WO2017208553A1 - 積層造形装置 - Google Patents

積層造形装置 Download PDF

Info

Publication number
WO2017208553A1
WO2017208553A1 PCT/JP2017/009123 JP2017009123W WO2017208553A1 WO 2017208553 A1 WO2017208553 A1 WO 2017208553A1 JP 2017009123 W JP2017009123 W JP 2017009123W WO 2017208553 A1 WO2017208553 A1 WO 2017208553A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
inert gas
modeling
additive manufacturing
powder
Prior art date
Application number
PCT/JP2017/009123
Other languages
English (en)
French (fr)
Inventor
青田 欣也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US16/301,478 priority Critical patent/US20190299289A1/en
Priority to DE112017002704.7T priority patent/DE112017002704T5/de
Priority to JP2018520667A priority patent/JP6651620B2/ja
Publication of WO2017208553A1 publication Critical patent/WO2017208553A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/12Helium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/13Controlling pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an additive manufacturing apparatus for forming a three-dimensional structure by melting powder with a beam.
  • 3D modeling is performed by spreading the powder in the modeling area, scanning the powder in a predetermined area with a beam, melting and solidifying the powder, lowering the modeling area, and then spreading the powder again in the modeling area.
  • An additive manufacturing apparatus is known.
  • An additive manufacturing apparatus in which high-density energy of a laser or an electron beam is used for melting and solidifying a metal powder, and the powder is heated to a melting point or higher to melt and solidify.
  • Patent Document 1 discloses an additive manufacturing apparatus in which an oxygen concentration meter is disposed in a modeling chamber in an Ar atmosphere and the Ar flow rate is increased when the oxygen concentration is high. Thereby, the amount of oxygen in the Ar atmosphere can be reduced.
  • an object of the present invention is to provide an additive manufacturing apparatus capable of forming with a reduced Ar gas flow rate.
  • the present invention forms a solidified layer by spreading powder, scanning with a beam and melting the powder, and laminating the solidified layer to form a three-dimensional structure.
  • a modeling apparatus a decompression unit that makes the modeling area a reduced-pressure atmosphere, an inert gas supply unit that supplies an inert gas to the modeling area, a detection unit that detects a ratio of an impurity gas in the modeling area, And a control unit that controls the inert gas supply unit to reduce the supply amount of the inert gas when the ratio of the impurity gas detected by the detection unit exceeds a threshold value.
  • the perspective view in a 1st Example The graph which shows the relationship between the impurity gas ratio in 1st Example, and Ar gas flow rate.
  • FIG. 1 shows a perspective view of the first embodiment.
  • the additive manufacturing apparatus includes a powder supply unit 1, a modeling unit 4, and a powder discharge unit 5.
  • the powder supply unit 1, the modeling unit 4, and the powder discharge unit 5 are arranged in a line in the horizontal direction in this order, and a coater 7 is provided so that these upper parts can reciprocate in the column direction. .
  • the powder supply unit 1 is supplied with metal powder.
  • the powder is pushed up by raising the stage 2.
  • the powder is supplied to the upper surface of the modeling unit 4 by moving this powder in the direction from the powder supply unit 1 to the modeling unit 4 by the coater 7.
  • the coater 7 further moves and discharges surplus powder to the powder discharge unit 5. After discharging, the stage 6 is lowered, and the upper surface of the powder discharging unit 5 is lowered. Thereafter, the coater 7 returns to the powder supply unit 1.
  • the modeling unit 4 performs layered modeling using a laser beam.
  • the laser beam 10 oscillated from the laser oscillator 8 melts the powder on the surface of the modeling portion 4 through the scanner 9 by scanning with the laser beam 10 to form a layered melted and solidified portion (solidified layer) 15.
  • the laser light 13 oscillated from the laser oscillator 11 is also melted through the scanner 12 to form the melted and solidified portion 15.
  • the stage 3 of the modeling unit 4 is lowered. By repeating this process, the melted and solidified portion 15 is three-dimensionally laminated to form a modeled article.
  • the additive manufacturing apparatus includes a decompression chamber 14 as a decompression unit that places a modeling area including the modeling unit 4 in a decompressed atmosphere.
  • the powder supply unit 1, the modeling unit 4, and the powder discharge unit 5 are disposed in the decompression chamber 14.
  • the decompression chamber 14 is decompressed by the vacuum pump 20.
  • the vacuum chamber 14 is provided with a protective glass 17 through which the laser beams 10 and 13 can pass.
  • the protective glass is disposed between the scanner 9 and the modeling unit 4.
  • a nozzle 30 is provided inside the decompression chamber 14 so that an inert gas such as Ar gas can be supplied into the decompression chamber 14 (inert gas supply means). Since the layered manufacturing apparatus can perform vacuum modeling for modeling a modeled object in a reduced pressure atmosphere, the impurity gas concentration in the modeling atmosphere can be lowered.
  • the layered modeling apparatus can reduce the amount of Ar gas used and reduce the cost of Ar gas by using vacuum modeling as compared with conventional Ar gas atmosphere modeling.
  • the impurity gas include oxygen, nitrogen, hydrogen, water vapor, and carbon monoxide.
