WO2017206541A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2017206541A1
WO2017206541A1 PCT/CN2017/073383 CN2017073383W WO2017206541A1 WO 2017206541 A1 WO2017206541 A1 WO 2017206541A1 CN 2017073383 W CN2017073383 W CN 2017073383W WO 2017206541 A1 WO2017206541 A1 WO 2017206541A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation film
optical compensation
display panel
liquid crystal
optical
Prior art date
Application number
PCT/CN2017/073383
Other languages
English (en)
French (fr)
Inventor
赵伟利
董学
姚继开
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/577,121 priority Critical patent/US20190018272A1/en
Publication of WO2017206541A1 publication Critical patent/WO2017206541A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present disclosure belongs to the field of display technologies, and in particular, to a display panel and a display device.
  • Liquid crystal display has been widely used in various electronic information devices, such as televisions, computers, mobile phones, personal digital assistants (PDAs), and the like.
  • the structure of the LCD is as shown in FIG. 1 , which includes an array substrate 1 , a counter substrate 3 , and a liquid crystal layer 2 between the array substrate 1 and the counter substrate 3 , and a lower polarizer 5 located outside the array substrate 1 . And an upper polarizer 6 located outside the counter substrate 3.
  • the LCD is mainly classified into a vertical alignment type liquid crystal display panel (VA-LCD) and an in-plane switching type liquid crystal display panel (IPS-LCD).
  • the liquid crystal in the VA-LCD is vertically arranged, the contrast is high, and the liquid crystal does not cause light leakage in the dark state, but the viewing angle is small, and when the light is oblique, the phase delay occurs when the light passes through the liquid crystal layer, thereby causing light leakage.
  • the liquid crystals in the IPS-LCD are horizontally arranged, the contrast is not high, but the viewing angle is large.
  • the IPS-LCD is mechanically fixed around its periphery, which will cause bending deformation due to uneven force. In the case of bending deformation, light-concentrated areas will cause light leakage.
  • IPS-LCD will cause light leakage in the region where stress is concentrated is that the glass substrate is an isotropic medium when it is not subjected to stress, and does not cause birefringence; when it is deformed by stress, the refractive index of the glass substrate When a change occurs, a birefringence phenomenon occurs. At this time, if the optical axis of the glass substrate is not parallel or perpendicular to the polarization direction of the polarizer, light leakage occurs.
  • the present disclosure provides a display panel and a display device to at least partially solve the above problems.
  • the display panel and the display device greatly reduce the amount of light leakage compared to the conventional display panel and display device.
  • a technical solution for solving the technical problem of the present invention is to provide a display panel including an array substrate, a counter substrate, and a liquid crystal layer between the array substrate and the pair of cassette substrates, in the liquid crystal layer Either side is also provided with an optical compensation film for compensating for the amount of phase delay generated by light passing through the liquid crystal layer.
  • the optical compensation film has a phase retardation amount to light and a liquid crystal pair in the liquid crystal layer The amount of phase delay of the light is equal.
  • the optical axis direction of the second optical compensation film and the long axis direction of the liquid crystal in the liquid crystal layer are parallel to each other.
  • the optical optical compensation film satisfies the following conditional formula: 1.4 ⁇ n x ⁇ 2.0,1.4 ⁇ n y ⁇ 2.0,1.4 ⁇ n z ⁇ 2.0 , and (n x -n y) * d It is equal to the amount of phase retardation of the liquid crystal to the light in the liquid crystal layer, where d is the thickness of the optical compensation film.
  • the method further includes a first protective layer and a second protective layer, the first protective layer and the second protective layer being respectively located on both sides of the optical compensation film.
  • the optical compensation film is located on a side of the counter substrate or the array substrate adjacent to the liquid crystal layer.
  • the phase retardation amount of the pair of substrate substrates to the light is equal to the phase retardation amount of the array substrate to the light, and the optical axis direction of the pair of substrate substrates and the optical axis of the array substrate The directions are orthogonal.
  • the material of the optical compensation film comprises cellulose triacetate.
  • Another technical solution provided by the present disclosure is a display device including the above display panel.
  • the display panel and the display device in some embodiments of the present disclosure function to compensate the phase delay amount of the light passing through the array substrate, the liquid crystal layer, and the counter substrate by providing an optical compensation film on either side of the liquid crystal layer. Therefore, the phase delay of the light is cancelled as a whole, the amount of light leakage is greatly reduced, and the contrast of the display panel and the display device and the display quality of the screen are improved.
