99%, and still more preferably in the range of 40 to 95%. By setting the humidity in the closed structure within the above range, it is possible to suppress the occurrence of various growth disorders that occur in the seedlings of the eggplant family.
 本発明の一つの態様では、苗栽培装置は、前面が解放している育成モジュールを有し、該育成モジュールは、育苗棚を上下方向に多段に配置して育苗空間を形成する。 In one aspect of the present invention, the seedling cultivation apparatus has a growing module whose front surface is open, and the growing module arranges growing seedling shelves in multiple stages to form a raising seedling space.
 図1a~9及び図10を参照して、かかる栽培装置の好ましい形態を説明する。図1a~2bの通り、断熱性壁面で囲まれた完全遮光性とされた閉鎖型建物構造物1の部屋内に、箱形の複数個(図示の例では6個)の多段棚式植物育成装置(苗育成モジュール)3~8が設置されている。部屋1は平面視形状が長方形であり、一方の短手方向壁面1iにドア2が設けられている。 A preferred embodiment of such a cultivation apparatus will be described with reference to FIGS. As shown in FIGS. 1a and 2b, a plurality of box-shaped (six in the illustrated example) multi-stage shelf-type plants are grown in a room of a closed type building structure 1 surrounded by a heat insulating wall and made completely light-shielding. Devices (seedling growing modules) 3 to 8 are installed. The room 1 has a rectangular shape in plan view, and a door 2 is provided on one short-side wall surface 1i.
 この形態では、3個の多段棚式植物育成装置3~5をそれらの開放前面が同方向を向くように配列して1列とし、3個の多段棚式植物育成装置6~8もそれらの開放前面が同方向を向くように配列して1列とし、開放前面が互いに対向するように二つの列を部屋内に配置している。以下、多段棚式植物育成装置3~5及び6~8の列の延在方向(部屋の長手方向)をY方向といい、部屋の短手方向(多段棚式植物育成装置3~5と多段棚式植物育成装置6~8とが対面する方向)をX方向と言うことがある。これら二つの列の多段棚式植物育成装置3~5及び6~8間に、一人または複数の作業者が作業できる程度のスペースAを設けてある。部屋の長手方向壁面1j,1kと各多段棚式植物育成装置3~8の背面との間に、50~500mm程度の幅のスペースBを設けて、多段棚式植物育成装置3~8を通過した空気の通路を形成する。 In this embodiment, the three multi-stage shelf-type plant growing apparatuses 3 to 5 are arranged in a row so that their open front faces in the same direction, and the three multi-stage shelf-type plant growing apparatuses 6 to 8 are also arranged. One row is arranged so that the open front faces in the same direction, and two rows are arranged in the room so that the open front faces each other. Hereinafter, the extending direction (longitudinal direction of the room) of the rows of the multistage shelf type plant growing apparatuses 3 to 5 and 6 to 8 is referred to as the Y direction, and the short direction of the room (multistage shelf type plant growing apparatuses 3 to 5 and the multistage stage). The direction in which the shelf-type plant growing devices 6 to 8 face each other is sometimes referred to as the X direction. Between these two rows of multi-stage shelf type plant growing apparatuses 3 to 5 and 6 to 8, a space A is provided so that one or a plurality of workers can work. A space B having a width of about 50 to 500 mm is provided between the longitudinal wall surfaces 1j and 1k of the room and the back surfaces of the multistage shelf type plant growing apparatuses 3 to 8, and passes through the multistage shelf type plant growing apparatuses 3 to 8. Air passages are formed.
 多段棚式植物育成装置3~5,6~8の列の一端側は、ドア2と反対側の建物壁面1hに当接している。多段棚式植物育成装置3~5,6~8の列の他端側は、ドア2側の壁面1iから若干離反している。 一端 One end of the row of the multi-shelf plant growing devices 3-5, 6-8 is in contact with the building wall 1h on the opposite side of the door 2. The other end side of the row of the multi-stage shelf type plant growing apparatuses 3 to 5, 6 to 8 is slightly separated from the wall surface 1i on the door 2 side.
 前述するドア2側の壁面1iの離反スペースから、温められた空気がスペースAに流れてくる場合は、この流れを抑制するための制御板を適切な場所に設けることもできる。 When the heated air flows into the space A from the separation space of the wall surface 1i on the door 2 side described above, a control plate for suppressing this flow can be provided at an appropriate place.
 部屋に出入りするためのドア2の内側にエアーカーテンを設置すると、作業者が出入りする際に外気が入らないようにできるので好ましい。 It is preferable to install an air curtain inside the door 2 for entering / exiting the room because the outside air can be prevented from entering when the operator enters / exits.
 多段棚式植物育成装置3~8は、図3,4に示すように、それぞれ台座3c、左右の側面パネル3a、背面の背面パネル3b及び天頂部のトップパネル3eを有し、前面は開放した箱形構造体を備えている。この箱形構造体の内部に、複数の育苗棚12が上下方向に一定間隔で多段に配置されている。 As shown in FIGS. 3 and 4, each of the multistage shelf-type plant growing apparatuses 3 to 8 includes a pedestal 3c, left and right side panels 3a, a back panel 3b on the back, and a top panel 3e on the zenith, and the front is open. It has a box-shaped structure. Inside the box-shaped structure, a plurality of seedling racks 12 are arranged in multiple stages at regular intervals in the vertical direction.
 各多段棚式植物育成装置3~8の高さは、作業者が作業できる程度の高さである2000mm程度とし、育苗棚12の幅は、数十から数百個のセル(小鉢)を格子状に配列させた樹脂製のセルトレイを複数枚並べて載置できるとともに、各棚12の上側スペースの温度・湿度を一定に調節できる幅、例えば1000mm~2000mm程度とし、育苗棚12の奥行きは500mm~1000mmとするのが好ましい。各育苗棚12には複数枚のセルトレイ40(図1b参照)がほぼ水平に載置されている。セルトレイ1枚の寸法は、一般的には幅が300mm、奥行きが600mm程度である。 The height of each multi-stage shelf type plant growing device 3 to 8 is about 2000 mm, which is high enough for the operator to work, and the width of the seedling shelf 12 is a grid of tens to hundreds of cells (small bowls). A plurality of resin cell trays arranged in a line can be placed side by side, and the temperature and humidity of the upper space of each shelf 12 can be adjusted to a constant width, for example, about 1000 mm to 2000 mm, and the depth of the seedling rack 12 is 500 mm to The thickness is preferably 1000 mm. A plurality of cell trays 40 (see FIG. 1b) are placed almost horizontally on each seedling shelf 12. The size of one cell tray is generally about 300 mm in width and about 600 mm in depth.
 最下段の育苗棚12は、台座3cに載置されている。台座3cに設けたアジャスター(図示略)によって育苗棚12の水平度を調整できるよう構成されている。 The bottom nursery shelf 12 is placed on the pedestal 3c. The adjuster (not shown) provided on the pedestal 3c is configured so that the level of the seedling rack 12 can be adjusted.
 各育苗棚12には、後述する潅水装置30が設けられている。 Each seedling shelf 12 is provided with a watering device 30 described later.
 下から2段目以上の各育苗棚12及びトップパネル3eの下面には、人工照明器13が設置され、各人工照明器13の直下の育苗棚12のセルトレイ40で生育する植物に光を照射するよう構成されている。この実施の形態では、最上部以外の人工照明器13は後述の潅水トレイ31の下面に取り付けられている。 Artificial illuminators 13 are installed on the lower surfaces of the seedling shelves 12 and the top panel 3e that are the second and higher tiers from the bottom, and light is emitted to the plants that grow on the cell tray 40 of the seedling shelves 12 directly below each artificial illuminator 13. It is configured to In this embodiment, the artificial illuminators 13 other than the uppermost part are attached to the lower surface of an irrigation tray 31 described later.
 この人工照明器13の構成の詳細を図8,9に示す。なお、図8は人工照明器13の底面図、図9は図8のIX-IX線断面図である。この人工照明器13は、ボックス13aの下面に複数対(この実施の形態では6対)のソケット13bを取り付け、蛍光灯13cの両端をソケット13b,13bに装着したものである。ボックス13aの下面にスイッチ13sが設置されている。 Details of the configuration of the artificial illuminator 13 are shown in FIGS. 8 is a bottom view of the artificial illuminator 13, and FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. The artificial illuminator 13 has a plurality of pairs (six pairs in this embodiment) of sockets 13b attached to the lower surface of the box 13a, and both ends of the fluorescent lamp 13c are attached to the sockets 13b and 13b. A switch 13s is installed on the lower surface of the box 13a.