  • oxygen, water vapor, and nitrogen react with the molten powder and are mixed as impurities in the modeled object, which may reduce the mechanical properties of the modeled object. Therefore, it is necessary to remove the impurity gas in the modeling atmosphere.
  • These impurity gases are generated by heating and melting the powder due to dirt or moisture adhering to the powder surface. The generated impurity gas is removed by the vacuum pump 20.
  • fumes 16 are generated due to melting of the metal powder during modeling.
  • the fume 16 is a metal powder that is evaporated from a liquid and solidifies from a liquid when the evaporated metal stays in a reduced-pressure atmosphere. Since the fumes 16 are solid, they are not discharged by the vacuum pump 20.
  • the fumes 16 adhere to and deposit on the inner surface of the protective glass 17, the laser light 10 and the laser light 13 are absorbed by the adhering fumes 16, and the power of the laser lights 10 and 13 reaching the melted and solidified portion 15 is reduced. It causes the modeling failure.
  • the powder is melted using the two laser beams 10 and 13, the amount of generation of the fumes 16 is doubled, so it is necessary to positively remove them. Since the protective glass 17 is used for the vacuum chamber 14, the present invention is particularly effective for laser modeling.
  • the nozzle 30 for flowing an inert gas is as close to the protective glass 17 as possible at a position where it does not interfere with the laser beam 10 and the laser beam 13.
  • the discharge direction and position of the nozzle 30 are set so that the inert gas discharged from the nozzle 30 is blown toward the glass surface of the protective glass 17.
  • the inert gas can blow off the fumes 16 drifting around the protective glass 17 and prevent the fumes 16 from adhering to the protective glass 17.
  • FIG. 2 is a graph showing the relationship between the Ar gas flow rate and the impurity gas ratio in the first embodiment.
  • the Ar gas flow rate is set to F2, and a large amount of Ar gas is flowed to prioritize the removal of the fume 16.
  • the flow meter (inert gas supply means) 19 is controlled to reduce the supply amount of the inert gas.
  • the Ar gas flow rate is gradually reduced from F2 to F1, and the removal of the impurity gas by the vacuum pump 20 is given priority.
  • the impurity gas ratio is P2 or more, the Ar gas flow rate is adjusted to F1 to minimize it, and the removal of the impurity gas is given priority.
  • the impurity gas ratio is measured by the impurity analyzer 21 provided on the vacuum discharge side shown in FIG.
  • the impurity analyzer 21 constitutes detection means for detecting the proportion of impurity gas in the modeling area.
  • the measurement result of the impurity analyzer 21 is input to the flow controller 22.
  • the flow control device 22 calculates the flow rate of Ar gas flowing from the flow meter 19 based on the impurity gas ratio measured by the impurity analysis device 21, and outputs it to the flow meter 19 as a flow control signal.
  • the flow meter 19 constitutes an inert gas supply means for supplying an inert gas to the modeling area, and flows an Ar gas that is an inert gas by a predetermined flow rate based on a flow control signal from the flow controller 22.
  • the flow rate control device 22 controls the reduction of the impurity gas with priority, but when the impurity gas is frequently generated and the impurity gas ratio exceeds a preset upper limit value (a value greater than P2). Since the low Ar gas flow rate continues for a long time, the modeling may be temporarily interrupted.
  • modeling in a reduced-pressure atmosphere can reduce Ar gas consumption and achieve modeling with high purity. Further, the fume 16 can be prevented from adhering to the protective glass 17, and a molding failure due to a decrease in the power of the laser beams 10 and 13 reaching the melted and solidified portion 15 can be prevented.
  • FIG. 3 is a graph showing the relationship between the Ar flow rate and the impurity gas ratio in the second embodiment.
  • the concept of the Ar gas flow rate control is the same as that in the first embodiment, except that Ar gas flows only when the coater 7 spreads the powder.
  • FIG. 4 is a graph showing the relationship between Ar gas flow rate control and elapsed time in the second embodiment.
  • the powder is spread by the coater 7 during the time T1 to T3, and the powder is melted by the laser light 10 and the laser light 13 during the time T3 to T4. Thereafter, the process of spreading the powder again between times T4 and T6 and melting the powder at times T6 to T7 is repeated.
  • Ar gas having an Ar gas flow rate of F5 is allowed to flow from T1 to T2, which is the time from the start of powder melting to the start of powder laying by the coater 7.
  • Ar gas having an Ar gas flow rate of F6 is allowed to flow from T4 to T5, which is the time from immediately after the powder is melted until the start of powder laying by the coater 7.
  • the values of the Ar gas flow rates F5 and F6 are determined from the graph of FIG. Many fumes 16 are generated at times T1 and T4, which are immediately after melting of the powder. Therefore, the fume 16 can be removed more efficiently than in the first embodiment by flowing a large Ar gas flow rate between the time T1 and T2 immediately after the powder is melted and between the time T4 and T5.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本発明の目的は、Arガスの流量を減らして造形することができる積層造形装置を得ることである。本発明に係る積層造形装置は、造形エリアを減圧雰囲気にし、造形エリアに不活性ガスを供給し、造形エリアの不純物ガスの割合を検出し、不純物ガスの割合が閾値を超えている場合は、不活性ガスの供給量を減らすことを特徴とする。

