JPWO2017208906A1 - Seedling cultivation apparatus and cultivation method of eggplant family - Google Patents

Seedling cultivation apparatus and cultivation method of eggplant family Download PDF

Info

Publication number
JPWO2017208906A1
JPWO2017208906A1 JP2018520822A JP2018520822A JPWO2017208906A1 JP WO2017208906 A1 JPWO2017208906 A1 JP WO2017208906A1 JP 2018520822 A JP2018520822 A JP 2018520822A JP 2018520822 A JP2018520822 A JP 2018520822A JP WO2017208906 A1 JPWO2017208906 A1 JP WO2017208906A1
Authority
JP
Japan
Prior art keywords
seedling
cultivation
seedlings
less
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018520822A
Other languages
Japanese (ja)
Other versions
JP7129906B2 (en
Inventor
布施 順也
順也 布施
徳 呉
徳 呉
中南 暁夫
暁夫 中南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Agri Dream Co Ltd
Original Assignee
Mitsubishi Chemical Agri Dream Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Agri Dream Co Ltd filed Critical Mitsubishi Chemical Agri Dream Co Ltd
Publication of JPWO2017208906A1 publication Critical patent/JPWO2017208906A1/en
Priority to JP2021193396A priority Critical patent/JP7238947B2/en
Application granted granted Critical
Publication of JP7129906B2 publication Critical patent/JP7129906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Abstract

生育障害「葉こぶ症」が抑制され、品質の良いなす科の苗が安定して生産される苗栽培装置及び栽培方法が提供される。なす科の植物の苗を栽培する、照明装置を備えた栽培装置であって、前記照明装置は、少なくとも450〜660nmの波長領域の光を照射する半導体照明装置を含み、該照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度が2.5μW/cm2以上である苗栽培装置。照明装置は、前記苗の栽培面で測定する光合成有効光量子束密度が好ましくは50μmol/m2/sec以上である。There is provided a seedling cultivation apparatus and a cultivation method in which a growth disorder "lobb" is suppressed and seedlings of a high quality family are stably produced. An apparatus for cultivating seedlings of plants of a family of eggplants, comprising: a semiconductor illumination apparatus for emitting light in a wavelength range of at least 450 to 660 nm, the illumination apparatus comprising: The seedling cultivation apparatus whose UV intensity of a wavelength area of 295 nm or more and less than 320 nm in a cultivation side of 2.5 is 2.5 microwatts / cm2 or more. The illumination device preferably has a photosynthetically active photon flux density measured on the cultivation surface of the seedlings of 50 μmol / m 2 / sec or more.

Description

本発明は、なす科の苗を栽培するための栽培装置及び栽培方法に関し、より詳しくは、なす科の苗を栽培する際の生育障害を抑制する栽培装置及び栽培方法に関する。   The present invention relates to a cultivation apparatus and a cultivation method for cultivating seedlings of an eggplant family, and more particularly to a cultivation apparatus and a cultivation method for suppressing a growth disorder when cultivating seedlings of an eggplant family.

各種植物の苗の生産は、従来は、園芸作物農家では自家生産が主流であった。しかしながら、各種植物の苗の生産に要する技術が高度であり、手間がかかり繁雑であることから、購入苗を利用するように変化してきた。これは、近年の農家の高齢化や労働力不足の進行、園芸作物農家の企業化や規模の拡大化の進行に起因しており、農業は購入苗の利用による省力化や、園芸作物の生産のみに専念する専業化の傾向が同時に進んでいるからである。このような状況下で、近年、購入苗に対する需要が増加しており、苗の生産のみに専念する農家や苗の生産を業とする企業も増加してきた。   In the past, in the case of horticultural crop farmers, in-house production has been mainstream for the production of seedlings of various plants. However, the technology required for the production of seedlings of various plants is advanced and time-consuming and complicated, and therefore, it has been changed to use purchased seedlings. This is due to the aging of farmers and the shortage of labor in recent years, the progress of industrialization and expansion of horticultural crop farmers, and agriculture is labor saving by using purchased seedlings, and production of horticultural crops. This is because the tendency of professionalization to concentrate only on is progressing at the same time. Under these circumstances, in recent years, the demand for purchased seedlings has been increasing, and farmers who are dedicated to only seedling production and companies that are engaged in seedling production are also increasing.

苗生産者が専業農家や大規模な企業であっても、苗の生産は、(A)屋外で自然光を利用して生産する方法、(B)温室内で自然光を利用して生産する方法、および、(C)閉鎖型環境下で生産する方法(特許文献1または2)、などによって行われている。(A)および(B)の方法で苗を生産する際には、天候、特に日射量の多寡によって大きな影響を受けていた。例えば、夏季の強い日射と高温は苗生産を困難とし、それを避けるために高冷地で育苗しなければならない植物もある。また、(B)の方法では、夏季の強い日射で温室内が高温となり、苗の順調な生産が困難となり、苗の商品化率、温室の稼働率などが低下し、ひいては苗の生産コストが上昇する。このように、苗の生産及び苗質は、天候の影響を受け易い。   Even if the seedling producer is a full-time farmer or a large-scale company, the production of seedlings is (A) a method of producing using natural light outdoors, (B) a method of producing using natural light in a greenhouse, And (C) a method of producing in a closed environment (Patent Document 1 or 2) or the like. When producing seedlings by the methods of (A) and (B), it was greatly affected by the weather, particularly the amount of solar radiation. For example, strong sunlight and high temperatures in summer make seedling production difficult, and some plants have to be raised in the highlands to avoid it. Moreover, in the method (B), the temperature in the greenhouse becomes high due to strong solar radiation in the summer, making it difficult to produce seedlings properly, the rate of commercialization of seedlings, the rate of operation of the greenhouse, etc. decrease and, consequently, the cost of producing seedlings To rise. Thus, seedling production and seed quality are susceptible to the weather.

上記(C)の苗生産方法は、自然光を透過しない断熱壁で閉鎖された構造物の中で、空調装置、人工光源、炭酸ガス施肥装置や灌水装置を備えた閉鎖型の人工的な環境下で、高品質な苗を生産する方法である。閉鎖型環境下では、苗生産に必要な空間は、光質、光照射強度、照射時間、温度、湿度、炭酸ガス濃度、灌水量、施肥濃度などの種々の環境条件を、苗の生育に最適な状態に調節することが可能である。   The above-mentioned seedling production method (C) is a closed type artificial environment equipped with an air conditioner, an artificial light source, a carbon dioxide gas fertilizing device and a watering device in a structure closed by an insulating wall which does not transmit natural light. Is a method of producing high quality seedlings. In a closed environment, the space required for seedling production is optimal for seedling growth under various environmental conditions such as light quality, light irradiation intensity, irradiation time, temperature, humidity, carbon dioxide concentration, irrigation volume, fertilization concentration, etc. It is possible to adjust to the

近年、なす科の苗の栽培においても、上記(C)の生産方法の普及が進みつつあるなかで、さまざまな生育障害が発生することが報告され始めている。なかでも、原因が明確となっていない生育障害として、苗の葉や茎などに突起状のこぶが生じ、重症化すると葉の縮れや、葉の黄化から落葉にいたる症状が見られる生育障害である、いわゆる「葉こぶ症」が報告されるようになってきた。   In recent years, it has also been reported that various growth disorders occur in the growing of the production method of the above (C) even in the cultivation of the seedlings of the eggplant family. Among them, as the growth disorder whose cause is not clear, there are protuberance-like bumps on the leaves and stems of the seedling, and when it becomes severe, the growth disorder in which symptoms such as leaf frizzling and leaf yellowing to deciduous leaves are seen That is, so-called “lobb” has come to be reported.

特開2001−346450号公報JP 2001-346450 A 特開2008−212078号公報JP, 2008-212078, A

本発明は、上記の問題を解決し、生育障害「葉こぶ症」を抑制し、品質の良いなす科の苗を安定して生産することができる苗栽培装置及び栽培方法を提供することを目的とする。   An object of the present invention is to provide a seedling cultivation apparatus and a cultivation method capable of solving the above-mentioned problems and suppressing the growth disorder "lobb" and stably producing a high quality nursery of a family. I assume.

本発明者は、上記課題を解決すべく研究を重ねた結果、苗の栽培面において、照明装置が少なくとも450〜660nmの波長領域を照射する半導体照明装置を備え、295nm以上320nm未満の波長領域のUV強度が2.5μW/cm以上の照明装置を用いることにより、なす科の苗の葉や茎に発生する葉こぶ症が抑制されることを見出した。本発明はかかる知見に基づくものであり、下記を要旨とする。As a result of repeated researches to solve the above-mentioned problems, the present inventor has provided a semiconductor lighting device for irradiating a wavelength range of at least 450 to 660 nm in the cultivation aspect of seedlings, and the wavelength range of 295 nm to less than 320 nm. It has been found that, by using a lighting device having a UV intensity of 2.5 μW / cm 2 or more, the leaf blight caused on the leaves and stems of the seedlings of the eggplant family is suppressed. The present invention is based on such findings and has the following gist.

[1] なす科の植物の苗を栽培する、照明装置を備えた栽培装置であって、該照明装置は、少なくとも450〜660nmの波長領域の光を照射する半導体照明装置を含み、前記照明装置は、苗の栽培面における295nm以上320nm未満の波長領域のUV強度が2.5μW/cm以上である苗栽培装置。[1] A cultivation apparatus provided with an illumination apparatus for cultivating seedlings of a plant of the family of the eggplant family, the illumination apparatus including a semiconductor illumination apparatus for emitting light in a wavelength range of at least 450 to 660 nm, the illumination apparatus The seedling cultivation apparatus whose UV intensity of a wavelength range of 295 nm or more and less than 320 nm in a cultivation side of a seedling is 2.5 microwatts / cm < 2 > or more.

[2] 前記照明装置は、前記苗の栽培面で測定される光合成有効光量子束密度が50μmol/m/sec以上である[1]に記載の苗栽培装置。[2] The seedling cultivation apparatus according to [1], wherein the lighting device has a photosynthetically active photon flux density measured on the cultivation surface of the seedling of 50 μmol / m 2 / sec or more.

[3] 前記栽培装置は、閉鎖型構造物の中に配置されており、前記閉鎖型構造物内を空調する空調装置が設けられており、前記苗に灌水する灌水装置が設けられている[1]または[2]に記載の苗栽培装置。 [3] The cultivating apparatus is disposed in a closed structure, an air conditioner for air conditioning the inside of the closed structure is provided, and a watering device for watering the seedlings is provided. 1) or the seedling cultivation apparatus as described in [2].