 ボックス13aは、天板13d及び底板13eを有した箱状体であり、底板13eは蛍光灯13cの光を反射する反射板を兼ねている。このボックス13a内に、安定器、インバータ、定電流回路、定電圧回路、電流制限抵抗等の電気回路部材13fを内蔵した電源ユニット13gが設置されている。この実施の形態では、3個の電源ユニット13gが蛍光灯13c同士の間、すなわち1列目と2列目の蛍光灯13cの間、3列目と4列目の蛍光灯13cの間及び5列目と6列目の蛍光灯13cの間に配置されている。各電源ユニット13gはボックス13aの底板13eに取り付けられている。各電源ユニット13gとボックス13aの天板13dとの間には3~30mm程度の隙間があいている。この人工照明器13にあっては、電源ユニット13gで発生する熱は、底板13eに伝わり、該底板13eから放散される。即ち、人工照明器13の下側の育苗スペースを流れる空気に伝達される。なお、蛍光灯13cからの熱もこの空気の流れに伝達される。 The box 13a is a box-like body having a top plate 13d and a bottom plate 13e, and the bottom plate 13e also serves as a reflector that reflects the light from the fluorescent lamp 13c. In this box 13a, a power supply unit 13g incorporating an electric circuit member 13f such as a ballast, an inverter, a constant current circuit, a constant voltage circuit, and a current limiting resistor is installed. In this embodiment, three power supply units 13g are provided between the fluorescent lamps 13c, that is, between the first and second fluorescent lamps 13c, between the third and fourth fluorescent lamps 13c, and 5th. It arrange | positions between the fluorescent lamps 13c of the row | line | column and the 6th row | line. Each power supply unit 13g is attached to the bottom plate 13e of the box 13a. A gap of about 3 to 30 mm is provided between each power supply unit 13g and the top plate 13d of the box 13a. In this artificial illuminator 13, heat generated by the power supply unit 13g is transmitted to the bottom plate 13e and is dissipated from the bottom plate 13e. That is, it is transmitted to the air flowing through the nursery space below the artificial illuminator 13. The heat from the fluorescent lamp 13c is also transmitted to this air flow.
 電源ユニット13gとボックス天板13dとの間には隙間があいているため、電源ユニット13gから天板13dに伝わる熱は著しく少ない。そのため、潅水トレイ31上を流れる養液、およびセルトレイ40に植えられた植物の根圏部が人工照明器13の熱で温められることが防止される。 Since there is a gap between the power supply unit 13g and the box top plate 13d, the heat transferred from the power supply unit 13g to the top plate 13d is extremely small. Therefore, the nutrient solution flowing on the irrigation tray 31 and the rhizosphere part of the plant planted in the cell tray 40 are prevented from being heated by the heat of the artificial illuminator 13.
 図4の通り、各育苗棚12同士の間、及び最上段の育苗棚12と天板パネル3eとの間のスペース(育苗スペース)の後方の背面パネル3bに通気口が設けられ、各通気口にそれぞれ空気ファン15が取り付けられている。 As shown in FIG. 4, vents are provided in the rear panel 3 b behind each of the nursery shelves 12 and between the uppermost nursery shelves 12 and the top panel 3 e (nursing seedling space). An air fan 15 is attached to each.
 このように各育苗スペースの背面側にそれぞれ空気ファン15を設けることにより、育苗スペースにおける気流が均一になり好ましい。 It is preferable to provide the air fan 15 on the back side of each nursery space as described above, so that the airflow in the nursery space becomes uniform.
 部屋の上部には、部屋内の空気を調温調湿し、設定条件に調温調湿した空気を循環させる機能を備えた空調装置9が設置されている。この空調装置9は、熱交換器を有した空調装置本体(エアコン)9Aと、この空調装置本体9Aの下面に取付けられた風向制御板10とを有する。空調装置本体9Aのコンプレッサは建物構造物1外に設置されている。 In the upper part of the room, an air conditioner 9 having a function of adjusting the temperature of the air in the room and circulating the temperature-controlled air according to the set conditions is installed. The air conditioner 9 includes an air conditioner body (air conditioner) 9A having a heat exchanger, and a wind direction control plate 10 attached to the lower surface of the air conditioner body 9A. The compressor of the air conditioner body 9 </ b> A is installed outside the building structure 1.
 この実施の形態では、空調装置本体9Aは、部屋の平面視において、部屋の中心の上部に位置している。空調装置本体9Aの取込口9aは空調装置本体9Aの下面に設けられており、風向制御板10には、取込口9aと重なる位置に開口10aが設けられている。 In this embodiment, the air conditioner main body 9A is located in the upper part of the center of the room in a plan view of the room. The intake port 9a of the air conditioner main body 9A is provided on the lower surface of the air conditioner main body 9A, and the wind direction control plate 10 is provided with an opening 10a at a position overlapping the intake port 9a.
 前記空調装置本体9Aは、建物構造物の天井1tに取り付けられ、その側面が部屋内に露呈した構造となっている。空調装置本体9Aの4個の側面にそれぞれ空気の吐出口9bが設けられている。 The air conditioner body 9A is attached to the ceiling 1t of the building structure, and its side surface is exposed in the room. Air discharge ports 9b are respectively provided on the four side surfaces of the air conditioner main body 9A.
 前記風向制御板10は、開口10aの周囲部分が空調装置本体9Aの取込口9aの周囲に重なっている。開口10aは取込口9aと同一大きさか、又はそれよりも大きい。 In the wind direction control plate 10, the peripheral portion of the opening 10a overlaps the periphery of the intake port 9a of the air conditioner body 9A. The opening 10a is the same size as or larger than the intake port 9a.
 風向制御板10は、吊具(図示略)によって天井1tに支持されている。 The wind direction control plate 10 is supported on the ceiling 1t by a hanging tool (not shown).
 風向制御板10のY方向の一端側は壁面1hに当接している。風向制御板10のY方向の他端側は、多段棚式植物育成装置3~5及び6~8よりも壁面1i側にまで延在しているが、壁面1iから若干離反している。風向制御板10の該他端側の辺部の全長にわたって、起立板10rが立設されており、この起立板10rの上端が天井1tに当接している。 The one end side of the wind direction control plate 10 in the Y direction is in contact with the wall surface 1h. The other end side in the Y direction of the wind direction control plate 10 extends to the wall surface 1i side from the multi-stage shelf type plant growing apparatuses 3 to 5 and 6 to 8, but is slightly separated from the wall surface 1i. The upright plate 10r is erected over the entire length of the side portion on the other end side of the wind direction control plate 10, and the upper end of the upright plate 10r is in contact with the ceiling 1t.
 風向制御板10は、天井1tと多段棚式植物育成装置3~8の上面との間にまでX方向に延在している。 The wind direction control plate 10 extends in the X direction between the ceiling 1t and the top surfaces of the multi-shelf plant growing apparatuses 3 to 8.
 図2aの通り、風向制御板10のX方向の両端は、多段棚式植物育成装置3~5、多段棚式植物育成装置6~8のスペースA側の前面の鉛直上方又はそれよりも後方すなわちスペースB側に位置している。風向制御板10のX方向の両端と各多段棚式植物育成装置3~5,6~8の前面との水平方向距離Lは0mmであってもよいが、好ましくは30mm以上、さらに好ましくは40mm以上、さらに好ましくは90mm以上、さらに好ましくは140mm以上である。 As shown in FIG. 2a, both ends of the wind direction control plate 10 in the X direction are vertically above the front of the space A side of the multistage shelf type plant growing apparatuses 3 to 5 and the multistage shelf type plant growing apparatuses 6 to 8, or behind them. Located on the space B side. The horizontal distance L between both ends in the X direction of the wind direction control plate 10 and the front surfaces of the multistage shelf type plant growing apparatuses 3 to 5 and 6 to 8 may be 0 mm, preferably 30 mm or more, and more preferably 40 mm. As mentioned above, More preferably, it is 90 mm or more, More preferably, it is 140 mm or more.
 この実施の形態では、この風向制御板10のX方向の両端と天井1tとの間が空調装置9の吹出口9fとなっている。吹出口9fは、栽培装置の平面視において、多段棚式植物育成装置3~8の前面と重なってもよいが、好ましくはそれよりも前記距離Lだけ後方に位置している。 In this embodiment, the air outlet 9f of the air conditioner 9 is between the X direction ends of the wind direction control plate 10 and the ceiling 1t. The air outlet 9f may overlap with the front surfaces of the multi-stage shelf type plant growing apparatuses 3 to 8 in a plan view of the cultivation apparatus, but is preferably located rearward by the distance L.
 この実施の形態では、空調装置本体9Aの取込口9aが空調装置9の吸気口となっている。この吸気口は、栽培装置の平面視において、多段棚式植物育成装置3~8の前面よりも前方すなわちスペースA側に位置する。 In this embodiment, the intake port 9a of the air conditioner body 9A serves as the air intake port of the air conditioner 9. The air inlet is located in front of the front surface of the multi-shelf-type plant growing devices 3 to 8, that is, on the space A side in a plan view of the cultivation device.
