WO2017208610A1 - Wound type film capacitor and method for manufacturing same - Google Patents

Wound type film capacitor and method for manufacturing same Download PDF

Info

Publication number
WO2017208610A1
WO2017208610A1 PCT/JP2017/013864 JP2017013864W WO2017208610A1 WO 2017208610 A1 WO2017208610 A1 WO 2017208610A1 JP 2017013864 W JP2017013864 W JP 2017013864W WO 2017208610 A1 WO2017208610 A1 WO 2017208610A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
wound
conductive layer
winding
Prior art date
Application number
PCT/JP2017/013864
Other languages
French (fr)
Japanese (ja)
Inventor
篤 虫明
外博 中島
智昭 川村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2017208610A1 publication Critical patent/WO2017208610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure

Definitions

  • the present invention relates to a wound film capacitor and a manufacturing method thereof.
  • an inverter is used to drive the AC motor by converting the DC power of the battery into AC power.
  • a DC power supply circuit (converter, battery, etc.) connected to the inverter switching circuit is generally called a DC link, and the DC power supply voltage is called a DC link voltage.
  • a large-capacitance capacitor called a DC link capacitor is connected to the DC link of the inverter in parallel with the DC power supply to compensate for an instantaneous load fluctuation caused by the switching circuit (see, for example, Patent Document 1).
  • Capacitors used for this purpose are required to have the following characteristics. (1) The ability to instantaneously store and release large amounts of energy to compensate for instantaneous load fluctuations, (2) In order to prevent a situation where the circuit does not operate properly due to a temperature change, the temperature dependence of the dielectric constant is small, and (3) it operates normally even in a high temperature environment.
  • ceramic capacitors using BaTiO 3 are mainly used as capacitors for this purpose.
  • this ceramic capacitor has a problem that dielectric breakdown occurs when a high voltage is applied. The reason is that when the convex portions of the crystal grains present in the ceramic capacitor are in contact with the electrode and a high voltage is applied to the contact portion, electric field concentration occurs and a short circuit is likely to occur.
  • a ceramic capacitor using BaTiO 3 has a large temperature dependence of dielectric constant, and the dielectric constant is likely to change due to temperature change. For this reason, in order to reduce the temperature dependence of the dielectric constant, it has been studied to dope Mg, Mn, or the like into BaTiO 3 . However, when doped with Mg and Mn, etc., a charge relatively -2 crystal lattice of BaTiO 3 is induced, whereby there is a case where an oxygen defect is generated in BaTiO 3. This oxygen defect may cause a decrease in dielectric constant under a DC voltage. Therefore, in a ceramic capacitor using BaTiO 3 , it is difficult to reduce the temperature dependence of the dielectric constant while increasing the dielectric constant.
  • a capacitor In order to increase the capacity, for example, it is conceivable to construct a capacitor by winding a resin film as an insulator together with a metal film in a roll shape.
  • a cooling device In order to guarantee use in a high temperature environment such as in-vehicle equipment, it is necessary to install a cooling device adjacent to the capacitor. In this case, even if the capacitor can be reduced in size, the required installation space is increased as much as the cooling device. As a result, it is difficult to say that it is preferable for reducing the size of the capacitor.
  • capacitors that are difficult to increase in capacity and have problems with high-temperature environment characteristics hinder the miniaturization of capacitors, resulting in As a result, it has been difficult to generalize capacitors.
  • the technology to be solved by the present invention is to provide a capacitor having excellent versatility by increasing capacity and improving high-temperature environment characteristics while avoiding an increase in size. As an objective.
  • the first and second conductive layers and the first and second insulating films are the first conductive layer, the first insulating film, the second conductive layer, and the second insulating film.
  • a wound film capacitor having a wound body that is wound into a roll shape in the state of overlapping in the order of at least the first insulating film is a glass film, and the center of the wound body
  • it is characterized by the fact that a through-hole penetrating the wound body in the width direction is provided.
  • the width direction of the wound body is a direction orthogonal to both the longitudinal direction and the thickness direction of the first or second insulating film in a state constituting the wound body.
  • the first and second insulating films and the first and second conductive layers are alternately wound in a roll shape with the first and second conductive layers overlapping each other.
  • at least the first insulating film was a glass film. Since glass is unlikely to generate oxygen vacancies, the temperature dependence of the dielectric constant can be reduced without reducing the dielectric constant. Therefore, by configuring the capacitor with a wound body in the form of a roll of a film made of glass and a conductive layer, while increasing the capacitance per unit volume of the capacitor, due to temperature changes, The situation where the circuit does not operate properly can be effectively prevented. Therefore, a capacitor capable of storing a large amount of energy and excellent in high temperature environmental characteristics can be manufactured in a relatively small size.
  • a through hole that penetrates the wound body in the width direction is provided at the center of the wound body constituting the capacitor.
  • a hollow space exists in the center of the capacitor over the entire width direction.
  • the core used for winding the insulating film remains in the center of the wound body, depending on the material of the core, when the wound body operates like a kind of coil, Inductance may increase due to the influence.
  • This kind of increase in inductance is not preferable because it causes an increase in impedance particularly in a high frequency range.
  • by providing a through hole in the center of the wound body as described above air as an insulator exists inside the wound body, so that an increase in inductance as described above is suppressed. It is possible to avoid as much as possible an increase in impedance in the high frequency range.
  • the center of the wound body is a hollow space, the weight of the capacitor can be reduced by that amount, which is suitable for general use of the capacitor.
  • wound film capacitor according to the present invention may be a glass film as the second insulating film.
  • the wound body can be composed of two glass films and two conductive layers disposed therebetween.
  • the capacitor can be a completely inorganic film capacitor that does not contain an organic substance, so that the heat resistance of the capacitor can be increased. Therefore, the function as a capacitor can be appropriately exhibited without being affected by the ambient temperature and other environments.
  • the first and second conductive layers are both metal films, and the first and second metal films are in opposite directions in the thickness direction of the first insulating film.
  • the film may be formed on the first surface and the second surface that face each other.
  • the adhesion between the insulating film and each conductive layer is increased, so that the distance between the conductive layers serving as positive and negative electrodes can be reduced, and the capacitance is further improved. Can be achieved.
  • the thickness dimension can be set without considering the handleability of the conductive layer alone, so the metal film thickness can be made smaller and further miniaturization can be achieved. It becomes possible to plan.
  • the first and second conductive layers are both metal films, and the first metal film is directed to the first surface that faces one of the thickness directions of the first insulating film. It may be formed, and the second metal film may be formed on the third surface directed in one thickness direction of the second insulating film.
  • the adhesion between the insulating film and the conductive layer can be increased and the distance between the conductive layers can be reduced, thereby further improving the capacitance. It becomes possible.
  • one conductive layer metal film
  • the thickness dimension of the insulating film is smaller than when two conductive layers are provided on one insulating film. it can. This can be expected to further improve the capacitance.
  • the wound film capacitor according to the present invention has a first side end face in which the first conductive layer faces one side in the width direction of the wound body and a second side end face in which the other side in the width direction faces.
  • the second conductive layer has a third side end face that faces one side in the width direction of the wound body, and a fourth side end face that faces the other side in the width direction.
  • the side end face is offset to one side in the width direction of the wound body from the fourth side end face of the second conductive layer
  • the third side end face of the second conductive layer is It may be offset from the first side end surface of the layer to the other side in the width direction of the wound body.
  • the electrode positive electrode, negative electrode
  • the conductive layer on the side to be connected can be easily identified. Can be reliably avoided, and electrical connection between each electrode and the conductive layer on the side to be connected to each electrode can be easily and safely performed.
  • the wound film capacitor according to the present invention is provided with a first electrode in contact with the first conductive layer and separated from the second conductive layer on one side in the width direction of the wound body, and A second electrode that is in contact with the second conductive layer and is separated from the first conductive layer may be provided on the other side in the width direction of the wound body.
  • each conductive layer is arranged in an offset (shifted) direction different from each other in the width direction of the wound body, so that the gap between the electrode and the conductive layer on the non-connecting side that does not correspond to this electrode.
  • a state having a predetermined gap in the width direction Therefore, it is possible to easily form a state in which only the conductive layer on the side to be connected is in contact with, without particularly making the electrode in a complicated shape (such as a partially protruding shape).
  • the wound film capacitor according to the present invention may be one in which the surfaces of the glass films are in direct contact with each other at the end in the longitudinal direction on the winding end side of the glass film.
  • the surfaces of the glass films referred to here include the meanings of both the two surfaces included in one glass film and the surfaces of two different glass films.
  • the wound film capacitor according to the present invention may be one in which the surfaces of the glass films are in direct contact with each other at the end in the longitudinal direction on the winding start side of the glass film.
  • the meanings of both of the two surfaces contained in one glass film and the one surfaces of two different glass films are also included in the surfaces of the glass films referred to herein.
  • the glass film surfaces are directly brought into close contact with each other, so that the glass at the end of the winding start side is taken.
  • the film can be fixed. Accordingly, it is possible to appropriately maintain the shape of the wound body (part of) during winding of the two insulating films including the glass film into a roll shape, or the shape of the wound body wound up. it can. Also in this case, since it is not necessary to interpose an element for fixing the surfaces of the two insulating film glass films, the wound body can be easily configured and can be downsized.
  • the thickness of the first insulating film may be set to 50 ⁇ m or less.
  • the thickness dimension of the insulating film By setting the thickness dimension of the insulating film in this way, the area of the insulating film per unit volume is increased, so that the capacitance of the capacitor can be increased.
  • the flexibility of the insulating film is improved, the minimum winding diameter of the wound body (see below for details) can be reduced. Therefore, this also makes it possible to increase the area of the insulating film per unit volume and improve the capacitance. In other words, it is possible to reduce the size of the capacitor while ensuring a predetermined capacitance.
  • the wound film capacitor according to the present invention may have a minimum winding diameter of 100 mm or less.
  • the minimum winding diameter of the wound body here is substantially equal to the inner diameter dimension of the wound body, and among the first and second insulating films that are wound in a roll shape. It means the radius of curvature of the insulating film located at the innermost radial direction.
  • the capacitor can be effectively reduced in size by winding the insulating film so that the minimum winding diameter of the wound body becomes a certain value or less.
  • wound film capacitor according to the present invention may be one in which the longitudinal dimension of the first insulating film is set to 0.05 m or more.
  • the area (surface area) of the conductive layer that is usually set to the same size as the insulating film or slightly smaller (size in the lengthwise direction). Can be secured. Therefore, it is possible to provide the capacitor with a capacitance corresponding to the area of the conductive layer.
  • a value obtained by dividing the width dimension of the first insulating film by the thickness dimension of the first insulating film may be set to 1000 or more.
  • the capacitance of the capacitor increases as the area (surface area) of the insulating film increases and the thickness dimension decreases. Therefore, by setting the ratio of the dimension in the width direction to the thickness dimension of the insulating film to be 1000 or more, it is possible to ensure the level of capacitance required for this type of capacitor.
  • the wound film capacitor according to the present invention may be one in which the relative dielectric constant of the glass film as the first insulating film is set to 5.0 or more.
  • the relative dielectric constant refers to a value measured by a method based on ASTM D150 at a temperature of 25 ° C.
  • the wound film capacitor according to the present invention may be one in which the arithmetic average roughness Ra of the first or second surface of the first insulating film is set to 5 nm or less.
  • arithmetic mean roughness Ra here refers to the value measured by the method based on JISB0601: 2001.
  • the first insulating film is SiO 2 : 20 to 70%, Al 2 O 3 : 0 to 20%, B 2 O 3 : 0 to 17 in mass%. %, MgO: 0 to 10%, CaO: 0 to 15%, SrO: 0 to 15%, BaO: 0 to 40%.
  • the insulating film (glass film) having a large width direction dimension and a long direction dimension can be easily formed. Therefore, as a result, it is possible to efficiently manufacture a capacitor capable of storing a large amount of energy.
  • the solution to the above problem can also be achieved by the method for manufacturing a wound film capacitor according to the present invention. That is, in this manufacturing method, the first and second conductive layers, and the first and second insulating films in which at least the first insulating film is a glass film, the first conductive layer, the first insulating film, A step of superposing the second conductive layer and the second insulating film in this order to form a laminated body of insulating films; a step of winding the laminated body around the core to form a wound body; and The step of forming a through-hole penetrating the wound body in the width direction at the center of the wound body is characterized.
  • the first insulating film of the first and second insulating films is a glass film, as described above, the temperature of the dielectric constant without reducing the dielectric constant. The dependency can be reduced. Therefore, this glass film is overlapped with the conductive layer to form a laminate, and the laminate is wound around the core to form a wound body, thereby increasing the capacitance per unit volume of the capacitor.
  • the wound body is formed by removing the core from the wound body after the laminated body of the insulating film and the conductive layer described above is wound around the core to form the wound body.
  • a through hole penetrating the wound body in the width direction was formed at the center.
  • the manufacturing method of the winding type film capacitor which concerns on this invention is the 1st and 2nd on the 1st surface and 2nd surface which orient as the 1st insulating film and the direction which opposes in the thickness direction.
  • the 1st insulating film in which the 1st and 2nd metal film was formed, and the 2nd insulating film A laminate may be formed by overlapping.
  • the second insulating film is not integrally formed with any member, for example. It can be composed of a single glass film. This makes it possible to configure the capacitor with a simple structure while reducing the production cost of the second insulating film.
  • the capacitor manufacturing method includes a core composed of a plurality of divided bodies each having a winding surface of a laminate on the outer periphery, and a connecting member that connects the plurality of divided bodies. After preparing and winding a laminated body around a core in a state where a plurality of divided bodies are connected by a connecting member to form a wound body, after removing a connecting member and eliminating a connected state between the plurality of divided bodies Alternatively, a part of the plurality of divided bodies may be removed from the wound body, and then the remaining portions of the plurality of divided bodies may be removed.
  • the wound body is, for example, a resin film
  • the wound body is fixed and a force is applied to the core in the axial direction (width direction of the wound body).
  • a force is applied to the core in the axial direction (width direction of the wound body).
  • the method of removing a core by this can be considered, when a winding body is comprised with the glass film, when a method as mentioned above is employ
  • the core can be divided and removed in stages (extracted), so that the core can be removed without applying unnecessary force to the glass film. .
  • the wound body can be formed with high accuracy without the risk of damage described above.
  • FIG. 1 is a perspective view of a wound film capacitor according to a first embodiment of the present invention. It is a perspective view which shows the state which expanded a part of winding body shown in FIG. 1 virtually. It is sectional drawing of the capacitor
  • FIG. 14 It is a figure for demonstrating an example of the winding mode shown in FIG. 14, Comprising: The figure which looked at the state of the winding end of both insulating films from the direction along the winding centerline, and its principal part enlarged view is there. It is the figure which looked at the wound body which concerns on 4th embodiment of this invention from the direction along the centerline. It is the figure which looked at the winding body which concerns on 5th embodiment of this invention from the direction along the centerline.
  • Sample No. of Example 2 is a graph showing measurement results of impedance of a wound film capacitor according to 1;
  • FIG. 1 is a perspective view of a wound film capacitor 1 according to a first embodiment of the present invention.
  • the capacitor 1 includes a wound body 2 and positive and negative electrodes 3 and 4 that are in contact with the wound body 2 in the width direction.
  • Lead electrodes (not shown) are attached to the electrodes 3 and 4 so that a predetermined voltage can be applied between the electrodes 3 and 4.
  • the configuration of the wound body 2 will be mainly described.
  • the wound body 2 includes first and second conductive layers 5 and 6 and first and second insulating films 7 and 8, and these two conductive layers 5 and 6. 6 and the two insulating films 7 and 8 are stacked in the order of the first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 in the form of a roll. Shape.
  • the first and second conductive layers 5 and 6 are both metal films, and the first surface 7 a and the second surface are oriented in opposite directions in the thickness direction of the first insulating film 7. 7b, respectively.
  • the two conductive layers 5 and 6 are both integrated with the first insulating film 7.
  • the first insulating film 7 is a glass film.
  • the two conductive layers 5 and 6 are integrated with the glass film (first insulating film 7). The details of the glass composition that can be used will be described later.
  • the thickness t1 (see FIG. 2) of the glass film as the first insulating film 7 is set to 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and further 20 ⁇ m or less. It is suitably set in the order of 10 ⁇ m or less, 8 ⁇ m or less, 6 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the minimum curvature radius (minimum winding diameter) of the said insulating film 7 can be made small to the level mentioned later.
  • the second insulating film 8 for example, a resin, paper, or glass film can be used, and among these, a glass film (that is, a glass film) can be suitably used.
  • a glass film for the second insulating film 8 as well, it is possible to eliminate the so-called organic matter and form the wound body 2 with only the inorganic material, so that the heat resistance of the wound film capacitor 1 is improved. It can be easily increased.
  • the thickness dimension t2 (refer FIG.
  • the glass film as the 1st insulating film 7, and Similarly, it is set to 50 ⁇ m or less, preferably set to 40 ⁇ m or less, more preferably set to 30 ⁇ m or less, more preferably 20 ⁇ m or less, 10 ⁇ m or less, 8 ⁇ m or less, 6 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less. And particularly preferably 1 ⁇ m or less.
  • a resin film can also be used for the second insulating film 8. In this case, the resin film functions as an insulator and also functions as a buffer material. Therefore, it is possible to effectively avoid a situation in which the glass film is damaged when the both insulating films 7 and 8 are wound up.
  • the first conductive layer 5 is in a direction opposite to the first side end face 5a and the first side end faces 5a and 6a directed to one side in the width direction of the wound body 2 (left side in FIG. 3). It has the 2nd side end surface 5b which faces the other (the right side in FIG. 3) of the width direction of the wound body 2. As shown in FIG.
  • the second conductive layer 6 has a third side end face 6 a that faces one side in the width direction of the wound body 2 and a fourth side end face 6 b that faces the other side in the width direction of the wound body 2. .
  • the second side end face 5b of the first conductive layer 5 is offset to one side in the width direction from the fourth side end face 6b of the second conductive layer 6, and the second side end face 5b is offset.
  • the third side end face 6 a of the conductive layer 6 is offset to the other side in the width direction from the first side end face 5 a of the first conductive layer 5.
  • the first conductive layer 5 is offset in one direction, i.e., in the thickness direction of the first insulating film 7 (here, the first conductive layer 5 is formed) of the first surface 7a of the first surface 7a.
  • the width direction dimension d1 of the region where the conductive layer 5 is not formed is set to, for example, 1 mm or more, preferably 2 mm or more, and more preferably 3 mm or more.
  • the second surface 7b of the second surface 7b is directed to the other in the thickness direction of the first insulating film 7 (here, the second conductive layer 6 is formed), which is an offset amount of the second conductive layer 6.
  • the width direction dimension d2 of the region where the second conductive layer 6 is not formed is set to 1 mm or more, preferably 2 mm or more, and more preferably 3 mm or more. In this way, even if the laminated body 9 is displaced in the width direction due to the winding mode of the laminated body 9 (see FIGS.
  • first conductive layer 5 and the first conductive layer 5 The situation where the second electrode 4, the second conductive layer 6 and the first electrode 3 are electrically connected can be effectively avoided.
  • first surface 7a and the second surface 7b of the first insulating film 7 are equivalent to the conductive layers 5 and 6 in regions where the conductive layers 5 and 6 are not formed.
  • An insulating film having a thickness dimension may be formed.
  • the conductive layers 5 and 6 can be used for the conductive layers 5 and 6 (metal films).
  • one or more metals selected from the group consisting of Al, Pt, Ni, Cu, Ag, and an Ag alloy can be suitably used. It shows better heat resistance than the simple substance.
  • known film forming means can be applied. is there.
  • the width direction dimension w2 of the 2nd insulating film 8 in which the conductive layers 5 and 6 are not formed is larger than the width direction dimension w1 of the 1st insulating film 7, as shown in FIG.
  • the first insulating film 7 is small and disposed so as to protrude from the second insulating film 8 to the outside in the width direction. In this way, it is possible to avoid the state in which the second insulating film 8 protrudes in the width direction of the wound body 2 rather than the conductive layers 5 and 6. Can be easily formed.
  • the first electrode 3 serving as a positive electrode or a negative electrode is disposed on one side in the width direction of the wound body 2 (left side in FIG. 3). At this time, the first electrode 3 is electrically connected to the first conductive layer 5 adjacent in the thickness direction (vertical direction in FIG. 3) through the first insulating film 7 in the wound body 2. In contact with the first side end face 5a of the first conductive layer 5 and away from the third side end face 6a of the second conductive layer 6 so as to be insulated from the second conductive layer 6. Yes (not touching).
  • the second electrode 4 is disposed on the other side in the width direction of the wound body 2 (on the right side in FIG. 3), is electrically connected to the second conductive layer 6, and is electrically connected to the first conductive layer. It is in contact with the fourth side end face 6b of the second conductive layer 6 and is separated (not in contact) with the second side end face 5b of the first conductive layer 5 so as to be insulated from the layer 5. .
  • the electrodes 3 and 4 various materials can be used. For example, from the viewpoint of cost and conductivity, one or more metals selected from the group consisting of Al, Pt, Ni, Cu, Ag, and an Ag alloy can be suitably used. It shows better heat resistance than the simple substance.
  • the electrodes 3 and 4 are formed, for example, by applying a conductive paste containing the above metal powder (a paste-like conductive material having a predetermined viscosity) on both sides in the width direction of the wound body 2 and solidifying it. It is possible. Also, the form that can be taken in this case is not particularly limited, and may be annular as shown in FIG. 1, or may be layered as shown in FIG. Of course, as shown in FIG. 1 and FIG. 3, it may be annular and layered.
  • the minimum winding diameter of the wound body 2 is set to, for example, 100 mm or less, preferably 80 mm or less, more preferably 75 mm or less, further 50 mm or less, 30 mm or less, 20 mm or less, 10 mm or less, 5 mm or less in this order. It is set suitably, and particularly preferably set to 3 mm or less.
  • the outer diameter dimension of the wound body 2 is constant, the smaller the minimum winding diameter, the larger the area per unit volume, which is suitable for applications that require storage of a large amount of energy.
  • the longitudinal dimension L1 (see FIG. 4) of the first insulating film 7 is set to, for example, 0.05 m or more, preferably 0.5 m or more, more preferably 1 m or more. For example, 3 m or more, 5 m or more, 10 m or more, 30 m or more, 50 m or more, and 70 m or more are preferably set, and particularly preferably 100 m or more.
  • 0.05 m or more preferably 0.5 m or more, more preferably 1 m or more.
  • 3 m or more, 5 m or more, 10 m or more, 30 m or more, 50 m or more, and 70 m or more are preferably set, and particularly preferably 100 m or more.
  • the width direction dimension w1 and the thickness dimension t1 are set such that the value obtained by dividing the width direction dimension w1 of the first insulating film 7 by the thickness dimension t1 is, for example, 1000 or more, and preferably 1200 or more.
  • the width direction dimension w1 and the thickness dimension t1 are suitably set in the order of 1600 or more, 1800 or more, 2000 or more, more preferably 1400 or more, and particularly preferably the width direction dimension w1 to be 2400 or more.
  • a thickness dimension t1 is set.
  • the relative dielectric constant of the first insulating film 7 is set to, for example, 5 or more, preferably 5.5 or more, more preferably 6 or more, and further 7 or more, 8 or more, 9 As described above, it is preferably set in the order of 10 or more, particularly preferably 11 or more.
  • the arithmetic average roughness Ra of the first surface 7a (second surface 7b) of the first insulating film 7 is set to, for example, 5 nm or less, preferably 3 nm or less, more preferably 1 nm or less, Furthermore, it is preferably set in the order of 0.8 nm or less, 0.4 nm or less, and 0.3 nm or less, and particularly preferably 0.2 nm or less.
  • the maximum height Rmax of the first surface 7a (second surface 7b) of the first insulating film 7 is set to, for example, 10 nm or less, preferably 5 nm or less, and more preferably 3 nm or less.
  • the maximum height Rmax of the first surface 7a (second surface 7b) of the first insulating film 7 refers to the value measured by the method based on JIS B0601: 2001.
  • the first insulating film 7 has a glass composition in mass%, for example, SiO 2 : 20 to 70%, Al 2 O 3 : 0 to 20%, B 2 O 3 : 0 to 17%, MgO: 0 to 10%, CaO: 0 to 15%, SrO: 0 to 15%, BaO: 0 to 40%.
  • the content of SiO 2 exceeds the appropriate range and increases, the meltability and moldability may be reduced.
  • the content of SiO 2 is set to 70% or less, preferably 65% or less, more preferably 60% or less, and further 58% or less, 55% or less, 50%. It is suitably set in the following order, particularly preferably 45% or less.
  • the SiO 2 content falls outside the proper range, it becomes difficult to form a glass network structure, and vitrification may become difficult.
  • the content of SiO 2 is set to 20% or more, preferably 25% or more, and particularly preferably 30% or more.
  • the content of Al 2 O 3 is set to 20% or less, preferably set to 18% or less, more preferably set to 15% or less, and further preferably set to 12% or less. Preferably, it is set to 10% or less.
  • the Al 2 O 3 content is set to 0% or more, preferably 1% or more, more preferably 3% or more, and particularly preferably 5% or more.
  • the content of B 2 O 3 increases outside the proper range, the dielectric constant tends to decrease, the heat resistance decreases, and the reliability of the wound film capacitor 1 in a high temperature environment may decrease. Arise.
  • the content of B 2 O 3 is set to 17% or less, preferably 15% or less, more preferably 13% or less, and further 11% or less, 7% or less. It is preferably set in order, and particularly preferably 5% or less.
  • MgO is a component that increases the strain point and decreases the high-temperature viscosity.
  • the content of MgO increases outside the appropriate range, the liquidus temperature, density, and thermal expansion coefficient tend to be excessively high.
  • the content of MgO is set to 10% or less, preferably 5% or less, more preferably 3% or less, more specifically 2% or less, 1.5% or less, 1 % Is preferably set in the order of% or less, and particularly preferably 0.5% or less.
  • the CaO content is set to 15% or less, preferably 12% or less, more preferably 10% or less, still more preferably 9% or less, and particularly preferably 8%. Set to less than 5%.
  • the content of CaO is set to 0% or more, preferably 0.5% or more, more preferably 1% or more, and further 2% to 3% in this order. And is preferably set to 5% or more.
  • the SrO content is set to 15% or less, preferably 12% or less.
  • the SrO content is set to 0% or more, preferably set to 0.5% or more, more preferably set to 1% or more, still more preferably set to 3% or more, particularly preferably. Is set to 5% or more.
  • the BaO content is set to 40% or less, preferably 35% or less.
  • the content of BaO is set to 0% or more, preferably 0.5% or more, more preferably 1% or more, and further 2% or more, 5% or more, 10% % Or more, 15% or more, and 20% or more in order, particularly preferably 25% or more.
  • Each component of MgO, CaO, SrO, and BaO is a component that increases the dielectric constant, devitrification resistance, meltability, and moldability.
  • the content of MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO, BaO) decreases outside the appropriate range, it becomes difficult to increase the dielectric constant, and the function as a flux cannot be sufficiently exhibited. , The meltability tends to decrease.
  • the content of MgO + CaO + SrO + BaO is set to 5% or more, preferably 10% or more, more preferably 15% or more, and more preferably 20% or more and 25% or more in this order. And particularly preferably 30% or more.
  • the content of MgO + CaO + SrO + BaO increases outside the appropriate range, the density tends to increase, and the balance of the glass composition component is impaired, and conversely, devitrification resistance tends to decrease.
  • the content of MgO + CaO + SrO + BaO is set to 60% or less, preferably 55% or less, and more preferably 50% or less.
  • the following components can be added to the glass composition within a range of appropriate content ratios.
  • Each component of Li 2 O, Na 2 O, and K 2 O is a component that adjusts the thermal expansion coefficient by lowering the viscosity. However, if it is included in a large amount outside the appropriate range, a voltage that causes dielectric breakdown. Tends to decrease. In addition, the temperature characteristics of dielectric constant tend to decrease. For these reasons, when these components are added, the total amount is set to 15% or less, preferably 10% or less, more preferably 5% or less, and further to 2% or less, It is preferably set in the order of 1% or less and 0.5% or less, particularly preferably 1000 ppm or less.
  • the ZnO is a component that increases the dielectric constant and also increases the meltability. However, if it is included in a large amount outside the appropriate range, devitrification of the glass tends to occur and the density tends to increase. For these reasons, the ZnO content is set to 0 to 40%, preferably 0 to 30%, more preferably 0 to 20%, and even more preferably 0.5 to 15%. Particularly preferably, it is set to 1 to 10%.
  • ZrO 2 is a component that increases the dielectric constant. However, if the ZrO 2 is contained outside the proper range and contained in a large amount, the liquidus temperature rises abruptly and zircon devitrified foreign matter tends to precipitate. For the above reasons, the content of ZrO 2 is set to 20% or less, preferably 15% or less, and more preferably 10% or less. The ZrO 2 content is set to 0.1% or more, preferably set to 0.5% or more, more preferably set to 1% or more, further preferably set to 2% or more, particularly preferably. Is set to 3% or more.
  • Each component of Y 2 O 3 , Nb 2 O 3 , and La 2 O 3 is a component that increases the dielectric constant and the like, but if it is included in a large amount outside the appropriate range, the density tends to increase. For these reasons, when adding Y 2 O 3 , Nb 2 O 3 , or La 2 O 3 , the content of each component is preferably set to 20% or less.
  • the glass composition of the first insulating film 7 includes one or two selected from the group consisting of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 as a fining agent. More than seeds can be added in the range of 0 to 3%. However, As 2 O 3 , Sb 2 O 3 , and F are preferably used as much as possible from an environmental viewpoint, and the content of each component is preferably set to less than 0.1%. From the environmental point of view, SnO 2 , Cl and SO 3 are preferable as the fining agent.
  • the content of SnO 2 + Cl + SO 3 (the total amount of SnO 2 , Cl and SO 3 ) is set to 0.001 to 1%, preferably set to 0.01 to 0.5%, more preferably 0. It is set to 01 to 0.3%.
  • the SnO 2 content is set to 0 to 1%, preferably set to 0.01 to 0.5%, particularly preferably set to 0.05 to 0.4%.
  • components other than those described above can be added to the glass composition of the first insulating film 7 in a range of, for example, up to 20%, preferably up to 10%.
  • the liquid phase temperature of the first insulating film 7 is set to, for example, 1200 ° C. or less, preferably 1150 ° C. or less, more preferably 1090 ° C. or less, and further 1050 ° C. or less, 1030 ° C. or less. Is preferably set, particularly preferably 1000 ° C. or lower. If the liquid phase temperature of the first insulating film 7 is too high, the glass tends to be devitrified during molding, and it becomes difficult to improve the surface accuracy (surface roughness, etc.) of the first insulating film 7. is there.
  • the liquid phase viscosity of the first insulating film 7 is set to, for example, 10 3.5 dPa ⁇ s or more, preferably 10 4.0 dPa ⁇ s or more, more preferably 10 4.5 dPa ⁇ s or more, Preferably it is set to 10 4.8 dPa ⁇ s or more, particularly preferably 10 5.0 dPa ⁇ s or more. This is because if the liquid phase viscosity of the first insulating film 7 is too low, devitrification of the glass tends to occur during molding, and it becomes difficult to increase the surface accuracy of the first insulating film 7.
  • the liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • the liquid phase temperature passes through a standard sieve 30 mesh (about 500 ⁇ m), the glass powder remaining in 50 mesh (about 300 ⁇ m) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours, and crystals precipitate. Refers to the value measured temperature.
  • the density of the first insulating film 7 is set to 4.5 g / cm 3 or less, preferably set to 4.0 g / cm 3 or less, more preferably set to 3.6 g / cm 3 or less.
  • it is suitably set in the order of 3.3 g / cm 3 or less, 3.0 g / cm 3 or less, and 2.8 g / cm 3 or less, particularly preferably 2.5 g / cm 3 or less.
  • the smaller the density the easier it is to reduce the weight of the wound film capacitor 1.
  • the density here refers to the value measured by the well-known Archimedes method.
  • the thermal expansion coefficient of the first insulating film 7 is set to, for example, 25 ⁇ 10 ⁇ 7 to 120 ⁇ 10 ⁇ 7 / ° C., preferably set to 30 ⁇ 10 ⁇ 7 to 120 ⁇ 10 ⁇ 7 / ° C., and more preferably.
  • the coefficient of thermal expansion of the first insulating film 7 is set in the above range, the coefficient of thermal expansion of the first insulating film 7 and the surfaces 7a and 7b of the first insulating film 7 are formed by film formation or the like. Since the thermal expansion coefficients of the conductive layers 5 and 6 can be matched (approached), deformation of the conductive layers 5 and 6 such as warpage can be prevented.
  • the coefficient of thermal expansion here refers to an average value measured with a dilatometer in the range of 30 to 380 ° C.
  • the temperature at 10 2.5 dPa ⁇ s of the first insulating film 7 is set to 1550 ° C. or lower, preferably 1450 ° C. or lower, more preferably 1350 ° C. or lower, and further 1250 ° C. or lower. It is suitably set in the order of 1200 ° C. or lower and 1170 ° C. or lower, particularly preferably 1150 ° C. or lower.
  • the temperature at 10 2.5 dPa ⁇ s indicates a value measured by a platinum ball pulling method.
  • At least part of the surface 7a (7b) of the first insulating film 7 may be in an unpolished state. Moreover, in that case, it is preferable that all of the first surface 7a and the second surface 7b directed in opposite directions are unpolished.
  • the theoretical strength of glass is very high, in fact, it often breaks at much lower stresses than the theoretical strength. This is because a small defect called Griffith flow is generated on the surface of the glass in a post-molding process such as a polishing process. Therefore, if the first surface 7a (second surface 7b) of the first insulating film 7 which is a glass film is unpolished, in other words, the first surface 7a (second surface 7b) is formed on the molding surface.
  • a first insulating film having a first surface 7a (second surface 7b) which is unpolished and has excellent surface accuracy by molding a glass film by a redraw method or an overflow downdraw method which will be described later. 7 can be obtained.
  • a redraw method can be adopted as a means for forming the first insulating film 7, for example.
  • the thickness dimension t1 of the first insulating film 7 can be easily reduced. Further, the surface quality of the first insulating film 7 can be improved.
  • each side end surface 7c, 7d (refer FIG. 3) of the 1st insulating film 7 is made into a shaping
  • the redraw method is a method in which a molded glass is heated again to a temperature near the softening point and stretched to form the glass into a predetermined shape (in the case of this embodiment, a long film).
  • glass film forming means other than redraw such as an overflow down draw method or a slot down draw method
  • the overflow down-draw method is a forming method called fusion method, in which molten glass overflows from both sides of the heat-resistant bowl-like structure, and the overflowing molten glass is joined at the lower end of the bowl-like structure.
  • this is a method of obtaining glass having a predetermined shape (long glass film in the case of the present embodiment) by stretching downward. Surface quality can also be improved by forming a glass film by the overflow downdraw method.
  • the second insulating film 8 is a glass film
  • glass films having different glass compositions, physical properties, shapes, surface properties, dimensions, molding conditions, and the like may be used for the second insulating film 8. .
  • the material (glass composition) of both the insulating films 7 and 8 was described, as long as it can wind up without generating a crack, not only the glass composition mentioned above but various materials are also employable. It is. Specific examples include alkali-free glass, soda glass, and alkali-containing glass.
  • the thickness dimension t2 of the second insulating film 8 is arbitrary.
  • the second insulating film 8 when the second insulating film 8 is a glass film, the second insulating film 8 has a thickness dimension t1 with respect to the thickness dimension t1 of the first insulating film 7.
  • the thickness dimension t2 is set so that the relative thickness dimension (the value obtained by dividing the thickness dimension t2 of the second insulating film 8 by the thickness dimension t1 of the first insulating film 7) is, for example, 0.3 or more, preferably 0.
  • the thickness dimension t2 is suitably set in the order of 0.6 or more, 0.7 or more, 0.8 or more, more preferably 0.5 or more, more preferably 0.5 or more, and particularly preferably The thickness dimension t2 is set so as to be 0.9 or more.
  • the thickness dimension t2 of the second insulating film 8 is set so that the ratio of the thickness dimensions t1 and t2 is, for example, 3.0 or less, preferably 2.5 or less. More preferably, the thickness dimension t2 is suitably set in the order of 1.8 or less, 1.5 or less, 1.3 or less, 1.2 or less, 1.1 or less, more preferably 2.0 or less. Particularly preferably, the thickness dimension t2 is set to be 1.05 or less.
  • the through hole 10 that penetrates the wound body 2 in the direction along the width direction of the wound body 2, that is, in the direction along the center line X ⁇ b> 1 of the wound body 2 in FIG. 2.
  • the through hole 10 penetrates not only the wound body 2 but also the electrodes 3 and 4 attached to both sides in the width direction. Therefore, as shown in FIG. 1, the through hole 10 penetrates the wound film capacitor 1 in the direction along the center line at the center of the wound film capacitor 1.
  • the center line of the wound film capacitor 1 is equal to the center line X1 of the wound body 2 (see FIGS. 1 and 2).
  • the internal diameter dimension D of the through-hole 10 in this case Is substantially equal to the minimum winding diameter of the insulating film 8 described above.
  • the method for manufacturing the wound film capacitor 1 includes a step S1 for forming the laminated body 9, a step S2 for forming the wound body 2, a step S3 for forming the through hole 10 in the wound body 2, and a winding. And a step S4 of providing positive and negative electrodes 3 and 4 on both sides of the body 2 in the width direction.
  • the long laminate 9 is formed by alternately stacking the two insulating films 7 and 8 and the two conductive layers 5 and 6.
  • the film 7 is placed on the second insulating film 8, and the first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 are laminated in this order.
  • a laminated body is formed (see FIG. 5).
  • the longitudinal dimension L1 of the first insulating film 7 and the longitudinal dimension L2 of the second insulating film 8 are the same length. The lengths L1 and L2 can be appropriately adjusted by, for example, direct adhesion between the insulating films 8).
  • the second surface 7b of the first insulating film 7 and the third surface 8a of the second insulating film 8 or the fourth surface 8b of the second insulating film 7 and the first insulating film Insulating films 7 and 8 are both glass films, and the surface roughness is set to a predetermined size so that the first surface 7 is in direct contact with no adhesive or the like. It is also possible to take a form in which the end in the longitudinal direction of the insulating film 7 protrudes from the conductive layers 5 and 6 in the longitudinal direction (see FIG. 4).
  • the surface roughness is expressed by the arithmetic average roughness Ra
  • the arithmetic average roughness Ra of the second surface 7b and the third surface 8a (the first surface 7a and the fourth surface 8b) that are in close contact with each other. are preferably set to 2.0 nm or less.
  • it is preferably 1.0 nm or less, more preferably 0.8 nm or less, 0.4 nm or less, and 0.3 nm or less in order, and 0.2 nm or less. Particularly preferred.
  • the winding body 2 is formed by winding the laminated body 9 formed by process S1 around the core 11.
  • FIG. 1 although arbitrary forms and materials can be adopted as the core 11, in the present embodiment, as shown in FIGS. 6 and 7, the core 11 having a divided structure is used.
  • the core 11 includes a plurality of divided bodies 12 to 15 each provided with winding surfaces 12a to 15a of the laminated body 9 on the outer periphery, and connecting members 16 and 17 that connect the plurality of divided bodies 12 to 15 to each other.
  • the four divided bodies 12 to 15 are connected to each other by the two connecting members 16 and 17.
  • Each of the divided bodies 12 to 15 is formed with groove-like fitted portions 12b to 15b into which the connecting members 16 and 17 are fitted (see FIG. 7).
  • the four divided bodies 12 to 15 can be connected to each other. If the connection members 16 and 17 and the divided bodies 12 to 15 are to be connected more firmly, screw holes 12c to 15c are provided in the divided bodies 12 to 15 as shown in FIG. , 17 may be provided with screw insertion holes 16a, 17a so as to be connected by screws 18.
  • the divided bodies 12 to 15 are connected to each other by connecting members 16 and 17 in a predetermined circumferential direction.
  • a gap 19 is formed between the divided bodies 12 to 15 adjacent in the circumferential direction.
  • the circumferential clearance 19 functions effectively when only a part of the divided bodies 12 to 15 is first removed from the wound body 2 in the formation step S3 of the through hole 10 described later. Details will be described later.
  • a shaft fitting hole 11a into which a rotating shaft (not shown) having a predetermined outer diameter can be fitted is formed at the center of the core 11.
  • the winding of the laminate 9 using the core 11 having the above configuration is performed as follows, for example.
  • one end portion 9a in the longitudinal direction of the laminate 9 serving as the end portion on the winding start side is brought into close contact with the outer peripheral surface (winding surfaces 12a to 15a) of the core 11, and the shaft 11 is fitted into the shaft.
  • a rotary drive shaft (not shown) such as a motor is fitted in the hole 11a, and the rotary drive shaft is rotationally driven to start winding the laminated body 9.
  • the second surface 7 b of the first insulating film 7 and the third surface 8 a of the second insulating film 8 are directly connected to each other at one longitudinal end 9 a of the laminate 9.
  • the two insulating films 7 and 8 and the two conductive layers 5 and 6 may overlap
  • p1 see FIG. 4
  • both the insulating films 7 and 8 are wound around the core 11 one or more times in a state where the second surface 7b of the first insulating film 7 and the third surface 8a of the second insulating film 8 are in direct contact with each other. It is also possible to set the protruding dimension p1 of the first insulating film 7 from the conductive layers 5 and 6 to such an extent that it can be taken.
  • the laminate 9 is wound around the core 11, and as shown in FIG. 9, for example, the other end 9b in the longitudinal direction, which is the end portion on the winding end side of the laminate 9, is positioned immediately inside thereof.
  • the wound body 2 (see FIG. 10) integrally having the core 11 is formed.
  • the fixing means of the first insulating film 7 is arbitrary, but it is also possible to employ a fixing means using direct contact with the second insulating film 8 as in the case of starting winding. That is, as shown in FIG.
  • the inner surface (second surface 7b) of the first insulating film 7 located on the outermost radial direction and the outer surface (third surface 8a) of the second insulating film 8 Not only directly but also the inner surface (fourth surface 8b) of the second insulating film 8 and the outer surface (first surface 7a) of the first insulating film 7 in the previous circumference. And are in direct contact. Thereby, it is possible to form the wound body 2 formed by winding the laminated body 9 and firmly fix both the insulating films 7 and 8 at the end of the laminated body 9 on the winding end side.
  • (S3) Through-hole forming step the core 11 is removed from the wound body 2 to form a through-hole 10 that penetrates the wound body 2 in the width direction at the center of the wound body 2.
  • the connecting member 16 , 17 are removed from each of the divided bodies 12-15.
  • some of the divided bodies here, the two divided bodies 12 and 13 having relatively small circumferential dimensions
  • the circumferential gap 19 is provided between the divided bodies 12 to 15, so that a special resistance is provided. It is possible to easily pull out some of the divided bodies 12 and 13.
  • the wound body 2 is formed, and at the center of the wound body 2, the penetrating through the wound body 2 in the width direction is formed.
  • a hole 10 is formed (see FIG. 2).
  • the first and second conductive layers 5 and 6 and the first and second insulating films 7 and 8 are both spiral. The first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 are repeatedly positioned in this order from the outside in the radial direction.
  • both positive and negative electrodes 3 and 4 are formed on both sides of the wound body 2 in the width direction.
  • the first electrode 3 located on one side in the width direction of the wound body 2 is in contact with the first side end face 5a of the first conductive layer 5 as shown in FIG.
  • the conductive layer 6 is formed so as not to contact the third side end surface 6a.
  • the second electrode 4 located on the other side in the width direction of the wound body 2 is in contact with the fourth side end face 6 b of the second conductive layer 6 and the second side end face of the first conductive layer 5. It is formed so as not to contact 5b.
  • both the positive and negative electrodes 3 and 4 are formed so as to cover the end in the width direction of the wound body 2 and are electrically connected only to the corresponding conductive layers 5 and 6, as shown in FIG.
  • the wound film capacitor 1 is completed.
  • the formation means of the electrodes 3 and 4 is arbitrary, from a viewpoint which implement
  • the electrodes 3 and 4 are plate-shaped, it is extremely difficult to make them contact with the entire area of the side end faces 5a, 5b, 6a and 6b of the conductive layers 5 and 6.
  • a paste-like conductive material it adheres following the position of each side end face 5a, 5b, 6a, 6b.
  • the electrodes 3 and 4 are in close contact with each other.
  • it becomes a low-viscosity liquid when supplied, such as solder it may flow between the insulating films 7 and 8 and adhere to the conductive layer 5 (6) on the side to be insulated.
  • the first and second insulating films 7 and 8 and the first and second conductive layers 5 and 6 are the first conductive layer 5,
  • the first insulating film 7, the second conductive layer 6, and the second insulating film 8 are provided with a wound body 2 that is wound in a roll shape in an overlapping state, and the two insulating films 7, Of these, at least the first insulating film 7 is made of a glass film. Since glass is unlikely to generate oxygen vacancies, the temperature dependence of the dielectric constant can be reduced without reducing the dielectric constant.
  • the wound film capacitor 1 capable of storing a large amount of energy can be manufactured in a relatively small size.
  • the wound film capacitor 1 according to the present invention is provided with a through hole 10 that penetrates the wound body 2 in the width direction at the center of the wound body 2 constituting the capacitor 1.
  • a hollow space that is, air as an insulator is present in the center of the wound film capacitor 1 over the entire width direction. Therefore, the increase in inductance as described above can be suppressed, and an increase in impedance in the high frequency range can be avoided as much as possible.
  • the center of the wound body 2 is a hollow space, the wound film capacitor 1 can be reduced in weight by that amount, which is also suitable for general use of the capacitor.
  • the first and second conductive layers 5 and 6 are both metal films, and the first and second metal films have opposite directions in the thickness direction of the first insulating film 7.
  • a film was formed on each of the first and second surfaces 7a and 7b that are directed to each other (see FIGS. 2 and 4).
  • the thickness dimension can be set without considering the handleability of the conductive layers 5 and 6 alone. It is possible to further reduce the size by reducing the size.
  • the film formation region can be accurately set by masking or the like. Therefore, at the time of winding, it is possible to easily manage the contact mode between the electrodes 3 and 4 and the conductive layers 5 and 6 only by controlling the positions of the side end faces 7c and 7d of the first insulating film 7. it can.
  • the 1st insulating film 7 of The second surface 7b and the third surface 8a of the second insulating film 8 are in direct contact with each other, and one end in the longitudinal direction of the laminate 9 that is the winding start side end of the two insulating films 7 and 8 In 9a, the second surface 7b of the first insulating film 7 and the third surface 8a of the second insulating film 8 were in direct contact with each other.
  • the winding body 2 in the middle of winding the two insulating films 7 and 8 in a roll shape
  • the shape of the part) or the shape of the wound body 2 after being wound up can be properly maintained.
  • the wound body 2 since it is not necessary to separately prepare a member for fixing the two insulating films 7 and 8, the wound body 2 can be simply configured and can be downsized.
  • the two insulating films 7 and 8 are both made of glass film and fixed to each other by direct adhesion, whereby the wound body 2 and thus the wound film capacitor 1 provided with the wound body 2 are used.
  • This capacitor is particularly excellent in terms of safety because it has excellent heat resistance and no danger of leakage or burning. In addition, it does not easily deteriorate over time and is excellent in terms of long-term reliability.
  • the first and second conductive layers 5 and 6 are both metal films, and both the first and second metal films (conductive layers 5 and 6) are both of the first insulating film 7.
  • FIG. 12 is a perspective view of the wound body 2 according to an example (second embodiment of the present invention), and the first and second conductive layers 5 and 6 and the first and second insulating films 7, A state where 8 is virtually expanded is indicated by a two-dot chain line.
  • the first and second conductive layers 5 and 6 are both metal films, and the first metal film (first conductive layer 5) is The first insulating film 7 is formed on the first surface (here, the outer surface) 7 a, and the second metal film (second conductive layer 6) is formed on the third insulating film 8. A film is formed on the surface (here, the outer surface) 8a.
  • the first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 in this order from the outside in the radial direction of the wound body 2.
  • the first insulating film 7, the first conductive layer 5, the second insulating film 8, from the radially outer side of the wound body 2 It is also possible to take a form in which two insulating films 7 and 8 are wound into a roll shape so as to be arranged in the order of the second conductive layer 6.
  • the first conductive layer 5 and the second conductive layer 6 may be offset from each other in different directions in the width direction.
  • both the 1st and 2nd conductive layers 5 and 6 are made into a metal film, these 1st and 2nd metal films and the 1st and 2nd insulating films 7 and 8 are made into 1st.
  • One metal film, the first insulating film 7, the second metal film, and the second insulating film 8 may be overlapped in this order and wound into a roll shape.
  • the wound body 2 may be formed by winding around the core 11 (third embodiment of the present invention). In this case, the formation process S1 of the laminated body 9 and the formation process S2 of the wound body 2 are performed simultaneously. In this embodiment, the case where the winding starts from the second insulating film 8 and the winding ends with the second insulating film 8 will be described below as an example.
  • the longitudinal direction one end 8 e of the second insulating film 8 serving as the winding start side end is brought into close contact with the outer peripheral surface of the core 11, and the core 11 is already described.
  • the second insulating film 8 starts to be wound.
  • the first insulating film 7 is turned into the second insulating film.
  • 8 is brought into close contact with the outer surface (third surface 8a), and the winding of the second insulating film 8 is continued.
  • both the insulating films 7 and 8 overlap each other, both the insulating films 7 and 8, in other words, the laminate 9 is wound around the core 11. Further, by starting winding of the second insulating film 8 in advance of the first insulating film 7, the outer surface of the second insulating film 8 (third surface 8a) and a radius corresponding to one circumference thereof It will be in the state which the inner surface (4th surface 8b) of the 2nd insulating film 8 located in the direction outer side was closely_contact
  • the amount of preceding winding of the 2nd insulating film 8 is not restricted to the said illustration, For example, 0.1 rounds, 0.25 rounds, 1 round, 1.5 rounds, 5 rounds, etc. arbitrary The amount of winding can be set.
  • the roll body When the first insulating film 7 is introduced around the core 11, for example, as shown in FIG. 14, the roll body is arranged so that the first insulating film 7 is introduced inside the second insulating film 8 in the radial direction.
  • Winding may be performed by arranging 20, 21.
  • the longitudinal direction one end portion 7e that becomes the winding start side end portion of the first insulating film 7 is obtained. Is sandwiched between the second insulating films 8 and the both insulating films 7 and 8 can be wound up while being wound (see FIG. 15). Therefore, the winding start state of the first insulating film 7 is stabilized, and as a result, the wound body 2 having excellent shape accuracy can be formed.
  • the wound body 2 having the core 11 integrally is formed as in FIG.
  • the second insulating film 8 is continuously wound, for example, about 0.5 turn (1/2 turn) to 3 turns (2 in FIG. 16).
  • the outer surface (third surface 8a) of the second insulating film 8 and the inner surface (fourth surface) of the second insulating film 8 positioned radially outward by the circumference of the second insulating film 8 by winding. 8b) are fixed to each other by direct contact.
  • the winding body 2 of the state by which the winding form of both the insulating films 7 and 8 was maintained reliably can be obtained.
  • the end portion on the winding end side of the first insulating film 7 integrally formed with the first and second conductive layers 5 and 6 is completely covered by the second insulating film 8, The degree of freedom on the winding end side of the body 2 is increased.
  • the additional winding amount on the winding end side of the second insulating film 8 is not limited to the above-described example, and for example, 0.1 turn, 0.25 turn, 1 turn, 1.5 turn, An arbitrary winding amount such as 5 laps can be used.
  • the roll body 20 of the first insulating film 7 and the roll body 21 of the second insulating film 8 are arranged on the same side (both left sides in FIG. 14) with respect to the core 11.
  • the roll body 20 of the first insulating film 7 and the roll body 21 of the second insulating film 8 are arranged on different sides with respect to the core 11 (FIG. 14).
  • the roll body 20 may be provided on one of the left and right sides of the core 11 and the roll body 21 may be provided on the other side, and the core 11 may be drawn out.
  • the winding body 2 of the winding type film capacitor 1 is exemplified as one in which the two insulating films 7 and 8 are wound in a true cylindrical shape (see FIG. 9 and the like).
  • other shapes may be used.
  • the wound body 22 when viewed from the direction along the center line, the wound body 22 (fourth embodiment of the present invention) having an elliptical shape or a flat shape including a straight portion is formed.
  • the wound body 23 for example, various forms can be taken.
  • the density was measured by the well-known Archimedes method.
  • strain point and annealing point were measured by a method based on ASTM C336-71.
  • the softening point was measured by a method based on ASTM C338-93.
  • the high temperature viscosity 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, and the temperature at 10 2.5 dPa ⁇ s, was measured by a platinum ball pulling method.
  • the thermal expansion coefficient was measured with a dilatometer in the range of 30 to 380 ° C.
  • the glass powder that passes through a standard sieve 30 mesh (about 500 ⁇ m) and remains in 50 mesh (about 300 ⁇ m) is placed in a platinum board and held in a temperature gradient furnace for 24 hours, and the temperature at which crystals precipitate. was measured.
  • the viscosity of the glass at the liquid phase temperature was measured by a platinum ball pulling method.
  • the relative dielectric constant was measured by a method based on ASTM D150.
  • the thickness dimension is 45 nm.
  • a Cu film was formed by film formation. During film formation, a region from the second side end face (see FIG. 3 and paragraph 0056) to 3 mm of one surface was masked so that a Cu film was not formed on the masking portion. In addition, a region from the first side end surface (see FIG. 3 and paragraph 0056) to 3 mm of the other surface was masked so that no Cu film was formed on the masking portion. In this way, after the Cu film was formed, the masking portion was removed.
  • the substrate glass film and the interposed glass film were overlapped, and the overlapped body was wound around the outer peripheral surface of the core having an outer diameter of 50 mm shown in FIG. 6 to form a wound body.
  • the core was removed from the wound body by the method described in paragraph 0104, for example.
  • the through-hole was formed in the center of a wound body by removing a core from a wound body.
  • an electrode layer was formed by applying and solidifying a conductive paste on both sides of the wound body in the width direction. Specifically, the entire first side end face of the Cu film formed on one surface of the base glass film is electrically connected, and the first side end face of the Cu film formed on the other surface The entire region was not in contact with the electrode layer (not electrically connected). Further, the entire second side end face of the Cu film formed on the other surface of the base glass film is electrically connected, and the entire second side end face of the Cu film formed on one surface is an electrode. The layer was not in contact (not electrically connected).
  • CW2400 manufactured by ITW Chemtronics was used as the conductive paste. As described above, sample No. 1-No. A wound film capacitor according to 9 was produced.