[4] 前記閉鎖構造物内の湿度は30〜100%である[3]に記載の苗栽培装置。 [4] The apparatus for cultivating seedlings according to [3], wherein the humidity in the closed structure is 30 to 100%.

[5] 前記照明装置は、苗の栽培面における295nm以上320nm未満の波長領域のUV強度が500μW/cm以下である[1]〜[4]のいずれかに記載の苗栽培装置。[5] The seedling cultivation apparatus according to any one of [1] to [4], wherein the illumination device has a UV intensity of 500 μW / cm 2 or less in a wavelength range of 295 nm or more and less than 320 nm on a cultivation surface of seedlings.

[6] 前記照明装置は、苗の栽培面における295nm以上320nm未満の波長領域のUV強度Iと、苗の栽培面における450〜660nmの波長領域の光強度Iとの比I/Iが0.0001〜0.01である[1]〜[5]のいずれかに記載の苗栽培装置。[6] The lighting device has a ratio I 1 / I of UV intensity I 1 in a wavelength range of 295 nm or more and less than 320 nm on the cultivation surface of seedlings and light intensity I 2 in a wavelength range of 450 to 660 nm in the cultivation surface of seedlings. The seedling cultivation apparatus in any one of [1]-[5] whose 2 is 0.0001-0.01.

[7] [1]〜[6]のいずれかに記載の苗栽培装置を使用して、なす科の苗を栽培する苗栽培方法。 [7] A method for cultivating seedlings of an eggplant family using the apparatus for cultivating seedlings according to any one of [1] to [6].

[8] 前記苗は、トマト、ピーマン又はナスの苗である[7]に記載の苗栽培方法。 [8] The method for cultivating seedlings according to [7], wherein the seedlings are seedlings of tomatoes, peppers or eggplants.

本発明のなす科の苗栽培装置によると、なす科の苗の葉や茎に発生する葉こぶ症を抑制し、高品質な苗を安定して生産することができる。   According to the nursery cultivation apparatus of the present invention of the present invention, it is possible to suppress the gallbing caused on the leaves and stems of the seedlings of the eggplant family and stably produce high quality seedlings.

図1a,1bは、実施の形態に係る栽培装置の水平断面図であり、図1aは図2bのIa−Ia線断面図、図1bは図2bのIb−Ib線断面図である。1a and 1b are horizontal cross-sectional views of the culture apparatus according to the embodiment, FIG. 1a is a cross-sectional view taken along line Ia-Ia of FIG. 2b, and FIG. 1b is a cross-sectional view taken along line Ib-Ib of FIG. 図2aは図1aのIIa−IIa線断面図、図2bは図1aのIIb−IIb線断面図である。2a is a cross-sectional view taken along line IIa-IIa of FIG. 1a, and FIG. 2b is a cross-sectional view taken along line IIb-IIb of FIG. 1a. 図3は実施の形態に係る多段棚式植物育成装置の正面図である。FIG. 3: is a front view of the multistage shelf type plant growing apparatus which concerns on embodiment. 図4は図3のIV−IV線断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 図5は実施の形態に係る多段棚式植物育成装置のトレイの平面図である。FIG. 5: is a top view of the tray of the multistage shelf type plant growing apparatus which concerns on embodiment. 図6は図5のトレイの斜視図である。6 is a perspective view of the tray of FIG. 5; 図7は図5のVII−VII線断面図である。7 is a cross-sectional view taken along line VII-VII of FIG. 図8は人工照明器の底面図である。FIG. 8 is a bottom view of the artificial illuminator. 図9は図8のIX−IX線断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX of FIG. 図10は別の実施の形態に係る多段棚式植物育成装置のトレイの断面図である。FIG. 10 is a cross-sectional view of a tray of a multistage shelf type plant growing apparatus according to another embodiment.

本発明の苗栽培装置は、なす科の植物の苗を栽培するためのものであり、照明装置を備える。該照明装置は、少なくとも450〜660nmの波長領域を照射する半導体照明装置を備え、苗の栽培面における295nm以上320nm未満の波長領域のUV強度が2.5μW/cm以上である。
本発明では、UV光等の「苗の栽培面における光強度」(以下、「栽培面UV強度」又は「栽培面光強度」ということがある。)は、苗の葉の位置に分光放射照度計の受光面を水平かつ上向きに配置して測定された値である。
照明装置による苗への光の照射時間は、1日当り8〜20時間、特に12〜18時間程度が好ましい。
An apparatus for cultivating seedlings according to the present invention is for cultivating seedlings of plants of an eggplant family, and includes a lighting device. The illumination device comprises a semiconductor illumination device for irradiating a wavelength region of at least 450 to 660 nm, and the UV intensity in the wavelength region of 295 nm or more and less than 320 nm on the seedling cultivation surface is 2.5 μW / cm 2 or more.
In the present invention, “light intensity on the cultivation surface of the seedling” such as UV light (hereinafter sometimes referred to as “cultivation surface UV intensity” or “cultivation surface light intensity”) is the spectral irradiance at the seedling leaf position. It is a value measured by arranging the light receiving surface of the meter horizontally and upward.
The irradiation time of the light to the seedlings by the lighting device is preferably 8 to 20 hours per day, particularly about 12 to 18 hours.

なす科の植物としては、トマト、ナス、ピーマン、パプリカ、シシトウ、トウガラシ、ハバネロ、ハラペーニョなどが挙げられるが、特にトマト、ピーマン及びナスとりわけトマトが好適である。   The plants of the family of the family of the eggplant include tomatoes, eggplants, peppers, paprika, peppers, peppers, peppers, habanero, jalapenos, etc. Particularly preferred are tomatoes, peppers and eggplants, especially tomatoes.

本発明の苗栽培装置で用いる照明装置は、295nm以上320nm未満の波長領域における栽培面UV強度が2.5μW/cm以上であり、3.0μW/cm以上であることが好ましく、4.0μW/cm以上であることがより好ましく、6.0μW/cm以上であることが更に好ましく、10μW/cm以上であることが特に好ましい。295nm以上320nm未満の波長領域の栽培面UV強度を上記範囲とすることで、なす科の苗の葉や茎に発生する葉こぶ症を抑制し、正常な苗を安定して生産することができる。Lighting apparatus used in the seedling culture apparatus of the present invention is cultivated surface UV intensity in the wavelength region of less than 320nm or 295nm is 2.5μW / cm 2 or more, preferably 3.0μW / cm 2 or more, 4. more preferably 0μW / cm 2 or more, still more preferably 6.0μW / cm 2 or more, and particularly preferably 10 .mu.W / cm 2 or more. By setting the cultivation surface UV intensity in the wavelength range of 295 nm or more and less than 320 nm to the above range, it is possible to suppress the gallbing caused on the leaves and stems of the eggplant seedlings and stably produce normal seedlings. .

295nm以上320nm未満の波長領域における栽培面UV強度の上限は、特に限定されないが、紫外線による苗へのダメージや栽培作業中の作業者の眼や皮膚への影響を考慮すると、500μW/cm以下であることが好ましく、400μW/cm以下であることがより好ましく、300μW/cm以下であることが更に好ましく、200μW/cm以下であることが特に好ましい。The upper limit of the cultivation surface UV intensity in the wavelength region of 295 nm or more and less than 320 nm is not particularly limited, but considering the damage to seedlings by ultraviolet light and the influence on the eyes and skin of workers during cultivation work, 500 μW / cm 2 or less it is preferably, more preferably 400 W / cm 2 or less, further preferably 300 [mu] W / cm 2 or less, particularly preferably 200μW / cm 2 or less.

本発明の苗栽培装置で用いる照明装置は、波長が320nm以上、具体的には320nm以上340nm未満の波長領域における栽培面UV強度が0.5μW/cm以上であることが好ましく、1.0μW/cm以上であることがより好ましく、1.5μW/cm以上であることが更に好ましく、2.0μW/cm以上であることが特に好ましい。320nm以上340nm未満の波長領域の栽培面UV強度を上記範囲とすることで、苗の葉や茎に発生する葉こぶ症をさらに抑制することができる。The illumination device used in the seedling cultivation apparatus of the present invention preferably has a cultivation surface UV intensity of 0.5 μW / cm 2 or more in a wavelength range of 320 nm or more, specifically 320 nm or more and less than 340 nm, 1.0 μW / more preferably cm 2 or more, further preferably 1.5MyuW / cm 2 or more, and particularly preferably 2.0MyuW / cm 2 or more. By setting the cultivation surface UV intensity in the wavelength region of 320 nm or more and less than 340 nm to the above range, it is possible to further suppress the gallbing that occurs on the leaves and stems of the seedlings.

320nm以上340nm未満の波長領域の栽培面UV強度の上限は、特に規定することはないが、栽培作業中の作業者の眼や皮膚への影響を考慮すると、300μW/cm以下であることが好ましく、250μW/cm以下であることがより好ましく、200μW/cm以下であることが更に好ましい。The upper limit of the cultivation surface UV intensity in the wavelength region of 320 nm or more and less than 340 nm is not particularly specified, but it is 300 μW / cm 2 or less considering the influence on the eyes and skin of the worker during cultivation work preferably, more preferably 250 .mu.W / cm 2 or less, still more preferably 200μW / cm 2 or less.

本発明の苗栽培装置で用いる照明装置は、波長が295nm未満、具体的には280nm以上295nm未満における栽培面UV強度が5.0μW/cm以下であることが好ましく、3.0μW/cm以下であることがより好ましく、1.5μW/cm以下であることが更に好ましく、1.0μW/cm以下であることが特に好ましい。280nm以上295nm未満の波長領域の栽培面UV強度を上記範囲とすることで、紫外線による苗へのダメージにより、葉の丸まり、縮れ、死滅などのUV障害の発生を抑制することができる。The illumination device used in the seedling cultivation apparatus of the present invention preferably has a cultivation surface UV intensity of 5.0 μW / cm 2 or less at a wavelength of less than 295 nm, specifically 280 nm or more and less than 295 nm, 3.0 μW / cm 2 more preferably less, further preferably 1.5μW / cm 2 or less, particularly preferably 1.0μW / cm 2 or less. By setting the cultivation surface UV intensity in the wavelength region of 280 nm or more and less than 295 nm in the above range, it is possible to suppress the occurrence of UV damage such as curling, shrinking, and death of leaves due to damage to seedlings by ultraviolet light.