 空気ファン15を稼働させることにより、部屋内に図2aの矢印で示したような空気の循環流が生じる。すなわち、空調装置9によって調温調湿された空気は、多段棚式植物育成装置3~8の開放前面側のスペースAより育苗棚12各段の育苗スペース内に吸引され、空気ファン15から背面パネル3bの後方へ排出され、背面パネル3bの後方と建物壁面との間のスペースBを通って上昇し、多段棚式植物育成装置3~8の上側スペースCを通過し、空調装置9から吹出された空気と混合され調温調湿されたのち、風向制御板10と多段棚式植物育成装置3~8との間を通って再び多段棚式植物育成装置3~8の開放前面側のスペースAに吹き出される。 By operating the air fan 15, a circulating air flow as shown by the arrow in FIG. 2a is generated in the room. In other words, the air whose temperature is controlled by the air conditioner 9 is sucked into the nursery space of each stage of the nursery rack 12 from the space A on the open front side of the multi-stage shelf type plant growing apparatuses 3 to 8 and back from the air fan 15. It is discharged to the back of the panel 3b, rises through the space B between the back of the back panel 3b and the building wall, passes through the upper space C of the multi-shelf plant growing devices 3 to 8, and blows out from the air conditioner 9 After being mixed with the conditioned air and temperature-controlled, the space on the open front side of the multi-stage shelf type plant growing apparatuses 3 to 8 passes again between the wind direction control plate 10 and the multi-stage shelf type plant growing apparatuses 3 to 8 A is blown out.
 また、風向制御板10と多段棚式植物育成装置3~8との間を通ってスペースAに流れ込もうとする空気の一部は、開口10aを通り、空調装置本体9Aの取込口9aから吸い込まれ、調温調湿された後、吐出口9bを経て吹出口9fから吹き出される。 Further, a part of the air that is going to flow into the space A through the space between the wind direction control plate 10 and the multistage shelf type plant growing apparatuses 3 to 8 passes through the opening 10a, and the intake port 9a of the air conditioner main body 9A. Then, after the temperature is adjusted, the air is blown out from the outlet 9f through the discharge port 9b.
 図1a~2bのように、2列の多段棚式植物育成装置3~5と多段棚式植物育成装置6~8をそれらの間に作業空間が形成されるように配列した場合には、この作業空間が空気の循環用のスペースAとしても機能し、効果的な循環流が形成される。 As shown in FIGS. 1a to 2b, when two rows of multi-tiered plant growing devices 3 to 5 and multi-tiered plant growing devices 6 to 8 are arranged so that a work space is formed between them, The work space also functions as a space A for air circulation, and an effective circulation flow is formed.
 循環流が多段棚式植物育成装置3~8の各育苗スペースを通過する際に、潅水装置、培地、植物などから蒸発した水蒸気や人工照明器13から放出される熱が循環流に同伴され、この循環流を空調装置9によって調温調湿して絶えず循環させることによって、部屋内を植物体生育に最適な温度湿度環境に保つことができる。育苗スペースを流れる空気の流速は、0.1m/sec以上であることが好ましく、0.2m/sec以上であることがより好ましく、0.3m/sec以上が更に好ましい。気流の速度が速すぎると、植物の育成に問題が生じるおそれがあるため、一般的には2.0m/sec以下であることが好ましい。 When the circulating flow passes through each seedling space of the multi-stage shelf type plant growing device 3 to 8, water vapor evaporated from the irrigation device, medium, plant, etc., or heat released from the artificial illuminator 13 is accompanied by the circulating flow, By constantly circulating this circulating flow by adjusting the temperature with the air conditioner 9, the room can be maintained in a temperature and humidity environment that is optimal for plant growth. The flow rate of the air flowing through the nursery space is preferably 0.1 m / sec or more, more preferably 0.2 m / sec or more, and further preferably 0.3 m / sec or more. If the air flow rate is too high, there is a possibility that a problem may occur in plant growth, and therefore it is generally preferably 2.0 m / sec or less.
 この実施の形態では、気流を育苗スペースの前面からファン15を経て棚背面側のスペースBへ負圧の状態で流しているが、逆に棚背面側から前面側へ正圧の状態で流してもよい。ただし、前面側から負圧の状態で棚背面側へ流す方が、育苗スペースにおける気流が均一になる。 In this embodiment, airflow is passed from the front of the nursery space through the fan 15 to the space B on the back side of the shelf in a negative pressure state, but conversely, the airflow is passed from the back side of the shelf to the front side in a positive pressure state. Also good. However, the airflow in the nursery space becomes more uniform when flowing from the front side to the back side of the shelf in a negative pressure state.
 この実施の形態では、潅水装置(底面潅水装置)30の潅水トレイ31によって各育苗棚12の棚板が構成され、該潅水トレイ31に載置されたセルトレイ40の底面から潅水を行うよう構成されている。この潅水装置30の構成例を図5~7を参照して説明する。なお、図5は潅水装置の平面図、図6は斜視図、図7は図5のVII-VII線断面図である。 In this embodiment, a shelf plate of each seedling shelf 12 is configured by the irrigation tray 31 of the irrigation device (bottom irrigation device) 30, and irrigation is performed from the bottom surface of the cell tray 40 placed on the irrigation tray 31. ing. A configuration example of the irrigation apparatus 30 will be described with reference to FIGS. 5 is a plan view of the irrigation apparatus, FIG. 6 is a perspective view, and FIG. 7 is a sectional view taken along line VII-VII in FIG.
 この潅水装置30は、後辺及び左右両側辺に側壁31a、31b、31cが立設された底版31dを有する四角形の潅水トレイ31を備えている。潅水トレイ31の側壁のない前辺には底版31dに連接して排水溝32が設けられており、排水溝32の一端には排水口32aが形成されている。排水溝32と底版31dとは堰34により仕切られ、堰34の両端部の切欠部34aから養液が排水溝32に流出するよう構成されている。また、潅水トレイ31の後辺の側壁31aに沿って、養液を潅水トレイ31内に供給する給水管33が設けられており、給水管33に設けた複数の小孔33aから養液がトレイ31上に供給されるようになっている。 The irrigation apparatus 30 includes a rectangular irrigation tray 31 having a bottom plate 31d with side walls 31a, 31b, 31c standing on the rear side and the left and right sides. A drainage groove 32 is provided on the front side of the irrigation tray 31 without a side wall and connected to the bottom plate 31 d, and a drainage port 32 a is formed at one end of the drainage groove 32. The drainage groove 32 and the bottom plate 31 d are partitioned by a weir 34, and the nutrient solution flows into the drainage groove 32 from the notches 34 a at both ends of the weir 34. A water supply pipe 33 for supplying nutrient solution into the irrigation tray 31 is provided along the side wall 31 a on the rear side of the irrigation tray 31, and the nutrient solution is supplied to the tray from a plurality of small holes 33 a provided in the water supply pipe 33. 31 is supplied.
 潅水トレイ底版31dの上面に高さ約7mm程度の複数のリブ35が、排水溝32に向って互いに平行に延設されており、これらリブ35の上にセルトレイ40が載置されるようになっている。 A plurality of ribs 35 having a height of about 7 mm extend in parallel to each other toward the drainage grooves 32 on the upper surface of the irrigation tray bottom plate 31d, and the cell tray 40 is placed on these ribs 35. ing.
 この潅水装置30は、図4の通り、潅水トレイ31を多段棚式植物育成装置3~8の育苗棚12に載置したときに、排水溝32が育成装置3~8の開放前面から突出する寸法とされている。排水溝32を育成装置の開放前面から突出させることにより、育苗棚12各段に載置した潅水トレイ31の排水溝32の排水口32aから排出される養液を集めて建物構造物1外部へ排出しやすくなる。 In the irrigation apparatus 30, as shown in FIG. 4, when the irrigation tray 31 is placed on the seedling rack 12 of the multi-stage shelf type plant growing apparatus 3-8, the drainage groove 32 protrudes from the open front of the growing apparatuses 3-8. It is a dimension. By projecting the drainage groove 32 from the open front surface of the growing device, the nutrient solution discharged from the drainage port 32a of the drainage groove 32 of the irrigation tray 31 placed on each stage of the seedling rack 12 is collected to the outside of the building structure 1 It becomes easy to discharge.
 潅水装置30の給水管33に設けた小孔33aから養液を連続的に供給すると、養液は堰34によって堰き止められて所定水位まで溜まりプール状態となる。給水管33から養液を供給している間、切欠部34aから養液が少しずつ排水溝32へ流出する。養液供給量と切欠部34aからの流出量を調節することによって、潅水トレイ31内に例えば10~12mm程度の水位のプール状態が維持されるようにするのが好ましい。リブ35の上に載置されているセルトレイ40の各セル41底面に形成されたセル穴42からセル内の培地へ毛管作用により水が吸い上げられ、短時間ですべてのセル41内の培地が水分飽和状態になる。 When the nutrient solution is continuously supplied from the small hole 33a provided in the water supply pipe 33 of the irrigation apparatus 30, the nutrient solution is blocked by the weir 34 and accumulated to a predetermined water level to be in a pool state. While supplying the nutrient solution from the water supply pipe 33, the nutrient solution gradually flows out from the notch 34 a into the drainage groove 32. It is preferable to maintain a pool state with a water level of, for example, about 10 to 12 mm in the irrigation tray 31 by adjusting the nutrient solution supply amount and the outflow amount from the notch 34a. Water is sucked up by the capillary action from the cell hole 42 formed on the bottom surface of each cell 41 of the cell tray 40 placed on the rib 35 to the medium in the cell, and the medium in all the cells 41 becomes water in a short time. It becomes saturated.