Description

積層造形装置
 本発明は、粉末をビームにより溶融させて3次元の造形物を造形する積層造形装置に関する。
 粉末を造形エリアに敷き詰めて、所定のエリアの粉末をビームでスキャンし、粉末を溶融凝固させ、造形エリアを降下させ、再び粉末を造形エリアに敷き詰める工程を繰り返すことで、3次元の造形をする積層造形装置が知られている。
 金属の粉末の溶融凝固にはレーザまたは電子ビームの高密度エネルギーを用い、粉末を融点以上に加熱して溶融凝固させる積層造形装置が知られている。
 一般に、造形雰囲気の酸素量が増えると、造形物の酸素量も多くなり、靱性が低下する。これを防止するため、特許文献1には、Ar雰囲気の造形チャンバーに、酸素濃度計を配置し、酸素濃度が高い場合に、Ar流量を増やす積層造形装置が開示されている。これによりAr雰囲気中の酸素量を減らすことができる。
特開2009-078558号公報
 しかし、造形中には粉末表面に付着した水分、汚れ等の不純物ガス成分が、粉末の溶融時に発生するため、上述した積層造形装置では、Arガスを流し続ける必要がある。積層造形では造形時間が長いため、大量のArガスが必要である。そのため、コスト高の問題があった。また、Arガス中にも微量の酸素等の不純物が含まれているが、高純度のArを用いるほど、Arガスのコストが高くなってしまう問題がある。
 本発明の目的は、上記事情に鑑み、Arガスの流量を減らして造形することができる積層造形装置を提供することにある。
 本発明は、上記目的を達成するため、粉末を敷き詰めて、ビームでスキャンして前記粉末を溶融することにより凝固層を形成し、前記凝固層を積層して3次元の造形物を造形する積層造形装置であって、造形エリアを減圧雰囲気にする減圧手段と、前記造形エリアに不活性ガスを供給する不活性ガス供給手段と、前記造形エリアの不純物ガスの割合を検出する検出手段と、該検出手段により検出した前記不純物ガスの割合が閾値を超えている場合は、前記不活性ガス供給手段を制御して前記不活性ガスの供給量を減らす制御手段と、を有することを特徴とする。
 本発明によれば、Arガスの消費量を減らして高純度の造形物の造形が可能なので、低コストで造形できる積層造形装置を提供することができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1の実施例における斜視図。 第1の実施例における不純物ガス割合とArガス流量の関係を示すグラフ。 第2の実施例における不純物ガス割合とArガス流量の関係を示すグラフ。 第2の実施例におけるArガス流量制御と経過時間の関係を示すグラフ。
 以下、図面を参照しながら本発明の実施例を説明する。
[実施例1]
 図1に第1の実施例における斜視図を示す。積層造形装置は、粉末供給部1と、造形部4と、粉末排出部5を有している。粉末供給部1と、造形部4と、粉末排出部5は、かかる順番で水平方向に一列に並んで配置されており、これらの上部を列方向に往復移動可能にコーター7が設けられている。
 粉末供給部1には金属の粉末が供給されている。ステージ2を上昇させることにより粉末を上部に押し上げる。この粉末をコーター7により粉末供給部1から造形部4の方向へ移動することで造形部4の上面へ粉末を供給する。コーター7はさらに移動して余った粉末を粉末排出部5に排出する。排出後はステージ6を下げて、粉末排出部5の上面を下げる。その後、コーター7は、粉末供給部1の方へ戻る。
 造形部4では、レーザビームによる積層造形が行われる。本実施例では2本のレーザビームによる積層造形の場合を示す。レーザ発振器8から発振したレーザ光10はスキャナー9を介して造形部4の表面の粉末をレーザ光10のスキャンにより溶融させて、層状の溶融凝固部(凝固層)15を形成させる。レーザ発振器11から発振したレーザ光13も同様にスキャナー12を介して、粉末を溶融させて溶融凝固部15を形成させる。その後、造形部4のステージ3を降下させる。この工程を繰り返すことで、溶融凝固部15を3次元的に積層して造形物を造形する。