280nm以上295nm未満の波長領域の栽培面UV強度の下限値は、特に限定されることはなく、ゼロに近い程好ましい。   The lower limit value of the cultivation surface UV intensity in the wavelength region of 280 nm or more and less than 295 nm is not particularly limited, and the closer to zero, the more preferable.

本発明の苗栽培装置で用いる照明装置は、450〜660nmの波長領域の栽培面光強度が4000μW/cm以上であることが好ましく、4500μW/cm以上であることがより好ましく、5000μW/cm以上であることが更に好ましく、6000μW/cm以上であることが特に好ましい。また、450〜660nmの波長領域において光強度がゼロとなる波長領域がないことが好ましい。波長450〜660nmの栽培面光強度を上記範囲とすることで、苗の葉や茎への葉こぶ症の発症を抑制しつつ、苗の形態形成に異常をきたすことを抑制し、正常な苗をより安定して栽培することが可能となる。It is preferable that the cultivation surface light intensity of a 450-660 nm wavelength area is 4000 microwatts / cm < 2 > or more, as for the illuminating device used with the seedling cultivation apparatus of this invention, it is more preferable that it is 4500 microwatts / cm < 2 > or more, 5000 micrometers W / cm. more preferably 2 or more, and particularly preferably 6000μW / cm 2 or more. Moreover, it is preferable that there is no wavelength range where light intensity becomes zero in the wavelength range of 450 to 660 nm. By setting the cultivation surface light intensity at a wavelength of 450 to 660 nm in the above-mentioned range, it is possible to suppress the occurrence of abnormality in the morphogenesis of the seedling while suppressing the onset of leaf blight to the leaves and stems of the seedling. It becomes possible to grow more stably.

波長450〜660nmの栽培面光強度の上限は、特に限定されないが、葉焼けなどの生育障害の発生を抑制するという観点から、60000μW/cm以下であることが好ましく、50000μW/cm以下であることがより好ましく、40000μW/cm以下であることが更に好ましく、30000μmW/cm以下であることが特に好ましい。The upper limit of the cultivation surface light intensity of the wavelength 450~660nm is not particularly limited, from the viewpoint of suppressing the generation of growth disorders such as leaf scorch, is preferably 60000μW / cm 2 or less, 50000μW / cm 2 or less Is more preferably 40000 μW / cm 2 or less, and particularly preferably 30000 μmW / cm 2 or less.

本発明の苗栽培装置で用いる照明装置は、295nm以上、320nm未満の波長領域における栽培面UV強度Iと、450〜660nmの波長領域における栽培面光強度Iとの比Kの値が、1/10000〜1/100すなわち0.0001〜0.01であることが好ましい。Kを上記の範囲とすることで、苗の葉や茎への葉こぶ症の発症を抑制しつつ、苗の形態形成に異常をきたすことを抑制し、より正常な苗を栽培することが可能となり好ましい。Kは下記式で表される。
K =I/I
The illumination device used in the seedling cultivation apparatus of the present invention has a value of ratio K of cultivation surface UV intensity I 1 in a wavelength range of 295 nm or more and less than 320 nm and cultivation surface light intensity I 2 in a wavelength range of 450 to 660 nm. It is preferable that it is 1/10000 to 1/100, ie, 0.0001 to 0.01. By setting K to the above-mentioned range, it is possible to suppress the occurrence of abnormality in seedling morphogenesis while cultivating a more normal seedling while suppressing the onset of leaf blight to the leaves and stems of the seedling And is preferable. K is represented by the following formula.
K = I 1 / I 2

本発明の苗栽培装置で用いる照明装置は、少なくとも450〜660nmの波長領域の光を照射する半導体照明装置を備えている。該半導体照明装置は、400〜480nmの範囲に第1発光ピーク波長を有していることが好ましい。400〜480nmの範囲に第1の発光ピーク波長を有することで、苗の節間伸長を抑制し、胚軸が短くしっかりした苗を栽培することが可能となる。   The illuminating device used by the seedling cultivation apparatus of this invention is equipped with the semiconductor illuminating device which irradiates the light of a wavelength range of at least 450-660 nm. The semiconductor lighting device preferably has a first emission peak wavelength in the range of 400 to 480 nm. By having the first emission peak wavelength in the range of 400 to 480 nm, it is possible to suppress internode elongation of the seedlings and grow seedlings having a short and stable hypocotyl.

該半導体照明装置は、好ましくは、500〜620nmの範囲、より好ましくは500〜610nmの範囲、更に好ましくは500〜600nmの範囲に第2の発光ピーク波長を有する。第2の発光ピーク波長は、半値幅が100nm以上であることが好ましく、120nm以上であることがより好ましく、140nm以上であることが更に好ましい。半導体照明装置の第2の発光ピーク波長を上記の範囲とすることで、苗の形態形成に異常をきたすことを抑制し、正常な苗をより効率よく栽培することが可能となる。   The semiconductor lighting device preferably has a second emission peak wavelength in the range of 500 to 620 nm, more preferably in the range of 500 to 610 nm, still more preferably in the range of 500 to 600 nm. The half width of the second emission peak wavelength is preferably 100 nm or more, more preferably 120 nm or more, and still more preferably 140 nm or more. By setting the second emission peak wavelength of the semiconductor lighting device in the above-described range, it is possible to suppress anomalous formation of seedlings and to grow normal seedlings more efficiently.

本発明の苗栽培装置は、少なくとも一部の照明装置が上述するUV光を照射する照明装置であればよい。例えば、使用する照明装置の全てが上述するUV照射機能を有する照明装置であってもよく、使用する照明装置のうち、いくつかの照明装置は上述するUV照射機能を有するものとし、残りの照明装置は上述のUV照射機能を有しないものであってもよい。UV強度が高い照明装置と、UV強度が低い又はUV光を照射しない照明装置とを併用してもよい。   The seedling cultivation apparatus of the present invention may be an illumination device that emits UV light as described above in at least a part of the illumination devices. For example, all of the lighting devices used may be the lighting devices having the UV irradiation function described above, and among the lighting devices used, some lighting devices have the UV irradiation function described above, and the remaining lights The device may not have the UV irradiation function described above. An illuminator having a high UV intensity may be used in combination with an illuminator having a low UV intensity or not emitting UV light.

本発明の苗栽培装置は、前記苗の栽培面で測定される光合成有効光量子束密度が、50μmol/m/sec以上であることが好ましく、100μmol/m/sec以上であることがより好ましく、200μmol/m/sec以上であることが更に好ましい。栽培面の光合成有効光量子束密度を上記下限以上とすることで、苗の光合成をより効率よくすることができ、葉こぶ症の発生をより抑制することができ好ましい。In the seedling cultivation apparatus of the present invention, the photosynthetically active photon flux density measured on the seedling cultivation surface is preferably 50 μmol / m 2 / sec or more, and more preferably 100 μmol / m 2 / sec or more More preferably, it is 200 μmol / m 2 / sec or more. By setting the photosynthetically active photon flux density of the cultivation surface to the above lower limit or more, photosynthesis of seedlings can be made more efficient, and the occurrence of leaf canker can be further suppressed, which is preferable.

本発明の苗栽培装置に使用する照明装置は、特に限定されるものではなく、蛍光灯や、半導体照明である有機EL、レーザーやLEDなどの照明装置を利用することができる。電力の消費量や、より細かい波長の制御を行い易い点を考慮すると、LEDを使用することが好ましい。   The illuminating device used for the seedling cultivation apparatus of this invention is not specifically limited, A fluorescent lamp, organic EL which is semiconductor lighting, illuminating devices, such as a laser and LED, can be utilized. It is preferable to use an LED in consideration of the consumption of power and the ease of performing finer wavelength control.

栽培装置は、閉鎖型構造物の中に配置され、前記閉鎖型構造物内を空調する空調装置を備え、前記苗に灌水する灌水装置を備えることが好ましい。   The cultivation apparatus is preferably provided with an air conditioner which is disposed in a closed type structure and which air-conditions the inside of the closed type structure, and is provided with a watering apparatus which waters the seedlings.

この閉鎖構造物内の湿度は、30〜100%の範囲であることが好ましく、40〜99%の範囲であることがより好ましく、40〜95%の範囲であることが更に好ましい。閉鎖構造内の湿度を上記範囲とすることで、なす科の苗に発生するさまざまな生育障害の発生を抑制することができる。   The humidity in the closed structure is preferably in the range of 30 to 100%, more preferably in the range of 40 to 99%, and still more preferably in the range of 40 to 95%. By setting the humidity in the closed structure to the above-mentioned range, it is possible to suppress the occurrence of various growth disorders occurring in the seedlings of the eggplant family.

本発明の一つの態様では、苗栽培装置は、前面が解放している育成モジュールを有し、該育成モジュールは、育苗棚を上下方向に多段に配置して育苗空間を形成する。   In one aspect of the present invention, the seedling cultivating apparatus has a rearing module having a front surface open, and the rearing module arranges the nursery racks in multiple stages in the vertical direction to form a nursery housing space.

図1a〜9及び図10を参照して、かかる栽培装置の好ましい形態を説明する。図1a〜2bの通り、断熱性壁面で囲まれた完全遮光性とされた閉鎖型建物構造物1の部屋内に、箱形の複数個(図示の例では6個)の多段棚式植物育成装置(苗育成モジュール)3〜8が設置されている。部屋1は平面視形状が長方形であり、一方の短手方向壁面1iにドア2が設けられている。   With reference to FIGS. 1a-9 and 10, a preferred form of such a cultivation device is described. As shown in FIGS. 1a to 2b, a plurality of box-shaped (six in the illustrated example) multistage shelf-type plant breeding is carried out in the room of the completely light-shielding closed type building structure 1 surrounded by the heat insulating wall. Apparatus (seedling breeding module) 3-8 is installed. The room 1 has a rectangular shape in plan view, and the door 2 is provided on one of the short direction wall surfaces 1i.