Abstract

A wound type film capacitor 1 according to the present invention is provided with a wound body 2 in which a first and a second electrically conductive layer 5, 6 and a first and a second insulating film 7, 8 are wound in a roll in an overlapping state in the order of the first electrically conductive layer 5, the first insulating film 7, the second electrically conductive layer 6, and the second insulating film 8. At least the first insulating film 7 is a glass film, and the wound body 2 has a through-hole 10 provided at the center thereof that penetrates through the wound body 2 in a width direction thereof.

Description

巻回型フィルムコンデンサ及びその製造方法Winding type film capacitor and manufacturing method thereof
 本発明は、巻回型フィルムコンデンサ及びその製造方法に関する。 The present invention relates to a wound film capacitor and a manufacturing method thereof.
 例えば電気自動車(EV)やハイブリッド電気自動車(HEV)には、バッテリの直流電力を交流電力に変換して交流モータを駆動するために、インバータが用いられる。また、インバータのスイッチング回路へ接続される直流電源回路(コンバータ、バッテリ等)は、一般的にDCリンクと呼ばれており、その直流電源電圧はDCリンク電圧と呼ばれている。インバータのDCリンクには、DCリンクコンデンサと呼ばれる大容量のコンデンサが直流電源と並列に接続され、スイッチング回路による瞬間的な負荷変動を補償している(例えば、特許文献1を参照)。 For example, in an electric vehicle (EV) and a hybrid electric vehicle (HEV), an inverter is used to drive the AC motor by converting the DC power of the battery into AC power. A DC power supply circuit (converter, battery, etc.) connected to the inverter switching circuit is generally called a DC link, and the DC power supply voltage is called a DC link voltage. A large-capacitance capacitor called a DC link capacitor is connected to the DC link of the inverter in parallel with the DC power supply to compensate for an instantaneous load fluctuation caused by the switching circuit (see, for example, Patent Document 1).
 この用途に用いられるコンデンサには、以下のような特性が求められる。
(1)瞬間的な負荷変動を補償するために、大容量のエネルギーを瞬時に蓄積、放出できること、
(2)温度変化により回路が適正に作動しない事態を防止するために、誘電率の温度依存性が小さいこと、及び
(3)高温環境下においても正常に作動すること。
Capacitors used for this purpose are required to have the following characteristics.
(1) The ability to instantaneously store and release large amounts of energy to compensate for instantaneous load fluctuations,
(2) In order to prevent a situation where the circuit does not operate properly due to a temperature change, the temperature dependence of the dielectric constant is small, and (3) it operates normally even in a high temperature environment.
特表2004-524796号公報JP-T-2004-52496 Gazette
 この用途に用いられるコンデンサとしては、現在のところ、BaTiO3を使用したセラミックコンデンサが主流である。しかし、このセラミックコンデンサは、高い電圧を印加した場合に絶縁破壊を生じることが問題になっている。その理由は、セラミックコンデンサに存在する結晶粒の凸部が電極と接触し、その接触部分に高電圧が印加されると、電界集中が起こり、短絡が生じやすくなるためである。 At present, ceramic capacitors using BaTiO 3 are mainly used as capacitors for this purpose. However, this ceramic capacitor has a problem that dielectric breakdown occurs when a high voltage is applied. The reason is that when the convex portions of the crystal grains present in the ceramic capacitor are in contact with the electrode and a high voltage is applied to the contact portion, electric field concentration occurs and a short circuit is likely to occur.
 また、BaTiO3を使用したセラミックコンデンサは、誘電率の温度依存性が大きく、温度変化により誘電率が変化しやすいことが知られている。このため、誘電率の温度依存性を低下させるために、BaTiO3中にMgやMn等をドープすることが検討されている。しかし、MgやMn等をドープすると、BaTiO3の結晶格子中に相対的に-2の電荷が誘起され、これによってBaTiO3中に酸素欠陥が発生する場合がある。この酸素欠陥は、直流電圧下において誘電率の低下を招くおそれがある。したがって、BaTiO3を使用したセラミックコンデンサでは、誘電率を高めつつ、誘電率の温度依存性を低下させることが困難であった。 Further, it is known that a ceramic capacitor using BaTiO 3 has a large temperature dependence of dielectric constant, and the dielectric constant is likely to change due to temperature change. For this reason, in order to reduce the temperature dependence of the dielectric constant, it has been studied to dope Mg, Mn, or the like into BaTiO 3 . However, when doped with Mg and Mn, etc., a charge relatively -2 crystal lattice of BaTiO 3 is induced, whereby there is a case where an oxygen defect is generated in BaTiO 3. This oxygen defect may cause a decrease in dielectric constant under a DC voltage. Therefore, in a ceramic capacitor using BaTiO 3 , it is difficult to reduce the temperature dependence of the dielectric constant while increasing the dielectric constant.
 また、コンデンサに大容量のエネルギーを蓄えるためには、単位体積当たりで大きな面積を確保する必要がある。例えば板状のセラミック材を積層した構造をとることで大きな面積を確保できるが、この方法だと部品点数の増大化と共に工程の煩雑化を招き、コストアップの要因になる。 In order to store a large amount of energy in the capacitor, it is necessary to secure a large area per unit volume. For example, a large area can be secured by adopting a structure in which plate-shaped ceramic materials are laminated. However, this method increases the number of parts and complicates the process, resulting in an increase in cost.
 大容量化のために、例えば絶縁体としての樹脂フィルムを金属フィルムと共にロール状に巻き取ることでコンデンサを構成することも考えられるが、これだと、樹脂自体の耐熱性の問題から、例えば自動車の車載機器など高温環境下での使用を保証するために、コンデンサに隣接して冷却装置を設置する必要が生じる。これではコンデンサ単体を小型化できたとしても、結果として必要な設置スペースが冷却装置の分だけ大きくなるため、コンデンサの小型化のために好ましいとは言い難い。 In order to increase the capacity, for example, it is conceivable to construct a capacitor by winding a resin film as an insulator together with a metal film in a roll shape. In order to guarantee use in a high temperature environment such as in-vehicle equipment, it is necessary to install a cooling device adjacent to the capacitor. In this case, even if the capacitor can be reduced in size, the required installation space is increased as much as the cooling device. As a result, it is difficult to say that it is preferable for reducing the size of the capacitor.
 以上に述べた特性は、総じてコンデンサの汎用性を高めるためのものであるが、上述のように大容量化が難しく、高温環境特性に問題があるコンデンサは、コンデンサの小型化の妨げとなり、結果としてコンデンサの汎用化が困難となっていた。 The characteristics described above are generally intended to improve the general versatility of capacitors. However, as described above, capacitors that are difficult to increase in capacity and have problems with high-temperature environment characteristics hinder the miniaturization of capacitors, resulting in As a result, it has been difficult to generalize capacitors.
 以上の事情に鑑み、本明細書では、大型化を避けつつも大容量化と高温環境特性の向上を図ることにより、汎用性に優れたコンデンサを提供することを、本発明により解決すべき技術的課題とする。 In view of the above circumstances, in the present specification, the technology to be solved by the present invention is to provide a capacitor having excellent versatility by increasing capacity and improving high-temperature environment characteristics while avoiding an increase in size. As an objective.
 前記技術的課題の解決は、本発明に係る巻回型フィルムコンデンサにより達成される。すなわち、このコンデンサは、第一及び第二の導電層と、第一及び第二の絶縁フィルムとが、第一の導電層、第一の絶縁フィルム、第二の導電層、第二の絶縁フィルムの順に重なり合った状態でロール状に巻き取られた形態をなす巻回体を備えた巻回型フィルムコンデンサであって、少なくとも第一の絶縁フィルムはガラスフィルムであって、かつ巻回体の中心に、巻回体をその幅方向に貫通する貫通穴が設けられている点をもって特徴付けられる。なお、本明細書において、巻回体の幅方向とは、巻回体を構成している状態の第一又は第二の絶縁フィルムの長尺方向と厚み方向の何れに対しても直交する向きを意味する。  The solution to the technical problem is achieved by the wound film capacitor according to the present invention. That is, in this capacitor, the first and second conductive layers and the first and second insulating films are the first conductive layer, the first insulating film, the second conductive layer, and the second insulating film. A wound film capacitor having a wound body that is wound into a roll shape in the state of overlapping in the order of at least the first insulating film is a glass film, and the center of the wound body In addition, it is characterized by the fact that a through-hole penetrating the wound body in the width direction is provided. In the present specification, the width direction of the wound body is a direction orthogonal to both the longitudinal direction and the thickness direction of the first or second insulating film in a state constituting the wound body. Means. *
 このように、本発明では、第一及び第二の絶縁フィルムと第一及び第二の導電層とが交互に重なり合った状態でロール状に巻き取られた形態をなす巻回体でコンデンサを構成すると共に、少なくとも第一の絶縁フィルムをガラスフィルムとした。ガラスであれば酸素欠損が発生し難いため、誘電率を低下させることなく誘電率の温度依存性を小さくすることができる。よって、ガラスで作製したフィルムを導電層とともにロール状に巻き取った形態をなす巻回体でコンデンサを構成することにより、コンデンサの単位体積当たりの静電容量を大きくしつつも、温度変化により、回路が適正に作動しない事態を有効に防止することができる。従って、大容量のエネルギーを蓄積可能でかつ高温環境特性にも優れたコンデンサを比較的小型に製造することが可能となる。 Thus, in the present invention, the first and second insulating films and the first and second conductive layers are alternately wound in a roll shape with the first and second conductive layers overlapping each other. In addition, at least the first insulating film was a glass film. Since glass is unlikely to generate oxygen vacancies, the temperature dependence of the dielectric constant can be reduced without reducing the dielectric constant. Therefore, by configuring the capacitor with a wound body in the form of a roll of a film made of glass and a conductive layer, while increasing the capacitance per unit volume of the capacitor, due to temperature changes, The situation where the circuit does not operate properly can be effectively prevented. Therefore, a capacitor capable of storing a large amount of energy and excellent in high temperature environmental characteristics can be manufactured in a relatively small size.
 また、本発明では、コンデンサを構成する巻回体の中心に、巻回体をその幅方向に貫通する貫通穴を設けるようにした。このように構成することで、コンデンサの中心には、その幅方向全域にわたって中空の空間が存在した状態となる。例えば、巻回体の中心に、絶縁フィルムを巻き取る際に使用するコアなどが残った状態だと、コアの材質によっては、巻回体が一種のコイルのように作動した際に当該コアの影響でインダクタンスが増加するおそれがある。この種のインダクタンスの増加は、特に高周波域におけるインピーダンスの上昇を招くことから好ましいものではない。この点、上述のように巻回体の中心に貫通穴を設けることで、巻回体の内側には絶縁体としての空気が存在することになるため、上述の如きインダクタンスの増加を抑制して、高周波域におけるインピーダンスの上昇を可及的に回避することが可能となる。もちろん、巻回体の中心が中空の空間であれば、その分だけコンデンサを軽量化できるので、コンデンサの汎用化にとっても好適である。 Further, in the present invention, a through hole that penetrates the wound body in the width direction is provided at the center of the wound body constituting the capacitor. With this configuration, a hollow space exists in the center of the capacitor over the entire width direction. For example, if the core used for winding the insulating film remains in the center of the wound body, depending on the material of the core, when the wound body operates like a kind of coil, Inductance may increase due to the influence. This kind of increase in inductance is not preferable because it causes an increase in impedance particularly in a high frequency range. In this regard, by providing a through hole in the center of the wound body as described above, air as an insulator exists inside the wound body, so that an increase in inductance as described above is suppressed. It is possible to avoid as much as possible an increase in impedance in the high frequency range. Of course, if the center of the wound body is a hollow space, the weight of the capacitor can be reduced by that amount, which is suitable for general use of the capacitor.
 また、本発明に係る巻回型フィルムコンデンサは、第二の絶縁フィルムをガラスフィルムとしたものであってもよい。 Further, the wound film capacitor according to the present invention may be a glass film as the second insulating film.
 このように第二の絶縁フィルムをガラスフィルムとすることにより、巻回体を、二枚のガラスフィルムと、その間に配設される二つの導電層とで構成することができる。これにより、コンデンサを、有機物を含有しない、完全無機物製のフィルムコンデンサとすることができるので、コンデンサの耐熱性を高めることが可能となる。従って、周囲の温度やその他の環境に影響を受けることなく、コンデンサとしての機能を適正に発揮させることが可能となる。 Thus, by using the second insulating film as a glass film, the wound body can be composed of two glass films and two conductive layers disposed therebetween. As a result, the capacitor can be a completely inorganic film capacitor that does not contain an organic substance, so that the heat resistance of the capacitor can be increased. Therefore, the function as a capacitor can be appropriately exhibited without being affected by the ambient temperature and other environments.
 また、本発明に係る巻回型フィルムコンデンサは、第一及び第二の導電層がともに金属膜で、これら第一及び第二の金属膜が、第一の絶縁フィルムの厚み方向で相反する向きを指向する第一の表面と第二の表面とにそれぞれ成膜されているものであってもよい。 Further, in the wound film capacitor according to the present invention, the first and second conductive layers are both metal films, and the first and second metal films are in opposite directions in the thickness direction of the first insulating film. The film may be formed on the first surface and the second surface that face each other.
 このように導電層を絶縁フィルムと一体化することで、絶縁フィルムと各導電層との密着性が高まるので正負両極となる導電層間の距離を小さくすることができ、静電容量の更なる向上を図ることが可能となる。また、導電層を膜状としたほうが、導電層単体での取り扱い性を考慮せずにその厚み寸法を設定することができるので、金属膜の厚み寸法をより小さくして、更なる小型化を図ることが可能となる。 By integrating the conductive layer with the insulating film in this way, the adhesion between the insulating film and each conductive layer is increased, so that the distance between the conductive layers serving as positive and negative electrodes can be reduced, and the capacitance is further improved. Can be achieved. In addition, when the conductive layer is a film, the thickness dimension can be set without considering the handleability of the conductive layer alone, so the metal film thickness can be made smaller and further miniaturization can be achieved. It becomes possible to plan.
 あるいは、本発明に係る巻回型フィルムコンデンサは、第一及び第二の導電層がともに金属膜で、第一の金属膜が第一の絶縁フィルムの厚み方向一方を指向する第一の表面に成膜されており、第二の金属膜が第二の絶縁フィルムの厚み方向一方を指向する第三の表面に成膜されているものであってもよい。 Alternatively, in the wound film capacitor according to the present invention, the first and second conductive layers are both metal films, and the first metal film is directed to the first surface that faces one of the thickness directions of the first insulating film. It may be formed, and the second metal film may be formed on the third surface directed in one thickness direction of the second insulating film.
 この構成により導電層と絶縁フィルムを一体化することによっても、絶縁フィルムと導電層との密着性を高めて、導電層間の距離を小さくすることができるので、静電容量の更なる向上を図ることが可能となる。また、一枚の絶縁フィルムにつき一つの導電層(金属膜)を形成すればよいので、条件によっては、一枚の絶縁フィルムに二つの導電層を設ける場合よりも当該絶縁フィルムの厚み寸法を小さくできる。これによっても、静電容量の更なる向上が期待できる。 Also by integrating the conductive layer and the insulating film with this configuration, the adhesion between the insulating film and the conductive layer can be increased and the distance between the conductive layers can be reduced, thereby further improving the capacitance. It becomes possible. In addition, since one conductive layer (metal film) may be formed per one insulating film, depending on conditions, the thickness dimension of the insulating film is smaller than when two conductive layers are provided on one insulating film. it can. This can be expected to further improve the capacitance.
 また、本発明に係る巻回型フィルムコンデンサは、第一の導電層が巻回体の幅方向一方を指向する第一の側端面と、幅方向他方を指向する第二の側端面とを有し、第二の導電層が巻回体の幅方向一方を指向する第三の側端面と、幅方向他方を指向する第四の側端面とを有し、第一の導電層の第二の側端面は、第二の導電層の第四の側端面よりも巻回体の幅方向一方の側にオフセットしており、かつ第二の導電層の第三の側端面は、第一の導電層の第一の側端面よりも巻回体の幅方向他方の側にオフセットしているものであってもよい。 In addition, the wound film capacitor according to the present invention has a first side end face in which the first conductive layer faces one side in the width direction of the wound body and a second side end face in which the other side in the width direction faces. And the second conductive layer has a third side end face that faces one side in the width direction of the wound body, and a fourth side end face that faces the other side in the width direction. The side end face is offset to one side in the width direction of the wound body from the fourth side end face of the second conductive layer, and the third side end face of the second conductive layer is It may be offset from the first side end surface of the layer to the other side in the width direction of the wound body.
 このように構成することで、巻回体の幅方向両側に電極(正極、負極)を設けた場合に、接続すべき側の導電層を容易に識別できるので、接続すべきでない側の導電層との接触を確実に回避して、各電極と、各電極と接続すべき側の導電層との電気的な接続を簡易かつ安全に行うことができる。 By comprising in this way, when the electrode (positive electrode, negative electrode) is provided on both sides in the width direction of the wound body, the conductive layer on the side to be connected can be easily identified. Can be reliably avoided, and electrical connection between each electrode and the conductive layer on the side to be connected to each electrode can be easily and safely performed.
 また、本発明に係る巻回型フィルムコンデンサは、巻回体の幅方向一方の側に、第一の導電層と接しかつ第二の導電層と離れている第一の電極が設けられ、かつ巻回体の幅方向他方の側に、第二の導電層と接しかつ第一の導電層と離れている第二の電極が設けられているものであってもよい。 Further, the wound film capacitor according to the present invention is provided with a first electrode in contact with the first conductive layer and separated from the second conductive layer on one side in the width direction of the wound body, and A second electrode that is in contact with the second conductive layer and is separated from the first conductive layer may be provided on the other side in the width direction of the wound body.
 このように電極を配置することにより、簡易な構造で、対応する導電層と電極との電気的な接続を行うことができる。特に、上述のように各導電層を巻回体の幅方向で互いに異なる向きにオフセットして(ずらして)配置することにより、電極と、この電極に対応しない非接続側の導電層との間に所定の幅方向隙間を有する状態となる。よって、特に電極を複雑な形状(部分的に突出している形状など)にせずとも、接続すべき側の導電層とのみ接触する状態を容易に形成することができる。 By arranging the electrodes in this way, electrical connection between the corresponding conductive layer and the electrodes can be performed with a simple structure. In particular, as described above, each conductive layer is arranged in an offset (shifted) direction different from each other in the width direction of the wound body, so that the gap between the electrode and the conductive layer on the non-connecting side that does not correspond to this electrode. In a state having a predetermined gap in the width direction. Therefore, it is possible to easily form a state in which only the conductive layer on the side to be connected is in contact with, without particularly making the electrode in a complicated shape (such as a partially protruding shape).
 また、本発明に係る巻回型フィルムコンデンサは、ガラスフィルムの巻き終わり側の長尺方向端部において、ガラスフィルムの表面同士が直接密着しているものであってもよい。なお、ここでいうガラスフィルムの表面同士には、一つのガラスフィルムに含まれる二つの表面同士及び異なる二枚のガラスフィルムの一つの表面同士の双方の意味が含まれる。 Further, the wound film capacitor according to the present invention may be one in which the surfaces of the glass films are in direct contact with each other at the end in the longitudinal direction on the winding end side of the glass film. The surfaces of the glass films referred to here include the meanings of both the two surfaces included in one glass film and the surfaces of two different glass films.
 このように、巻回体を構成するガラスフィルムの巻き終わり側の長尺方向端部において、ガラスフィルムの表面同士を、接着剤などを介することなく直接的に密着させた形態をとることで、巻き終わり側の端部において絶縁フィルムとしてのガラスフィルムを固定することができる。従って、ガラスフィルムを含む二枚の絶縁フィルムをロール状に巻き取ってなる巻回体の形状を適正に維持することができる。また、ガラスフィルムの表面同士を固定するための要素を介在させずに済むため、巻回体を簡易に構成でき、かつ小型化できる。 Thus, in the longitudinal direction end on the winding end side of the glass film constituting the wound body, by taking a form in which the surfaces of the glass films are brought into direct contact with each other without using an adhesive or the like, A glass film as an insulating film can be fixed at the end of the winding end. Therefore, the shape of the wound body obtained by winding the two insulating films including the glass film into a roll can be appropriately maintained. Moreover, since it is not necessary to interpose the element for fixing the surfaces of a glass film, a winding body can be comprised simply and can be reduced in size.
 また、本発明に係る巻回型フィルムコンデンサは、ガラスフィルムの巻き始め側の長尺方向端部において、ガラスフィルムの表面同士が直接密着しているものであってもよい。なお、ここでいうガラスフィルムの表面同士にも、一つのガラスフィルムに含まれる二つの表面同士及び異なる二枚のガラスフィルムの一つの表面同士の双方の意味が含まれる。  In addition, the wound film capacitor according to the present invention may be one in which the surfaces of the glass films are in direct contact with each other at the end in the longitudinal direction on the winding start side of the glass film. In addition, the meanings of both of the two surfaces contained in one glass film and the one surfaces of two different glass films are also included in the surfaces of the glass films referred to herein. *
 このように、巻回体を構成するガラスフィルムの巻き始め側の長尺方向端部において、ガラスフィルムの表面同士を直接的に密着させた形態をとることで、巻き始め側の端部においてガラスフィルムを固定することができる。従って、ガラスフィルムを含む二枚の絶縁フィルムをロール状に巻き取っている最中の巻回体(の一部)の形状、又は巻き取ってなる巻回体の形状を適正に維持することができる。また、この場合も、二枚の絶縁フィルムガラスフィルムの表面同士を固定するための要素を介在させずに済むため、巻回体を簡易に構成でき、かつ小型化できる。 In this way, at the end of the glass film constituting the wound body in the longitudinal direction end on the winding start side, the glass film surfaces are directly brought into close contact with each other, so that the glass at the end of the winding start side is taken. The film can be fixed. Accordingly, it is possible to appropriately maintain the shape of the wound body (part of) during winding of the two insulating films including the glass film into a roll shape, or the shape of the wound body wound up. it can. Also in this case, since it is not necessary to interpose an element for fixing the surfaces of the two insulating film glass films, the wound body can be easily configured and can be downsized.
 また、本発明に係る巻回型フィルムコンデンサは、第一の絶縁フィルムの厚み寸法が50μm以下に設定されているものであってもよい。 Further, in the wound film capacitor according to the present invention, the thickness of the first insulating film may be set to 50 μm or less.
 このように上記絶縁フィルムの厚み寸法を設定することにより、単位体積当たりの上記絶縁フィルムの面積が大きくなるため、コンデンサの静電容量を高めることができる。また、上記絶縁フィルムの可撓性が向上するので、巻回体の最小巻き取り径(詳細は後述を参照)を小さくすることができる。従って、このことによっても単位体積当たりの上記絶縁フィルムの面積を大きくして静電容量の向上を図ることが可能となる。言い換えると、所定の静電容量を確保しつつコンデンサの小型化を図ることが可能となる。 By setting the thickness dimension of the insulating film in this way, the area of the insulating film per unit volume is increased, so that the capacitance of the capacitor can be increased. In addition, since the flexibility of the insulating film is improved, the minimum winding diameter of the wound body (see below for details) can be reduced. Therefore, this also makes it possible to increase the area of the insulating film per unit volume and improve the capacitance. In other words, it is possible to reduce the size of the capacitor while ensuring a predetermined capacitance.
 また、本発明に係る巻回型フィルムコンデンサは、巻回体の最小巻き取り径が100mm以下に設定されているものであってもよい。なお、ここでいう巻回体の最小巻き取り径とは、実質的に巻回体の内径寸法に等しく、ロール状に巻き取られた形態をなしている第一及び第二の絶縁フィルムのうち最も半径方向内側に位置する絶縁フィルムの曲率半径を意味する。 Further, the wound film capacitor according to the present invention may have a minimum winding diameter of 100 mm or less. The minimum winding diameter of the wound body here is substantially equal to the inner diameter dimension of the wound body, and among the first and second insulating films that are wound in a roll shape. It means the radius of curvature of the insulating film located at the innermost radial direction.
 このように、上記絶縁フィルムを、巻回体の最小巻き取り径が一定以下の大きさとなるように巻き取ることで、コンデンサの小型化を効果的に図ることが可能となる。 Thus, the capacitor can be effectively reduced in size by winding the insulating film so that the minimum winding diameter of the wound body becomes a certain value or less.
 また、本発明に係る巻回型フィルムコンデンサは、第一の絶縁フィルムの長尺方向寸法が0.05m以上に設定されているものであってもよい。 Further, the wound film capacitor according to the present invention may be one in which the longitudinal dimension of the first insulating film is set to 0.05 m or more.
 このように、上記絶縁フィルムの長尺方向寸法を規定することで、通常、上記絶縁フィルムと同程度又はそれより少し小さい大きさ(長尺方向寸法)に設定される導電層の面積(表面積)を確保することができる。よって、この導電層の面積に応じた大きさの静電容量をコンデンサに設けることが可能となる。 Thus, by defining the lengthwise dimension of the insulating film, the area (surface area) of the conductive layer that is usually set to the same size as the insulating film or slightly smaller (size in the lengthwise direction). Can be secured. Therefore, it is possible to provide the capacitor with a capacitance corresponding to the area of the conductive layer.
 また、本発明に係る巻回型フィルムコンデンサは、第一の絶縁フィルムの幅方向寸法を第一の絶縁フィルムの厚み寸法で除した値が1000以上に設定されているものであってもよい。 Further, in the wound film capacitor according to the present invention, a value obtained by dividing the width dimension of the first insulating film by the thickness dimension of the first insulating film may be set to 1000 or more.
 コンデンサの静電容量は、上述と同様の理由で、上記絶縁フィルムの面積(表面積)が大きく、厚み寸法が小さいほど大きくなる。よって、上記絶縁フィルムの厚み寸法に対する幅方向寸法の比を1000以上とすることで、この種のコンデンサに要求されるレベルの静電容量を確保することが可能となる。 For the same reason as described above, the capacitance of the capacitor increases as the area (surface area) of the insulating film increases and the thickness dimension decreases. Therefore, by setting the ratio of the dimension in the width direction to the thickness dimension of the insulating film to be 1000 or more, it is possible to ensure the level of capacitance required for this type of capacitor.
 また、本発明に係る巻回型フィルムコンデンサは、第一の絶縁フィルムとしてのガラスフィルムの比誘電率が5.0以上に設定されているものであってもよい。なお、ここでいう比誘電率は、温度25℃においてASTM D150に準拠した方法により測定した値を指す。 Further, the wound film capacitor according to the present invention may be one in which the relative dielectric constant of the glass film as the first insulating film is set to 5.0 or more. Here, the relative dielectric constant refers to a value measured by a method based on ASTM D150 at a temperature of 25 ° C.
 また、本発明に係る巻回型フィルムコンデンサは、第一の絶縁フィルムの第一又は第二の表面の算術平均粗さRaが5nm以下に設定されているものであってもよい。なお、ここでいう算術平均粗さRaは、JIS B0601:2001に準拠した方法により測定した値を指す。 In addition, the wound film capacitor according to the present invention may be one in which the arithmetic average roughness Ra of the first or second surface of the first insulating film is set to 5 nm or less. In addition, arithmetic mean roughness Ra here refers to the value measured by the method based on JISB0601: 2001.