 積層造形装置は、造形部4を含む造形エリアを減圧雰囲気にする減圧手段として減圧チャンバー14を備えている。本実施例では、粉末供給部1、造形部4および粉末排出部5が減圧チャンバー14内に配置されている。減圧チャンバー14は、真空ポンプ20によりチャンバー内部が減圧される。
 減圧チャンバー14には、レーザ光10、13を通過させることができる保護ガラス17が設けられている。保護ガラスは、スキャナー9と造形部4との間に配置されている。減圧チャンバー14の内部には、ノズル30が設けられており、減圧チャンバー14内にArガスなどの不活性ガスを供給することができるようになっている(不活性ガス供給手段)。積層造形装置は、造形物を減圧雰囲気で造形する真空造形ができるので、造形雰囲気の不純物ガス濃度を低くすることができる。
 積層造形装置は、従来のArガス雰囲気造形に比べて、真空造形にすることでArガスの使用量を少なくすることができ、Arガスのコストを下げることができる。不純物ガスとしては酸素、窒素、水素、水蒸気、一酸化炭素などが挙げられる。特に、酸素、水蒸気、窒素は溶融した粉末と反応して造形物中に不純物として混入するため、造形物の機械的特性を低下させることがある。したがって、造形雰囲気中の不純物ガスを除去する必要がある。これらの不純物ガスは、粉末表面に付着した汚れや水分などに起因して、粉末を加熱および溶融することで発生する。発生した不純物ガスは真空ポンプ20により除去することになる。
 しかしながら、減圧雰囲気での造形では、造形中に金属の粉末の溶融によりヒューム16が発生する。ヒューム16とは、蒸発した金属が減圧雰囲気中に滞在することで、温度が下がり液体から凝固して金属の粉末になったものである。ヒューム16は固体なので真空ポンプ20では排出されない。ヒューム16が保護ガラス17の内面に付着して堆積すると、レーザ光10およびレーザ光13が、付着したヒューム16に吸収され、溶融凝固部15に到達するレーザ光10、13のパワーが減少して造形不良の原因になる。特に、二つのレーザ光10、13を用いて粉末を溶融した場合には、ヒューム16の発生量も2倍になるため、積極的に除去することが必要である。保護ガラス17を真空チャンバー14に用いるので、本発明は特にレーザ造形に有効である。
 ヒューム16の除去には、造形中に不活性ガスを流すことが有効である。不活性ガスとしてはArガスもしくはHeガスが使用される。ただし、不活性ガスの使用量が増えすぎると、減圧雰囲気の圧力が上昇するため、不純物ガスを真空ポンプ20で除去する能力が低下する。したがって、不活性ガスの流量は、最小限にすることが望ましい。
 また、不活性ガスを流すノズル30は、レーザ光10およびレーザ光13と干渉しない位置でできるだけ保護ガラス17の近くが望ましい。本実施例では、ノズル30から吐出された不活性ガスが保護ガラス17のガラス面に向かって吹き付けられるように、ノズル30の吐出方向と位置が設定されている。不活性ガスは、保護ガラス17の周辺に漂うヒューム16を吹き飛ばして、保護ガラス17にヒューム16が付着するのを防ぐことができる。
 図2は、第1の実施例におけるArガス流量と不純物ガス割合の関係を示すグラフである。減圧チャンバー14内における不純物ガス割合がP1(閾値)以下では、Arガス流量をF2にして多くのArガスを流してヒューム16の除去を優先する。そして、不純物ガスの割合がP1(閾値)を超えている場合は、流量計(不活性ガス供給手段)19を制御して不活性ガスの供給量を減らす。