この形態では、3個の多段棚式植物育成装置3〜5をそれらの開放前面が同方向を向くように配列して1列とし、3個の多段棚式植物育成装置6〜8もそれらの開放前面が同方向を向くように配列して1列とし、開放前面が互いに対向するように二つの列を部屋内に配置している。以下、多段棚式植物育成装置3〜5及び6〜8の列の延在方向(部屋の長手方向)をY方向といい、部屋の短手方向(多段棚式植物育成装置3〜5と多段棚式植物育成装置6〜8とが対面する方向)をX方向と言うことがある。これら二つの列の多段棚式植物育成装置3〜5及び6〜8間に、一人または複数の作業者が作業できる程度のスペースAを設けてある。部屋の長手方向壁面1j,1kと各多段棚式植物育成装置3〜8の背面との間に、50〜500mm程度の幅のスペースBを設けて、多段棚式植物育成装置3〜8を通過した空気の通路を形成する。   In this embodiment, three multistage shelf type plant growing devices 3 to 5 are arranged such that their open fronts face in the same direction to form one row, and three multistage shelf type plant growing devices 6 to 8 are also The open fronts are arranged in one row so as to face the same direction, and the two rows are arranged in the room such that the open fronts face each other. Hereinafter, the extending direction (longitudinal direction of the room) of the row of multistage shelf type plant growing devices 3-5 and 6-8 is referred to as Y direction, and the short direction of the room (multistage shelf type plant growing devices 3-5 and multistage The direction in which the shelf type plant growing devices 6 to 8 face each other may be referred to as the X direction. A space A is provided between the two rows of multistage shelf plant growing devices 3 to 5 and 6 to 8 so that one or more workers can work. A space B having a width of about 50 to 500 mm is provided between the longitudinal wall surfaces 1j and 1k of the room and the back surface of each multistage shelf plant growing device 3 to 8 to pass through the multistage shelf plant growing device 3 to 8 Form an air passage.

多段棚式植物育成装置3〜5,6〜8の列の一端側は、ドア2と反対側の建物壁面1hに当接している。多段棚式植物育成装置3〜5,6〜8の列の他端側は、ドア2側の壁面1iから若干離反している。   One end side of the row of multistage shelf type plant growing devices 3 to 5 and 6 to 8 is in contact with the building wall surface 1 h on the opposite side to the door 2. The other end side of the row of multistage shelf type plant growing devices 3 to 5 and 6 to 8 is slightly separated from the wall surface 1i on the door 2 side.

前述するドア2側の壁面1iの離反スペースから、温められた空気がスペースAに流れてくる場合は、この流れを抑制するための制御板を適切な場所に設けることもできる。   In the case where the heated air flows into the space A from the separation space of the wall surface 1i on the side of the door 2 described above, a control plate for suppressing the flow may be provided at an appropriate place.

部屋に出入りするためのドア2の内側にエアーカーテンを設置すると、作業者が出入りする際に外気が入らないようにできるので好ましい。   It is preferable to install an air curtain inside the door 2 for entering and exiting the room, since it is possible to prevent outside air from entering when the operator enters and leaves.

多段棚式植物育成装置3〜8は、図3,4に示すように、それぞれ台座3c、左右の側面パネル3a、背面の背面パネル3b及び天頂部のトップパネル3eを有し、前面は開放した箱形構造体を備えている。この箱形構造体の内部に、複数の育苗棚12が上下方向に一定間隔で多段に配置されている。   As shown in FIGS. 3 and 4, the multistage shelf type plant growing apparatus 3-8 has a pedestal 3c, side panels 3a on the left and right, a back panel 3b on the back and a top panel 3e on the top, and the front is open. It has a box-shaped structure. Inside the box-shaped structure, a plurality of nursery cabinets 12 are arranged in multiple stages at regular intervals in the vertical direction.

各多段棚式植物育成装置3〜8の高さは、作業者が作業できる程度の高さである2000mm程度とし、育苗棚12の幅は、数十から数百個のセル(小鉢)を格子状に配列させた樹脂製のセルトレイを複数枚並べて載置できるとともに、各棚12の上側スペースの温度・湿度を一定に調節できる幅、例えば1000mm〜2000mm程度とし、育苗棚12の奥行きは500mm〜1000mmとするのが好ましい。各育苗棚12には複数枚のセルトレイ40(図1b参照)がほぼ水平に載置されている。セルトレイ1枚の寸法は、一般的には幅が300mm、奥行きが600mm程度である。   The height of each multistage shelf type plant growing device 3 to 8 is about 2000 mm which is the height at which the operator can work, and the width of the nursery rack 12 is a lattice of several tens to several hundreds of cells (small pots) A plurality of resin cell trays arranged in a matrix can be placed side by side, and the temperature and humidity of the upper space of each shelf 12 can be adjusted to a constant width, for example, about 1000 mm to 2000 mm, and the depth of the nursery shelf 12 is 500 mm to It is preferable to set it as 1000 mm. A plurality of cell trays 40 (see FIG. 1 b) are placed almost horizontally on each nursery shelf 12. The dimensions of one cell tray are generally about 300 mm in width and about 600 mm in depth.

最下段の育苗棚12は、台座3cに載置されている。台座3cに設けたアジャスター(図示略)によって育苗棚12の水平度を調整できるよう構成されている。   The lowermost nursery tray 12 is placed on a pedestal 3c. The leveling of the nursery shelf 12 can be adjusted by an adjuster (not shown) provided on the pedestal 3c.

各育苗棚12には、後述する潅水装置30が設けられている。   Each of the nursery trays 12 is provided with a watering device 30 described later.

下から2段目以上の各育苗棚12及びトップパネル3eの下面には、人工照明器13が設置され、各人工照明器13の直下の育苗棚12のセルトレイ40で生育する植物に光を照射するよう構成されている。この実施の形態では、最上部以外の人工照明器13は後述の潅水トレイ31の下面に取り付けられている。   The artificial luminaire 13 is installed on the lower surface of each second stage or more of the nursery cabinet 12 and the top panel 3e from the bottom, and light is irradiated to the plants grown in the cell tray 40 of the nursery cabinet 12 directly below each artificial illuminator 13. It is configured to In this embodiment, the artificial illuminators 13 other than the top are attached to the lower surface of a watering tray 31 described later.

この人工照明器13の構成の詳細を図8,9に示す。なお、図8は人工照明器13の底面図、図9は図8のIX−IX線断面図である。この人工照明器13は、ボックス13aの下面に複数対(この実施の形態では6対)のソケット13bを取り付け、蛍光灯13cの両端をソケット13b,13bに装着したものである。ボックス13aの下面にスイッチ13sが設置されている。   The details of the configuration of this artificial illuminator 13 are shown in FIGS. 8 is a bottom view of the artificial illuminator 13, and FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. The artificial illuminator 13 has a plurality of (six in this embodiment) sockets 13b attached to the lower surface of the box 13a, and both ends of a fluorescent lamp 13c attached to the sockets 13b and 13b. A switch 13s is installed on the lower surface of the box 13a.

ボックス13aは、天板13d及び底板13eを有した箱状体であり、底板13eは蛍光灯13cの光を反射する反射板を兼ねている。このボックス13a内に、安定器、インバータ、定電流回路、定電圧回路、電流制限抵抗等の電気回路部材13fを内蔵した電源ユニット13gが設置されている。この実施の形態では、3個の電源ユニット13gが蛍光灯13c同士の間、すなわち1列目と2列目の蛍光灯13cの間、3列目と4列目の蛍光灯13cの間及び5列目と6列目の蛍光灯13cの間に配置されている。各電源ユニット13gはボックス13aの底板13eに取り付けられている。各電源ユニット13gとボックス13aの天板13dとの間には3〜30mm程度の隙間があいている。この人工照明器13にあっては、電源ユニット13gで発生する熱は、底板13eに伝わり、該底板13eから放散される。即ち、人工照明器13の下側の育苗スペースを流れる空気に伝達される。なお、蛍光灯13cからの熱もこの空気の流れに伝達される。   The box 13a is a box-like body having a top plate 13d and a bottom plate 13e, and the bottom plate 13e doubles as a reflection plate for reflecting the light of the fluorescent lamp 13c. In the box 13a, there is installed a power supply unit 13g incorporating an electric circuit member 13f such as a ballast, an inverter, a constant current circuit, a constant voltage circuit, and a current limiting resistor. In this embodiment, three power supply units 13g are disposed between the fluorescent lamps 13c, that is, between the fluorescent lamps 13c in the first and second columns, between the fluorescent lamps 13c in the third and fourth columns, and 5 It is arrange | positioned between the fluorescent lamp 13c of row | line | column and 6th row | line. Each power supply unit 13g is attached to the bottom plate 13e of the box 13a. A gap of about 3 to 30 mm is provided between each power supply unit 13g and the top plate 13d of the box 13a. In the artificial illuminator 13, heat generated by the power supply unit 13g is transmitted to the bottom plate 13e and dissipated from the bottom plate 13e. That is, it is transmitted to the air flowing through the nursery space under the artificial illuminator 13. The heat from the fluorescent lamp 13c is also transmitted to the air flow.

電源ユニット13gとボックス天板13dとの間には隙間があいているため、電源ユニット13gから天板13dに伝わる熱は著しく少ない。そのため、潅水トレイ31上を流れる養液、およびセルトレイ40に植えられた植物の根圏部が人工照明器13の熱で温められることが防止される。   Since there is a gap between the power supply unit 13g and the box top plate 13d, the heat transmitted from the power supply unit 13g to the top plate 13d is extremely small. Therefore, the nutrient solution flowing on the irrigation tray 31 and the root zone of the plant planted in the cell tray 40 are prevented from being warmed by the heat of the artificial illuminator 13.

図4の通り、各育苗棚12同士の間、及び最上段の育苗棚12と天板パネル3eとの間のスペース(育苗スペース)の後方の背面パネル3bに通気口が設けられ、各通気口にそれぞれ空気ファン15が取り付けられている。   As shown in FIG. 4, vent holes are provided in the back panel 3b at the rear of the space (seedling raising space) between each nursery shelf 12 and between the uppermost stage nursery shelf 12 and the top panel 3e, and each vent The air fan 15 is attached to each.

このように各育苗スペースの背面側にそれぞれ空気ファン15を設けることにより、育苗スペースにおける気流が均一になり好ましい。   Thus, by providing the air fan 15 on the back side of each nursery space, the air flow in the nursery space becomes uniform, which is preferable.

部屋の上部には、部屋内の空気を調温調湿し、設定条件に調温調湿した空気を循環させる機能を備えた空調装置9が設置されている。この空調装置9は、熱交換器を有した空調装置本体(エアコン)9Aと、この空調装置本体9Aの下面に取付けられた風向制御板10とを有する。空調装置本体9Aのコンプレッサは建物構造物1外に設置されている。   At the upper part of the room, an air conditioner 9 is installed which has a function of controlling the temperature and humidity of the air in the room and circulating the temperature-controlled air under the set conditions. The air conditioner 9 has an air conditioner main body (air conditioner) 9A having a heat exchanger, and a wind direction control plate 10 attached to the lower surface of the air conditioner main body 9A. The compressor of the air conditioner main body 9A is installed outside the building structure 1.