 このように上記絶縁フィルムの表面の算術平均粗さRaを規定することにより、絶縁破壊を生じる電圧が上昇するため、その分だけ大容量のエネルギーを蓄積することが可能になる。 Thus, by defining the arithmetic average roughness Ra of the surface of the insulating film, the voltage causing dielectric breakdown increases, so that a large amount of energy can be stored accordingly.
 また、本発明に係る巻回型フィルムコンデンサは、第一の絶縁フィルムが、質量%で、SiO2:20~70%、Al23:0~20%、B23:0~17%、MgO:0~10%、CaO:0~15%、SrO:0~15%、BaO:0~40%を含有するガラス組成をなすものであってもよい。 In the wound film capacitor according to the present invention, the first insulating film is SiO 2 : 20 to 70%, Al 2 O 3 : 0 to 20%, B 2 O 3 : 0 to 17 in mass%. %, MgO: 0 to 10%, CaO: 0 to 15%, SrO: 0 to 15%, BaO: 0 to 40%.
 このようにガラス組成を設定することにより、成形時に失透が生じ難くなるため、幅方向寸法及び長尺方向寸法が大きい上記絶縁フィルム(ガラスフィルム)を容易に成形することができる。従って、結果的に大容量のエネルギーを蓄積可能なコンデンサを効率よく製造することが可能となる。 By setting the glass composition in this manner, devitrification is less likely to occur at the time of molding, so that the insulating film (glass film) having a large width direction dimension and a long direction dimension can be easily formed. Therefore, as a result, it is possible to efficiently manufacture a capacitor capable of storing a large amount of energy.
 また、前記課題の解決は、本発明に係る巻回型フィルムコンデンサの製造方法によっても達成される。すなわちこの製造方法は、第一及び第二の導電層と、少なくとも第一の絶縁フィルムがガラスフィルムである第一及び第二の絶縁フィルムとを、第一の導電層、第一の絶縁フィルム、第二の導電層、第二の絶縁フィルムの順に重ね合せて絶縁フィルムの積層体を形成する工程と、積層体をコアまわりに巻き取って巻回体を形成する工程と、巻回体からコアを除去することにより、巻回体の中心に、巻回体をその幅方向に貫通する貫通穴を形成する工程とを備えた点をもって特徴付けられる。 The solution to the above problem can also be achieved by the method for manufacturing a wound film capacitor according to the present invention. That is, in this manufacturing method, the first and second conductive layers, and the first and second insulating films in which at least the first insulating film is a glass film, the first conductive layer, the first insulating film, A step of superposing the second conductive layer and the second insulating film in this order to form a laminated body of insulating films; a step of winding the laminated body around the core to form a wound body; and The step of forming a through-hole penetrating the wound body in the width direction at the center of the wound body is characterized.
 本発明に係る製造方法によれば、第一及び第二の絶縁フィルムのうち少なくとも第一の絶縁フィルムをガラスフィルムとしたので、既述のように、誘電率を低下させることなく誘電率の温度依存性を小さくすることができる。よって、このガラスフィルムを導電層と重ね合せて積層体を形成し、この積層体をコアまわりに巻き取って巻回体を形成することにより、コンデンサの単位体積当たりの静電容量を大きくしつつも、温度変化により、回路が適正に作動しない事態を有効に防止することができる。従って、大容量のエネルギーを蓄積可能でかつ高温環境特性にも優れたコンデンサを比較的小型に製造することが可能となる。 According to the manufacturing method of the present invention, since at least the first insulating film of the first and second insulating films is a glass film, as described above, the temperature of the dielectric constant without reducing the dielectric constant. The dependency can be reduced. Therefore, this glass film is overlapped with the conductive layer to form a laminate, and the laminate is wound around the core to form a wound body, thereby increasing the capacitance per unit volume of the capacitor. However, it is possible to effectively prevent a situation in which the circuit does not operate properly due to a temperature change. Therefore, a capacitor capable of storing a large amount of energy and excellent in high temperature environmental characteristics can be manufactured in a relatively small size.
 また、本発明に係る製造方法では、上述した絶縁フィルム及び導電層の積層体をコアまわりに巻き取って巻回体を形成した後、巻回体からコアを除去することにより、巻回体の中心に、巻回体をその幅方向に貫通する貫通穴を形成した。このように構成することで、既述のように、コンデンサの中心には、その幅方向全域にわたって中空の空間が存在した状態となる。従って、巻回体の中心にコアが残った状態でコンデンサを構成する場合と比べて、インダクタンスの増加を抑制して、高周波域におけるインピーダンスの上昇を可及的に回避することが可能となる。 Further, in the manufacturing method according to the present invention, the wound body is formed by removing the core from the wound body after the laminated body of the insulating film and the conductive layer described above is wound around the core to form the wound body. A through hole penetrating the wound body in the width direction was formed at the center. With this configuration, as described above, a hollow space exists in the center of the capacitor over the entire width direction. Therefore, as compared with the case where the capacitor is configured with the core remaining in the center of the wound body, it is possible to suppress an increase in inductance and avoid an increase in impedance in a high frequency region as much as possible.
 また、本発明に係る巻回型フィルムコンデンサの製造方法は、第一の絶縁フィルムとして、その厚み方向で相反する向きを指向する第一の表面と第二の表面とに第一及び第二の導電層としての第一及び第二の金属膜をそれぞれ成膜したものを用意した後、第一及び第二の金属膜が成膜された第一の絶縁フィルムと、第二の絶縁フィルムとを重ね合せて積層体を形成するものであってもよい。 Moreover, the manufacturing method of the winding type film capacitor which concerns on this invention is the 1st and 2nd on the 1st surface and 2nd surface which orient as the 1st insulating film and the direction which opposes in the thickness direction. After preparing what each formed the 1st and 2nd metal film as a conductive layer, the 1st insulating film in which the 1st and 2nd metal film was formed, and the 2nd insulating film A laminate may be formed by overlapping.
 このように、予め第一の絶縁フィルムとして二つの金属膜を両表面に成膜した状態の絶縁フィルムを用意することで、第二の絶縁フィルムを例えば何らの部材も一体的に形成されていないガラスフィルム単体で構成することができる。これにより第二の絶縁フィルムの作製コストを低減しつつ、簡易な構造でコンデンサを構成することが可能となる。 Thus, by preparing an insulating film in which two metal films are formed on both surfaces in advance as the first insulating film, the second insulating film is not integrally formed with any member, for example. It can be composed of a single glass film. This makes it possible to configure the capacitor with a simple structure while reducing the production cost of the second insulating film.
 また、本発明に係るコンデンサの製造方法は、コアとして、それぞれが外周に積層体の巻き取り面を有する複数の分割体と、複数の分割体同士を連結する連結部材とで構成されたものを用意し、連結部材で複数の分割体同士を連結した状態のコアまわりに積層体を巻き取って巻回体を形成した後、連結部材を外して複数の分割体同士の連結状態を解消した後、巻回体から複数の分割体の一部を除去し、次いで複数の分割体の残部を除去するものであってもよい。 Further, the capacitor manufacturing method according to the present invention includes a core composed of a plurality of divided bodies each having a winding surface of a laminate on the outer periphery, and a connecting member that connects the plurality of divided bodies. After preparing and winding a laminated body around a core in a state where a plurality of divided bodies are connected by a connecting member to form a wound body, after removing a connecting member and eliminating a connected state between the plurality of divided bodies Alternatively, a part of the plurality of divided bodies may be removed from the wound body, and then the remaining portions of the plurality of divided bodies may be removed.
 巻回体を構成する絶縁フィルムが例えば樹脂フィルムである場合、巻回体を形成した後、巻回体を固定し、コアに対してその軸方向(巻回体の幅方向)に力を加えることでコアを除去する方法が考えられるが、巻回体がガラスフィルムで構成されている場合に上述の如き方法を採用すると、ガラスフィルムが破損するおそれが高まる。これに対して、本発明に係る製造方法によれば、コアを分割して段階的に除去する(抜き取る)ことができるので、ガラスフィルムに不要な力を加えることなくコアを除去することができる。また、巻き取り時には連結部材によって複数の分割体を相互に連結した状態としているので、巻き取り面の位置精度を確保して積層体の巻き取りを行うことができる。よって、上述した破損のリスクなく巻回体を精度よく形成することが可能となる。 When the insulating film constituting the wound body is, for example, a resin film, after the wound body is formed, the wound body is fixed and a force is applied to the core in the axial direction (width direction of the wound body). Although the method of removing a core by this can be considered, when a winding body is comprised with the glass film, when a method as mentioned above is employ | adopted, a possibility that a glass film may be damaged increases. On the other hand, according to the manufacturing method according to the present invention, the core can be divided and removed in stages (extracted), so that the core can be removed without applying unnecessary force to the glass film. . Moreover, since it is set as the state which mutually connected the some division body by the connection member at the time of winding, the positional accuracy of a winding surface can be ensured and a laminated body can be wound up. Therefore, the wound body can be formed with high accuracy without the risk of damage described above.
 以上に述べたように、本発明によれば、大型化を避けつつも大容量化と高温環境特性の向上を図ることにより、汎用性に優れたコンデンサを提供することが可能となる。 As described above, according to the present invention, it is possible to provide a capacitor with excellent versatility by increasing the capacity and improving the high-temperature environment characteristics while avoiding an increase in size.
本発明の第一実施形態に係る巻回型フィルムコンデンサの斜視図である。1 is a perspective view of a wound film capacitor according to a first embodiment of the present invention. 図1に示す巻回体の一部を仮想的に展開した状態を示す斜視図である。It is a perspective view which shows the state which expanded a part of winding body shown in FIG. 1 virtually. 図1に示すコンデンサの断面図である。It is sectional drawing of the capacitor | condenser shown in FIG. 図1に示すコンデンサの製造方法の一例を説明するための図であって、絶縁フィルムの積層体を形成する工程を概念的に説明する分解斜視図である。It is a figure for demonstrating an example of the manufacturing method of the capacitor | condenser shown in FIG. 1, Comprising: It is a disassembled perspective view which illustrates notionally the process of forming the laminated body of an insulating film. 積層体の斜視図である。It is a perspective view of a laminated body. 積層体の巻き取りに使用するコアの斜視図である。It is a perspective view of the core used for winding of a laminated body. 積層体の巻き取りに使用するコアの分解斜視図である。It is a disassembled perspective view of the core used for winding of a laminated body. 積層体の巻き取り態様の一例を説明するための図であって、積層体の巻き取り始めの状態をその巻き取り中心線に沿った向きから見た図とその要部拡大図である。It is a figure for demonstrating an example of the winding aspect of a laminated body, Comprising: The figure which looked at the state of winding start of a laminated body from the direction along the winding centerline, and its principal part enlarged view. 積層体の巻き取り態様の一例を説明するための図であって、積層体の巻き取り終わりの状態をその巻き取り中心線に沿った向きから見た図とその要部拡大図である。It is a figure for demonstrating an example of the winding aspect of a laminated body, Comprising: The figure which looked at the state of winding end of a laminated body from the direction along the winding centerline, and its principal part enlarged view. 積層体をコアまわりに巻き取ってコアと一体化した状態の巻回体の斜視図である。It is a perspective view of the winding body of the state which rolled up the laminated body around the core and integrated with the core. 巻回体からコアの一部を除去した状態を示す巻回体の斜視図である。It is a perspective view of the winding body which shows the state which removed a part of core from the winding body. 本発明の第二実施形態に係る巻回体の一部を仮想的に展開した状態を示す斜視図である。It is a perspective view which shows the state which expanded a part of winding body which concerns on 2nd embodiment of this invention virtually. 本発明の第二実施形態に係る巻回体の変形例の一部を仮想的に展開した状態を示す斜視図である。It is a perspective view showing the state where a part of modification of the winding object concerning a second embodiment of the present invention was developed virtually. 本発明の第三実施形態に係る巻回体の巻き取り態様の一例を説明するための図であって、巻き取り中の巻回体をその中心線に沿った向きから見た図である。It is a figure for demonstrating an example of the winding aspect of the winding body which concerns on 3rd embodiment of this invention, Comprising: It is the figure which looked at the winding body in winding from the direction along the centerline. 図14に示す巻き取り態様の一例を説明するための図であって、双方の絶縁フィルムの巻き取り始めの状態をその巻き取り中心線に沿った向きから見た図とその要部拡大図である。It is a figure for demonstrating an example of the winding mode shown in FIG. 14, Comprising: The figure which looked at the state of the winding start of both insulating films from the direction along the winding centerline, and its principal part enlarged view is there. 図14に示す巻き取り態様の一例を説明するための図であって、双方の絶縁フィルムの巻き取り終わりの状態をその巻き取り中心線に沿った向きから見た図とその要部拡大図である。It is a figure for demonstrating an example of the winding mode shown in FIG. 14, Comprising: The figure which looked at the state of the winding end of both insulating films from the direction along the winding centerline, and its principal part enlarged view is there. 本発明の第四実施形態に係る巻回体をその中心線に沿った向きから見た図である。It is the figure which looked at the wound body which concerns on 4th embodiment of this invention from the direction along the centerline. 本発明の第五実施形態に係る巻回体をその中心線に沿った向きから見た図である。It is the figure which looked at the winding body which concerns on 5th embodiment of this invention from the direction along the centerline. 実施例の試料No.1に係る巻回型フィルムコンデンサのインピーダンスの測定結果を示すグラフである。Sample No. of Example 2 is a graph showing measurement results of impedance of a wound film capacitor according to 1;
 以下、本発明の第一実施形態を、図1~図11を参照して説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
 図1は、本発明の第一実施形態に係る巻回型フィルムコンデンサ1の斜視図である。このコンデンサ1は、巻回体2と、巻回体2にその幅方向で接する正負の電極3,4とを備える。各電極3,4には、図示しないリード線が取り付けられており、両電極3,4間に所定の電圧を印加できるようになっている。以下、巻回体2の構成を中心に説明する。 FIG. 1 is a perspective view of a wound film capacitor 1 according to a first embodiment of the present invention. The capacitor 1 includes a wound body 2 and positive and negative electrodes 3 and 4 that are in contact with the wound body 2 in the width direction. Lead electrodes (not shown) are attached to the electrodes 3 and 4 so that a predetermined voltage can be applied between the electrodes 3 and 4. Hereinafter, the configuration of the wound body 2 will be mainly described.
 巻回体2は、図2に示すように、第一及び第二の導電層5,6と、第一及び第二の絶縁フィルム7,8とを有するもので、これら二つの導電層5,6と二枚の絶縁フィルム7,8とを、第一の導電層5、第一の絶縁フィルム7、第二の導電層6、第二の絶縁フィルム8の順に重ね合せてロール状に巻き取った形状をなす。本実施形態では、第一及び第二の導電層5,6はともに金属膜であって、第一の絶縁フィルム7の厚み方向で相反する向きを指向する第一の表面7aと第二の表面7bにそれぞれ形成されている。これにより二つの導電層5,6はともに第一の絶縁フィルム7と一体化された状態となっている。 As shown in FIG. 2, the wound body 2 includes first and second conductive layers 5 and 6 and first and second insulating films 7 and 8, and these two conductive layers 5 and 6. 6 and the two insulating films 7 and 8 are stacked in the order of the first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 in the form of a roll. Shape. In the present embodiment, the first and second conductive layers 5 and 6 are both metal films, and the first surface 7 a and the second surface are oriented in opposite directions in the thickness direction of the first insulating film 7. 7b, respectively. Thus, the two conductive layers 5 and 6 are both integrated with the first insulating film 7.
 また、二枚の絶縁フィルム7,8のうち、少なくとも第一の絶縁フィルム7はガラスフィルムである。本実施形態では、このガラスフィルム(第一の絶縁フィルム7)に二つの導電層5,6が一体化されている。この際、とり得るガラス組成の詳細については後述する。 Of the two insulating films 7 and 8, at least the first insulating film 7 is a glass film. In the present embodiment, the two conductive layers 5 and 6 are integrated with the glass film (first insulating film 7). The details of the glass composition that can be used will be described later.
 第一の絶縁フィルム7としてのガラスフィルムの厚み寸法t1(図2を参照)は、50μm以下に設定され、好ましくは40μm以下に設定され、より好ましくは30μm以下に設定され、さらにいえば20μm以下、10μm以下、8μm以下、6μm以下、5μm以下、3μm以下の順で好適に設定され、特に好ましくは1μm以下に設定される。第一の絶縁フィルム7の厚み寸法t1が小さいほど、この絶縁フィルム7を巻き取った状態における単位体積当たりの面積が大きくなるため、大容量のエネルギーを容易に蓄えることが可能となる。また、厚み寸法t1が小さいほど第一の絶縁フィルム7の可撓性が向上するため、当該絶縁フィルム7の最小曲率半径(最小巻き取り径)を後述するレベルにまで小さくすることができる。 The thickness t1 (see FIG. 2) of the glass film as the first insulating film 7 is set to 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less, and further 20 μm or less. It is suitably set in the order of 10 μm or less, 8 μm or less, 6 μm or less, 5 μm or less, 3 μm or less, and particularly preferably 1 μm or less. The smaller the thickness dimension t1 of the first insulating film 7, the larger the area per unit volume in the state in which the insulating film 7 is wound, so that a large amount of energy can be easily stored. Moreover, since the flexibility of the 1st insulating film 7 improves, so that the thickness dimension t1 is small, the minimum curvature radius (minimum winding diameter) of the said insulating film 7 can be made small to the level mentioned later.
 また、第二の絶縁フィルム8としては、例えば樹脂製、紙製、ガラス製のものが使用可能であり、この中でもガラス製(すなわちガラスフィルム)が好適に使用可能である。第二の絶縁フィルム8についてもガラスフィルムを使用することで、いわゆる有機物を排除して、無機物のみで巻回体2を形成することが可能になるので、巻回型フィルムコンデンサ1の耐熱性を容易に高めることが可能となる。ここで、第二の絶縁フィルム8にガラスフィルムを用いる場合、当該ガラスフィルム(第二の絶縁フィルム8)の厚み寸法t2(図2を参照)は、第一の絶縁フィルム7としてのガラスフィルムと同様に、50μm以下に設定され、好ましくは40μm以下に設定され、より好ましくは30μm以下に設定され、さらにいえば20μm以下、10μm以下、8μm以下、6μm以下、5μm以下、3μm以下の順で好適に設定され、特に好ましくは1μm以下に設定される。もちろん、第二の絶縁フィルム8に樹脂フィルムを使用することもでき、その場合には、樹脂フィルムが絶縁体として機能すると共に、緩衝材としても機能する。そのため、双方の絶縁フィルム7,8を巻き取る際にガラスフィルムが破損する事態を有効に回避することが可能となる。 Also, as the second insulating film 8, for example, a resin, paper, or glass film can be used, and among these, a glass film (that is, a glass film) can be suitably used. By using a glass film for the second insulating film 8 as well, it is possible to eliminate the so-called organic matter and form the wound body 2 with only the inorganic material, so that the heat resistance of the wound film capacitor 1 is improved. It can be easily increased. Here, when using a glass film for the 2nd insulating film 8, the thickness dimension t2 (refer FIG. 2) of the said glass film (2nd insulating film 8) is the glass film as the 1st insulating film 7, and Similarly, it is set to 50 μm or less, preferably set to 40 μm or less, more preferably set to 30 μm or less, more preferably 20 μm or less, 10 μm or less, 8 μm or less, 6 μm or less, 5 μm or less, 3 μm or less. And particularly preferably 1 μm or less. Of course, a resin film can also be used for the second insulating film 8. In this case, the resin film functions as an insulator and also functions as a buffer material. Therefore, it is possible to effectively avoid a situation in which the glass film is damaged when the both insulating films 7 and 8 are wound up.
 第一の導電層5は、巻回体2の幅方向の一方(図3でいえば左側)を指向する第一の側端面5aと、第一の側端面5a,6aと相反する向きである巻回体2の幅方向の他方(図3でいえば右側)を指向する第二の側端面5bとを有する。また、第二の導電層6は、巻回体2の幅方向一方を指向する第三の側端面6aと、巻回体2の幅方向の他方を指向する第四の側端面6bとを有する。本実施形態では、第一の導電層5の第二の側端面5bは、第二の導電層6の第四の側端面6bよりも幅方向一方の側にオフセットしており、かつ第二の導電層6の第三の側端面6aは、第一の導電層5の第一の側端面5aよりも幅方向他方の側にオフセットしている。また、第一の導電層5のオフセット量、すなわち第一の絶縁フィルム7の厚み方向一方を指向する(ここでは第一の導電層5が形成される)第一の表面7aのうち第一の導電層5が形成されていない領域の幅方向寸法d1は例えば1mm以上に設定され、好ましくは2mm以上に設定され、より好ましくは3mm以上に設定されている。同様に、第二の導電層6のオフセット量となる、第一の絶縁フィルム7の厚み方向他方を指向する(ここでは第二の導電層6が形成される)第二の表面7bのうち第二の導電層6が形成されていない領域の幅方向寸法d2は1mm以上に設定され、好ましくは2mm以上に設定され、より好ましくは3mm以上に設定されている。このようにすれば、後述する積層体9(図4及び図5を参照)の巻き取り態様によって、積層体9が幅方向にずれを生じる場合であっても、第一の導電層5と第二の電極4、第二の導電層6と第一の電極3とが電気的に接続される事態を有効に回避し得る。もちろん、図示は省略するが、第一の絶縁フィルム7の第一の表面7a及び第二の表面7bにおいて、各導電層5,6が形成されていない領域に各導電層5,6と同等の厚み寸法を有する絶縁膜を形成してもかまわない。 The first conductive layer 5 is in a direction opposite to the first side end face 5a and the first side end faces 5a and 6a directed to one side in the width direction of the wound body 2 (left side in FIG. 3). It has the 2nd side end surface 5b which faces the other (the right side in FIG. 3) of the width direction of the wound body 2. As shown in FIG. The second conductive layer 6 has a third side end face 6 a that faces one side in the width direction of the wound body 2 and a fourth side end face 6 b that faces the other side in the width direction of the wound body 2. . In the present embodiment, the second side end face 5b of the first conductive layer 5 is offset to one side in the width direction from the fourth side end face 6b of the second conductive layer 6, and the second side end face 5b is offset. The third side end face 6 a of the conductive layer 6 is offset to the other side in the width direction from the first side end face 5 a of the first conductive layer 5. Further, the first conductive layer 5 is offset in one direction, i.e., in the thickness direction of the first insulating film 7 (here, the first conductive layer 5 is formed) of the first surface 7a of the first surface 7a. The width direction dimension d1 of the region where the conductive layer 5 is not formed is set to, for example, 1 mm or more, preferably 2 mm or more, and more preferably 3 mm or more. Similarly, the second surface 7b of the second surface 7b is directed to the other in the thickness direction of the first insulating film 7 (here, the second conductive layer 6 is formed), which is an offset amount of the second conductive layer 6. The width direction dimension d2 of the region where the second conductive layer 6 is not formed is set to 1 mm or more, preferably 2 mm or more, and more preferably 3 mm or more. In this way, even if the laminated body 9 is displaced in the width direction due to the winding mode of the laminated body 9 (see FIGS. 4 and 5) described later, the first conductive layer 5 and the first conductive layer 5 The situation where the second electrode 4, the second conductive layer 6 and the first electrode 3 are electrically connected can be effectively avoided. Of course, although not shown in the drawings, the first surface 7a and the second surface 7b of the first insulating film 7 are equivalent to the conductive layers 5 and 6 in regions where the conductive layers 5 and 6 are not formed. An insulating film having a thickness dimension may be formed.
 なお、これら導電層5,6(金属膜)としては、種々の材料が使用可能である。例えば、コストと導電性の観点からは、Al、Pt、Ni、Cu、Ag、Ag合金からなる群から選択される一種又は二種以上の金属が好適に使用可能であり、例えばAg合金はAg単体に比べて良好な耐熱性を示す。また、本実施形態のように、各導電層5,6を金属膜として第一の絶縁フィルム7(ガラスフィルム)の表面7a,7bに形成する場合には、公知の成膜手段が適用可能である。 Note that various materials can be used for the conductive layers 5 and 6 (metal films). For example, from the viewpoint of cost and conductivity, one or more metals selected from the group consisting of Al, Pt, Ni, Cu, Ag, and an Ag alloy can be suitably used. It shows better heat resistance than the simple substance. Further, as in the present embodiment, when the conductive layers 5 and 6 are formed as metal films on the surfaces 7a and 7b of the first insulating film 7 (glass film), known film forming means can be applied. is there.
 また、本実施形態では、導電層5,6が形成されていない第二の絶縁フィルム8の幅方向寸法w2は、図3に示すように、第一の絶縁フィルム7の幅方向寸法w1よりも小さく、かつ第一の絶縁フィルム7が第二の絶縁フィルム8から幅方向の外側に食み出した状態となるように配設されている。このようにすれば、各導電層5,6よりも第二の絶縁フィルム8が巻回体2の幅方向に突出した状態を回避できるので、巻回体2の幅方向両側に電極3,4を容易に形成することが可能となる。 Moreover, in this embodiment, the width direction dimension w2 of the 2nd insulating film 8 in which the conductive layers 5 and 6 are not formed is larger than the width direction dimension w1 of the 1st insulating film 7, as shown in FIG. The first insulating film 7 is small and disposed so as to protrude from the second insulating film 8 to the outside in the width direction. In this way, it is possible to avoid the state in which the second insulating film 8 protrudes in the width direction of the wound body 2 rather than the conductive layers 5 and 6. Can be easily formed.
 正極又は負極となる第一の電極3は、巻回体2の幅方向一方(図3でいえば左側)に配設されている。この際、第一の電極3は、巻回体2内で第一の絶縁フィルム7を介して厚み方向(図3でいえば上下方向)で隣り合う第一の導電層5と電気的に接続され、かつ第二の導電層6と絶縁された状態となるよう、第一の導電層5の第一の側端面5aと接し、かつ第二の導電層6の第三の側端面6aと離れている(接していない)。また、第二の電極4は、巻回体2の幅方向他方(図3でいえば右側)に配設されており、第二の導電層6と電気的に接続され、かつ第一の導電層5と絶縁された状態となるよう、第二の導電層6の第四の側端面6bと接し、かつ第一の導電層5の第二の側端面5bと離れている(接していない)。 The first electrode 3 serving as a positive electrode or a negative electrode is disposed on one side in the width direction of the wound body 2 (left side in FIG. 3). At this time, the first electrode 3 is electrically connected to the first conductive layer 5 adjacent in the thickness direction (vertical direction in FIG. 3) through the first insulating film 7 in the wound body 2. In contact with the first side end face 5a of the first conductive layer 5 and away from the third side end face 6a of the second conductive layer 6 so as to be insulated from the second conductive layer 6. Yes (not touching). The second electrode 4 is disposed on the other side in the width direction of the wound body 2 (on the right side in FIG. 3), is electrically connected to the second conductive layer 6, and is electrically connected to the first conductive layer. It is in contact with the fourth side end face 6b of the second conductive layer 6 and is separated (not in contact) with the second side end face 5b of the first conductive layer 5 so as to be insulated from the layer 5. .
 電極3,4としては、種々の材料が使用可能である。例えば、コストと導電性の観点からは、Al、Pt、Ni、Cu、Ag、Ag合金からなる群から選択される一種又は二種以上の金属が好適に使用可能であり、例えばAg合金はAg単体に比べて良好な耐熱性を示す。なお、電極3,4は、例えば上記金属の粉末を含む導電性ペースト(所定の粘性を有するペースト状の導電性材料)を巻回体2の幅方向両側に塗布し、固化させることにより形成することが可能である。また、この際とり得る形態も特に制限されず、図1に示すように環状であってもよく、図3に示すように層状であってもよい。もちろん、図1及び図3に示すように環状でかつ層状をなすものであってもよい。 As the electrodes 3 and 4, various materials can be used. For example, from the viewpoint of cost and conductivity, one or more metals selected from the group consisting of Al, Pt, Ni, Cu, Ag, and an Ag alloy can be suitably used. It shows better heat resistance than the simple substance. The electrodes 3 and 4 are formed, for example, by applying a conductive paste containing the above metal powder (a paste-like conductive material having a predetermined viscosity) on both sides in the width direction of the wound body 2 and solidifying it. It is possible. Also, the form that can be taken in this case is not particularly limited, and may be annular as shown in FIG. 1, or may be layered as shown in FIG. Of course, as shown in FIG. 1 and FIG. 3, it may be annular and layered.