 本実施例では、不純物ガス割合がP1からP2に増加するに応じて、Arガス流量をF2からF1に段階的に減らして、しだいに真空ポンプ20による不純物ガスの除去を優先させる。そして、不純物ガス割合がP2以上ではArガス流量をF1に調整して最小にして、不純物ガスの除去をより優先させる。不純物ガス割合は、図1で示した真空排出側に設けた不純物分析装置21で計測する。不純物分析装置21は、造形エリアの不純物ガスの割合を検出する検出手段を構成する。不純物分析装置21の計測結果は、流量制御装置22に入力される。
 流量制御装置22は、不純物分析装置21で計測した不純物ガス割合に基づいて流量計19から流すArガスの流量を演算し、流量制御信号として流量計19に出力する。流量計19は、造形エリアに不活性ガスを供給する不活性ガス供給手段を構成し、流量制御装置22からの流量制御信号に基づいて不活性ガスであるArガスを所定の流量だけ流す。流量制御装置22は、不純物ガスの低減を優先して制御するが、不純物ガスの発生が多く、不純物ガス割合が予め設定されている上限値(P2よりも大きな値)を超えている場合には、Arガス流量の低い状態が長く続くため、造形を一時的に中断する制御をしてもよい。
 本実施例によれば、減圧雰囲気で造形することでArガスの消費量を減らして造形物の高純度の造形が可能である。さらに、ヒューム16の保護ガラス17への付着も防止でき、溶融凝固部15に到達するレーザ光10、13のパワーの減少による造形不良を防止できる。
[実施例2]
 図3は、第2の実施例におけるAr流量と不純物ガス割合の関係を示すグラフである。第1の実施例とArガスの流量制御の考え方は同じであるが、コーター7で粉末を敷き詰めているときにだけArガスを流す点が異なる。
 図3に示すように、不純物ガス割合がP3以下ではArガス流量をF4にして多くのArガスを流す。不純物ガス割合がP3からP4に増えると、それに反比例してArガス流量をF4からF3に減らす。不純物ガス割合がP4以上では、Arガス流量をF3に設定する。粉末の溶融直後から粉末を敷詰めるまでの間だけしかArガスを流さないので、Arガス流量を第1の実施例に比べて多くすることができる。F2よりF4の方の流量を多くする。
 図4は、第2の実施例におけるArガス流量制御と経過時間の関係を示すグラフである。時間T1からT3の間にコーター7により粉末を敷き詰めて、時間T3からT4の間にレーザ光10およびレーザ光13により粉末を溶融させる。その後、時間T4からT6の間に再び粉末を敷詰め、時間T6からT7で粉末を溶融する工程を繰り返す。
 一方、Arガスは、粉末の溶融直後からコーター7で粉末の敷詰めを開始するまでの時間であるT1からT2の間にF5のArガス流量のArガスを流す。また、粉末の溶融直後からコーター7で粉末の敷詰めを開始するまでの時間であるT4からT5の間にF6のArガス流量のArガスを流す。Arガス流量F5およびF6の値は、図3のグラフより決定される。ヒューム16は、粉末の溶融直後であるT1及びT4の時点で多く発生する。したがって、粉末の溶融直後である時間T1からT2の間、及び時間T4からT5の間に、Arガス流量を多く流すことで、実施例1よりもヒューム16を効率的に除去することができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…粉末供給部、2…ステージ、3…ステージ、4…造形部、5…粉末排出部、6…ステージ、7…コーター、8…レーザ発振器、9…スキャナー、10…レーザ光、11…レーザ発振器、12…スキャナー、13…レーザ光、14…減圧チャンバー、15…溶融凝固部、16…ヒューム、17…保護ガラス、18…Arガス、19…流量計、20…真空ポンプ、21…不純物分析装置、22…流量制御装置