 この潅水トレイ31の底版31dの下面に人工照明器13が取り付けられている。この実施の形態では、人工照明器13のボックス13aの天板13dが潅水トレイ31の下面に直接に当接しているが、スペーサや断熱材を介在させてもよい。 The artificial illuminator 13 is attached to the lower surface of the bottom plate 31d of the irrigation tray 31. In this embodiment, the top plate 13d of the box 13a of the artificial illuminator 13 is in direct contact with the lower surface of the irrigation tray 31, but a spacer or a heat insulating material may be interposed.
 この潅水装置30では、図7の通り、潅水トレイ31の底版31dの上面を排水溝32の方向へ傾斜させている。これにより、潅水停止時に養液を排水溝32へ短時間で排出させることができる。また、底版31dの上面に傾斜をもたせた場合には、リブ35の高さを変化させてリブの頂部35aが水平となるようにすることにより、リブ35の上に載置したセルトレイ40を水平に保持できる。 In this irrigation apparatus 30, the upper surface of the bottom plate 31d of the irrigation tray 31 is inclined in the direction of the drainage groove 32 as shown in FIG. Thereby, the nutrient solution can be discharged to the drain groove 32 in a short time when irrigation is stopped. Further, when the upper surface of the bottom plate 31d is inclined, the height of the rib 35 is changed so that the top portion 35a of the rib becomes horizontal, whereby the cell tray 40 placed on the rib 35 is horizontally placed. Can be retained.
 図10は、本発明で用いる潅水装置の別例を示すものであり、図5~図7における部材と同じ部材には、同じ符号を付してある。この潅水装置30’においては、潅水トレイ31の底版31dにセルトレイ40を載置する際に、底版31dとセルトレイ40との間にアンダートレイ50を介在させる。このアンダートレイ50は各セル41内に培地を入れたセルトレイ40を支持し得る程度の剛性を備えており、その底壁面には複数の小孔51が形成されているとともに、その裏面には複数の突起52が形成されている。これらの突起52は、セルトレイ40をアンダートレイ50とともに潅水トレイ31内に収容するときに、底版31dとセルトレイ40底面との間に間隙を保持する間隙保持手段として機能する。 FIG. 10 shows another example of the irrigation apparatus used in the present invention. The same members as those in FIGS. 5 to 7 are given the same reference numerals. In this irrigation apparatus 30 ′, when the cell tray 40 is placed on the bottom plate 31 d of the irrigation tray 31, the under tray 50 is interposed between the bottom plate 31 d and the cell tray 40. The under tray 50 has such a rigidity that it can support the cell tray 40 in which the culture medium is put in each cell 41. A plurality of small holes 51 are formed on the bottom wall surface, and a plurality of small holes 51 are formed on the back surface. The projection 52 is formed. These protrusions 52 function as gap holding means for holding a gap between the bottom plate 31 d and the bottom surface of the cell tray 40 when the cell tray 40 is accommodated in the irrigation tray 31 together with the under tray 50.
 図10の潅水装置30’においても、給水管33から養液を供給して所定水位のプール状態となった場合には、アンダートレイ50の小孔51からアンダートレイ50内に養液が導かれ、セルトレイ40の各セル41底面に形成されたセル穴42からセル内の培地へ毛管作用により水が吸い上げられる。 Also in the irrigation apparatus 30 ′ of FIG. 10, when the nutrient solution is supplied from the water supply pipe 33 and becomes a pool state at a predetermined water level, the nutrient solution is guided into the under tray 50 from the small hole 51 of the under tray 50. Water is sucked up by the capillary action from the cell hole 42 formed on the bottom surface of each cell 41 of the cell tray 40 to the medium in the cell.
 図10においても、潅水トレイ31の底版31dの下面に人工照明器13が取り付けられている。 Also in FIG. 10, the artificial illuminator 13 is attached to the lower surface of the bottom plate 31d of the irrigation tray 31.
 潅水トレイ31に載置されるセルトレイ40は、前述したように、数十から数百のセル41を格子状に配列させてトレイ形状に一体化したものであり、セルトレイ1枚の寸法は幅が300mm、奥行きが600mm前後とされているが、これに限定されない。 As described above, the cell tray 40 placed on the irrigation tray 31 is formed by arranging several tens to several hundreds of cells 41 in a lattice shape and integrating them into a tray shape. Although it is set as 300 mm and depth is around 600 mm, it is not limited to this.
 苗が光合成で消費する炭酸ガスを人為的に供給するために、図1a,1bに示すように、建物構造物1の外部に液化炭酸ガスボンベ16を設置し、炭酸ガス濃度計測装置により計測した部屋内の炭酸ガス濃度が一定濃度となるように、炭酸ガスボンベ16から炭酸ガスを供給する。 A room in which a liquefied carbon dioxide cylinder 16 is installed outside the building structure 1 and measured by a carbon dioxide concentration measuring device, as shown in FIGS. Carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 so that the carbon dioxide gas concentration in the inside becomes constant.
 この苗栽培装置を使用して苗を栽培することによって、苗の生育に好適な光量、温度、湿度、炭酸ガス、水分などの環境条件を自動的に調節することが可能である。また、各育苗棚の苗は全て同一環境下で生育することができるので、得られた苗質の均一性を高めることができる。 By cultivating seedlings using this seedling cultivation device, it is possible to automatically adjust environmental conditions such as light quantity, temperature, humidity, carbon dioxide gas, and moisture suitable for seedling growth. Moreover, since all the seedlings in each nursery shelf can grow under the same environment, the uniformity of the obtained seedling quality can be enhanced.
 この実施の形態では、空調装置9の吹出口9fは、多段棚式植物育成装置3~8の前面よりも30mm以上後側にあるので、多段棚式植物育成装置3~8(育成モジュール)を通過して温められた空気と空調装置9で冷やされた空気が混合された状態で、スペースAに流れ込む。これにより、スペースAに流れ込む空気は、均一な温度の空気となり、各多段棚式植物育成装置3~8内に取り込まれることとなる。 In this embodiment, since the air outlet 9f of the air conditioner 9 is 30 mm or more behind the front of the multi-stage shelf type plant growing apparatuses 3 to 8, the multi-stage shelf type plant growing apparatuses 3 to 8 (growth modules) are installed. The air that has passed through and warmed and the air that has been cooled by the air conditioner 9 are mixed into the space A. As a result, the air flowing into the space A becomes air of a uniform temperature and is taken into the multistage shelf type plant growing apparatuses 3 to 8.
 空調装置9で冷やされた空気が直接スペースAに流れると、部分的に冷たい空気が多段棚式植物育成装置3~8の前面から取り込まれるため、多段棚式植物育成装置3~8間で温度のムラが発生してしまい、植物の成長が均一とならない。 When the air cooled by the air conditioner 9 flows directly into the space A, since the partially cold air is taken in from the front of the multi-shelf plant growing devices 3 to 8, the temperature between the multi-shelf plant growing devices 3 to 8 is increased. As a result, uneven plant growth occurs and plant growth is not uniform.
 この実施の形態では、空調装置本体9と風向制御板10とが一体となっているので、ダクト配管等を多く設置する必要がなく好ましい。 In this embodiment, since the air conditioner main body 9 and the wind direction control plate 10 are integrated, it is preferable that a large number of duct pipes and the like need not be installed.
 この多段棚式植物育成装置では、人工照明器13の熱が反射板を兼ねるボックス底板13eに伝達され、該底板13eから育苗スペースを流れる空気に伝わる。人工照明器13から上側の潅水トレイ31に伝わる熱は著しく少ない。そのため、潅水トレイ31上の養液の温度が所定範囲にコントロールされる。 In this multi-stage shelf type plant growing apparatus, the heat of the artificial illuminator 13 is transmitted to the box bottom plate 13e which also serves as a reflector, and is transmitted from the bottom plate 13e to the air flowing through the seedling raising space. The heat transferred from the artificial illuminator 13 to the upper irrigation tray 31 is extremely small. Therefore, the temperature of the nutrient solution on the irrigation tray 31 is controlled within a predetermined range.