 また、巻回体2の最小巻き取り径は例えば100mm以下に設定され、好ましくは80mm以下、より好ましくは75mm以下、さらにいえば50mm以下、30mm以下、20mm以下、10mm以下、5mm以下の順で好適に設定され、特に好ましくは3mm以下に設定される。巻回体2の外径寸法が一定の場合、最小巻き取り径が小さいほど、単位体積当たりの面積が大きくなるため、大容量のエネルギーを蓄えることが求められる用途に好適である。 Further, the minimum winding diameter of the wound body 2 is set to, for example, 100 mm or less, preferably 80 mm or less, more preferably 75 mm or less, further 50 mm or less, 30 mm or less, 20 mm or less, 10 mm or less, 5 mm or less in this order. It is set suitably, and particularly preferably set to 3 mm or less. When the outer diameter dimension of the wound body 2 is constant, the smaller the minimum winding diameter, the larger the area per unit volume, which is suitable for applications that require storage of a large amount of energy.
 第一の絶縁フィルム7の長尺方向寸法L1(図4を参照)は、例えば0.05m以上に設定され、好ましくは0.5m以上に設定され、より好ましくは1m以上に設定され、さらにいえば3m以上、5m以上、10m以上、30m以上、50m以上、70m以上の順で好適に設定され、特に好ましくは100m以上に設定される。このように第一の絶縁フィルム7の長尺方向寸法L1の大きさを設定することで、例えば電流回路用に必要とされるレベルの静電容量を確保することが可能となる。 The longitudinal dimension L1 (see FIG. 4) of the first insulating film 7 is set to, for example, 0.05 m or more, preferably 0.5 m or more, more preferably 1 m or more. For example, 3 m or more, 5 m or more, 10 m or more, 30 m or more, 50 m or more, and 70 m or more are preferably set, and particularly preferably 100 m or more. Thus, by setting the size of the longitudinal direction dimension L1 of the first insulating film 7, it becomes possible to ensure a level of capacitance required for a current circuit, for example.
 また、第一の絶縁フィルム7の幅方向寸法w1を厚み寸法t1で除した値が例えば1000以上となるよう、幅方向寸法w1と厚み寸法t1が設定され、好ましくは1200以上となるよう、より好ましくは1400以上となるよう、さらにいえば1600以上、1800以上、2000以上の順で好適に幅方向寸法w1と厚み寸法t1が設定され、特に好ましくは2400以上となるよう、幅方向寸法w1と厚み寸法t1が設定される。幅方向寸法w1と厚み寸法t1との比が上述の範囲となるよう、両寸法w1,t1を設定することで、例えば電流回路用に必要とされるレベルの静電容量を確保することが可能となる。 Further, the width direction dimension w1 and the thickness dimension t1 are set such that the value obtained by dividing the width direction dimension w1 of the first insulating film 7 by the thickness dimension t1 is, for example, 1000 or more, and preferably 1200 or more. Preferably, the width direction dimension w1 and the thickness dimension t1 are suitably set in the order of 1600 or more, 1800 or more, 2000 or more, more preferably 1400 or more, and particularly preferably the width direction dimension w1 to be 2400 or more. A thickness dimension t1 is set. By setting both dimensions w1 and t1 so that the ratio between the width direction dimension w1 and the thickness dimension t1 is within the above range, for example, it is possible to ensure a level of capacitance required for a current circuit. It becomes.
 また、第一の絶縁フィルム7の比誘電率は、例えば5以上に設定され、好ましくは5.5以上に設定され、より好ましくは6以上に設定され、さらにいえば7以上、8以上、9以上、10以上の順で好適に設定され、特に好ましくは11以上に設定される。上述の範囲の比誘電率を示す第一の絶縁フィルム7(ガラスフィルム)を使用することで、例えば電流回路用に必要とされるレベルの静電容量を確保することが可能となる。 In addition, the relative dielectric constant of the first insulating film 7 is set to, for example, 5 or more, preferably 5.5 or more, more preferably 6 or more, and further 7 or more, 8 or more, 9 As described above, it is preferably set in the order of 10 or more, particularly preferably 11 or more. By using the first insulating film 7 (glass film) exhibiting a relative dielectric constant in the above-described range, it is possible to ensure a level of capacitance required for a current circuit, for example.
 第一の絶縁フィルム7の第一の表面7a(第二の表面7b)の算術平均粗さRaは例えば5nm以下に設定され、好ましくは3nm以下に設定され、より好ましくは1nm以下に設定され、さらにいえば0.8nm以下、0.4nm以下、0.3nm以下の順で好適に設定され、特に好ましくは0.2nm以下に設定される。第一の絶縁フィルム7の第一の表面7a(第二の表面7b)の算術平均粗さRaを上述の範囲に設定することで、高電圧を印加した際に絶縁破壊を生じる電圧を上昇させることができる。 The arithmetic average roughness Ra of the first surface 7a (second surface 7b) of the first insulating film 7 is set to, for example, 5 nm or less, preferably 3 nm or less, more preferably 1 nm or less, Furthermore, it is preferably set in the order of 0.8 nm or less, 0.4 nm or less, and 0.3 nm or less, and particularly preferably 0.2 nm or less. By setting the arithmetic average roughness Ra of the first surface 7a (second surface 7b) of the first insulating film 7 within the above range, the voltage that causes dielectric breakdown when a high voltage is applied is increased. be able to.
 また、第一の絶縁フィルム7の第一の表面7a(第二の表面7b)の最大高さRmaxは例えば10nm以下に設定され、好ましくは5nm以下に設定され、より好ましくは3nm以下に設定される。第一の絶縁フィルム7の第一の表面7a(第二の表面7b)の最大高さRmaxを上述の範囲に設定することによっても、高電圧を印加した際に絶縁破壊を生じる電圧を上昇させることができる。なお、ここでいう最大高さRmaxは、JIS B0601:2001に準拠した方法で測定した値を指す。 The maximum height Rmax of the first surface 7a (second surface 7b) of the first insulating film 7 is set to, for example, 10 nm or less, preferably 5 nm or less, and more preferably 3 nm or less. The By setting the maximum height Rmax of the first surface 7a (second surface 7b) of the first insulating film 7 within the above range, the voltage causing dielectric breakdown when a high voltage is applied is increased. be able to. In addition, the maximum height Rmax here refers to the value measured by the method based on JIS B0601: 2001.
 第一の絶縁フィルム7は、本実施形態では、ガラス組成として、質量%で、例えばSiO2:20~70%、Al23:0~20%、B23:0~17%、MgO:0~10%、CaO:0~15%、SrO:0~15%、BaO:0~40%を含有する。 In the present embodiment, the first insulating film 7 has a glass composition in mass%, for example, SiO 2 : 20 to 70%, Al 2 O 3 : 0 to 20%, B 2 O 3 : 0 to 17%, MgO: 0 to 10%, CaO: 0 to 15%, SrO: 0 to 15%, BaO: 0 to 40%.
 以下、上述の範囲に各成分の含有量を規定した理由を説明する。 Hereinafter, the reason why the content of each component is defined in the above-described range will be described.
 SiO2の含有量が適正な範囲を外れて多くなると、溶融性、成形性が低下するおそれが生じる。以上の理由から、SiO2の含有量は70%以下に設定され、好ましくは65%以下に設定され、より好ましくは60%以下に設定され、さらにいえば58%以下、55%以下、50%以下の順で好適に設定され、特に好ましくは45%以下に設定される。一方、SiO2の含有量が適正な範囲を外れて少なくなると、ガラス網目構造を形成し難くなって、ガラス化が困難になるおそれが生じる。以上の理由から、SiO2の含有量は20%以上に設定され、好ましくは25%以上に設定され、特に好ましくは30%以上に設定される。 If the content of SiO 2 exceeds the appropriate range and increases, the meltability and moldability may be reduced. For the above reasons, the content of SiO 2 is set to 70% or less, preferably 65% or less, more preferably 60% or less, and further 58% or less, 55% or less, 50%. It is suitably set in the following order, particularly preferably 45% or less. On the other hand, if the SiO 2 content falls outside the proper range, it becomes difficult to form a glass network structure, and vitrification may become difficult. For the above reasons, the content of SiO 2 is set to 20% or more, preferably 25% or more, and particularly preferably 30% or more.
 Al23の含有量が適正な範囲を外れて多くなると、ガラスに失透結晶が析出しやすくなり、液相粘度が低下しやすくなる。以上の理由から、Al23の含有量は20%以下に設定され、好ましくは18%以下に設定され、より好ましくは15%以下に設定され、さらに好ましくは12%以下に設定され、特に好ましくは10%以下に設定される。一方、Al23の含有量が適正な範囲を外れて少なくなると、他の成分との関係にもよるが、ガラス組成の成分バランスが損なわれて、ガラスの失透が生じやすくなる。以上の理由から、Al23の含有量は0%以上に設定され、好ましくは1%以上に設定され、より好ましくは3%以上に設定され、特に好ましくは5%以上に設定される。 When the content of Al 2 O 3 is increased outside the proper range, devitrified crystals are likely to be deposited on the glass, and the liquidus viscosity is likely to be lowered. For these reasons, the content of Al 2 O 3 is set to 20% or less, preferably set to 18% or less, more preferably set to 15% or less, and further preferably set to 12% or less. Preferably, it is set to 10% or less. On the other hand, when the content of Al 2 O 3 falls outside the appropriate range and decreases, the balance of components of the glass composition is impaired and the glass tends to be devitrified, depending on the relationship with other components. For the above reasons, the Al 2 O 3 content is set to 0% or more, preferably 1% or more, more preferably 3% or more, and particularly preferably 5% or more.
 B23の含有量が適正な範囲を外れて多くなると、誘電率が低下しやすくなり、また耐熱性が低下し、高温環境下における巻回型フィルムコンデンサ1の信頼性が低下するおそれが生じる。以上の理由から、B23の含有量は17%以下に設定され、好ましくは15%以下に設定され、より好ましくは13%以下に設定され、さらにいえば11%以下、7%以下の順で好適に設定され、特に好ましくは5%以下に設定される。 If the content of B 2 O 3 increases outside the proper range, the dielectric constant tends to decrease, the heat resistance decreases, and the reliability of the wound film capacitor 1 in a high temperature environment may decrease. Arise. For the above reasons, the content of B 2 O 3 is set to 17% or less, preferably 15% or less, more preferably 13% or less, and further 11% or less, 7% or less. It is preferably set in order, and particularly preferably 5% or less.
 MgOは、歪点を高め、また高温粘度を低下させる成分である。しかし、MgOの含有量が適正な範囲を外れて多くなると、液相温度、密度、熱膨張係数が過剰に高くなりやすい。以上の理由から、MgOの含有量は10%以下に設定され、好ましくは5%以下に設定され、より好ましくは3%以下に設定され、さらにいえば2%以下、1.5%以下、1%以下の順で好適に設定され、特に好ましくは0.5%以下に設定される。 MgO is a component that increases the strain point and decreases the high-temperature viscosity. However, when the content of MgO increases outside the appropriate range, the liquidus temperature, density, and thermal expansion coefficient tend to be excessively high. For the above reasons, the content of MgO is set to 10% or less, preferably 5% or less, more preferably 3% or less, more specifically 2% or less, 1.5% or less, 1 % Is preferably set in the order of% or less, and particularly preferably 0.5% or less.
 CaOの含有量が適正な範囲を外れて多くなると、密度、熱膨張係数が高くなり、またガラス組成の成分バランスが損なわれて、ガラスの失透が生じやすくなる。以上の理由から、CaOの含有量は15%以下に設定され、好ましくは12%以下に設定され、より好ましくは10%以下に設定され、さらに好ましくは9%以下に設定され、特に好ましくは8.5%以下に設定される。一方、CaOの含有量が適正な範囲を外れて少なくなると、誘電率、溶融性が低下しやすくなる。以上の理由から、CaOの含有量は0%以上に設定され、好ましくは0.5%以上に設定され、より好ましくは1%以上に設定され、さらにいえば2%以上、3%以上の順で好適に設定され、特に好ましくは5%以上に設定される。 When the content of CaO is outside the proper range and increases, the density and thermal expansion coefficient increase, and the component balance of the glass composition is impaired, and the glass tends to be devitrified. For these reasons, the CaO content is set to 15% or less, preferably 12% or less, more preferably 10% or less, still more preferably 9% or less, and particularly preferably 8%. Set to less than 5%. On the other hand, when the content of CaO falls outside the proper range, the dielectric constant and meltability tend to decrease. For these reasons, the content of CaO is set to 0% or more, preferably 0.5% or more, more preferably 1% or more, and further 2% to 3% in this order. And is preferably set to 5% or more.
 SrOの含有量が適正な範囲を外れて多くなると、密度、熱膨張係数が高くなりやすい。以上の理由から、SrOの含有量は15%以下に設定され、好ましくは12%以下に設定される。一方、SrOの含有量が適正な範囲を外れて少なくなると、誘電率、溶融性が低下しやすくなる。以上の理由から、SrOの含有量は0%以上に設定され、好ましくは0.5%以上に設定され、より好ましくは1%以上に設定され、さらに好ましくは3%以上に設定され、特に好ましくは5%以上に設定される。 If the SrO content is increased outside the appropriate range, the density and thermal expansion coefficient tend to increase. For the above reasons, the SrO content is set to 15% or less, preferably 12% or less. On the other hand, when the content of SrO falls outside the proper range, the dielectric constant and meltability tend to decrease. For the above reasons, the SrO content is set to 0% or more, preferably set to 0.5% or more, more preferably set to 1% or more, still more preferably set to 3% or more, particularly preferably. Is set to 5% or more.
 BaOの含有量が適正な範囲を外れて多くなると、密度、熱膨張係数が高くなりやすい。以上の理由から、BaOの含有量は40%以下に設定され、好ましくは35%以下に設定される。一方、BaOの含有量が適正な範囲を外れて少なくなると、誘電率が低下し、また失透の抑制が困難になる。以上の理由から、BaOの含有量は0%以上に設定され、好ましくは0.5%以上に設定され、より好ましくは1%以上に設定され、さらにいえば2%以上、5%以上、10%以上、15%以上、20%以上の順で好適に設定され、特に好ましくは25%以上に設定される。 When the content of BaO increases outside the appropriate range, the density and the thermal expansion coefficient tend to increase. For the above reasons, the BaO content is set to 40% or less, preferably 35% or less. On the other hand, when the content of BaO is less than the proper range and decreases, the dielectric constant decreases and it becomes difficult to suppress devitrification. For the above reasons, the content of BaO is set to 0% or more, preferably 0.5% or more, more preferably 1% or more, and further 2% or more, 5% or more, 10% % Or more, 15% or more, and 20% or more in order, particularly preferably 25% or more.
 MgO、CaO、SrO、BaOの各成分は、誘電率、耐失透性、溶融性、成形性を高める成分である。しかし、MgO+CaO+SrO+BaOの含有量(MgO、CaO、SrO、BaOの合量)が適正な範囲を外れて少なくなると、誘電率を高め難くなることに加えて、融剤としての機能を十分に発揮できず、溶融性が低下しやすくなる。以上の理由から、MgO+CaO+SrO+BaOの含有量は5%以上に設定され、好ましくは10%以上に設定され、より好ましくは15%以上に設定され、さらにいえば20%以上、25%以上の順で好適に設定され、特に好ましくは30%以上に設定される。一方、MgO+CaO+SrO+BaOの含有量が適正な範囲を外れて多くなると、密度が上昇しやすくなる上、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下する傾向にある。以上の理由から、MgO+CaO+SrO+BaOの含有量は60%以下に設定され、好ましくは55%以下に設定され、より好ましくは50%以下に設定される。 Each component of MgO, CaO, SrO, and BaO is a component that increases the dielectric constant, devitrification resistance, meltability, and moldability. However, if the content of MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO, BaO) decreases outside the appropriate range, it becomes difficult to increase the dielectric constant, and the function as a flux cannot be sufficiently exhibited. , The meltability tends to decrease. For the above reasons, the content of MgO + CaO + SrO + BaO is set to 5% or more, preferably 10% or more, more preferably 15% or more, and more preferably 20% or more and 25% or more in this order. And particularly preferably 30% or more. On the other hand, when the content of MgO + CaO + SrO + BaO increases outside the appropriate range, the density tends to increase, and the balance of the glass composition component is impaired, and conversely, devitrification resistance tends to decrease. For the above reasons, the content of MgO + CaO + SrO + BaO is set to 60% or less, preferably 55% or less, and more preferably 50% or less.
 上記の成分以外にも、例えば以下の成分をそれぞれ適正な含有比の範囲内でガラス組成中に添加することができる。 In addition to the above components, for example, the following components can be added to the glass composition within a range of appropriate content ratios.
 Li2O、Na2O、K2Oの各成分は、粘性を低下させて、熱膨張係数を調整する成分であるが、適正な範囲を外れて多量に含有させると、絶縁破壊を起こす電圧が低下しやすくなる。また誘電率の温度特性が低下する傾向にある。以上の理由から、これらの成分を添加する場合、その合量は15%以下に設定され、好ましくは10%以下に設定され、より好ましくは5%以下に設定され、さらにいえば2%以下、1%以下、0.5%以下の順で好適に設定され、特に好ましくは1000ppm以下に設定される。 Each component of Li 2 O, Na 2 O, and K 2 O is a component that adjusts the thermal expansion coefficient by lowering the viscosity. However, if it is included in a large amount outside the appropriate range, a voltage that causes dielectric breakdown. Tends to decrease. In addition, the temperature characteristics of dielectric constant tend to decrease. For these reasons, when these components are added, the total amount is set to 15% or less, preferably 10% or less, more preferably 5% or less, and further to 2% or less, It is preferably set in the order of 1% or less and 0.5% or less, particularly preferably 1000 ppm or less.
 ZnOは、誘電率を高める成分であり、また溶融性を高める成分であるが、適正な範囲を外れて多量に含有させると、ガラスの失透が生じやすくなり、また密度が上昇しやすくなる。以上の理由から、ZnOの含有量は0~40%に設定され、好ましくは0~30%に設定され、より好ましくは0~20%に設定され、さらに好ましくは0.5~15%に設定され、特に好ましくは1~10%に設定される。 ZnO is a component that increases the dielectric constant and also increases the meltability. However, if it is included in a large amount outside the appropriate range, devitrification of the glass tends to occur and the density tends to increase. For these reasons, the ZnO content is set to 0 to 40%, preferably 0 to 30%, more preferably 0 to 20%, and even more preferably 0.5 to 15%. Particularly preferably, it is set to 1 to 10%.
 ZrO2は、誘電率を高める成分であるが、適正な範囲を外れて多量に含有させると、液相温度が急激に上昇し、ジルコンの失透異物が析出しやすくなる。以上の理由から、ZrO2の含有量は20%以下に設定され、好ましくは15%以下に設定され、より好ましくは10%以下に設定される。また、ZrO2の含有量は0.1%以上に設定され、好ましくは0.5%以上に設定され、より好ましくは1%以上に設定され、さらに好ましくは2%以上に設定され、特に好ましくは3%以上に設定される。 ZrO 2 is a component that increases the dielectric constant. However, if the ZrO 2 is contained outside the proper range and contained in a large amount, the liquidus temperature rises abruptly and zircon devitrified foreign matter tends to precipitate. For the above reasons, the content of ZrO 2 is set to 20% or less, preferably 15% or less, and more preferably 10% or less. The ZrO 2 content is set to 0.1% or more, preferably set to 0.5% or more, more preferably set to 1% or more, further preferably set to 2% or more, particularly preferably. Is set to 3% or more.
 Y23、Nb23、La23の各成分は、誘電率等を高める成分であるが、適正な範囲を外れて多量に含有させると、密度が上昇しやすくなる。以上の理由から、Y23、Nb23、La23を添加する場合、各成分の含有量は20%以下に設定されるのがよい。 Each component of Y 2 O 3 , Nb 2 O 3 , and La 2 O 3 is a component that increases the dielectric constant and the like, but if it is included in a large amount outside the appropriate range, the density tends to increase. For these reasons, when adding Y 2 O 3 , Nb 2 O 3 , or La 2 O 3 , the content of each component is preferably set to 20% or less.
 また、第一の絶縁フィルム7のガラス組成には、清澄剤として、As23、Sb23、CeO2、SnO2、F、Cl、SO3からなる群から選択される一種または二種以上を0~3%の範囲で添加することができる。ただし、As23、Sb23、Fは、環境的観点から、その使用を極力控えることが好ましく、各成分の含有量は0.1%未満に設定することが好ましい。環境的観点から、清澄剤としては、SnO2、Cl、SO3が好ましい。SnO2+Cl+SO3(SnO2、Cl、SO3の合量)の含有量は、0.001~1%に設定され、好ましくは0.01~0.5%に設定され、より好ましくは0.01~0.3%に設定される。また、SnO2の含有量は0~1%に設定され、好ましくは0.01~0.5%に設定され、特に好ましくは0.05~0.4%に設定される。 The glass composition of the first insulating film 7 includes one or two selected from the group consisting of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 as a fining agent. More than seeds can be added in the range of 0 to 3%. However, As 2 O 3 , Sb 2 O 3 , and F are preferably used as much as possible from an environmental viewpoint, and the content of each component is preferably set to less than 0.1%. From the environmental point of view, SnO 2 , Cl and SO 3 are preferable as the fining agent. The content of SnO 2 + Cl + SO 3 (the total amount of SnO 2 , Cl and SO 3 ) is set to 0.001 to 1%, preferably set to 0.01 to 0.5%, more preferably 0. It is set to 01 to 0.3%. The SnO 2 content is set to 0 to 1%, preferably set to 0.01 to 0.5%, particularly preferably set to 0.05 to 0.4%.
 もちろん、第一の絶縁フィルム7のガラス組成には、上記以外の成分を例えば20%まで、好ましくは10%までの範囲で添加することも可能である。 Of course, components other than those described above can be added to the glass composition of the first insulating film 7 in a range of, for example, up to 20%, preferably up to 10%.
 第一の絶縁フィルム7の液相温度は例えば1200℃以下に設定され、好ましくは1150℃以下に設定され、より好ましくは1090℃以下に設定され、さらにいえば1050℃以下、1030℃以下の順で好適に設定され、特に好ましくは1000℃以下に設定される。第一の絶縁フィルム7の液相温度が高すぎると、成形時にガラスの失透が生じやすくなり、第一の絶縁フィルム7の表面精度(表面粗さなど)を高めることが困難になるためである。また、第一の絶縁フィルム7の液相粘度は例えば103.5dPa・s以上に設定され、好ましくは104.0dPa・s以上に設定され、より好ましくは104.5dPa・s以上に設定され、さらに好ましくは104.8dPa・s以上に設定され、特に好ましくは105.0dPa・s以上に設定される。第一の絶縁フィルム7の液相粘度が低すぎると、成形時にガラスの失透が生じやすくなり、第一の絶縁フィルム7の表面精度を高めることが困難になるためである。なお、ここでいう液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法により測定した値を指す。また、液相温度は、標準篩30メッシュ(約500μm)を通過し、50メッシュ(約300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中で24時間保持して、結晶が析出する温度を測定した値を指す。 The liquid phase temperature of the first insulating film 7 is set to, for example, 1200 ° C. or less, preferably 1150 ° C. or less, more preferably 1090 ° C. or less, and further 1050 ° C. or less, 1030 ° C. or less. Is preferably set, particularly preferably 1000 ° C. or lower. If the liquid phase temperature of the first insulating film 7 is too high, the glass tends to be devitrified during molding, and it becomes difficult to improve the surface accuracy (surface roughness, etc.) of the first insulating film 7. is there. Further, the liquid phase viscosity of the first insulating film 7 is set to, for example, 10 3.5 dPa · s or more, preferably 10 4.0 dPa · s or more, more preferably 10 4.5 dPa · s or more, Preferably it is set to 10 4.8 dPa · s or more, particularly preferably 10 5.0 dPa · s or more. This is because if the liquid phase viscosity of the first insulating film 7 is too low, devitrification of the glass tends to occur during molding, and it becomes difficult to increase the surface accuracy of the first insulating film 7. Here, the liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method. The liquid phase temperature passes through a standard sieve 30 mesh (about 500 μm), the glass powder remaining in 50 mesh (about 300 μm) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours, and crystals precipitate. Refers to the value measured temperature.
 第一の絶縁フィルム7の密度は例えば4.5g/cm3以下に設定され、好ましくは4.0g/cm3以下に設定され、より好ましくは3.6g/cm3以下に設定され、さらにいえば3.3g/cm3以下、3.0g/cm3以下、2.8g/cm3以下の順で好適に設定され、特に好ましくは2.5g/cm3以下に設定される。密度が小さいほど、巻回型フィルムコンデンサ1を軽量化しやすくなる。なお、ここでいう密度は、周知のアルキメデス法により測定した値を指す。 For example, the density of the first insulating film 7 is set to 4.5 g / cm 3 or less, preferably set to 4.0 g / cm 3 or less, more preferably set to 3.6 g / cm 3 or less. For example, it is suitably set in the order of 3.3 g / cm 3 or less, 3.0 g / cm 3 or less, and 2.8 g / cm 3 or less, particularly preferably 2.5 g / cm 3 or less. The smaller the density, the easier it is to reduce the weight of the wound film capacitor 1. In addition, the density here refers to the value measured by the well-known Archimedes method.
 第一の絶縁フィルム7の熱膨張係数は例えば25×10-7~120×10-7/℃に設定され、好ましくは30×10-7~120×10-7/℃に設定され、より好ましくは40×10-7~110×10-7/℃に設定され、さらに好ましくは60×10-7~100×10-7/℃に設定され、特に好ましくは70×10-7~95×10-7/℃に設定される。第一の絶縁フィルム7の熱膨張係数を上記範囲に設定すれば、第一の絶縁フィルム7の熱膨張係数と、第一の絶縁フィルム7の双方の表面7a,7bに成膜等で形成される導電層5,6の熱膨張係数とを整合させる(近づける)ことができるので、導電層5,6の反り等の変形を防止することが可能となる。なお、ここでいう熱膨張係数は、30~380℃の範囲において、ディラトメーターにより測定した平均値を指す。 The thermal expansion coefficient of the first insulating film 7 is set to, for example, 25 × 10 −7 to 120 × 10 −7 / ° C., preferably set to 30 × 10 −7 to 120 × 10 −7 / ° C., and more preferably. Is set to 40 × 10 −7 to 110 × 10 −7 / ° C., more preferably 60 × 10 −7 to 100 × 10 −7 / ° C., and particularly preferably 70 × 10 −7 to 95 × 10. -7 / ℃ is set. If the coefficient of thermal expansion of the first insulating film 7 is set in the above range, the coefficient of thermal expansion of the first insulating film 7 and the surfaces 7a and 7b of the first insulating film 7 are formed by film formation or the like. Since the thermal expansion coefficients of the conductive layers 5 and 6 can be matched (approached), deformation of the conductive layers 5 and 6 such as warpage can be prevented. The coefficient of thermal expansion here refers to an average value measured with a dilatometer in the range of 30 to 380 ° C.
 また、第一の絶縁フィルム7の102.5dPa・sにおける温度は例えば1550℃以下に設定され、好ましくは1450℃以下に設定され、より好ましくは1350℃以下に設定され、さらにいえば1250℃以下、1200℃以下、1170℃以下の順で好適に設定され、特に好ましくは1150℃以下に設定される。第一の絶縁フィルム7の102. 5dPa・sにおける温度が低いほど、低温でガラスを溶融しやすくなるため、ガラスフィルムの製造コストを低廉化することができる。なお、ここでいう102.5dPa・sにおける温度は、白金球引き上げ法により測定した値を指す。 The temperature at 10 2.5 dPa · s of the first insulating film 7 is set to 1550 ° C. or lower, preferably 1450 ° C. or lower, more preferably 1350 ° C. or lower, and further 1250 ° C. or lower. It is suitably set in the order of 1200 ° C. or lower and 1170 ° C. or lower, particularly preferably 1150 ° C. or lower. The lower the temperature at 10 2. 5 dPa · s of the first insulating film 7, it becomes easy to melt the glass at a low temperature, it is possible to reduce the production cost of the glass film. Here, the temperature at 10 2.5 dPa · s indicates a value measured by a platinum ball pulling method.
 第一の絶縁フィルム7の表面7a(7b)の少なくとも一部は未研磨の状態であってもよい。また、その場合、互いに相反する向きを指向する第一の表面7aと第二の表面7bの全てが未研磨であることが好ましい。ガラスの理論強度は非常に高いが、実際は理論強度よりもはるかに低い応力で破壊に至ることが多い。これは、ガラスの表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。そこで、ガラスフィルムである第一の絶縁フィルム7の第一の表面7a(第二の表面7b)を未研磨にすれば、言い換えると、第一の表面7a(第二の表面7b)を成形面とすれば、ガラスの機械的強度を本来の強度に近づけることができ、これによりガラスフィルムの破壊を可及的に防止し得る。具体的には、後述するリドロー法又はオーバーフローダウンドロー法でガラスフィルムを成形することにより、未研磨で表面精度に優れた第一の表面7a(第二の表面7b)を有する第一の絶縁フィルム7を得ることが可能となる。 At least part of the surface 7a (7b) of the first insulating film 7 may be in an unpolished state. Moreover, in that case, it is preferable that all of the first surface 7a and the second surface 7b directed in opposite directions are unpolished. Although the theoretical strength of glass is very high, in fact, it often breaks at much lower stresses than the theoretical strength. This is because a small defect called Griffith flow is generated on the surface of the glass in a post-molding process such as a polishing process. Therefore, if the first surface 7a (second surface 7b) of the first insulating film 7 which is a glass film is unpolished, in other words, the first surface 7a (second surface 7b) is formed on the molding surface. If so, the mechanical strength of the glass can be brought close to the original strength, thereby preventing the glass film from being broken as much as possible. Specifically, a first insulating film having a first surface 7a (second surface 7b) which is unpolished and has excellent surface accuracy by molding a glass film by a redraw method or an overflow downdraw method which will be described later. 7 can be obtained.
 第一の絶縁フィルム7の成形手段として、例えばリドロー法を採用することができる。この方法によれば、第一の絶縁フィルム7の厚み寸法t1を小さくしやすい。また、第一の絶縁フィルム7の表面品位を高めることができる。さらに第一の絶縁フィルム7の各側端面7c,7d(図3を参照)を成形面(火造り面と呼ぶこともある)とすることで、第一の絶縁フィルム7が各側端面7c,7dから破損し難くなる利点を有する。なお、リドロー法とは、成形済みのガラスを再び軟化点付近の温度にまで加熱し、延伸成形してガラスを所定の形状(本実施形態であれば長尺のフィルム状)に成形する方法をいう。 As a means for forming the first insulating film 7, for example, a redraw method can be adopted. According to this method, the thickness dimension t1 of the first insulating film 7 can be easily reduced. Further, the surface quality of the first insulating film 7 can be improved. Furthermore, each side end surface 7c, 7d (refer FIG. 3) of the 1st insulating film 7 is made into a shaping | molding surface (it may call a fire-making surface), and the 1st insulating film 7 has each side end surface 7c, 7d has the advantage that it is difficult to break. The redraw method is a method in which a molded glass is heated again to a temperature near the softening point and stretched to form the glass into a predetermined shape (in the case of this embodiment, a long film). Say.