Claims (8)

  1.  粉末を敷き詰めて、ビームでスキャンして前記粉末を溶融することにより凝固層を形成し、前記凝固層を積層して3次元の造形物を造形する積層造形装置であって、
     造形エリアを減圧雰囲気にする減圧手段と、
     前記造形エリアに不活性ガスを供給する不活性ガス供給手段と、
     前記造形エリアの不純物ガスの割合を検出する検出手段と、
     該検出手段により検出した前記不純物ガスの割合が閾値を超えている場合は、前記不活性ガス供給手段を制御して前記不活性ガスの供給量を減らす制御手段と、
     を有することを特徴とする積層造形装置。
  2.  前記制御手段は、前記不純物ガスの割合が増えるに応じて前記不活性ガスの供給量を減らすことを特徴とする請求項1に記載の積層造形装置。
  3.  不活性ガスは、ArガスまたはHeガスであることを特徴とする請求項2に記載の積層造形装置。
  4.  前記不純物ガスは、酸素、窒素、水素、水分、一酸化炭素の少なくともいずれか一つであることを特徴とする請求項3に記載の積層造形装置。
  5.  前記ビームは、レーザ光であること特徴とする請求項4に記載の造形装置。
  6.  前記不活性ガス供給手段は、前記粉末の溶融直後に前記不活性ガスを流すことを特徴とする請求項5に記載の積層造形装置。
  7.  前記レーザ光を発振するレーザ発振器と前記造形エリアとの間には、前記レーザ光が通過可能な保護ガラスが設けられており、
     前記不活性ガス供給手段は、前記保護ガラスのガラス面に向かって前記不活性ガスを吹き付けることを特徴とする請求項6に記載の積層造形装置。
  8.  前記不純物ガスの割合が上限値を超えている場合は、前記造形物の造形を中断することを特徴とする請求項7に記載の積層造形装置。
PCT/JP2017/009123 2016-05-31 2017-03-08 積層造形装置 WO2017208553A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/301,478 US20190299289A1 (en) 2016-05-31 2017-03-08 Additive Manufacturing Device
DE112017002704.7T DE112017002704T5 (de) 2016-05-31 2017-03-08 Additive Fertigungsvorrichtung
JP2018520667A JP6651620B2 (ja) 2016-05-31 2017-03-08 積層造形装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-109162 2016-05-31
JP2016109162 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208553A1 true WO2017208553A1 (ja) 2017-12-07