この実施の形態では、空調装置本体9Aは、部屋の平面視において、部屋の中心の上部に位置している。空調装置本体9Aの取込口9aは空調装置本体9Aの下面に設けられており、風向制御板10には、取込口9aと重なる位置に開口10aが設けられている。   In this embodiment, the air conditioner main body 9A is located at the top of the center of the room in plan view of the room. The intake port 9a of the air conditioner main body 9A is provided on the lower surface of the air conditioner main body 9A, and the wind direction control plate 10 is provided with an opening 10a at a position overlapping the intake port 9a.

前記空調装置本体9Aは、建物構造物の天井1tに取り付けられ、その側面が部屋内に露呈した構造となっている。空調装置本体9Aの4個の側面にそれぞれ空気の吐出口9bが設けられている。   The air conditioner main body 9A is attached to a ceiling 1t of a building structure, and a side surface of the air conditioner main body 9A is exposed in a room. Air discharge ports 9b are provided on the four side surfaces of the air conditioner main body 9A.

前記風向制御板10は、開口10aの周囲部分が空調装置本体9Aの取込口9aの周囲に重なっている。開口10aは取込口9aと同一大きさか、又はそれよりも大きい。   In the wind direction control plate 10, the peripheral portion of the opening 10a overlaps the periphery of the intake port 9a of the air conditioner main body 9A. The opening 10a is the same size as or larger than the inlet 9a.

風向制御板10は、吊具(図示略)によって天井1tに支持されている。   The wind direction control plate 10 is supported on the ceiling 1 t by a hanging tool (not shown).

風向制御板10のY方向の一端側は壁面1hに当接している。風向制御板10のY方向の他端側は、多段棚式植物育成装置3〜5及び6〜8よりも壁面1i側にまで延在しているが、壁面1iから若干離反している。風向制御板10の該他端側の辺部の全長にわたって、起立板10rが立設されており、この起立板10rの上端が天井1tに当接している。   One end side of the wind direction control plate 10 in the Y direction is in contact with the wall surface 1 h. The other end side of the wind direction control plate 10 in the Y direction extends to the wall surface 1i side more than the multistage shelf type plant growing devices 3 to 5 and 6 to 8, but is slightly separated from the wall surface 1i. A standing plate 10r is erected over the entire length of the side portion on the other end side of the wind direction control plate 10, and the upper end of the standing plate 10r is in contact with the ceiling 1t.

風向制御板10は、天井1tと多段棚式植物育成装置3〜8の上面との間にまでX方向に延在している。   The wind direction control plate 10 extends in the X direction to between the ceiling 1 t and the upper surfaces of the multistage shelf type plant growing devices 3 to 8.

図2aの通り、風向制御板10のX方向の両端は、多段棚式植物育成装置3〜5、多段棚式植物育成装置6〜8のスペースA側の前面の鉛直上方又はそれよりも後方すなわちスペースB側に位置している。風向制御板10のX方向の両端と各多段棚式植物育成装置3〜5,6〜8の前面との水平方向距離Lは0mmであってもよいが、好ましくは30mm以上、さらに好ましくは40mm以上、さらに好ましくは90mm以上、さらに好ましくは140mm以上である。   As shown in FIG. 2a, both ends of the wind direction control plate 10 in the X direction are vertically above or in front of the front of the space A side of the multistage shelf type plant growing devices 3-5 and the multistage shelf type plant growing devices 6-8. It is located on the space B side. The horizontal distance L between both ends of the wind direction control plate 10 in the X direction and the front face of each multistage shelf type plant growing device 3 to 5 and 6 to 8 may be 0 mm, preferably 30 mm or more, more preferably 40 mm. The thickness is more preferably 90 mm or more, further preferably 140 mm or more.

この実施の形態では、この風向制御板10のX方向の両端と天井1tとの間が空調装置9の吹出口9fとなっている。吹出口9fは、栽培装置の平面視において、多段棚式植物育成装置3〜8の前面と重なってもよいが、好ましくはそれよりも前記距離Lだけ後方に位置している。   In this embodiment, the air outlet 9f of the air conditioner 9 is between the ceiling in 1t and both ends of the wind direction control plate 10 in the X direction. The blowout port 9f may overlap with the front surface of the multistage shelf-type plant growing device 3 to 8 in plan view of the growing device, but is preferably located rearward by the distance L more than that.

この実施の形態では、空調装置本体9Aの取込口9aが空調装置9の吸気口となっている。この吸気口は、栽培装置の平面視において、多段棚式植物育成装置3〜8の前面よりも前方すなわちスペースA側に位置する。   In this embodiment, the intake port 9a of the air conditioner main body 9A is an air inlet of the air conditioner 9. This air inlet is located in the front, ie, the space A side, of the front of the multistage shelf type plant growing devices 3 to 8 in plan view of the growing device.

空気ファン15を稼働させることにより、部屋内に図2aの矢印で示したような空気の循環流が生じる。すなわち、空調装置9によって調温調湿された空気は、多段棚式植物育成装置3〜8の開放前面側のスペースAより育苗棚12各段の育苗スペース内に吸引され、空気ファン15から背面パネル3bの後方へ排出され、背面パネル3bの後方と建物壁面との間のスペースBを通って上昇し、多段棚式植物育成装置3〜8の上側スペースCを通過し、空調装置9から吹出された空気と混合され調温調湿されたのち、風向制御板10と多段棚式植物育成装置3〜8との間を通って再び多段棚式植物育成装置3〜8の開放前面側のスペースAに吹き出される。   By operating the air fan 15, a circulating flow of air as shown by the arrow in FIG. 2a is generated in the room. That is, the air temperature-controlled and temperature-controlled by the air conditioner 9 is sucked into the nursery space of each stage of the nursery 12 from the space A on the open front side of the multi-shelf type plant growing device 3-8, and the air fan 15 The air is discharged to the rear of the panel 3b, rises through the space B between the rear of the back panel 3b and the building wall, passes through the upper space C of the multistage shelf type plant growing device 3 to 8 and blows out from the air conditioner 9. After being mixed with the air to be adjusted in temperature, temperature and humidity, it passes between the wind direction control plate 10 and the multistage shelf plant growing device 3 to 8 again, and the space on the open front side of the multistage shelf plant growing device 3 to 8 again It is blown out to A.

また、風向制御板10と多段棚式植物育成装置3〜8との間を通ってスペースAに流れ込もうとする空気の一部は、開口10aを通り、空調装置本体9Aの取込口9aから吸い込まれ、調温調湿された後、吐出口9bを経て吹出口9fから吹き出される。   Further, a part of the air which is going to flow into the space A through the gap between the wind direction control plate 10 and the multistage shelf type plant growing device 3 to 8 passes through the opening 10a, and the intake port 9a of the air conditioner main body 9A. The air is sucked from the air conditioning chamber, temperature-controlled, and humidity-controlled, and then blown out from the blow-out port 9f through the discharge port 9b.

図1a〜2bのように、2列の多段棚式植物育成装置3〜5と多段棚式植物育成装置6〜8をそれらの間に作業空間が形成されるように配列した場合には、この作業空間が空気の循環用のスペースAとしても機能し、効果的な循環流が形成される。   As shown in FIGS. 1a to 2b, when two rows of multi-shelf-shelf type plant growing devices 3-5 and multi-shelf-shelf type plant growing devices 6-8 are arranged such that a work space is formed between them, The work space also functions as a space A for air circulation, and an effective circulation flow is formed.

循環流が多段棚式植物育成装置3〜8の各育苗スペースを通過する際に、潅水装置、培地、植物などから蒸発した水蒸気や人工照明器13から放出される熱が循環流に同伴され、この循環流を空調装置9によって調温調湿して絶えず循環させることによって、部屋内を植物体生育に最適な温度湿度環境に保つことができる。育苗スペースを流れる空気の流速は、0.1m/sec以上であることが好ましく、0.2m/sec以上であることがより好ましく、0.3m/sec以上が更に好ましい。気流の速度が速すぎると、植物の育成に問題が生じるおそれがあるため、一般的には2.0m/sec以下であることが好ましい。   When the circulating flow passes through each nursery space of the multistage shelf type plant growing device 3-8, the water released from the watering device, the culture medium, the plants, etc. and the heat released from the artificial lighting device 13 are entrained in the circulating flow. By circulating and circulating this circulating flow with the air conditioner 9, it is possible to keep the inside of the room in a temperature and humidity environment optimum for plant growth. The flow rate of air flowing through the nursery space is preferably 0.1 m / sec or more, more preferably 0.2 m / sec or more, and still more preferably 0.3 m / sec or more. If the air flow speed is too fast, there is a possibility that a problem may arise in plant cultivation, so in general, the speed is preferably 2.0 m / sec or less.

この実施の形態では、気流を育苗スペースの前面からファン15を経て棚背面側のスペースBへ負圧の状態で流しているが、逆に棚背面側から前面側へ正圧の状態で流してもよい。ただし、前面側から負圧の状態で棚背面側へ流す方が、育苗スペースにおける気流が均一になる。   In this embodiment, the air flow is made to flow from the front of the nursery space through the fan 15 to the space B on the back side of the shelf under negative pressure, but conversely, the air flow is made to flow from the back side to the front under positive pressure It is also good. However, the flow of air in the nursery space is uniform when flowing from the front side to the back side of the shelf under negative pressure.

この実施の形態では、潅水装置(底面潅水装置)30の潅水トレイ31によって各育苗棚12の棚板が構成され、該潅水トレイ31に載置されたセルトレイ40の底面から潅水を行うよう構成されている。この潅水装置30の構成例を図5〜7を参照して説明する。なお、図5は潅水装置の平面図、図6は斜視図、図7は図5のVII−VII線断面図である。   In this embodiment, a shelf board of each nursery shelf 12 is constituted by a watering tray 31 of a watering device (bottom watering device) 30, and watering is performed from the bottom surface of a cell tray 40 placed on the watering tray 31. ing. A configuration example of the watering device 30 will be described with reference to FIGS. 5 is a plan view of the irrigation apparatus, FIG. 6 is a perspective view, and FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.