 もちろん、第一の絶縁フィルム7の成形手段として、例えばオーバーフローダウンドロー法、スロットダウンドロー法など、リドロー以外のガラスフィルムの成形手段を採用することも可能である。なお、オーバーフローダウンドロー法とは、フュージョン法とも称される成形手段で、溶融ガラスを耐熱性の桶状構造物の両側から溢れさせて、溢れた溶融ガラスを桶状構造物の下端で合流させながら、下方に延伸成形することで、所定形状のガラス(本実施形態であれば長尺のガラスフィルム)を得る方法である。オーバーフローダウンドロー法でガラスフィルムを成形することによっても、表面品位を高めることができる。 Of course, as a means for forming the first insulating film 7, glass film forming means other than redraw, such as an overflow down draw method or a slot down draw method, may be employed. The overflow down-draw method is a forming method called fusion method, in which molten glass overflows from both sides of the heat-resistant bowl-like structure, and the overflowing molten glass is joined at the lower end of the bowl-like structure. However, this is a method of obtaining glass having a predetermined shape (long glass film in the case of the present embodiment) by stretching downward. Surface quality can also be improved by forming a glass film by the overflow downdraw method.
 第二の絶縁フィルム8をガラスフィルムとする場合、上述した第一の絶縁フィルム7のガラス組成、物性、形状、表面性状、寸法、成形条件などの少なくとも1つを同一にすることが可能である。もちろん、コスト面や生産性の面で特に問題ないようであれば、ガラス組成、物性、形状、表面性状、寸法、成形条件などが異なるガラスフィルムを第二の絶縁フィルム8に用いてもかまわない。 When the second insulating film 8 is a glass film, it is possible to make at least one of the glass composition, physical properties, shape, surface properties, dimensions, molding conditions, and the like of the first insulating film 7 described above the same. . Of course, if there is no particular problem in terms of cost and productivity, glass films having different glass compositions, physical properties, shapes, surface properties, dimensions, molding conditions, and the like may be used for the second insulating film 8. .
 以上、双方の絶縁フィルム7,8の材質(ガラス組成)について述べたが、割れを生じることなく巻き取り可能なものであれば上述したガラス組成に限らず、種々の材質を採用することも可能である。具体例として、無アルカリガラス、ソーダガラス、アルカリ含有ガラス等が挙げられる。 As mentioned above, although the material (glass composition) of both the insulating films 7 and 8 was described, as long as it can wind up without generating a crack, not only the glass composition mentioned above but various materials are also employable. It is. Specific examples include alkali-free glass, soda glass, and alkali-containing glass.
 また、第二の絶縁フィルム8の厚み寸法t2は任意であるが、例えば第二の絶縁フィルム8をガラスフィルムとする場合、第一の絶縁フィルム7の厚み寸法t1に対する第二の絶縁フィルム8の相対厚み寸法(第二の絶縁フィルム8の厚み寸法t2を第一の絶縁フィルム7の厚み寸法t1で除した値)が例えば0.3以上になるように厚み寸法t2が設定され、好ましくは0.4以上となるよう、より好ましくは0.5以上となるよう、さらにいえば0.6以上、0.7以上、0.8以上の順で好適に厚み寸法t2が設定され、特に好ましくは0.9以上となるよう厚み寸法t2が設定される。一方、上限値の観点から、第二の絶縁フィルム8の厚み寸法t2は、上記厚み寸法t1,t2の比が例えば3.0以下となるように設定され、好ましくは2.5以下となるよう、より好ましくは2.0以下となるよう、さらにいえば1.8以下、1.5以下、1.3以下、1.2以下、1.1以下の順で好適に厚み寸法t2が設定され、特に好ましくは1.05以下となるよう厚み寸法t2が設定される。 The thickness dimension t2 of the second insulating film 8 is arbitrary. For example, when the second insulating film 8 is a glass film, the second insulating film 8 has a thickness dimension t1 with respect to the thickness dimension t1 of the first insulating film 7. The thickness dimension t2 is set so that the relative thickness dimension (the value obtained by dividing the thickness dimension t2 of the second insulating film 8 by the thickness dimension t1 of the first insulating film 7) is, for example, 0.3 or more, preferably 0. The thickness dimension t2 is suitably set in the order of 0.6 or more, 0.7 or more, 0.8 or more, more preferably 0.5 or more, more preferably 0.5 or more, and particularly preferably The thickness dimension t2 is set so as to be 0.9 or more. On the other hand, from the viewpoint of the upper limit value, the thickness dimension t2 of the second insulating film 8 is set so that the ratio of the thickness dimensions t1 and t2 is, for example, 3.0 or less, preferably 2.5 or less. More preferably, the thickness dimension t2 is suitably set in the order of 1.8 or less, 1.5 or less, 1.3 or less, 1.2 or less, 1.1 or less, more preferably 2.0 or less. Particularly preferably, the thickness dimension t2 is set to be 1.05 or less.
 巻回体2の中心には、巻回体2の幅方向に沿った向き、図2でいえば巻回体2の中心線X1に沿った向きに巻回体2を貫通する貫通穴10が設けられている。本実施形態では、貫通穴10は、巻回体2だけでなくその幅方向両側に取り付けられる電極3,4をも貫通している。そのため、この貫通穴10は、図1に示すように、巻回型フィルムコンデンサ1の中心において、巻回型フィルムコンデンサ1をその中心線に沿った向きに貫通している。この場合、巻回型フィルムコンデンサ1の中心線は、巻回体2の中心線X1に等しい(図1及び図2を参照)。また、本実施形態では、貫通穴10の内周面は第二の絶縁フィルム8の第二の表面8bで構成されているので(図3を参照)、この際の貫通穴10の内径寸法Dは、上述した絶縁フィルム8の最小巻き取り径に略等しくなる。 At the center of the wound body 2, there is a through hole 10 that penetrates the wound body 2 in the direction along the width direction of the wound body 2, that is, in the direction along the center line X <b> 1 of the wound body 2 in FIG. 2. Is provided. In the present embodiment, the through hole 10 penetrates not only the wound body 2 but also the electrodes 3 and 4 attached to both sides in the width direction. Therefore, as shown in FIG. 1, the through hole 10 penetrates the wound film capacitor 1 in the direction along the center line at the center of the wound film capacitor 1. In this case, the center line of the wound film capacitor 1 is equal to the center line X1 of the wound body 2 (see FIGS. 1 and 2). Moreover, in this embodiment, since the internal peripheral surface of the through-hole 10 is comprised by the 2nd surface 8b of the 2nd insulating film 8 (refer FIG. 3), the internal diameter dimension D of the through-hole 10 in this case Is substantially equal to the minimum winding diameter of the insulating film 8 described above.
 次に、上記構成の巻回型フィルムコンデンサ1の製造方法の一例を、主に図4~図10に基づいて説明する。 Next, an example of a method for manufacturing the wound film capacitor 1 having the above-described configuration will be described mainly based on FIGS.
 この巻回型フィルムコンデンサ1の製造方法は、積層体9を形成する工程S1と、巻回体2を形成する工程S2と、巻回体2に貫通穴10を形成する工程S3、及び巻回体2の幅方向両側に正負の電極3,4を設ける工程S4とを備える。 The method for manufacturing the wound film capacitor 1 includes a step S1 for forming the laminated body 9, a step S2 for forming the wound body 2, a step S3 for forming the through hole 10 in the wound body 2, and a winding. And a step S4 of providing positive and negative electrodes 3 and 4 on both sides of the body 2 in the width direction.
(S1)積層体形成工程
 この工程では、二枚の絶縁フィルム7,8と二つの導電層5,6を交互に重ね合せることで、長尺の積層体9を形成する。本実施形態では、図4に示すように、第一及び第二の表面7a,7bにそれぞれ第一及び第二の導電層5,6としての金属膜が一体的に形成された第一の絶縁フィルム7を、第二の絶縁フィルム8上に載置して、第一の導電層5、第一の絶縁フィルム7、第二の導電層6、第二の絶縁フィルム8の順に積層してなる積層体を形成する(図5を参照)。なお、図4では、第一の絶縁フィルム7の長尺方向寸法L1と、第二の絶縁フィルム8の長尺方向寸法L2とを同じ長さとしているが、もちろん後述する理由(例えば第二の絶縁フィルム8同士の直接密着など)などにより、これら長尺方向寸法L1,L2の大きさを適宜調整することも可能である。
(S1) Laminate Forming Step In this step, the long laminate 9 is formed by alternately stacking the two insulating films 7 and 8 and the two conductive layers 5 and 6. In the present embodiment, as shown in FIG. 4, a first insulation in which metal films as first and second conductive layers 5 and 6 are integrally formed on the first and second surfaces 7a and 7b, respectively. The film 7 is placed on the second insulating film 8, and the first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 are laminated in this order. A laminated body is formed (see FIG. 5). In FIG. 4, the longitudinal dimension L1 of the first insulating film 7 and the longitudinal dimension L2 of the second insulating film 8 are the same length. The lengths L1 and L2 can be appropriately adjusted by, for example, direct adhesion between the insulating films 8).
 なお、この際、第一の絶縁フィルム7の第二の表面7bと第二の絶縁フィルム8の第三の表面8a、又は第二の絶縁フィルム7の第四の表面8bと第一の絶縁フィルム7の第一の表面とが接着剤などを介在させることなく直接密着するように、各絶縁フィルム7,8をともにガラスフィルムとし、その表面粗さを所定の大きさに設定すると共に、第一の絶縁フィルム7の長尺方向端部が導電層5,6から長尺方向に食み出た形態をとることも可能である(図4を参照)。ここで、表面粗さを算術平均粗さRaで表した場合、互いに密着する第二の表面7bと第三の表面8a(第一の表面7aと第四の表面8b)の算術平均粗さRaをともに2.0nm以下に設定するのがよい。各表面7b,8a(7a,8b)の算術平均粗さRaを上述した範囲に設定することで、双方の絶縁フィルム7,8同士が位置ずれなく相互に固定された状態でロール状に巻き取られた形態を維持する(巻回体2の形状を維持する)ことが可能となる。もちろん、密着性向上の観点からは、1.0nm以下とするのが好ましく、さらにいえば0.8nm以下、0.4nm以下、0.3nm以下の順で好ましく、0.2nm以下とするのが特に好ましい。 At this time, the second surface 7b of the first insulating film 7 and the third surface 8a of the second insulating film 8 or the fourth surface 8b of the second insulating film 7 and the first insulating film Insulating films 7 and 8 are both glass films, and the surface roughness is set to a predetermined size so that the first surface 7 is in direct contact with no adhesive or the like. It is also possible to take a form in which the end in the longitudinal direction of the insulating film 7 protrudes from the conductive layers 5 and 6 in the longitudinal direction (see FIG. 4). Here, when the surface roughness is expressed by the arithmetic average roughness Ra, the arithmetic average roughness Ra of the second surface 7b and the third surface 8a (the first surface 7a and the fourth surface 8b) that are in close contact with each other. Are preferably set to 2.0 nm or less. By setting the arithmetic average roughness Ra of each surface 7b, 8a (7a, 8b) within the above-described range, the two insulating films 7, 8 are wound in a roll shape while being fixed to each other without positional displacement. It is possible to maintain the formed shape (maintain the shape of the wound body 2). Of course, from the viewpoint of improving adhesion, it is preferably 1.0 nm or less, more preferably 0.8 nm or less, 0.4 nm or less, and 0.3 nm or less in order, and 0.2 nm or less. Particularly preferred.
(S2)巻回体形成工程
 この工程では、工程S1で形成した積層体9をコア11まわりに巻き取ることで巻回体2を形成する。ここで、コア11としては、任意の形態及び材質を採用することが可能であるが、本実施形態では、図6及び図7に示すように、分割構造を有するコア11が使用される。このコア11は、いずれも外周に積層体9の巻き取り面12a~15aが設けられた複数の分割体12~15と、これら複数の分割体12~15を互いに連結する連結部材16,17とを有する。本図示例では、四個の分割体12~15が二個の連結部材16,17で相互に連結された状態にある。各分割体12~15には、連結部材16,17が嵌合する溝状の被嵌合部12b~15bが形成されており(図7を参照)、この溝状の被嵌合部12b~15bに環状の連結部材16,17を嵌め合せることにより、四個の分割体12~15を相互に連結可能としている。より強固に連結部材16,17と各分割体12~15との連結を図るのであれば、図7に示すように、各分割体12~15にねじ穴12c~15cを設けると共に、連結部材16,17にねじ挿通穴16a,17aを設けて、ねじ18による連結を図るようにしてもよい。
(S2) Winding body formation process At this process, the winding body 2 is formed by winding the laminated body 9 formed by process S1 around the core 11. FIG. Here, although arbitrary forms and materials can be adopted as the core 11, in the present embodiment, as shown in FIGS. 6 and 7, the core 11 having a divided structure is used. The core 11 includes a plurality of divided bodies 12 to 15 each provided with winding surfaces 12a to 15a of the laminated body 9 on the outer periphery, and connecting members 16 and 17 that connect the plurality of divided bodies 12 to 15 to each other. Have In the illustrated example, the four divided bodies 12 to 15 are connected to each other by the two connecting members 16 and 17. Each of the divided bodies 12 to 15 is formed with groove-like fitted portions 12b to 15b into which the connecting members 16 and 17 are fitted (see FIG. 7). By fitting the annular connecting members 16 and 17 to 15b, the four divided bodies 12 to 15 can be connected to each other. If the connection members 16 and 17 and the divided bodies 12 to 15 are to be connected more firmly, screw holes 12c to 15c are provided in the divided bodies 12 to 15 as shown in FIG. , 17 may be provided with screw insertion holes 16a, 17a so as to be connected by screws 18.
 また、図6に示すように、円周方向で隣り合う分割体12~15の間には、各分割体12~15が連結部材16,17で相互に連結された状態において、所定の周方向隙間19が形成されている。この周方向隙間19は、後述する貫通穴10の形成工程S3において、最初に分割体12~15の一部のみを巻回体2から除去する際に有効に機能する。詳細は後述する。また、コア11の中心には、所定の外径寸法を有する回転軸(図示は省略)が嵌合可能な軸嵌合穴11aが形成されている。 In addition, as shown in FIG. 6, between the divided bodies 12 to 15 adjacent in the circumferential direction, the divided bodies 12 to 15 are connected to each other by connecting members 16 and 17 in a predetermined circumferential direction. A gap 19 is formed. The circumferential clearance 19 functions effectively when only a part of the divided bodies 12 to 15 is first removed from the wound body 2 in the formation step S3 of the through hole 10 described later. Details will be described later. Further, a shaft fitting hole 11a into which a rotating shaft (not shown) having a predetermined outer diameter can be fitted is formed at the center of the core 11.
 上記構成のコア11を用いた積層体9の巻き取りは例えば以下のようにして行われる。まず図8に示すように、巻き始め側端部となる積層体9の長尺方向一端部9aをコア11の外周面(巻き取り面12a~15a)に密着させると共に、コア11の軸嵌合穴11aにモータなどの回転駆動軸(図示は省略)を嵌合して、この回転駆動軸を回転駆動することにより、積層体9の巻き取りを開始する。この際、図8に示すように、積層体9の長尺方向一端部9aにおいて第一の絶縁フィルム7の第二の表面7bと第二の絶縁フィルム8の第三の表面8aとが互いに直接密着する領域を形成してから、二枚の絶縁フィルム7,8と二つの導電層5,6とが図3に示す順序で交互に重ね合さるように巻き取っていく。なお、コア11を除去した後も絶縁フィルム7,8の巻き取り時の形態をより確実に維持するため、第一の絶縁フィルム7の外側の表面となる第一の表面7aと、第二の絶縁フィルム8の内側の表面となる第四の表面8bとが直接密着するように、第一の絶縁フィルム7の各導電層5,6からの長尺方向一端部9a側への食み出し寸法p1(図4を参照)を設定することも可能である。すなわち、第一の絶縁フィルム7の第二の表面7bと、第二の絶縁フィルム8の第三の表面8aとが直接密着した状態で双方の絶縁フィルム7,8が一周以上コア11まわりに巻き取り可能な程度に、第一の絶縁フィルム7の導電層5,6からの食み出し寸法p1を設定することも可能である。 The winding of the laminate 9 using the core 11 having the above configuration is performed as follows, for example. First, as shown in FIG. 8, one end portion 9a in the longitudinal direction of the laminate 9 serving as the end portion on the winding start side is brought into close contact with the outer peripheral surface (winding surfaces 12a to 15a) of the core 11, and the shaft 11 is fitted into the shaft. A rotary drive shaft (not shown) such as a motor is fitted in the hole 11a, and the rotary drive shaft is rotationally driven to start winding the laminated body 9. At this time, as shown in FIG. 8, the second surface 7 b of the first insulating film 7 and the third surface 8 a of the second insulating film 8 are directly connected to each other at one longitudinal end 9 a of the laminate 9. After forming the contact | adhered area | region, it winds up so that the two insulating films 7 and 8 and the two conductive layers 5 and 6 may overlap | superpose in the order shown in FIG. In addition, in order to maintain more reliably the form at the time of winding of the insulating films 7 and 8 after removing the core 11, the 1st surface 7a used as the outer surface of the 1st insulating film 7, and 2nd Projection dimension of the first insulating film 7 from the conductive layers 5 and 6 toward the one end portion 9a in the longitudinal direction so that the fourth surface 8b which is the inner surface of the insulating film 8 is in direct contact with the fourth surface 8b. It is also possible to set p1 (see FIG. 4). That is, both the insulating films 7 and 8 are wound around the core 11 one or more times in a state where the second surface 7b of the first insulating film 7 and the third surface 8a of the second insulating film 8 are in direct contact with each other. It is also possible to set the protruding dimension p1 of the first insulating film 7 from the conductive layers 5 and 6 to such an extent that it can be taken.
 また、上述のように、二枚の絶縁フィルム7,8を互いに重ね合せた状態で巻き取る際には、各絶縁フィルム7,8の巻き取り速度や巻き取り角度、巻き取り方向などの条件を適切に管理するのがよい。このように巻き取り条件を適切に管理することにより、絶縁フィルム7,8同士の摺接や不当な応力集中を回避でき、ガラスフィルムの破壊確率を低下させ得る。 Further, as described above, when the two insulating films 7 and 8 are wound in a state of being overlapped with each other, conditions such as a winding speed, a winding angle, and a winding direction of each insulating film 7 and 8 are set. It should be managed appropriately. By appropriately managing the winding condition in this manner, sliding contact between the insulating films 7 and 8 and undue stress concentration can be avoided, and the breakage probability of the glass film can be reduced.
 このようにして、積層体9をコア11まわりに巻き取っていき、例えば図9に示すように、積層体9の巻き終わり側端部となる長尺方向他端部9bをそのすぐ内側に位置する第二の絶縁フィルム8の外側の表面(第三の表面8a)に固定することで、コア11を一体に有する巻回体2(図10を参照)が形成される。この際、第一の絶縁フィルム7の固定手段は任意であるが、例えば巻き始めと同様、第二の絶縁フィルム8との直接密着を利用した固定手段を採用することも可能である。すなわち、図9に示すように、積層体9の長尺方向他端部9bにおいて、第一の絶縁フィルム7の内側の表面(第二の表面7b)と、第二の絶縁フィルム8の外側の表面(第三の表面8a)とが直接密着した状態で双方の絶縁フィルム7,8が一周以上コア11まわりに巻き取り可能な程度に、第一の絶縁フィルム7の導電層5,6からの食み出し寸法p2(図4を参照)を設定することも可能である。このようにすることで、最も半径方向外側に位置する第一の絶縁フィルム7の内側の表面(第二の表面7b)と第二の絶縁フィルム8の外側の表面(第三の表面8a)とが直接密着するだけでなく、第二の絶縁フィルム8の内側の表面(第四の表面8b)と、一つ前の周の第一の絶縁フィルム7の外側の表面(第一の表面7a)とが直接密着する。これにより、積層体9を巻き取ってなる巻回体2を形成すると共に、積層体9の巻き終わり側の端部において双方の絶縁フィルム7,8同士を強固に固定することが可能となる。 In this way, the laminate 9 is wound around the core 11, and as shown in FIG. 9, for example, the other end 9b in the longitudinal direction, which is the end portion on the winding end side of the laminate 9, is positioned immediately inside thereof. By fixing to the outer surface (third surface 8a) of the second insulating film 8 to be formed, the wound body 2 (see FIG. 10) integrally having the core 11 is formed. At this time, the fixing means of the first insulating film 7 is arbitrary, but it is also possible to employ a fixing means using direct contact with the second insulating film 8 as in the case of starting winding. That is, as shown in FIG. 9, at the other end 9 b in the longitudinal direction of the laminated body 9, the inner surface of the first insulating film 7 (second surface 7 b) and the outer surface of the second insulating film 8. From the conductive layers 5 and 6 of the first insulating film 7 such that both the insulating films 7 and 8 can be wound around the core 11 one or more times in a state in which the surface (the third surface 8a) is in direct contact. It is also possible to set the protrusion dimension p2 (see FIG. 4). By doing in this way, the inner surface (second surface 7b) of the first insulating film 7 located on the outermost radial direction and the outer surface (third surface 8a) of the second insulating film 8 Not only directly but also the inner surface (fourth surface 8b) of the second insulating film 8 and the outer surface (first surface 7a) of the first insulating film 7 in the previous circumference. And are in direct contact. Thereby, it is possible to form the wound body 2 formed by winding the laminated body 9 and firmly fix both the insulating films 7 and 8 at the end of the laminated body 9 on the winding end side.
(S3)貫通穴形成工程
 この工程では、巻回体2からコア11を除去することにより、巻回体2の中心に、巻回体2を幅方向に貫通する貫通穴10を形成する。具体的には、図11に示すように、ねじ18を緩めて、コア11の幅方向両側に配設されている連結部材16,17を各分割体12~15から外した後、連結部材16,17を各分割体12~15から取り外す。然る後、一部の分割体(ここでは周方向寸法が相対的に小さい二個の分割体12,13)を巻回体2の幅方向に移動させて、当該一部の分割体12,13を巻回体2から除去する。本実施形態では、連結部材16,17により各分割体12~15が相互に連結された状態において、各分割体12~15の間には周方向隙間19が設けられているので、特段の抵抗なく容易に一部の分割体12,13を引き抜くことができる。最後に、残りの分割体14,15を巻回体2から除去することで、巻回体2が形成されると共に、巻回体2の中心に、巻回体2を幅方向に貫通する貫通穴10が形成される(図2を参照)。なお、この際に形成される巻回体2において、図示は省略するが、第一及び第二の導電層5,6と第一及び第二の絶縁フィルム7,8は何れも螺旋状をなし、かつ半径方向外側から第一の導電層5、第一の絶縁フィルム7、第二の導電層6、第二の絶縁フィルム8の順で繰り返し位置している。
(S3) Through-hole forming step In this step, the core 11 is removed from the wound body 2 to form a through-hole 10 that penetrates the wound body 2 in the width direction at the center of the wound body 2. Specifically, as shown in FIG. 11, after the screws 18 are loosened and the connecting members 16 and 17 disposed on both sides in the width direction of the core 11 are removed from the divided bodies 12 to 15, the connecting member 16 , 17 are removed from each of the divided bodies 12-15. Thereafter, some of the divided bodies (here, the two divided bodies 12 and 13 having relatively small circumferential dimensions) are moved in the width direction of the wound body 2, so that the partial divided bodies 12, 13 is removed from the wound body 2. In this embodiment, in the state where the divided bodies 12 to 15 are connected to each other by the connecting members 16 and 17, the circumferential gap 19 is provided between the divided bodies 12 to 15, so that a special resistance is provided. It is possible to easily pull out some of the divided bodies 12 and 13. Finally, by removing the remaining divided bodies 14 and 15 from the wound body 2, the wound body 2 is formed, and at the center of the wound body 2, the penetrating through the wound body 2 in the width direction is formed. A hole 10 is formed (see FIG. 2). In the wound body 2 formed at this time, although not shown, the first and second conductive layers 5 and 6 and the first and second insulating films 7 and 8 are both spiral. The first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 are repeatedly positioned in this order from the outside in the radial direction.
(S4)電極形成工程
 このようにして巻回体2を形成した後、巻回体2の幅方向両側に正負双方の電極3,4を形成する。この際、巻回体2の幅方向一方の側に位置する第一の電極3は、図3等に示すように、第一の導電層5の第一の側端面5aと接し、第二の導電層6の第三の側端面6aとは接しないように形成される。また、巻回体2の幅方向他方の側に位置する第二の電極4は、第二の導電層6の第四の側端面6bと接し、第一の導電層5の第二の側端面5bとは接しないように形成される。これにより正負双方の電極3,4が巻回体2の幅方向端部を覆うように形成されると共に、対応する導電層5,6とのみ電気的に接続された状態となり、図1に示す巻回型フィルムコンデンサ1が完成する。
(S4) Electrode formation process After forming the wound body 2 in this way, both positive and negative electrodes 3 and 4 are formed on both sides of the wound body 2 in the width direction. At this time, the first electrode 3 located on one side in the width direction of the wound body 2 is in contact with the first side end face 5a of the first conductive layer 5 as shown in FIG. The conductive layer 6 is formed so as not to contact the third side end surface 6a. The second electrode 4 located on the other side in the width direction of the wound body 2 is in contact with the fourth side end face 6 b of the second conductive layer 6 and the second side end face of the first conductive layer 5. It is formed so as not to contact 5b. As a result, both the positive and negative electrodes 3 and 4 are formed so as to cover the end in the width direction of the wound body 2 and are electrically connected only to the corresponding conductive layers 5 and 6, as shown in FIG. The wound film capacitor 1 is completed.
 なお、電極3,4の形成手段は任意であるが、上述した電気的接続を容易に実現する観点からは、上述した金属の粉末を含む導電性ペーストを巻回体2の幅方向両側に塗布し、固化させることにより形成することが好ましい。すなわち、二枚の絶縁フィルム7,8を螺旋状に巻き取る作業の特性上、それぞれの側端面7c,7d,8c,8dの位置(図3を参照)を正確に揃えることは難しく、幅方向位置のばらつきも不可避的に生じる。よって例えば電極3,4が板状だと、導電層5,6の各側端面5a,5b,6a,6bの全域に当接させることは極めて難しい。これに対してペースト状の導電性材料であれば、各側端面5a,5b,6a,6bの位置に倣って密着するため、例えば部分的にずれた部分があっても当該ずれた部分に倣って電極3,4が密着する。また、はんだ等など供給時に低粘度の液状になるものだと、各絶縁フィルム7,8の間に流れ込んで、絶縁すべき側の導電層5(6)に付着するおそれがある。これに対してペースト状の導電性材料であれば、各絶縁フィルム7,8の間に流れ込む事態を回避できるため、絶縁すべき側の導電層5(6)への付着を避けて、必要な側の導電層6(5)との間でのみ電気的な接続を得ることが可能となる。 In addition, although the formation means of the electrodes 3 and 4 is arbitrary, from a viewpoint which implement | achieves the electrical connection mentioned above easily, the electrically conductive paste containing the metal powder mentioned above is apply | coated to the width direction both sides of the wound body 2 However, it is preferable to form by solidifying. That is, it is difficult to accurately align the positions of the side end faces 7c, 7d, 8c, and 8d (see FIG. 3) in the width direction because of the property of winding the two insulating films 7 and 8 in a spiral shape. Variations in position are unavoidable. Therefore, for example, when the electrodes 3 and 4 are plate-shaped, it is extremely difficult to make them contact with the entire area of the side end faces 5a, 5b, 6a and 6b of the conductive layers 5 and 6. On the other hand, in the case of a paste-like conductive material, it adheres following the position of each side end face 5a, 5b, 6a, 6b. The electrodes 3 and 4 are in close contact with each other. Moreover, when it becomes a low-viscosity liquid when supplied, such as solder, it may flow between the insulating films 7 and 8 and adhere to the conductive layer 5 (6) on the side to be insulated. On the other hand, if it is a paste-like conductive material, the situation of flowing between the insulating films 7 and 8 can be avoided, so that it is necessary to avoid adhesion to the conductive layer 5 (6) on the side to be insulated. It is possible to obtain electrical connection only with the conductive layer 6 (5) on the side.
 以上のように、本発明に係る巻回型フィルムコンデンサ1は、第一及び第二の絶縁フィルム7,8と第一及び第二の導電層5,6とが、第一の導電層5、第一の絶縁フィルム7、第二の導電層6、第二の絶縁フィルム8の順に重なり合った状態でロール状に巻き取られた形態をなす巻回体2を備えると共に、二つの絶縁フィルム7,8のうち少なくとも第一の絶縁フィルム7がガラスフィルムで構成されている。ガラスであれば酸素欠損が発生し難いため、誘電率を低下させることなく誘電率の温度依存性を小さくすることができる。よって、ガラスフィルムとしての第一の絶縁フィルム7を二つの導電層5,6とともにロール状に巻き取った形態をなす巻回体2で巻回型フィルムコンデンサ1を構成することにより、当該コンデンサ1の単位体積当たりの静電容量を大きくしつつも、温度変化により、回路が適正に作動しない事態を有効に防止することができる。従って、大容量のエネルギーを蓄積可能な巻回型フィルムコンデンサ1を比較的小型に製造することが可能となる。 As described above, in the wound film capacitor 1 according to the present invention, the first and second insulating films 7 and 8 and the first and second conductive layers 5 and 6 are the first conductive layer 5, The first insulating film 7, the second conductive layer 6, and the second insulating film 8 are provided with a wound body 2 that is wound in a roll shape in an overlapping state, and the two insulating films 7, Of these, at least the first insulating film 7 is made of a glass film. Since glass is unlikely to generate oxygen vacancies, the temperature dependence of the dielectric constant can be reduced without reducing the dielectric constant. Therefore, by forming the wound film capacitor 1 with the wound body 2 in the form of winding the first insulating film 7 as a glass film together with the two conductive layers 5 and 6, the capacitor 1 While increasing the capacitance per unit volume, it is possible to effectively prevent a situation in which the circuit does not operate properly due to a temperature change. Therefore, the wound film capacitor 1 capable of storing a large amount of energy can be manufactured in a relatively small size.