 本発明では、すべての空調装置9の合計の冷房能力(Wb)とすべての照明装置(上記実施の形態では蛍光灯13c)の合計の消費電力(Wa)との比Wb/Waが1以上5以下であることが好ましく、1以上4以下であることがより好ましく、1以上3以下であることが更に好ましく、1以上2以下であることが特に好ましい。Wb/Waを上記の範囲とすることで、閉鎖空間内の環境を適正かつ一定に保つことが可能となり、さらに、空調のオンオフによる環境変化もより少なくすることが可能となる。蛍光灯などの照明装置1本当りの消費電力をWsとし、照明装置の本数をnとし、1基の空調装置の冷房能力をWkとし、空調装置の設置台数をmとした場合、Wb/Waは下記式のAで表わされる。 In the present invention, the ratio Wb / Wa between the total cooling capacity (Wb) of all the air conditioners 9 and the total power consumption (Wa) of all the lighting devices (fluorescent lamps 13c in the above embodiment) is 1 or more and 5 Is preferably 1 or more, 4 or less, more preferably 1 or more and 3 or less, and particularly preferably 1 or more and 2 or less. By setting Wb / Wa in the above range, the environment in the enclosed space can be kept appropriate and constant, and further, the environmental change due to the on / off of the air conditioning can be reduced. When the power consumption per lighting device such as a fluorescent lamp is Ws, the number of lighting devices is n, the cooling capacity of one air conditioning device is Wk, and the number of installed air conditioning devices is m, Wb / Wa Is represented by A in the following formula.
  A=Wb/Wa
   =(Wk×m)/(Ws×n)
  m:空調装置の台数(基)
  n:照明装置の本数(本)
A = Wb / Wa
= (Wk × m) / (Ws × n)
m: Number of air conditioners (base)
n: Number of lighting devices (pieces)
 上記実施の形態は本発明の一例であり、本発明はこれに限定されるものではない。例えば、閉鎖型建物構造物の部屋の大きさや、多段棚式植物育成装置の設置数は前記以外であってもよい。また、空調装置本体は、中心部以外に設置されてもよい。空調装置本体は2台以上設置されてもよいが、なるべく少数であることが好ましい。 The above embodiment is an example of the present invention, and the present invention is not limited to this. For example, the size of the room of the closed type building structure and the number of installed multi-stage shelf type plant growing devices may be other than the above. In addition, the air conditioner main body may be installed other than the central portion. Although two or more air conditioner main bodies may be installed, it is preferable that the number is as small as possible.
 以下、実施例及び比較例について説明する。以下の実施例及び比較例では、図1a~9に示す構造を有した苗栽培装置を用いて、閉鎖型建物構造物内の湿度を30~100%となるように設定し、トマトの苗を栽培した。 Hereinafter, examples and comparative examples will be described. In the following examples and comparative examples, using the seedling cultivation apparatus having the structure shown in FIGS. 1a to 9, the humidity in the closed building structure is set to be 30 to 100%, and the tomato seedlings are prepared. Cultivated.
[UV強度、光強度、光合成有効光量子束密度の測定]
 相馬光学株式会社製、分光放射照度計(製品名:S-2431 modelII)を使用し、栽培面における各波長領域の範囲におけるUV強度、光強度、光合成有効光量子束密度を測定した。分光放射照度計の受光面を、苗の葉の位置に、水平上向きに配置して測定を行った。
[Measurement of UV intensity, light intensity, photosynthesis effective photon flux density]
Using a spectral irradiance meter (product name: S-2431 model II) manufactured by Soma Optical Co., Ltd., UV intensity, light intensity, and photosynthetic effective photon flux density in the range of each wavelength region on the cultivation surface were measured. Measurement was performed by placing the light-receiving surface of the spectral irradiance meter horizontally upward at the position of the leaves of the seedlings.
[苗の生育評価]
 表1に示す条件で照明装置を使用した苗栽培装置を使用し、照明を1日あたり16時間点灯し、トマトの苗を12日育成した。生育状態について以下の基準で評価を行った。結果を表1に示す。
VG(非常に良い):葉こぶ症の発生が見られない。
G(良好):一部の苗に軽度の葉こぶ症の発生が見られる。(一部の苗の葉に突起状のこぶは発生するがその程度は軽微で、葉に重度の黄化や落葉は見られない。)
NG(不良):多くの苗に葉こぶ症が発生し、重篤な症状が見られる。(多くの苗の葉に突起状のこぶが発生し、葉の縮れや重度の黄化、落葉が発生。)
[Seedling growth evaluation]
Using the seedling cultivation apparatus using the lighting device under the conditions shown in Table 1, the lighting was turned on for 16 hours per day, and the tomato seedlings were grown for 12 days. The growth state was evaluated according to the following criteria. The results are shown in Table 1.
VG (very good): no occurrence of gallbladder.
G (good): Occurrence of mild gallbladder is observed in some seedlings. (Protruded humps appear on some seedling leaves, but the severity is slight, and the leaves are not severely yellowed or fallen.)
NG (poor): Many seedlings have gallbladder and severe symptoms are observed. (Many seedlings have protruding bumps, curling leaves, severe yellowing, and falling leaves.)
<実施例1~7、比較例1~4>
 閉鎖型建物構造物1(内法寸法:奥行450cm、横幅300cm、高さ240cm)内の完全閉鎖された空間内に5段3棚の多段棚式植物育成装置3を2基設置して、トマトの苗を栽培した(セルトレイ40の寸法:奥行60cm、幅30cm)。空調装置は、冷房能力14kWの空調装置を1台設置し、照明装置は、植物の栽培面において表1に示す波長特性を有する照明装置を使用した。得られた結果を表1に示す。
<Examples 1 to 7, Comparative Examples 1 to 4>
Two multi-shelf multi-shelf plant growing devices 3 are installed in a completely closed space in a closed building structure 1 (internal dimensions: depth 450 cm, width 300 cm, height 240 cm), and tomato Seedlings were cultivated (size of cell tray 40: depth 60 cm, width 30 cm). As the air conditioner, one air conditioner having a cooling capacity of 14 kW was installed, and the lighting device used was a lighting device having the wavelength characteristics shown in Table 1 on the plant cultivation surface. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の通り、実施例1、2および7は、葉こぶ症が発症せず、極めて良好な生育状態の苗を栽培することができた。実施例3~6は、葉こぶ症を若干発症したが、葉の黄化や落葉にまでは至らず、軽微な症状にとどまる結果であった。一方、295nm以上、320nm未満の栽培面UV強度が2.5μW/cmよりも低い比較例1~4では、良好な結果は得られなかった。具体的には、比較例1、2および4では、葉こぶ症が発症し、葉が黄化し落葉に至る重篤な生育障害が発生し、比較例3は、295nm未満の紫外線強度が多いことも相俟って、葉が縮れて死滅する結果であった。 As shown in Table 1, Examples 1, 2, and 7 did not develop lobulation, and could grow seedlings in a very good growth state. In Examples 3 to 6, although gallbladder was slightly developed, it did not lead to yellowing of leaves or defoliation, but only mild symptoms were observed. On the other hand, in Comparative Examples 1 to 4 where the UV intensity of the cultivated surface of 295 nm or more and less than 320 nm was lower than 2.5 μW / cm 2 , good results were not obtained. Specifically, in Comparative Examples 1, 2, and 4, gallbladder develops, severe growth failure occurs that leaves yellow and leaves fall, and Comparative Example 3 has a high UV intensity of less than 295 nm. Together, the result was that the leaves shrunk and died.
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。
 本出願は、2016年6月2日付で出願された日本特許出願2016-111043に基づいており、その全体が引用により援用される。
The above-described embodiment is an example of the present invention, and the present invention may be configured other than illustrated.
This application is based on Japanese Patent Application No. 2016-1111043 filed on Jun. 2, 2016, which is incorporated by reference in its entirety.
 1 閉鎖型建物構造物
 3~8 多段棚式植物育成装置
 3a 側面パネル
 3b 背面パネル
 3c 台座
 3e トップパネル
 9 空調装置
 9A 空調装置本体
 9a 取込口
 9b 吐出口
 9f 吹出口
 10 風向制御板
 10a 開口
 12 育苗棚
 13 人工照明器
 13a ボックス
 13b ソケット
 13c 蛍光灯
 13d 天板
 13e 底板
 13f 電気回路部材
 13g 電源ユニット
 13s スイッチ
 15 空気ファン
 16 炭酸ガスボンベ
 30,30’ 潅水装置
 31 潅水トレイ
 31d 底版
 32 排水溝
 32a 排水口
 33 給水管
 33a 小孔
 34 堰
 34a 切欠部
 35 リブ
 40 セルトレイ
 41 セル
 42 セル穴
 50 アンダートレイ
 51 小孔
 52 突起
DESCRIPTION OF SYMBOLS 1 Closed-type building structure 3-8 Multistage shelf type plant growing apparatus 3a Side panel 3b Back panel 3c Base 3e Top panel 9 Air conditioner 9A Air conditioner main body 9a Intake port 9b Discharge port 9f Outlet 10 Wind direction control board 10a Opening 12 Nursery shelf 13 Artificial illuminator 13a Box 13b Socket 13c Fluorescent lamp 13d Top plate 13e Bottom plate 13f Electric circuit member 13g Power supply unit 13s Switch 15 Air fan 16 Carbon dioxide gas cylinder 30, 30 'Irrigation device 31 Irrigation tray 31d Bottom plate 32 Drainage slot 32a 33 Water supply pipe 33a Small hole 34 Weir 34a Notch 35 Rib 40 Cell tray 41 Cell 42 Cell hole 50 Under tray 51 Small hole 52 Projection