Family

ID=60478275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009123 WO2017208553A1 (ja) 2016-05-31 2017-03-08 積層造形装置

Country Status (4)

Country Link
US (1) US20190299289A1 (ja)
JP (1) JP6651620B2 (ja)
DE (1) DE112017002704T5 (ja)
WO (1) WO2017208553A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126985A (ja) * 2017-02-10 2018-08-16 三菱重工業株式会社 三次元積層造形装置
CN109159422A (zh) * 2018-10-10 2019-01-08 大连理工大学 一种激光辅助电喷射原位打印装置
CN109366980A (zh) * 2018-10-10 2019-02-22 大连理工大学 一种激光辅助电喷射原位打印制造方法
WO2019159635A1 (ja) * 2018-02-16 2019-08-22 株式会社日立製作所 付加製造装置
WO2020022172A1 (ja) * 2018-07-23 2020-01-30 三菱日立パワーシステムズ株式会社 積層造形装置
CN111989177A (zh) * 2018-04-09 2020-11-24 通用电气公司 用于增材制造流动控制装置的系统和方法
JP2021020322A (ja) * 2019-07-24 2021-02-18 株式会社リコー 立体造形装置及び立体造形方法
KR102246725B1 (ko) * 2020-06-02 2021-04-30 한국생산기술연구원 플라즈마 액츄에이터를 포함하는 3d 프린팅 장치
US11020763B2 (en) 2018-08-21 2021-06-01 General Electric Company Spacer flow guide for partitioning build chamber of an additive manufacturing system
JP2021529885A (ja) * 2018-07-19 2021-11-04 ヘレウス アディティブ マニュファクチュアリング ゲーエムベーハー 高反射性金属の粉末の付加製造への使用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473443A1 (en) * 2017-10-20 2019-04-24 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
EP3486070B8 (en) * 2017-11-15 2023-04-12 Concept Laser GmbH Method for additively manufacturing of three-dimensional objects
US10835996B2 (en) * 2018-01-30 2020-11-17 Siemens Energy, Inc. Laser metal deposition with inoculation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277878A (ja) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd 三次元形状造形物の製造装置及び製造方法
US20140271965A1 (en) * 2013-03-15 2014-09-18 Renishaw Plc Selective laser solidification apparatus and method
JP2015196856A (ja) * 2014-03-31 2015-11-09 三菱重工業株式会社 三次元積層装置
JP2016006215A (ja) * 2014-06-20 2016-01-14 株式会社ソディック 積層造形装置
JP2016074957A (ja) * 2014-10-08 2016-05-12 株式会社ソディック 積層造形装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008017990U1 (de) 2007-05-30 2011-02-10 Panasonic Electric Works Co., Ltd., Kadoma-shi Laminier-Formgebungsvorrichtung
CN103998209B (zh) * 2011-12-28 2016-08-24 阿尔卡姆公司 用于提高添加制造的三维物品的分辨率的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277878A (ja) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd 三次元形状造形物の製造装置及び製造方法
US20140271965A1 (en) * 2013-03-15 2014-09-18 Renishaw Plc Selective laser solidification apparatus and method
JP2015196856A (ja) * 2014-03-31 2015-11-09 三菱重工業株式会社 三次元積層装置
JP2016006215A (ja) * 2014-06-20 2016-01-14 株式会社ソディック 積層造形装置
JP2016074957A (ja) * 2014-10-08 2016-05-12 株式会社ソディック 積層造形装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126985A (ja) * 2017-02-10 2018-08-16 三菱重工業株式会社 三次元積層造形装置
WO2019159635A1 (ja) * 2018-02-16 2019-08-22 株式会社日立製作所 付加製造装置
CN111989177A (zh) * 2018-04-09 2020-11-24 通用电气公司 用于增材制造流动控制装置的系统和方法
JP2021529885A (ja) * 2018-07-19 2021-11-04 ヘレウス アディティブ マニュファクチュアリング ゲーエムベーハー 高反射性金属の粉末の付加製造への使用
WO2020022172A1 (ja) * 2018-07-23 2020-01-30 三菱日立パワーシステムズ株式会社 積層造形装置
JP2020015931A (ja) * 2018-07-23 2020-01-30 三菱日立パワーシステムズ株式会社 積層造形装置
CN112351848A (zh) * 2018-07-23 2021-02-09 三菱动力株式会社 层叠造型装置
JP7199173B2 (ja) 2018-07-23 2023-01-05 三菱重工業株式会社 積層造形装置
US11969793B2 (en) 2018-07-23 2024-04-30 Mitsubishi Heavy Industries, Ltd. Additive manufacturing device
US11020763B2 (en) 2018-08-21 2021-06-01 General Electric Company Spacer flow guide for partitioning build chamber of an additive manufacturing system
CN109366980B (zh) * 2018-10-10 2020-04-28 大连理工大学 一种激光辅助电喷射原位打印制造方法
CN109159422B (zh) * 2018-10-10 2020-09-11 大连理工大学 一种激光辅助电喷射原位打印装置
CN109366980A (zh) * 2018-10-10 2019-02-22 大连理工大学 一种激光辅助电喷射原位打印制造方法
CN109159422A (zh) * 2018-10-10 2019-01-08 大连理工大学 一种激光辅助电喷射原位打印装置
JP2021020322A (ja) * 2019-07-24 2021-02-18 株式会社リコー 立体造形装置及び立体造形方法
KR102246725B1 (ko) * 2020-06-02 2021-04-30 한국생산기술연구원 플라즈마 액츄에이터를 포함하는 3d 프린팅 장치