 また、本発明に係る巻回型フィルムコンデンサ1には、当該コンデンサ1を構成する巻回体2の中心に、巻回体2をその幅方向に貫通する貫通穴10が設けられている。このように貫通穴10を設けることで、巻回型フィルムコンデンサ1の中心には、その幅方向全域にわたって中空の空間、すなわち絶縁体としての空気が存在した状態となる。そのため、上述の如きインダクタンスの増加を抑制して、高周波域におけるインピーダンスの上昇を可及的に回避することが可能となる。もちろん、巻回体2の中心が中空の空間であれば、その分だけ巻回型フィルムコンデンサ1を軽量化できるので、当該コンデンサの汎用化にとっても好適である。 Further, the wound film capacitor 1 according to the present invention is provided with a through hole 10 that penetrates the wound body 2 in the width direction at the center of the wound body 2 constituting the capacitor 1. By providing the through hole 10 in this manner, a hollow space, that is, air as an insulator is present in the center of the wound film capacitor 1 over the entire width direction. Therefore, the increase in inductance as described above can be suppressed, and an increase in impedance in the high frequency range can be avoided as much as possible. Of course, if the center of the wound body 2 is a hollow space, the wound film capacitor 1 can be reduced in weight by that amount, which is also suitable for general use of the capacitor.
 また、本実施形態では、第一及び第二の導電層5,6をともに金属膜とし、かつこれら第一及び第二の金属膜を、第一の絶縁フィルム7の厚み方向で相反する向きを指向する第一及び第二の表面7a,7bにそれぞれ成膜するようにした(図2、図4等を参照)。このように各導電層5,6を第一の絶縁フィルム7と一体化することで、第一の絶縁フィルム7と各導電層5,6との密着性が高まるので正負双方の導電体(双方の導電層5,6)間の距離を小さくすることができ、静電容量の更なる向上を図ることが可能となる。また、導電層5,6を膜状としたほうが、導電層5,6単体での取り扱い性を考慮せずにその厚み寸法を設定することができるので、導電層5,6の厚み寸法をより小さくして、更なる小型化を図ることが可能となる。加えて、二つの導電層5,6を成膜により第一の絶縁フィルム7と一体化することで、マスキング等により成膜領域を精度よく設定することができる。そのため、巻き取り時には、第一の絶縁フィルム7の側端面7c,7dの位置のみを制御するだけで、各電極3,4と各導電層5,6相互の接触態様を容易に管理することができる。 In the present embodiment, the first and second conductive layers 5 and 6 are both metal films, and the first and second metal films have opposite directions in the thickness direction of the first insulating film 7. A film was formed on each of the first and second surfaces 7a and 7b that are directed to each other (see FIGS. 2 and 4). By integrating the conductive layers 5 and 6 with the first insulating film 7 in this way, the adhesion between the first insulating film 7 and the conductive layers 5 and 6 is enhanced, so both positive and negative conductors (both The distance between the conductive layers 5 and 6) can be reduced, and the capacitance can be further improved. In addition, when the conductive layers 5 and 6 are formed into a film shape, the thickness dimension can be set without considering the handleability of the conductive layers 5 and 6 alone. It is possible to further reduce the size by reducing the size. In addition, by integrating the two conductive layers 5 and 6 with the first insulating film 7 by film formation, the film formation region can be accurately set by masking or the like. Therefore, at the time of winding, it is possible to easily manage the contact mode between the electrodes 3 and 4 and the conductive layers 5 and 6 only by controlling the positions of the side end faces 7c and 7d of the first insulating film 7. it can.
 また、本実施形態では、巻回体2を構成する二枚の絶縁フィルム7,8の巻き終わり側端部となる積層体9の長尺方向他端部9bにおいて、第一の絶縁フィルム7の第二の表面7bと第二の絶縁フィルム8の第三の表面8aとが直接密着すると共に、二枚の絶縁フィルム7,8の巻き始め側端部となる積層体9の長尺方向一端部9aにおいて、第一の絶縁フィルム7の第二の表面7bと第二の絶縁フィルム8の第三の表面8aとが直接密着するようにした。このように、二枚の絶縁フィルム7,8を相互に密着させた形態をとることで、これら二枚の絶縁フィルム7,8をロール状に巻き取っている最中の巻回体2(の一部)の形状、又は巻き取った後の巻回体2の形状を適正に維持することができる。また、二枚の絶縁フィルム7,8を固定するための部材を別個に用意せずにすむため、巻回体2を簡易に構成でき、かつ小型化できる。 Moreover, in this embodiment, in the longitudinal direction other end part 9b of the laminated body 9 used as the winding end side edge part of the two insulating films 7 and 8 which comprise the wound body 2, the 1st insulating film 7 of The second surface 7b and the third surface 8a of the second insulating film 8 are in direct contact with each other, and one end in the longitudinal direction of the laminate 9 that is the winding start side end of the two insulating films 7 and 8 In 9a, the second surface 7b of the first insulating film 7 and the third surface 8a of the second insulating film 8 were in direct contact with each other. In this way, by taking the form in which the two insulating films 7 and 8 are brought into close contact with each other, the winding body 2 (in the middle of winding the two insulating films 7 and 8 in a roll shape) The shape of the part) or the shape of the wound body 2 after being wound up can be properly maintained. In addition, since it is not necessary to separately prepare a member for fixing the two insulating films 7 and 8, the wound body 2 can be simply configured and can be downsized.
 また、上述のように、二枚の絶縁フィルム7,8をともにガラスフィルムとして、直接密着で相互に固定することにより、巻回体2ひいてはこの巻回体2を備えた巻回型フィルムコンデンサ1を不燃性ないし難燃性の無機物のみで構成することができる。このコンデンサは、耐熱性に優れている上、漏出や燃焼する危険性もないため、安全性の面で特に優れている。また、経年劣化が生じ難く、長期信頼性の面でも優れている。 Further, as described above, the two insulating films 7 and 8 are both made of glass film and fixed to each other by direct adhesion, whereby the wound body 2 and thus the wound film capacitor 1 provided with the wound body 2 are used. Can be composed only of non-flammable or flame-retardant inorganic substances. This capacitor is particularly excellent in terms of safety because it has excellent heat resistance and no danger of leakage or burning. In addition, it does not easily deteriorate over time and is excellent in terms of long-term reliability.
 以上、本発明の第一実施形態を説明したが、本発明に係る巻回型フィルムコンデンサ1又はその製造方法は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。 As mentioned above, although 1st embodiment of this invention was described, the winding type film capacitor 1 which concerns on this invention, or its manufacturing method is not limited to the said embodiment, Various forms are within the scope of this invention. It is possible to take
 例えば、上記実施形態では、第一及び第二の導電層5,6をともに金属膜とし、これら第一及び第二の金属膜(導電層5,6)をともに、第一の絶縁フィルム7の第一及び第二の表面7a,7bにそれぞれ成膜した場合を例示したが、もちろんこれ以外の形態を採ることも可能である。図12は、その一例(本発明の第二実施形態)に係る巻回体2の斜視図であって、第一及び第二の導電層5,6と第一及び第二の絶縁フィルム7,8を仮想的に展開した状態を二点鎖線で示している。この図に示すように、本実施形態に係る巻回体2は、第一及び第二の導電層5,6をともに金属膜とし、かつ第一の金属膜(第一の導電層5)が第一の絶縁フィルム7の第一の表面(ここでは外側の表面)7aに成膜されており、第二の金属膜(第二の導電層6)が第二の絶縁フィルム8の第三の表面(ここでは外側の表面)8aに成膜されている。この場合、例えば図12に示すように、巻回体2の半径方向外側から、第一の導電層5、第一の絶縁フィルム7、第二の導電層6、第二の絶縁フィルム8の順に配置されるよう、二枚の絶縁フィルム7,8をロール状に巻き取った形態をとることが可能である。また、巻き終わりの自由度を高める観点からは、図13に示すように、巻回体2の半径方向外側から第一の絶縁フィルム7、第一の導電層5、第二の絶縁フィルム8、第二の導電層6の順に配置されるよう、二枚の絶縁フィルム7,8をロール状に巻き取った形態を採ることも可能である。もちろん、この場合、図3に示すように、第一の導電層5と第二の導電層6を互いに幅方向で異なる向きにオフセットした形態をとることも可能である。あるいは、図示は省略するが、第一及び第二の導電層5,6をともに金属フィルムとし、これら第一及び第二の金属フィルムと第一及び第二の絶縁フィルム7,8とを、第一の金属フィルム、第一の絶縁フィルム7、第二の金属フィルム、第二の絶縁フィルム8の順に重ね合せてロール状に巻き取った形態をとってもよい。 For example, in the above embodiment, the first and second conductive layers 5 and 6 are both metal films, and both the first and second metal films (conductive layers 5 and 6) are both of the first insulating film 7. Although the case where it formed into a film on the 1st and 2nd surface 7a and 7b, respectively was illustrated, of course, it is also possible to take forms other than this. FIG. 12 is a perspective view of the wound body 2 according to an example (second embodiment of the present invention), and the first and second conductive layers 5 and 6 and the first and second insulating films 7, A state where 8 is virtually expanded is indicated by a two-dot chain line. As shown in this figure, in the wound body 2 according to this embodiment, the first and second conductive layers 5 and 6 are both metal films, and the first metal film (first conductive layer 5) is The first insulating film 7 is formed on the first surface (here, the outer surface) 7 a, and the second metal film (second conductive layer 6) is formed on the third insulating film 8. A film is formed on the surface (here, the outer surface) 8a. In this case, for example, as shown in FIG. 12, the first conductive layer 5, the first insulating film 7, the second conductive layer 6, and the second insulating film 8 in this order from the outside in the radial direction of the wound body 2. It is possible to take the form which wound two insulating films 7 and 8 in roll shape so that it may be arrange | positioned. Further, from the viewpoint of increasing the degree of freedom at the end of winding, as shown in FIG. 13, the first insulating film 7, the first conductive layer 5, the second insulating film 8, from the radially outer side of the wound body 2, It is also possible to take a form in which two insulating films 7 and 8 are wound into a roll shape so as to be arranged in the order of the second conductive layer 6. Of course, in this case, as shown in FIG. 3, the first conductive layer 5 and the second conductive layer 6 may be offset from each other in different directions in the width direction. Or although illustration is abbreviate | omitted, both the 1st and 2nd conductive layers 5 and 6 are made into a metal film, these 1st and 2nd metal films and the 1st and 2nd insulating films 7 and 8 are made into 1st. One metal film, the first insulating film 7, the second metal film, and the second insulating film 8 may be overlapped in this order and wound into a roll shape.
 また、巻回体形成工程S2に関し、例えば図14に示すように、ロール状に巻き取られた状態の第一の絶縁フィルム7及び第二の絶縁フィルム8とを相互に重なり合うように引き出して、コア11まわりに巻き取ることによって、巻回体2を形成してもよい(本発明の第三実施形態)。この場合、積層体9の形成工程S1と、巻回体2の形成工程S2とが同時に行われる。本実施形態では、第二の絶縁フィルム8から巻き始めると共に、第二の絶縁フィルム8で巻き終わる場合を例にとって以下に説明する。 Moreover, regarding the wound body forming step S2, for example, as shown in FIG. 14, the first insulating film 7 and the second insulating film 8 that are wound in a roll shape are drawn out so as to overlap each other, The wound body 2 may be formed by winding around the core 11 (third embodiment of the present invention). In this case, the formation process S1 of the laminated body 9 and the formation process S2 of the wound body 2 are performed simultaneously. In this embodiment, the case where the winding starts from the second insulating film 8 and the winding ends with the second insulating film 8 will be described below as an example.
 具体的には、まず図15に示すように、巻き始め側端部となる第二の絶縁フィルム8の長尺方向一端部8eをコア11の外周面に密着させると共に、コア11を既述のように軸回転させることで、第二の絶縁フィルム8の巻き取りを開始する。そして、第二の絶縁フィルム8を例えば0.5周(2分の1周)~3周程度(図15では2周)巻き取った時点で、第一の絶縁フィルム7を第二の絶縁フィルム8の外側の表面(第三の表面8a)に密着させて、引き続き第二の絶縁フィルム8の巻き取りを続行する。これにより、第一の絶縁フィルム7と第二の絶縁フィルム8とが相互に重なり合った状態で、双方の絶縁フィルム7,8が、言い換えると積層体9がコア11まわりに巻き取られる。また、第一の絶縁フィルム7に先行して第二の絶縁フィルム8の巻き取りを開始することで、第二の絶縁フィルム8の外側の表面(第三の表面8a)とその一周分だけ半径方向外側に位置する第二の絶縁フィルム8の内側の表面(第四の表面8b)とが直接密着した状態となる。これにより、第二の絶縁フィルム8の巻き始め側において第二の絶縁フィルム8同士が強固に固定された状態となるので、コア11を除去した後も、絶縁フィルム7,8の巻き取り時の形態を確実に維持することが可能となる。なお、第二の絶縁フィルム8の先行した巻き取り量は、当然に上記例示に限るものではなく、例えば0.1周、0.25周、1周、1.5周、5周など任意の巻き取り量とすることが可能である。 Specifically, first, as shown in FIG. 15, the longitudinal direction one end 8 e of the second insulating film 8 serving as the winding start side end is brought into close contact with the outer peripheral surface of the core 11, and the core 11 is already described. In this way, the second insulating film 8 starts to be wound. Then, when the second insulating film 8 is wound, for example, about 0.5 turn (1/2 turn) to about 3 turns (2 turns in FIG. 15), the first insulating film 7 is turned into the second insulating film. 8 is brought into close contact with the outer surface (third surface 8a), and the winding of the second insulating film 8 is continued. Thereby, in a state where the first insulating film 7 and the second insulating film 8 overlap each other, both the insulating films 7 and 8, in other words, the laminate 9 is wound around the core 11. Further, by starting winding of the second insulating film 8 in advance of the first insulating film 7, the outer surface of the second insulating film 8 (third surface 8a) and a radius corresponding to one circumference thereof It will be in the state which the inner surface (4th surface 8b) of the 2nd insulating film 8 located in the direction outer side was closely_contact | adhered directly. Thereby, since it will be in the state where 2nd insulating films 8 were firmly fixed in the winding start side of the 2nd insulating film 8, even after removing the core 11, at the time of winding-up of the insulating films 7 and 8 It becomes possible to reliably maintain the form. In addition, naturally the amount of preceding winding of the 2nd insulating film 8 is not restricted to the said illustration, For example, 0.1 rounds, 0.25 rounds, 1 round, 1.5 rounds, 5 rounds, etc. arbitrary The amount of winding can be set.
 なお、第一の絶縁フィルム7のコア11まわりへの導入に際し、例えば図14に示すように、第一の絶縁フィルム7が第二の絶縁フィルム8の半径方向内側に導入されるようにロール体20,21を配置して巻き取りを行ってもよい。このように双方の絶縁フィルム7,8(ロール体20,21)を配置して巻き取り動作を開始することによって、第一の絶縁フィルム7の巻き始め側端部となる長尺方向一端部7eを第二の絶縁フィルム8で挟み込んで、かつ巻き込みながら、双方の絶縁フィルム7,8を巻き取ることができる(図15を参照)。よって、第一の絶縁フィルム7の巻き取り始めの状態が安定し、ひいては形状精度に優れた巻回体2の形成が可能となる。 When the first insulating film 7 is introduced around the core 11, for example, as shown in FIG. 14, the roll body is arranged so that the first insulating film 7 is introduced inside the second insulating film 8 in the radial direction. Winding may be performed by arranging 20, 21. Thus, by arranging both the insulating films 7 and 8 (roll bodies 20 and 21) and starting the winding operation, the longitudinal direction one end portion 7e that becomes the winding start side end portion of the first insulating film 7 is obtained. Is sandwiched between the second insulating films 8 and the both insulating films 7 and 8 can be wound up while being wound (see FIG. 15). Therefore, the winding start state of the first insulating film 7 is stabilized, and as a result, the wound body 2 having excellent shape accuracy can be formed.
 このようにして、双方の絶縁フィルム7,8(すなわち積層体9)をコア11まわりに巻き取っていくことで、図10と同様、コア11を一体に有する巻回体2が形成される。この際、例えば巻き始めと同様、第一の絶縁フィルム7を巻き終えた後も引き続き第二の絶縁フィルム8を例えば0.5周(2分の1周)~3周程度(図16では2周)巻き取ることで、第二の絶縁フィルム8の外側の表面(第三の表面8a)とその一周分だけ半径方向外側に位置する第二の絶縁フィルム8の内側の表面(第四の表面8b)とが直接密着により相互に固定される。これにより、双方の絶縁フィルム7,8の巻き取り形態が確実に維持された状態の巻回体2を得ることができる。また、第一及び第二の導電層5,6を一体形成した第一の絶縁フィルム7の巻き終わり側の端部が第二の絶縁フィルム8によって完全に覆われた状態となるため、巻回体2の巻き終わり側の自由度が高まる。なお、第二の絶縁フィルム8の巻き終わり側の追加の巻き取り量についても、当然に上記例示に限るものではなく、例えば0.1周、0.25周、1周、1.5周、5周など任意の巻き取り量とすることが可能である。 In this way, by winding both the insulating films 7 and 8 (that is, the laminated body 9) around the core 11, the wound body 2 having the core 11 integrally is formed as in FIG. At this time, for example, similarly to the start of winding, after the first insulating film 7 is wound, the second insulating film 8 is continuously wound, for example, about 0.5 turn (1/2 turn) to 3 turns (2 in FIG. 16). The outer surface (third surface 8a) of the second insulating film 8 and the inner surface (fourth surface) of the second insulating film 8 positioned radially outward by the circumference of the second insulating film 8 by winding. 8b) are fixed to each other by direct contact. Thereby, the winding body 2 of the state by which the winding form of both the insulating films 7 and 8 was maintained reliably can be obtained. In addition, since the end portion on the winding end side of the first insulating film 7 integrally formed with the first and second conductive layers 5 and 6 is completely covered by the second insulating film 8, The degree of freedom on the winding end side of the body 2 is increased. Note that the additional winding amount on the winding end side of the second insulating film 8 is not limited to the above-described example, and for example, 0.1 turn, 0.25 turn, 1 turn, 1.5 turn, An arbitrary winding amount such as 5 laps can be used.
 なお、本実施形態では、コア11に対して同じ側(図14でいえば、ともに左側)に第一の絶縁フィルム7のロール体20と第二の絶縁フィルム8のロール体21を配置してコア11の周囲に引き出すようにしているが、もちろん第一の絶縁フィルム7のロール体20と第二の絶縁フィルム8のロール体21とをコア11に対して異なる側に配置して(図14でいえば、コア11の左右一方の側にロール体20、他方の側にロール体21を配設して)コア11の周囲に引き出すようにしてもよい。また、コア11まわりの引き出し位置について、必ずしも同じ円周方向位置に双方の絶縁フィルム7,8を引き出す必要はなく、例えば図示は省略するが、円周方向で180°ずれた位置に向けて各々の絶縁フィルム7,8を引き出すようにしてもよい。 In this embodiment, the roll body 20 of the first insulating film 7 and the roll body 21 of the second insulating film 8 are arranged on the same side (both left sides in FIG. 14) with respect to the core 11. Of course, the roll body 20 of the first insulating film 7 and the roll body 21 of the second insulating film 8 are arranged on different sides with respect to the core 11 (FIG. 14). In other words, the roll body 20 may be provided on one of the left and right sides of the core 11 and the roll body 21 may be provided on the other side, and the core 11 may be drawn out. Further, with respect to the drawing position around the core 11, it is not always necessary to pull out the both insulating films 7 and 8 at the same circumferential position. For example, although not shown, each is directed toward a position shifted by 180 ° in the circumferential direction. The insulating films 7 and 8 may be pulled out.
 また、以上の説明では、巻回型フィルムコンデンサ1の巻回体2として、二枚の絶縁フィルム7,8が真円筒状に巻き取られた形態をなすものを例示したが(図9等を参照)、もちろんこれ以外の形状をなすものであってもよい。例えば図17及び図18に示すように、その中心線に沿った向きから見て、だ円形状をなす巻回体22(本発明の第四実施形態)や、直線部分を含む扁平形状をなす巻回体23(本発明の第五実施形態)など、二枚の絶縁フィルム7,8がロール状に巻き取られた形態をなす限りにおいて、種々の形態をとり得る。 Moreover, in the above description, the winding body 2 of the winding type film capacitor 1 is exemplified as one in which the two insulating films 7 and 8 are wound in a true cylindrical shape (see FIG. 9 and the like). Of course, other shapes may be used. For example, as shown in FIGS. 17 and 18, when viewed from the direction along the center line, the wound body 22 (fourth embodiment of the present invention) having an elliptical shape or a flat shape including a straight portion is formed. As long as the two insulating films 7 and 8 are wound into a roll shape such as the wound body 23 (fifth embodiment of the present invention), various forms can be taken.
 以下、本発明の作用効果を実施例に基づき説明する。 Hereinafter, the function and effect of the present invention will be described based on examples.
<ガラス板の作製>
 まず、表1に記載されたガラス組成となるように、9種類のガラス原料(試料No.1~No.9)を調合した後、得られたガラスバッチをガラス溶融炉に供給して1500~1600℃で溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した後、歪点から室温に至るまで10時間をかけて徐冷処理を行った。最後に、得られたガラス板に対して加工を施し、以下に示す種々の特性(密度、歪点、徐冷点、軟化点、高温粘度、熱膨張係数、液相温度、液相粘度、比誘電率)を評価した。その結果を表1に示す。
<Production of glass plate>
First, after preparing nine kinds of glass raw materials (samples No. 1 to No. 9) so as to have the glass composition described in Table 1, the obtained glass batch was supplied to a glass melting furnace and 1500 to It melted at 1600 ° C. Next, the obtained molten glass was poured onto a carbon plate, formed into a flat plate shape, and then slowly cooled over 10 hours from the strain point to room temperature. Finally, the obtained glass plate is processed, and various properties shown below (density, strain point, annealing point, softening point, high temperature viscosity, thermal expansion coefficient, liquidus temperature, liquidus viscosity, ratio Dielectric constant) was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、密度については、周知のアルキメデス法により測定した。 The density was measured by the well-known Archimedes method.
 歪点と徐冷点については、ASTM C336-71に準拠した方法により測定した。 The strain point and annealing point were measured by a method based on ASTM C336-71.
 軟化点については、ASTM C338-93に準拠した方法により測定した。 The softening point was measured by a method based on ASTM C338-93.
 高温粘度については、104.0dPa・s、103.0dPa・s、及び102.5dPa・sにおける温度を、白金球引き上げ法により測定した。 The high temperature viscosity, 10 4.0 dPa · s, 10 3.0 dPa · s, and the temperature at 10 2.5 dPa · s, was measured by a platinum ball pulling method.
 熱膨張係数については、30~380℃の範囲において、ディラトメーターにより測定した。 The thermal expansion coefficient was measured with a dilatometer in the range of 30 to 380 ° C.
 液相温度については、標準篩30メッシュ(約500μm)を通過し、50メッシュ(約300μm)に残るガラス粉末を白金ボードに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した。 As for the liquidus temperature, the glass powder that passes through a standard sieve 30 mesh (about 500 μm) and remains in 50 mesh (about 300 μm) is placed in a platinum board and held in a temperature gradient furnace for 24 hours, and the temperature at which crystals precipitate. Was measured.
 液相粘度については、上記液相温度におけるガラスの粘度を白金球引き上げ法により測定した。 Regarding the liquid phase viscosity, the viscosity of the glass at the liquid phase temperature was measured by a platinum ball pulling method.
 比誘電率については、ASTM D150に準拠した方法により測定した。 The relative dielectric constant was measured by a method based on ASTM D150.
<コンデンサの作製>
 上記試料No.1~No.9に係るガラス板を軟化点付近まで加熱した後、リドロー法により延伸成形して、長尺方向寸法50m、幅寸法25mm、厚み寸法10μmのガラスフィルム(以下、基材ガラスフィルムと称する。)と、長尺方向寸法50m、幅方向寸法25mm、厚み寸法9μmのガラスフィルム(以下、介装ガラスフィルムと称する。)をそれぞれ得た。何れのガラスフィルムについても材質は同一である。また、算術平均粗さRaはともに0.2nmとした。
<Production of capacitor>
Sample No. above. 1-No. After heating the glass plate according to 9 to near the softening point, the glass plate was stretch-molded by a redraw method, and a glass film (hereinafter referred to as a base glass film) having a longitudinal dimension of 50 m, a width dimension of 25 mm, and a thickness dimension of 10 μm. A glass film (hereinafter referred to as an intervening glass film) having a longitudinal dimension of 50 m, a width dimension of 25 mm, and a thickness dimension of 9 μm was obtained. The material is the same for any glass film. The arithmetic average roughness Ra was both set to 0.2 nm.
 次に、得られた基材ガラスフィルムの一方の表面と他方の表面(本発明でいう第一の絶縁フィルム7の第一の表面7aと第二の表面7b)に対して、厚み寸法45nmのCu膜を成膜により形成した。成膜に際し、一方の表面のうち第二の側端面(図3及び段落0056を参照)から3mmまでの領域をマスキングし、マスキング部分についてCu膜が形成されないようにした。また、他方の表面のうち第一の側端面(図3及び段落0056を参照)から3mmまでの領域をマスキングし、マスキング部分についてCu膜が形成されないようにした。このようにして、Cu膜を形成した後、マスキング部を除去した。 Next, with respect to one surface and the other surface (the first surface 7a and the second surface 7b of the first insulating film 7 referred to in the present invention) of the obtained base glass film, the thickness dimension is 45 nm. A Cu film was formed by film formation. During film formation, a region from the second side end face (see FIG. 3 and paragraph 0056) to 3 mm of one surface was masked so that a Cu film was not formed on the masking portion. In addition, a region from the first side end surface (see FIG. 3 and paragraph 0056) to 3 mm of the other surface was masked so that no Cu film was formed on the masking portion. In this way, after the Cu film was formed, the masking portion was removed.
 続いて、基材ガラスフィルムと介装ガラスフィルムを重ね合せて、重ね合せたものを図6に示す外径寸法50mmのコアの外周面に巻き付けることで、巻回体を形成した。然る後、例えば段落0104に記載した方法でコアを巻回体から除去した。また、コアを巻回体から除去することで、巻回体の中心に貫通穴を形成した。 Subsequently, the substrate glass film and the interposed glass film were overlapped, and the overlapped body was wound around the outer peripheral surface of the core having an outer diameter of 50 mm shown in FIG. 6 to form a wound body. Thereafter, the core was removed from the wound body by the method described in paragraph 0104, for example. Moreover, the through-hole was formed in the center of a wound body by removing a core from a wound body.
 このようにしてコアを除去した後、巻回体の幅方向両側に導電性ペーストを塗布して固化させることにより、電極層を形成した。具体的には、基材ガラスフィルムの一方の表面に形成したCu膜の第一の側端面全域が電気的に接続された状態とし、かつ他方の表面に形成したCu膜の第一の側端面全域が電極層と接しない(電気的に接続されない)ようにした。また、基材ガラスフィルムの他方の表面に形成したCu膜の第二の側端面全域が電気的に接続された状態とし、かつ一方の表面に形成したCu膜の第二の側端面全域が電極層と接しない(電気的に接続されない)ようにした。ここで、導電性ペーストとしては、ITWChemtronics社製CW2400を使用した。以上のようにして、試料No.1~No.9に係る巻回型フィルムコンデンサを作製した。 After removing the core in this manner, an electrode layer was formed by applying and solidifying a conductive paste on both sides of the wound body in the width direction. Specifically, the entire first side end face of the Cu film formed on one surface of the base glass film is electrically connected, and the first side end face of the Cu film formed on the other surface The entire region was not in contact with the electrode layer (not electrically connected). Further, the entire second side end face of the Cu film formed on the other surface of the base glass film is electrically connected, and the entire second side end face of the Cu film formed on one surface is an electrode. The layer was not in contact (not electrically connected). Here, CW2400 manufactured by ITW Chemtronics was used as the conductive paste. As described above, sample No. 1-No. A wound film capacitor according to 9 was produced.
 試料No.1に係る巻回型フィルムコンデンサのインピーダンスを、インピーダンスアナライザ(ソーラトロン社製1260型、測定条件:周波数1Hz~32MHz、印加電圧100mV)により測定した。測定結果を図19に示す。1Hzにおけるインピーダンスから静電容量を算出したところ、7.8μFであった。 Sample No. The impedance of the wound film capacitor according to 1 was measured with an impedance analyzer (Solartron 1260 type, measurement conditions: frequency 1 Hz to 32 MHz, applied voltage 100 mV). The measurement results are shown in FIG. The capacitance was calculated from the impedance at 1 Hz and found to be 7.8 μF.