Claims (8)

  1.  なす科の植物の苗を栽培する、照明装置を備えた栽培装置であって、
     該照明装置は、少なくとも450~660nmの波長領域の光を照射する半導体照明装置を含み、
     前記照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度が2.5μW/cm以上である苗栽培装置。
    A cultivation device equipped with a lighting device for cultivating seedlings of plants of the eggplant family,
    The illumination device includes a semiconductor illumination device that emits light in a wavelength region of at least 450 to 660 nm,
    The said illuminating device is a seedling cultivation apparatus whose UV intensity | strength of the wavelength range of 295 nm or more and less than 320 nm in a seedling cultivation surface is 2.5 microwatts / cm < 2 > or more.
  2.  前記照明装置は、前記苗の栽培面で測定される光合成有効光量子束密度が50μmol/m/sec以上である請求項1に記載の苗栽培装置。 The seedling cultivation device according to claim 1, wherein the lighting device has a photosynthetic effective photon flux density of 50 μmol / m 2 / sec or more as measured on the seedling cultivation surface.
  3.  前記栽培装置は、閉鎖型構造物の中に配置されており、
     前記閉鎖型構造物内を空調する空調装置が設けられており、
     前記苗に灌水する灌水装置が設けられている
     請求項1または2に記載の苗栽培装置。
    The cultivation device is arranged in a closed structure,
    An air conditioner for air conditioning the closed structure is provided;
    The seedling cultivation apparatus according to claim 1, wherein an irrigation apparatus for irrigating the seedling is provided.
  4.  前記閉鎖構造物内の湿度は30~100%である請求項3に記載の苗栽培装置。 The seedling cultivation apparatus according to claim 3, wherein the humidity in the closed structure is 30 to 100%.
  5.  前記照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度が500μW/cm以下である請求項1~4のいずれか1項に記載の苗栽培装置。 The seedling cultivation apparatus according to any one of claims 1 to 4, wherein the illumination device has a UV intensity of 500 μW / cm 2 or less in a wavelength region of 295 nm or more and less than 320 nm on a seedling cultivation surface.
  6.  前記照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度Iと、苗の栽培面における450~660nmの波長領域の光強度Iとの比I/Iが0.0001~0.01である請求項1~5のいずれか1項に記載の苗栽培装置。 The lighting device has a ratio I 1 / I 2 between the UV intensity I 1 in the wavelength region of 295 nm or more and less than 320 nm on the seedling cultivation surface and the light intensity I 2 in the wavelength region of 450 to 660 nm on the seedling cultivation surface. The seedling cultivation apparatus according to any one of claims 1 to 5, which is 0.0001 to 0.01.
  7.  請求項1~6のいずれか1項に記載の苗栽培装置を使用して、なす科の苗を栽培する苗栽培方法。 A seedling cultivation method for cultivating seedlings of an eggplant family using the seedling cultivation apparatus according to any one of claims 1 to 6.
  8.  前記苗は、トマト、ピーマン又はナスの苗である請求項7に記載の苗栽培方法。 The seedling cultivation method according to claim 7, wherein the seedling is a seedling of tomato, pepper or eggplant.
PCT/JP2017/019234 2016-06-02 2017-05-23 Cultivation system and cultivation method for solanaceae seedlings WO2017208906A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780027838.1A CN109152337B (en) 2016-06-02 2017-05-23 Seedling cultivation device and cultivation method for solanaceae
JP2018520822A JP7129906B2 (en) 2016-06-02 2017-05-23 Seedling cultivation method
AU2017274915A AU2017274915A1 (en) 2016-06-02 2017-05-23 Cultivation system and cultivation method for Solanaceae seedlings
JP2021193396A JP7238947B2 (en) 2016-06-02 2021-11-29 Solanaceae seedling cultivation apparatus and cultivation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-111043 2016-06-02
JP2016111043 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017208906A1 true WO2017208906A1 (en) 2017-12-07