この潅水装置30は、後辺及び左右両側辺に側壁31a、31b、31cが立設された底版31dを有する四角形の潅水トレイ31を備えている。潅水トレイ31の側壁のない前辺には底版31dに連接して排水溝32が設けられており、排水溝32の一端には排水口32aが形成されている。排水溝32と底版31dとは堰34により仕切られ、堰34の両端部の切欠部34aから養液が排水溝32に流出するよう構成されている。また、潅水トレイ31の後辺の側壁31aに沿って、養液を潅水トレイ31内に供給する給水管33が設けられており、給水管33に設けた複数の小孔33aから養液がトレイ31上に供給されるようになっている。   The watering apparatus 30 includes a square watering tray 31 having a bottom plate 31d on which side walls 31a, 31b, 31c are erected on the rear side and both left and right sides. A drainage groove 32 is provided on the front side of the irrigation tray 31 without the side wall so as to be connected to the bottom plate 31 d, and a drainage port 32 a is formed at one end of the drainage groove 32. The drainage groove 32 and the bottom plate 31 d are separated by the weir 34, and the nutrient solution flows out to the drainage groove 32 from the notches 34 a at both ends of the weir 34. In addition, a water supply pipe 33 for supplying a nutrient solution into the irrigation tray 31 is provided along the side wall 31a on the rear side of the irrigation tray 31, and the nutrient solution is discharged from the plurality of small holes 33a provided in the water supply pipe 33 31 will be supplied on.

潅水トレイ底版31dの上面に高さ約7mm程度の複数のリブ35が、排水溝32に向って互いに平行に延設されており、これらリブ35の上にセルトレイ40が載置されるようになっている。   A plurality of ribs 35 having a height of about 7 mm are provided on the upper surface of the irrigation tray bottom plate 31 d so as to extend parallel to each other toward the drainage grooves 32, and the cell tray 40 is placed on these ribs 35. ing.

この潅水装置30は、図4の通り、潅水トレイ31を多段棚式植物育成装置3〜8の育苗棚12に載置したときに、排水溝32が育成装置3〜8の開放前面から突出する寸法とされている。排水溝32を育成装置の開放前面から突出させることにより、育苗棚12各段に載置した潅水トレイ31の排水溝32の排水口32aから排出される養液を集めて建物構造物1外部へ排出しやすくなる。   As shown in FIG. 4, when the irrigation tray 31 is placed on the growing tray 12 of the multistage shelf type plant growing device 3-8 as shown in FIG. 4, the drainage groove 32 protrudes from the open front of the growing device 3-8. It is assumed to be in size. By making the drainage ditch 32 project from the open front of the growing apparatus, the nutrient solution discharged from the drainage port 32 a of the drainage ditch 32 of the irrigation tray 31 placed on each stage of the nursery cabinet 12 is collected to the outside of the building structure 1 It becomes easy to discharge.

潅水装置30の給水管33に設けた小孔33aから養液を連続的に供給すると、養液は堰34によって堰き止められて所定水位まで溜まりプール状態となる。給水管33から養液を供給している間、切欠部34aから養液が少しずつ排水溝32へ流出する。養液供給量と切欠部34aからの流出量を調節することによって、潅水トレイ31内に例えば10〜12mm程度の水位のプール状態が維持されるようにするのが好ましい。リブ35の上に載置されているセルトレイ40の各セル41底面に形成されたセル穴42からセル内の培地へ毛管作用により水が吸い上げられ、短時間ですべてのセル41内の培地が水分飽和状態になる。   When the nutrient solution is continuously supplied from the small hole 33a provided in the water supply pipe 33 of the irrigation apparatus 30, the nutrient solution is blocked by the weir 34, and is accumulated to a predetermined water level to be in a pool state. While the nutrient solution is being supplied from the water supply pipe 33, the nutrient solution little by little flows out from the notch 34a into the drainage groove 32. It is preferable to maintain a pool state of a water level of, for example, about 10 to 12 mm in the irrigation tray 31 by adjusting the amount of nutrient solution supplied and the amount of outflow from the notch 34a. Water is absorbed by capillary action from the cell hole 42 formed on the bottom of each cell 41 of the cell tray 40 placed on the rib 35 to the medium in the cell, and the medium in all the cells 41 becomes water in a short time It becomes saturated.

この潅水トレイ31の底版31dの下面に人工照明器13が取り付けられている。この実施の形態では、人工照明器13のボックス13aの天板13dが潅水トレイ31の下面に直接に当接しているが、スペーサや断熱材を介在させてもよい。   The artificial illuminator 13 is attached to the lower surface of the bottom plate 31 d of the irrigation tray 31. In this embodiment, although the top plate 13d of the box 13a of the artificial illuminator 13 is in direct contact with the lower surface of the irrigation tray 31, a spacer or a heat insulating material may be interposed.

この潅水装置30では、図7の通り、潅水トレイ31の底版31dの上面を排水溝32の方向へ傾斜させている。これにより、潅水停止時に養液を排水溝32へ短時間で排出させることができる。また、底版31dの上面に傾斜をもたせた場合には、リブ35の高さを変化させてリブの頂部35aが水平となるようにすることにより、リブ35の上に載置したセルトレイ40を水平に保持できる。   In this irrigation apparatus 30, as shown in FIG. 7, the upper surface of the bottom plate 31d of the irrigation tray 31 is inclined in the direction of the drainage groove 32. Thereby, it is possible to drain the nutrient solution to the drainage groove 32 in a short time when the water supply is stopped. When the upper surface of the bottom plate 31d is inclined, the height of the rib 35 is changed to make the top portion 35a of the rib horizontal so that the cell tray 40 placed on the rib 35 is horizontal. Can be

図10は、本発明で用いる潅水装置の別例を示すものであり、図5〜図7における部材と同じ部材には、同じ符号を付してある。この潅水装置30’においては、潅水トレイ31の底版31dにセルトレイ40を載置する際に、底版31dとセルトレイ40との間にアンダートレイ50を介在させる。このアンダートレイ50は各セル41内に培地を入れたセルトレイ40を支持し得る程度の剛性を備えており、その底壁面には複数の小孔51が形成されているとともに、その裏面には複数の突起52が形成されている。これらの突起52は、セルトレイ40をアンダートレイ50とともに潅水トレイ31内に収容するときに、底版31dとセルトレイ40底面との間に間隙を保持する間隙保持手段として機能する。   FIG. 10 shows another example of the watering apparatus used in the present invention, and the same members as those in FIGS. 5 to 7 have the same reference numerals. When the cell tray 40 is placed on the bottom plate 31 d of the watering tray 31 in the watering device 30 ′, the under tray 50 is interposed between the bottom plate 31 d and the cell tray 40. The undertray 50 has a rigidity enough to support the cell tray 40 containing the culture medium in each cell 41, and a plurality of small holes 51 are formed on the bottom wall surface thereof, and a plurality of small holes are formed on the back surface thereof. The projections 52 are formed. These protrusions 52 function as gap holding means for holding a gap between the bottom plate 31 d and the bottom surface of the cell tray 40 when the cell tray 40 and the under tray 50 are accommodated in the irrigation tray 31.

図10の潅水装置30’においても、給水管33から養液を供給して所定水位のプール状態となった場合には、アンダートレイ50の小孔51からアンダートレイ50内に養液が導かれ、セルトレイ40の各セル41底面に形成されたセル穴42からセル内の培地へ毛管作用により水が吸い上げられる。   Also in the irrigation apparatus 30 'of FIG. 10, when the nutrient solution is supplied from the water supply pipe 33 and the pool state of the predetermined water level is reached, the nutrient solution is led from the small holes 51 of the under tray 50 into the under tray 50. Water is absorbed by capillary action from the cell holes 42 formed in the bottom of each cell 41 of the cell tray 40 to the medium in the cell.

図10においても、潅水トレイ31の底版31dの下面に人工照明器13が取り付けられている。   Also in FIG. 10, the artificial illuminator 13 is attached to the lower surface of the bottom plate 31 d of the irrigation tray 31.

潅水トレイ31に載置されるセルトレイ40は、前述したように、数十から数百のセル41を格子状に配列させてトレイ形状に一体化したものであり、セルトレイ1枚の寸法は幅が300mm、奥行きが600mm前後とされているが、これに限定されない。   As described above, the cell tray 40 placed on the irrigation tray 31 is formed by arranging several tens to several hundreds of cells 41 in a grid shape and integrated into a tray shape, and the dimension of one cell tray is the width The depth is about 300 mm and about 600 mm, but is not limited thereto.

苗が光合成で消費する炭酸ガスを人為的に供給するために、図1a,1bに示すように、建物構造物1の外部に液化炭酸ガスボンベ16を設置し、炭酸ガス濃度計測装置により計測した部屋内の炭酸ガス濃度が一定濃度となるように、炭酸ガスボンベ16から炭酸ガスを供給する。   In order to artificially supply carbon dioxide that the seedlings consume in photosynthesis, as shown in FIGS. 1a and 1b, a liquefied carbon dioxide gas cylinder 16 was installed outside the building structure 1, and a room measured by a carbon dioxide concentration measuring device Carbon dioxide gas is supplied from a carbon dioxide gas cylinder 16 so that the concentration of carbon dioxide gas therein becomes constant.

この苗栽培装置を使用して苗を栽培することによって、苗の生育に好適な光量、温度、湿度、炭酸ガス、水分などの環境条件を自動的に調節することが可能である。また、各育苗棚の苗は全て同一環境下で生育することができるので、得られた苗質の均一性を高めることができる。   By cultivating seedlings using this seedling cultivation apparatus, it is possible to automatically adjust environmental conditions such as light intensity, temperature, humidity, carbon dioxide gas, moisture, etc. suitable for growing seedlings. In addition, since all the seedlings in each nursery rack can be grown under the same environment, it is possible to enhance the uniformity of the quality of the obtained seedlings.

この実施の形態では、空調装置9の吹出口9fは、多段棚式植物育成装置3〜8の前面よりも30mm以上後側にあるので、多段棚式植物育成装置3〜8(育成モジュール)を通過して温められた空気と空調装置9で冷やされた空気が混合された状態で、スペースAに流れ込む。これにより、スペースAに流れ込む空気は、均一な温度の空気となり、各多段棚式植物育成装置3〜8内に取り込まれることとなる。   In this embodiment, the air outlet 9f of the air conditioner 9 is 30 mm or more behind the front of the multi-shelf type plant growing apparatus 3-8, so the multi-shelf type plant growing apparatus 3-8 (growth module) It flows into the space A in a state where the air passing through and the air cooled by the air conditioner 9 are mixed. Thereby, the air which flows in into space A turns into air of uniform temperature, and will be taken in in each multistage shelf type plant growing device 3-8.