Claims (18)

  1.  第一及び第二の導電層と、第一及び第二の絶縁フィルムとが、前記第一の導電層、前記第一の絶縁フィルム、前記第二の導電層、前記第二の絶縁フィルムの順に重なり合った状態でロール状に巻き取られた形態をなす巻回体を備えた巻回型フィルムコンデンサであって、
     前記少なくとも第一の絶縁フィルムはガラスフィルムであって、かつ
     前記巻回体の中心に、前記巻回体をその幅方向に貫通する貫通穴が設けられている巻回型フィルムコンデンサ。
    The first and second conductive layers and the first and second insulating films are in the order of the first conductive layer, the first insulating film, the second conductive layer, and the second insulating film. A wound film capacitor including a wound body that is wound into a roll shape in an overlapping state,
    The wound film capacitor in which the at least first insulating film is a glass film, and a through-hole penetrating the wound body in the width direction is provided at the center of the wound body.
  2.  前記第二の絶縁フィルムはガラスフィルムである請求項1に記載の巻回型フィルムコンデンサ。 2. The wound film capacitor according to claim 1, wherein the second insulating film is a glass film.
  3.  前記第一及び第二の導電層はともに金属膜で、これら第一及び第二の金属膜が、前記第一の絶縁フィルムの厚み方向で相反する向きを指向する第一の表面と第二の表面にそれぞれ成膜されている請求項1又は2に記載の巻回型フィルムコンデンサ。 The first and second conductive layers are both metal films, and the first and second metal films have a first surface and a second surface oriented in opposite directions in the thickness direction of the first insulating film. The wound film capacitor according to claim 1, wherein the wound film capacitor is formed on each surface.
  4.  前記第一及び第二の導電層はともに金属膜で、前記第一の金属膜が前記第一の絶縁フィルムの厚み方向一方を指向する第一の表面に成膜されており、前記第二の金属膜が前記第二の絶縁フィルムの厚み方向一方を指向する第三の表面に成膜されている請求項1又は2に記載の巻回型フィルムコンデンサ。 The first and second conductive layers are both metal films, and the first metal film is formed on a first surface directed in one thickness direction of the first insulating film, and the second The wound film capacitor according to claim 1 or 2, wherein a metal film is formed on a third surface oriented in one thickness direction of the second insulating film.
  5.  前記第一の導電層は前記幅方向一方を指向する第一の側端面と、前記幅方向他方を指向する第二の側端面とを有し、
     前記第二の導電層は前記幅方向一方を指向する第三の側端面と、前記幅方向他方を指向する第四の側端面とを有し、
     前記第一の導電層の前記第二の側端面は、前記第二の導電層の前記第四の側端面よりも前記幅方向一方の側にオフセットしており、かつ前記第二の導電層の前記第三の側端面は、前記第一の導電層の前記第一の側端面よりも前記幅方向他方の側にオフセットしている請求項1~4の何れかに記載の巻回型フィルムコンデンサ。
    The first conductive layer has a first side end face that faces one side in the width direction and a second side end face that faces the other side in the width direction,
    The second conductive layer has a third side end face that faces one side in the width direction, and a fourth side end face that faces the other side in the width direction,
    The second side end surface of the first conductive layer is offset to one side in the width direction with respect to the fourth side end surface of the second conductive layer, and the second conductive layer The wound film capacitor according to any one of claims 1 to 4, wherein the third side end face is offset to the other side in the width direction with respect to the first side end face of the first conductive layer. .
  6.  前記巻回体の幅方向一方の側に、前記第一の導電層と接しかつ前記第二の導電層と離れている第一の電極が設けられ、
     前記巻回体の幅方向他方の側に、前記第二の導電層と接しかつ前記第一の導電層と離れている第二の電極が設けられている請求項1~5の何れかに記載の巻回型フィルムコンデンサ。
    A first electrode in contact with the first conductive layer and separated from the second conductive layer is provided on one side in the width direction of the wound body,
    The second electrode that is in contact with the second conductive layer and is separated from the first conductive layer is provided on the other side in the width direction of the wound body. Winding film capacitor.
  7.  前記ガラスフィルムの巻き終わり側の長尺方向端部において、前記ガラスフィルムの表面同士が直接密着している請求項1~6の何れかに記載の巻回型フィルムコンデンサ。 The wound film capacitor according to any one of claims 1 to 6, wherein the surfaces of the glass film are in direct contact with each other at the end in the longitudinal direction on the winding end side of the glass film.
  8.  前記ガラスフィルムの巻き始め側の長尺方向端部において、前記ガラスフィルムの表面同士が直接密着している請求項1~7の何れかに記載の巻回型フィルムコンデンサ。 The wound film capacitor according to any one of claims 1 to 7, wherein surfaces of the glass film are in direct contact with each other at an end in a longitudinal direction on a winding start side of the glass film.
  9.  前記第一の絶縁フィルムの厚み寸法が50μm以下に設定されている請求項1~8の何れかに記載の巻回型フィルムコンデンサ。 9. The wound film capacitor according to claim 1, wherein the thickness of the first insulating film is set to 50 μm or less.
  10.  前記巻回体の最小巻き取り径が100mm以下に設定されている請求項1~9の何れかに記載の巻回型フィルムコンデンサ。 The wound film capacitor according to any one of claims 1 to 9, wherein a minimum winding diameter of the wound body is set to 100 mm or less.
  11.  前記第一の絶縁フィルムの長尺方向寸法が0.05m以上に設定されている請求項1~10の何れかに記載の巻回型フィルムコンデンサ。 The wound film capacitor according to any one of claims 1 to 10, wherein a dimension in a longitudinal direction of the first insulating film is set to 0.05 m or more.
  12.  前記第一の絶縁フィルムの幅方向寸法を前記第一の絶縁フィルムの厚み寸法で除した値が1000以上に設定されている請求項1~11の何れかに記載の巻回型フィルムコンデンサ。 12. The wound film capacitor according to claim 1, wherein a value obtained by dividing a width direction dimension of the first insulating film by a thickness dimension of the first insulating film is set to 1000 or more.
  13.  前記第一の絶縁フィルムとしてのガラスフィルムの比誘電率が5.0以上に設定されている請求項1~12の何れかに記載の巻回型フィルムコンデンサ。 The wound film capacitor according to any one of claims 1 to 12, wherein a relative dielectric constant of the glass film as the first insulating film is set to 5.0 or more.
  14.  前記第一の絶縁フィルムの厚み方向一方を指向する第一の表面又は前記厚み方向他方を指向する第二の表面の算術平均粗さRaが5nm以下に設定されている請求項1~13の何れかに記載の巻回型フィルムコンデンサ。 The arithmetic average roughness Ra of the first surface oriented in one thickness direction of the first insulating film or the second surface oriented in the other thickness direction is set to 5 nm or less. The wound film capacitor according to claim 1.
  15.  前記第一の絶縁フィルムが、質量%で、SiO2:20~70%、Al23:0~20%、B23:0~17%、MgO:0~10%、CaO:0~15%、SrO:0~15%、BaO:0~40%を含有するガラス組成をなす請求項1~14の何れかに記載の巻回型フィルムコンデンサ。 The first insulating film is, by mass%, SiO 2 : 20 to 70%, Al 2 O 3 : 0 to 20%, B 2 O 3 : 0 to 17%, MgO: 0 to 10%, CaO: 0 The wound film capacitor according to any one of claims 1 to 14, which has a glass composition containing -15%, SrO: 0-15%, BaO: 0-40%.
  16.  第一及び第二の導電層と、少なくとも第一の絶縁フィルムがガラスフィルムである第一及び第二の絶縁フィルムとを、前記第一の導電層、前記第一の絶縁フィルム、前記第二の導電層、前記第二の絶縁フィルムの順に重ね合せて前記絶縁フィルムの積層体を形成する工程と、
     前記積層体をコアまわりに巻き取って巻回体を形成する工程と、
     前記巻回体から前記コアを除去することにより、前記巻回体の中心に、前記巻回体をその幅方向に貫通する貫通穴を形成する工程とを備えた巻回型フィルムコンデンサの製造方法。
    The first and second conductive layers, and the first and second insulating films in which at least the first insulating film is a glass film, the first conductive layer, the first insulating film, the second Forming a laminate of the insulating film by overlapping the conductive layer and the second insulating film in this order;
    Winding the laminate around a core to form a wound body;
    And a step of forming a through-hole penetrating the wound body in the width direction at the center of the wound body by removing the core from the wound body. .
  17.  前記第一の絶縁フィルムとして、その厚み方向で相反する向きを指向する第一及び第二の表面に前記第一及び第二の導電層としての第一及び第二の金属膜をそれぞれ成膜したものを用意した後、
     前記第一及び第二の金属膜が成膜された前記第一の絶縁フィルムと、前記第二の絶縁フィルムとを重ね合せて前記積層体を形成する請求項16に記載の巻回型フィルムコンデンサの製造方法。
    As said 1st insulating film, the 1st and 2nd metal film as said 1st and 2nd electroconductive layer was each formed into a film on the 1st and 2nd surface which faces the direction which opposes the thickness direction After preparing things,
    The wound film capacitor according to claim 16, wherein the laminated body is formed by overlapping the first insulating film on which the first and second metal films are formed and the second insulating film. Manufacturing method.
  18.  前記コアとして、それぞれが外周に前記積層体の巻き取り面を有する複数の分割体と、前記複数の分割体同士を連結する連結部材とで構成されたものを用意し、
     前記連結部材で前記複数の分割体同士を連結した状態の前記コアまわりに前記積層体を巻き取って前記巻回体を形成した後、
     前記連結部材を外して前記複数の分割体同士の連結状態を解消した後、前記巻回体から前記複数の分割体の一部を除去し、次いで前記複数の分割体の残部を除去する請求項16又は17に記載の巻回型フィルムコンデンサの製造方法。
    As the core, a plurality of divided bodies each having a winding surface of the laminate on the outer periphery, and a connection member that connects the plurality of divided bodies are prepared.
    After winding the laminated body around the core in a state where the plurality of divided bodies are connected with the connecting member to form the wound body,
    A part of the plurality of divided bodies is removed from the wound body after removing the connection member and the connection state between the plurality of divided bodies is eliminated, and then the remaining portions of the plurality of divided bodies are removed. A method for producing a wound film capacitor according to 16 or 17.
PCT/JP2017/013864 2016-06-02 2017-03-31 Wound type film capacitor and method for manufacturing same WO2017208610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111164A JP2017220466A (en) 2016-06-02 2016-06-02 Wound film capacitor and method of manufacturing the same
JP2016-111164 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017208610A1 true WO2017208610A1 (en) 2017-12-07