Family

ID=60478425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019234 WO2017208906A1 (en) 2016-06-02 2017-05-23 Cultivation system and cultivation method for solanaceae seedlings

Country Status (4)

Country Link
JP (2) JP7129906B2 (en)
CN (1) CN109152337B (en)
AU (1) AU2017274915A1 (en)
WO (1) WO2017208906A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208279A1 (en) * 2018-04-23 2019-10-31 株式会社プランテックス Cultivation device
WO2020013011A1 (en) * 2018-07-13 2020-01-16 三菱ケミカルアグリドリーム株式会社 Cultivation device and cultivation method for solanaceous seedlings
WO2020012642A1 (en) * 2018-07-13 2020-01-16 マイクロコーテック株式会社 Artificial cultivation device
KR20200033039A (en) * 2018-09-19 2020-03-27 주식회사 디엠케이 Plant Cultivation System
JP2020145975A (en) * 2019-03-14 2020-09-17 タキイ種苗株式会社 Method for suppressing bullous disease in plants, plant production method, and suppressing device for bullous disease in plants
WO2020227681A1 (en) 2019-05-09 2020-11-12 80 Acres Urban Agriculture Inc. Method and apparatus for high-density indoor farming
JP2021145620A (en) * 2020-03-19 2021-09-27 西日本電信電話株式会社 Lighting control device for plant factory, lighting control method, and lighting control program
US11638402B2 (en) 2019-05-13 2023-05-02 80 Acres Urban Agriculture Inc. System and method for controlling indoor farms remotely and user interface for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4378301A1 (en) * 2022-12-01 2024-06-05 Bilberry Sp. z o.o. A device and a method for illuminating and growing tomato plants in confined spaces without natural light and in greenhouse conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094109A (en) * 2008-10-20 2010-04-30 Panasonic Electric Works Co Ltd Lighting system for preventing plant disease damage
JP2013123417A (en) * 2011-12-15 2013-06-24 Panasonic Corp Illuminating device for plant growth disease control
WO2015137825A1 (en) * 2014-03-14 2015-09-17 Biolumic Limited Method to improve crop yield and/or quality
JP2016007185A (en) * 2014-06-26 2016-01-18 広島県 Tomato seedling raising method, seedling raising apparatus and plant factory