空調装置9で冷やされた空気が直接スペースAに流れると、部分的に冷たい空気が多段棚式植物育成装置3〜8の前面から取り込まれるため、多段棚式植物育成装置3〜8間で温度のムラが発生してしまい、植物の成長が均一とならない。   When the air cooled by the air conditioner 9 flows directly to the space A, partially cool air is taken in from the front of the multistage shelf plant growing apparatus 3 to 8, so the temperature between the multistage shelf plant growing apparatus 3 to 8 Unevenness occurs, and the growth of plants is not uniform.

この実施の形態では、空調装置本体9と風向制御板10とが一体となっているので、ダクト配管等を多く設置する必要がなく好ましい。   In this embodiment, since the air conditioner main body 9 and the wind direction control plate 10 are integrated, it is not necessary to install a large number of duct pipes and the like, which is preferable.

この多段棚式植物育成装置では、人工照明器13の熱が反射板を兼ねるボックス底板13eに伝達され、該底板13eから育苗スペースを流れる空気に伝わる。人工照明器13から上側の潅水トレイ31に伝わる熱は著しく少ない。そのため、潅水トレイ31上の養液の温度が所定範囲にコントロールされる。   In this multistage shelf type plant growing apparatus, the heat of the artificial illuminator 13 is transmitted to the box bottom plate 13e which also serves as a reflection plate, and is transmitted from the bottom plate 13e to the air flowing through the nursery space. The heat transmitted from the artificial illuminator 13 to the upper irrigation tray 31 is significantly less. Therefore, the temperature of the nutrient solution on the irrigation tray 31 is controlled within a predetermined range.

本発明では、すべての空調装置9の合計の冷房能力(Wb)とすべての照明装置(上記実施の形態では蛍光灯13c)の合計の消費電力(Wa)との比Wb/Waが1以上5以下であることが好ましく、1以上4以下であることがより好ましく、1以上3以下であることが更に好ましく、1以上2以下であることが特に好ましい。Wb/Waを上記の範囲とすることで、閉鎖空間内の環境を適正かつ一定に保つことが可能となり、さらに、空調のオンオフによる環境変化もより少なくすることが可能となる。蛍光灯などの照明装置1本当りの消費電力をWsとし、照明装置の本数をnとし、1基の空調装置の冷房能力をWkとし、空調装置の設置台数をmとした場合、Wb/Waは下記式のAで表わされる。   In the present invention, the ratio Wb / Wa of the total cooling power (Wb) of all the air conditioners 9 to the total power consumption (Wa) of all the lighting devices (the fluorescent lamps 13c in the above embodiment) is 1 to 5 It is preferably the following, more preferably 1 or more and 4 or less, still more preferably 1 or more and 3 or less, and particularly preferably 1 or more and 2 or less. By setting Wb / Wa in the above range, it is possible to keep the environment in the closed space properly and constant, and it is possible to further reduce the environmental change due to the on / off of the air conditioning. Assuming that the power consumption per lighting device such as a fluorescent lamp is Ws, the number of lighting devices is n, the cooling capacity of one air conditioner is Wk, and the number of installed air conditioners is m, Wb / Wa Is represented by A in the following formula.

A=Wb/Wa
=(Wk×m)/(Ws×n)
m:空調装置の台数(基)
n:照明装置の本数(本)
A = Wb / Wa
= (Wk x m) / (Ws x n)
m: Number of air conditioners (base)
n: Number of lighting devices (pieces)

上記実施の形態は本発明の一例であり、本発明はこれに限定されるものではない。例えば、閉鎖型建物構造物の部屋の大きさや、多段棚式植物育成装置の設置数は前記以外であってもよい。また、空調装置本体は、中心部以外に設置されてもよい。空調装置本体は2台以上設置されてもよいが、なるべく少数であることが好ましい。   The above embodiment is an example of the present invention, and the present invention is not limited to this. For example, the size of the room of the closed type building structure and the number of installed multi-shelf shelf type plant growing devices may be other than the above. Also, the air conditioner main body may be installed at other than the central portion. Although two or more air conditioner main bodies may be installed, it is preferable to be as few as possible.

以下、実施例及び比較例について説明する。以下の実施例及び比較例では、図1a〜9に示す構造を有した苗栽培装置を用いて、閉鎖型建物構造物内の湿度を30〜100%となるように設定し、トマトの苗を栽培した。   Hereinafter, Examples and Comparative Examples will be described. In the following examples and comparative examples, the humidity in the closed building structure is set to be 30 to 100% using the seedling cultivation apparatus having the structure shown in FIGS. Grown.

[UV強度、光強度、光合成有効光量子束密度の測定]
相馬光学株式会社製、分光放射照度計(製品名:S−2431 modelII)を使用し、栽培面における各波長領域の範囲におけるUV強度、光強度、光合成有効光量子束密度を測定した。分光放射照度計の受光面を、苗の葉の位置に、水平上向きに配置して測定を行った。
[Measurement of UV intensity, light intensity, photosynthetically effective photon flux density]
Using a spectral irradiometer (product name: S-2431 model II) manufactured by Soma Optical Co., Ltd., the UV intensity, light intensity, and photosynthetically available photon flux density in the range of each wavelength region on the cultivation surface were measured. The light receiving surface of the spectral irradiometer was placed at the position of the leaf of the seedling in a horizontal upward direction.

[苗の生育評価]
表1に示す条件で照明装置を使用した苗栽培装置を使用し、照明を1日あたり16時間点灯し、トマトの苗を12日育成した。生育状態について以下の基準で評価を行った。結果を表1に示す。
VG(非常に良い):葉こぶ症の発生が見られない。
G(良好):一部の苗に軽度の葉こぶ症の発生が見られる。(一部の苗の葉に突起状のこぶは発生するがその程度は軽微で、葉に重度の黄化や落葉は見られない。)
NG(不良):多くの苗に葉こぶ症が発生し、重篤な症状が見られる。(多くの苗の葉に突起状のこぶが発生し、葉の縮れや重度の黄化、落葉が発生。)
[Growth assessment of seedlings]
Using a seedling cultivation apparatus using a lighting device under the conditions shown in Table 1, lighting was turned on for 16 hours per day, and tomato seedlings were grown for 12 days. The growth condition was evaluated based on the following criteria. The results are shown in Table 1.
VG (very good): No occurrence of gallbing is seen.
G (Good): Mild mildew is seen in some seedlings. (Protrusive bumps develop on the leaves of some seedlings, but the degree is slight, and no severe yellowing or defoliation is seen on the leaves.)
NG (defective): Many seedlings develop gallbladder and show severe symptoms. (Protrusive knurls occur on the leaves of many seedlings, and leaf curling, severe yellowing, and defoliation occur.)

<実施例1〜7、比較例1〜4>
閉鎖型建物構造物1(内法寸法:奥行450cm、横幅300cm、高さ240cm)内の完全閉鎖された空間内に5段3棚の多段棚式植物育成装置3を2基設置して、トマトの苗を栽培した(セルトレイ40の寸法:奥行60cm、幅30cm)。空調装置は、冷房能力14kWの空調装置を1台設置し、照明装置は、植物の栽培面において表1に示す波長特性を有する照明装置を使用した。得られた結果を表1に示す。
Examples 1 to 7 and Comparative Examples 1 to 4
Two 5-stage, three-shelf, multi-shelf-type plant growing devices 3 are installed in a completely enclosed space within a closed building structure 1 (internal size: depth 450 cm, width 300 cm, height 240 cm), Seedlings were grown (dimensions of cell tray 40: depth 60 cm, width 30 cm). The air conditioner installed one air conditioner having a cooling capacity of 14 kW, and the lighting device used a lighting device having the wavelength characteristics shown in Table 1 in terms of plant cultivation. The obtained results are shown in Table 1.

Figure 2017208906
Figure 2017208906

表1の通り、実施例1、2および7は、葉こぶ症が発症せず、極めて良好な生育状態の苗を栽培することができた。実施例3〜6は、葉こぶ症を若干発症したが、葉の黄化や落葉にまでは至らず、軽微な症状にとどまる結果であった。一方、295nm以上、320nm未満の栽培面UV強度が2.5μW/cmよりも低い比較例1〜4では、良好な結果は得られなかった。具体的には、比較例1、2および4では、葉こぶ症が発症し、葉が黄化し落葉に至る重篤な生育障害が発生し、比較例3は、295nm未満の紫外線強度が多いことも相俟って、葉が縮れて死滅する結果であった。As shown in Table 1, Examples 1, 2 and 7 were able to cultivate seedlings in a very good growth state without causing leaf canker disease. Examples 3 to 6 slightly developed leaf gall but did not reach leaf yellowing or defoliation, resulting in slight symptoms. On the other hand, in Comparative Examples 1 to 4 in which the cultivation surface UV intensity of 295 nm or more and less than 320 nm is lower than 2.5 μW / cm 2 , good results were not obtained. Specifically, in Comparative Examples 1, 2 and 4, leaf gall disease develops, the leaves become yellow and serious growth disorders leading to defoliation occur, and Comparative Example 3 has a high ultraviolet intensity of less than 295 nm. Together, the result was that the leaves shrank and died.

上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。
本出願は、2016年6月2日付で出願された日本特許出願2016−111043に基づいており、その全体が引用により援用される。
The above embodiment is an example of the present invention, and the present invention may be in a form other than illustrated.
This application is based on Japanese Patent Application No. 2016-111043 filed on June 2, 2016, which is incorporated by reference in its entirety.