Also Published As

Publication number Publication date
DE112017002704T5 (de) 2019-02-14
US20190299289A1 (en) 2019-10-03
JP6651620B2 (ja) 2020-02-19
JPWO2017208553A1 (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2017208553A1 (ja) 積層造形装置
KR102026354B1 (ko) 일체화된 시스템들로서 형성되는 다재료들을 포함하는 3 차원 컴포넌트들의 레이저 적층 가공
US10843450B2 (en) Method, apparatus, and control unit for producing a three-dimensional object
US11565321B2 (en) Method for the generative manufacture of a 3-dimensional component
US20180326525A1 (en) Ded arc three-dimensional alloy metal powder printing method and apparatus using arc and alloy metal powder cored wire
US10821556B2 (en) Method for the generative production of a 3-dimensional component
WO2013065484A1 (ja) レーザ切断方法及びレーザ切断装置
CN105392920A (zh) 功能性梯度热障涂层系统
CN110773837A (zh) 一种钛合金高精度电弧增材制造工艺
KR20120068865A (ko) 티타늄 물품을 제조하기 위한 방법 및 장치
JPH04120259A (ja) レーザ溶射法による機器・部材の製造方法および装置
US9884392B2 (en) Laser welding apparatus and laser welding method
KR20190002760A (ko) 진동 용접 방법
US20170361404A1 (en) Deposition apparatus and deposition method
US20060032441A1 (en) Method and apparatus for recycling inert gas
EP3766604A1 (en) Method and device for purging an additive manufacturing space
CN108637256A (zh) 多孔材料的电弧熔丝增材制造方法
KR20130103383A (ko) 티타늄 분말 생산 장치 및 방법
KR102224359B1 (ko) 레이저 증착 용접 장치에 의해 용융된 재료를 사용하여 작업물의 내부 윤곽의 오프닝을 감소시키거나 완전히 폐쇄하는 방법
US20180178326A1 (en) Vacuum sls method for the additive manufacture of metallic components
CN111014951A (zh) 一种解决铜铝激光焊接高反射率的方法
JP6127267B2 (ja) レーザ加工装置及びレーザ加工方法
JP2008105095A (ja) パルスアーク溶接の出力制御方法
Nowotny et al. Generative manufacturing and repair of metal parts through direct laser deposition using wire material
EP3797903A1 (en) Additive manufacturing process gas for lightweight metals

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520667

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806115

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806115

Country of ref document: EP

Kind code of ref document: A1