Family

ID=60478272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013864 WO2017208610A1 (en) 2016-06-02 2017-03-31 Wound type film capacitor and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2017220466A (en)
WO (1) WO2017208610A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128917A (en) * 1981-02-04 1982-08-10 Elna Co Ltd Electrolytic condenser and method of producing same
JPH0831688A (en) * 1994-07-11 1996-02-02 Shizuki Denki Seisakusho:Kk Capacitor winding core and capacitor using it
JP2008042068A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Multilayer capacitor, and its manufacturing method
JP2011029294A (en) * 2009-07-23 2011-02-10 Nippon Electric Glass Co Ltd Glass film for capacitor
JP2012517692A (en) * 2009-02-10 2012-08-02 ショット アクチエンゲゼルシャフト Capacitor and manufacturing method thereof
JP2013247264A (en) * 2012-05-28 2013-12-09 Daikin Ind Ltd Film capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128917A (en) * 1981-02-04 1982-08-10 Elna Co Ltd Electrolytic condenser and method of producing same
JPH0831688A (en) * 1994-07-11 1996-02-02 Shizuki Denki Seisakusho:Kk Capacitor winding core and capacitor using it
JP2008042068A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Multilayer capacitor, and its manufacturing method
JP2012517692A (en) * 2009-02-10 2012-08-02 ショット アクチエンゲゼルシャフト Capacitor and manufacturing method thereof
JP2011029294A (en) * 2009-07-23 2011-02-10 Nippon Electric Glass Co Ltd Glass film for capacitor
JP2013247264A (en) * 2012-05-28 2013-12-09 Daikin Ind Ltd Film capacitor

Also Published As

Publication number Publication date
JP2017220466A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US10600540B2 (en) Laminated coil component
US9236183B2 (en) Capacitor and method of making same
JP5799948B2 (en) Ceramic electronic component and method for manufacturing the same
US8183171B2 (en) Dielectric ceramic composition
JP5605053B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5796568B2 (en) Ceramic electronic components
JP2014045081A (en) Multilayered coil component
JP2013179268A (en) Ceramic electronic component
KR101342520B1 (en) Glass film for capacitor
JP2017228768A (en) Coil component and manufacturing method thereof
JP2007123389A (en) Laminated electronic component
JP5929052B2 (en) Multilayer coil parts
US20240047129A1 (en) Inductor component
WO2017208610A1 (en) Wound type film capacitor and method for manufacturing same
WO2018100863A1 (en) Composite electronic component and method for producing said composite electronic component
WO2017150460A1 (en) Wound-type film capacitor
WO2017006728A1 (en) Rolled film capacitor
JP2019021868A (en) Manufacturing method of wound film capacitor and wound film capacitor
JP2017224798A (en) Wound film capacitor
JP2013058722A (en) Conductive paste for external electrode, multilayered ceramic electronic component using the same and fabrication method thereof
JP2017183461A (en) Lamination type film capacitor
WO2017038606A1 (en) Multilayer film capacitor
JP2017045921A (en) Lamination type film capacitor
JP2012160604A (en) Substrate with built-in coil and electronic component module
JP2017045920A (en) Lamination type film capacitor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806171

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806171

Country of ref document: EP

Kind code of ref document: A1