1 閉鎖型建物構造物
3〜8 多段棚式植物育成装置
3a 側面パネル
3b 背面パネル
3c 台座
3e トップパネル
9 空調装置
9A 空調装置本体
9a 取込口
9b 吐出口
9f 吹出口
10 風向制御板
10a 開口
12 育苗棚
13 人工照明器
13a ボックス
13b ソケット
13c 蛍光灯
13d 天板
13e 底板
13f 電気回路部材
13g 電源ユニット
13s スイッチ
15 空気ファン
16 炭酸ガスボンベ
30,30’ 潅水装置
31 潅水トレイ
31d 底版
32 排水溝
32a 排水口
33 給水管
33a 小孔
34 堰
34a 切欠部
35 リブ
40 セルトレイ
41 セル
42 セル穴
50 アンダートレイ
51 小孔
52 突起
DESCRIPTION OF SYMBOLS 1 closed type building structure 3-8 multistage shelf type plant growing apparatus 3a side panel 3b back panel 3c pedestal 3e top panel 9 air conditioner 9A air conditioner main body 9a intake port 9b outlet 9f outlet 10 wind direction control plate 10a opening 12 Seedling nursery 13 Artificial light 13a Box 13b Socket 13c Fluorescent light 13d Top plate 13e Bottom plate 13f Electric circuit member 13g Power supply unit 13s Switch 15 Air fan 16 Carbon dioxide cylinder 30, 30 'Watering device 31 Watering tray 31d Bottom plate 32 Drain 32a Water outlet 33 water supply pipe 33a small hole 34 堰 34a notch 35 rib 40 cell tray 41 cell 42 cell hole 50 under tray 51 small hole 52 protrusion

Claims (8)

なす科の植物の苗を栽培する、照明装置を備えた栽培装置であって、
該照明装置は、少なくとも450〜660nmの波長領域の光を照射する半導体照明装置を含み、
前記照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度が2.5μW/cm以上である苗栽培装置。
A cultivation apparatus provided with a lighting device for cultivating seedlings of plants of a family of eggplants, comprising:
The lighting device includes a semiconductor lighting device that emits light in the wavelength range of at least 450-660 nm,
The said illuminating device is a seedling cultivation apparatus whose UV intensity of a wavelength area | region of 295 nm or more and less than 320 nm in a cultivation surface of a seedling is 2.5 microW / cm < 2 > or more.
前記照明装置は、前記苗の栽培面で測定される光合成有効光量子束密度が50μmol/m/sec以上である請求項1に記載の苗栽培装置。The seedling cultivation apparatus according to claim 1, wherein the illumination device has a photosynthetically active photon flux density measured on the cultivation surface of the seedling of 50 μmol / m 2 / sec or more. 前記栽培装置は、閉鎖型構造物の中に配置されており、
前記閉鎖型構造物内を空調する空調装置が設けられており、
前記苗に灌水する灌水装置が設けられている
請求項1または2に記載の苗栽培装置。
The cultivation apparatus is arranged in a closed structure,
An air conditioner for air conditioning the inside of the closed type structure is provided.
The seedling cultivation apparatus according to claim 1, further comprising a watering device for watering the seedlings.
前記閉鎖構造物内の湿度は30〜100%である請求項3に記載の苗栽培装置。   The apparatus according to claim 3, wherein the humidity in the closed structure is 30 to 100%. 前記照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度が500μW/cm以下である請求項1〜4のいずれか1項に記載の苗栽培装置。The seedling cultivation apparatus according to any one of claims 1 to 4, wherein the illumination device has a UV intensity of 500 μW / cm 2 or less in a wavelength range of 295 nm or more and less than 320 nm on a cultivation surface of a seedling. 前記照明装置は、苗の栽培面における295nm以上、320nm未満の波長領域のUV強度Iと、苗の栽培面における450〜660nmの波長領域の光強度Iとの比I/Iが0.0001〜0.01である請求項1〜5のいずれか1項に記載の苗栽培装置。The lighting device, 295 nm or more at the cultivation surface of seedlings, the UV intensity I 1 in the wavelength region of less than 320 nm, the ratio I 1 / I 2 of the light intensity I 2 in the wavelength range of 450~660nm at the cultivation surface seedlings It is 0.0001-0.01, The seedling cultivation apparatus of any one of Claims 1-5. 請求項1〜6のいずれか1項に記載の苗栽培装置を使用して、なす科の苗を栽培する苗栽培方法。   The seedling cultivation method which cultivates the seedling of an eggplant family using the seedling cultivation apparatus of any one of Claims 1-6. 前記苗は、トマト、ピーマン又はナスの苗である請求項7に記載の苗栽培方法。   The seedling cultivation method according to claim 7, wherein the seedling is a tomato, green pepper or eggplant seedling.
JP2018520822A 2016-06-02 2017-05-23 Seedling cultivation method Active JP7129906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021193396A JP7238947B2 (en) 2016-06-02 2021-11-29 Solanaceae seedling cultivation apparatus and cultivation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016111043 2016-06-02
JP2016111043 2016-06-02
PCT/JP2017/019234 WO2017208906A1 (en) 2016-06-02 2017-05-23 Cultivation system and cultivation method for solanaceae seedlings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021193396A Division JP7238947B2 (en) 2016-06-02 2021-11-29 Solanaceae seedling cultivation apparatus and cultivation method

Publications (2)

Publication Number Publication Date
JPWO2017208906A1 true JPWO2017208906A1 (en) 2019-05-16
JP7129906B2 JP7129906B2 (en) 2022-09-02

Family

ID=60478425

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018520822A Active JP7129906B2 (en) 2016-06-02 2017-05-23 Seedling cultivation method
JP2021193396A Active JP7238947B2 (en) 2016-06-02 2021-11-29 Solanaceae seedling cultivation apparatus and cultivation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021193396A Active JP7238947B2 (en) 2016-06-02 2021-11-29 Solanaceae seedling cultivation apparatus and cultivation method

Country Status (4)

Country Link
JP (2) JP7129906B2 (en)
CN (1) CN109152337B (en)
AU (1) AU2017274915A1 (en)
WO (1) WO2017208906A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403442B2 (en) * 2018-04-23 2023-12-22 株式会社プランテックス cultivation equipment
WO2020012642A1 (en) * 2018-07-13 2020-01-16 マイクロコーテック株式会社 Artificial cultivation device
AU2019303291A1 (en) * 2018-07-13 2021-01-28 Mitsubishi Chemical Aqua Solutions Co., Ltd. Cultivation device and cultivation method for solanaceous seedlings
KR102128166B1 (en) * 2018-09-19 2020-06-29 주식회사 디엠케이 Plant Cultivation System
JP7137739B2 (en) * 2019-03-14 2022-09-15 タキイ種苗株式会社 Method for suppressing bulla in plants, method for producing plants, and device for suppressing bulla in plants
MX2021013644A (en) * 2019-05-09 2022-04-20 80 Acres Urban Agriculture Inc Method and apparatus for high-density indoor farming.
MX2021013847A (en) 2019-05-13 2022-04-20 80 Acres Urban Agriculture Inc System and method for controlling indoor farms remotely and user interface for same.
JP7002586B2 (en) * 2020-03-19 2022-01-20 西日本電信電話株式会社 Lighting control devices, lighting control methods, and lighting control programs for plant factories

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089430A (en) * 2005-09-27 2007-04-12 Shimane Pref Gov Method and device for increasing yield of plant polyphenol
JP2010094109A (en) * 2008-10-20 2010-04-30 Panasonic Electric Works Co Ltd Lighting system for preventing plant disease damage
JP2016202050A (en) * 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316380A (en) * 1999-05-12 2000-11-21 Koito Ind Ltd Plant raising unit
JP2003339236A (en) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd Lighting device and apparatus for plant growth, and method for plant growth
WO2004026023A1 (en) * 2002-09-20 2004-04-01 Taiyo Kogyo Co., Ltd. System for culturing seedling
CA2529096C (en) * 2003-06-27 2011-09-20 Taiyo Kogyo Co., Ltd. Apparatus for producing seedlings and method of producing seedlings
JP2013123417A (en) * 2011-12-15 2013-06-24 Panasonic Corp Illuminating device for plant growth disease control
JP2013236562A (en) * 2012-05-11 2013-11-28 Panasonic Corp Insect pest disinfestation lighting device
JP6123495B2 (en) * 2013-05-31 2017-05-10 三菱樹脂アグリドリーム株式会社 Multistage shelf type plant growing device and plant growing system
ES2807220T3 (en) * 2014-03-14 2021-02-22 Biolumic Ltd Method to improve the yield and / or resistance to stress of crops
JP6755177B2 (en) * 2014-05-21 2020-09-16 三菱ケミカルアグリドリーム株式会社 Plant cultivation methods and facilities
JP6217980B2 (en) * 2014-06-26 2017-10-25 広島県 Tomato seedling raising method, seedling raising device and plant factory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089430A (en) * 2005-09-27 2007-04-12 Shimane Pref Gov Method and device for increasing yield of plant polyphenol
JP2010094109A (en) * 2008-10-20 2010-04-30 Panasonic Electric Works Co Ltd Lighting system for preventing plant disease damage
JP2016202050A (en) * 2015-04-20 2016-12-08 住友電気工業株式会社 Light source unit, cultivation module, and cultivation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, vol. 134, JPN6021000513, 28 November 2016 (2016-11-28), pages 130 - 140, ISSN: 0004582473 *

Also Published As

Publication number Publication date
CN109152337B (en) 2022-07-19
WO2017208906A1 (en) 2017-12-07
JP7129906B2 (en) 2022-09-02
JP7238947B2 (en) 2023-03-14
JP2022022299A (en) 2022-02-03
AU2017274915A1 (en) 2018-12-20
CN109152337A (en) 2019-01-04
AU2017274915A8 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP7238947B2 (en) Solanaceae seedling cultivation apparatus and cultivation method
JP6760436B2 (en) Plant cultivation methods and facilities
JP6123495B2 (en) Multistage shelf type plant growing device and plant growing system
JP6056929B1 (en) Cultivation apparatus and cultivation method
US20210137022A1 (en) Cultivation apparatus and cultivation method for solanaceae seedlings
KR200362989Y1 (en) Apparatus for culturing dye plants using LED light source
JPWO2004026023A1 (en) Nursery equipment
WO2018163629A1 (en) Rice seedling cultivation device and rice seedling cultivation method
KR20130042790A (en) Indoor plants cultivation apparatus
KR101934482B1 (en) Plant Grower Cooling System with Vaporizing Heat Cooling
JP2008245554A (en) Three-dimensional multistage type plant-cultivating device
JP6676898B2 (en) Cultivation apparatus and cultivation method
RU2722442C1 (en) Rack system for cultivating plants with irradiating plant with forced cooling
JP7472788B2 (en) Apparatus and method for cultivating seedlings of solanaceae plants
WO2022210552A1 (en) Method for raising seedlings, system for raising seedlings, and seedlings
ES2924737T3 (en) Adaptive greenhouse for nursery crops
JP2022159002A (en) Seedling raising method, seedling raising system and seedling
WO2023172120A1 (en) Vertical hydroponic system with climate control for horticultural production
JPH01225422A (en) Building for perfect control type plant factory
JPH01225420A (en) Lighting unit in perfect control type plant factory

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211129

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20211214

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220114

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20220405

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220607

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220705

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220719

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220823

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220823

R150 Certificate of patent or registration of utility model

Ref document number: 7129906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150