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316380A (en) 1999-05-12 2000-11-21 Koito Ind Ltd Plant raising unit
JP2003339236A (en) 2002-05-29 2003-12-02 Matsushita Electric Works Ltd Lighting device and apparatus for plant growth, and method for plant growth
EP1543718B1 (en) * 2002-09-20 2007-07-11 Taiyo Kogyo Co., Ltd. System for culturing seedling
CA2529096C (en) * 2003-06-27 2011-09-20 Taiyo Kogyo Co., Ltd. Apparatus for producing seedlings and method of producing seedlings
JP4887709B2 (en) * 2005-09-27 2012-02-29 パナソニック電工株式会社 Method and apparatus for increasing yield of plant polyphenols
JP2013236562A (en) * 2012-05-11 2013-11-28 Panasonic Corp Insect pest disinfestation lighting device
JP6123495B2 (en) * 2013-05-31 2017-05-10 三菱樹脂アグリドリーム株式会社 Multistage shelf type plant growing device and plant growing system
WO2015178046A1 (en) * 2014-05-21 2015-11-26 三菱樹脂アグリドリーム株式会社 Plant cultivation method and equipment
JP2016202050A (en) 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094109A (en) * 2008-10-20 2010-04-30 Panasonic Electric Works Co Ltd Lighting system for preventing plant disease damage
JP2013123417A (en) * 2011-12-15 2013-06-24 Panasonic Corp Illuminating device for plant growth disease control
WO2015137825A1 (en) * 2014-03-14 2015-09-17 Biolumic Limited Method to improve crop yield and/or quality
JP2016007185A (en) * 2014-06-26 2016-01-18 広島県 Tomato seedling raising method, seedling raising apparatus and plant factory

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019208279A1 (en) * 2018-04-23 2021-07-15 株式会社プランテックス Cultivation equipment
WO2019208279A1 (en) * 2018-04-23 2019-10-31 株式会社プランテックス Cultivation device
JP7403442B2 (en) 2018-04-23 2023-12-22 株式会社プランテックス cultivation equipment
JPWO2020013011A1 (en) * 2018-07-13 2021-08-02 三菱ケミカルアグリドリーム株式会社 Cultivation equipment and cultivation method for solanaceous plant seedlings
WO2020013011A1 (en) * 2018-07-13 2020-01-16 三菱ケミカルアグリドリーム株式会社 Cultivation device and cultivation method for solanaceous seedlings
JPWO2020012642A1 (en) * 2018-07-13 2021-07-15 マイクロコーテック株式会社 Artificial cultivation equipment
CN112423580A (en) * 2018-07-13 2021-02-26 三菱化学农业梦想株式会社 Cultivation device and cultivation method for seedlings of solanaceae plants
EP3821698A4 (en) * 2018-07-13 2021-09-01 Mitsubishi Chemical Agri Dream Co., Ltd. Cultivation device and cultivation method for solanaceous seedlings
JP7472788B2 (en) 2018-07-13 2024-04-23 三菱ケミカルアクア・ソリューションズ株式会社 Apparatus and method for cultivating seedlings of solanaceae plants
WO2020012642A1 (en) * 2018-07-13 2020-01-16 マイクロコーテック株式会社 Artificial cultivation device
CN112423580B (en) * 2018-07-13 2023-05-12 三菱化学水解决方案株式会社 Cultivation device and cultivation method for seedlings of Solanaceae plants
KR102128166B1 (en) 2018-09-19 2020-06-29 주식회사 디엠케이 Plant Cultivation System
KR20200033039A (en) * 2018-09-19 2020-03-27 주식회사 디엠케이 Plant Cultivation System
JP2020145975A (en) * 2019-03-14 2020-09-17 タキイ種苗株式会社 Method for suppressing bullous disease in plants, plant production method, and suppressing device for bullous disease in plants
JP7137739B2 (en) 2019-03-14 2022-09-15 タキイ種苗株式会社 Method for suppressing bulla in plants, method for producing plants, and device for suppressing bulla in plants
WO2020227681A1 (en) 2019-05-09 2020-11-12 80 Acres Urban Agriculture Inc. Method and apparatus for high-density indoor farming
EP3965559A4 (en) * 2019-05-09 2023-04-26 80 Acres Urban Agriculture Inc. Method and apparatus for high-density indoor farming
JP2022532197A (en) * 2019-05-09 2022-07-13 80・エーカーズ・アーバン・アグリカルチャー・インコーポレイテッド Methods and equipment for high density indoor farming
US11672209B2 (en) 2019-05-09 2023-06-13 80 Acres Urban Agriculture Inc. Apparatus for high-density indoor farming
AU2020267770B2 (en) * 2019-05-09 2023-12-21 80 Acres Urban Agriculture Inc. Method and apparatus for high-density indoor farming
JP7486524B2 (en) 2019-05-09 2024-05-17 80・エーカーズ・アーバン・アグリカルチャー・インコーポレイテッド Methods and Apparatus for High Density Indoor Agriculture
US11638402B2 (en) 2019-05-13 2023-05-02 80 Acres Urban Agriculture Inc. System and method for controlling indoor farms remotely and user interface for same
JP7002586B2 (en) 2020-03-19 2022-01-20 西日本電信電話株式会社 Lighting control devices, lighting control methods, and lighting control programs for plant factories
JP2021145620A (en) * 2020-03-19 2021-09-27 西日本電信電話株式会社 Lighting control device for plant factory, lighting control method, and lighting control program

Also Published As

Publication number Publication date
AU2017274915A1 (en) 2018-12-20
JP7129906B2 (en) 2022-09-02
JP7238947B2 (en) 2023-03-14
CN109152337B (en) 2022-07-19
JPWO2017208906A1 (en) 2019-05-16
AU2017274915A8 (en) 2019-01-17
CN109152337A (en) 2019-01-04
JP2022022299A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2017208906A1 (en) Cultivation system and cultivation method for solanaceae seedlings
JP6760436B2 (en) Plant cultivation methods and facilities
JP6123495B2 (en) Multistage shelf type plant growing device and plant growing system
JP6056929B1 (en) Cultivation apparatus and cultivation method
US20210137022A1 (en) Cultivation apparatus and cultivation method for solanaceae seedlings
WO2018163629A1 (en) Rice seedling cultivation device and rice seedling cultivation method
WO2012108365A1 (en) Lighting device, strawberry cultivation system and strawberry cultivation method
JP7087082B2 (en) Multi-functional seedling raising device
KR101934482B1 (en) Plant Grower Cooling System with Vaporizing Heat Cooling
JP6676898B2 (en) Cultivation apparatus and cultivation method
JP4169925B2 (en) Plant environmental equipment
WO2022210552A1 (en) Method for raising seedlings, system for raising seedlings, and seedlings
JPH01235525A (en) Hydroponics and growing bed and growing pot to be used therein
JP2022159002A (en) Seedling raising method, seedling raising system and seedling
JPH01225422A (en) Building for perfect control type plant factory
WO2023172120A1 (en) Vertical hydroponic system with climate control for horticultural production

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018520822

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017274915

Country of ref document: AU

Date of ref document: 20170523

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17806463

Country of ref document: EP

Kind code of ref document: A1