  • FIG. 1 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 2 is a schematic structural view of a display panel according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram showing the principle of light leakage of the display panel of FIG. 2;
  • FIG. 6 is a comparison diagram of light leakage conditions of the display panel of FIG. 2 and the existing display panel;
  • FIG. 8 is a schematic structural diagram of a display panel according to Embodiment 2 of the present invention.
  • the embodiment provides a display panel in which an optical compensation film is disposed on a side of the substrate adjacent to the liquid crystal layer, and the optical compensation film is used to compensate a phase delay amount generated by light passing through the liquid crystal layer.
  • the display panel includes an array substrate 1, a counter substrate 3, and a liquid crystal layer 2 between the array substrate 1 and the counter substrate 3.
  • the substrate 3 is provided with an optical compensation film 4 on the side close to the liquid crystal layer 2, and further includes a lower polarizer 5 on the outer side of the array substrate 1 and an upper polarizer 6 on the outer side of the counter substrate 3.
  • the material of the optical compensation film 4 comprises cellulose triacetate (TAC), and the phase retardation amount of the light is equal to the phase retardation amount of the liquid crystal to the light in the liquid crystal layer 2, thereby enabling the optical compensation film 4 to cancel
  • TAC cellulose triacetate
  • the optical compensation film 4 may be a first optical compensation film, and the optical axis direction of the first optical compensation film and the long axis direction of the liquid crystal in the liquid crystal layer 2 are perpendicular to each other (orthogonal).
  • the optical compensation film 4 may also be a second optical compensation film, and the optical axis direction of the second optical compensation film and the long axis direction of the liquid crystal in the liquid crystal layer are parallel to each other.
  • R o represents the amount of phase retardation of the glass substrate to light
  • C represents the photoelastic coefficient of the glass substrate
  • t represents the thickness of the glass substrate
  • s represents the stress applied to the glass substrate.
  • E represents the Young's modulus of the glass
  • t represents the thickness of the glass substrate
  • R represents the radius of curvature.
  • the value of R is specifically designed according to the specific product, and its size generally ranges from 1000 to 8000 nm.
  • the phase retardation amount of the light in the array substrate 1 and the glass substrate in the counter substrate 3 can be obtained.
  • the polarizer 5 is used as a reference, and the transmission axis angle of the lower polarizer 5 is 0°, and the phase retardation amount to the light is 0 nm, and the other layer structures are opposite to the lower polarizer 5.
  • Optical parameters such as the angle of the transmission axis and the amount of phase delay are as follows:
  • Array substrate 1 optical axis direction 120 °, phase retardation amount 9 nm;
  • Liquid crystal layer 2 optical axis direction 0 °, phase retardation amount 350 nm;
  • Optical compensation film 4 optical axis direction 0/90°, phase retardation amount 350 nm;
  • the phase retardation amount of the light of the cassette substrate 3 is equal to the phase retardation amount of the array substrate 1 to the light, and the optical axis direction of the cassette substrate 3 and the optical axis direction of the array substrate 1 are positive. cross.
  • the optical axis direction and the phase retardation amount of the array substrate 1 are offset from the optical axis direction and phase retardation amount of the counter substrate 3 and the upper polarizer 6, and the optical axis direction and phase retardation amount of the liquid crystal layer 2 and the optical compensation film 4 are The optical axis direction and the phase delay amount are canceled, thereby causing the upper and lower layer structures in the display panel to cancel the phase delay amounts of the light to the light, thereby achieving the effect of reducing or eliminating light leakage.
  • the existing display panel may cause light leakage under the condition of force deformation.
  • the first phase delay occurs when the light passes through the array substrate 1 (as shown by the upward line in FIG. 3).
  • the second phase delay occurs when the light passes through the liquid crystal layer 2 (as indicated by the clockwise arc arrow b in FIG. 3)
  • the third phase delay occurs when the light passes through the counter substrate 3 (as shown in the figure).
  • 3 is shown by the downward straight arrow c).
  • the line connecting the start point of the upward straight line arrow a and the end point of the downward straight line arrow c represents the amount of light leakage of the liquid crystal display panel (as indicated by the broken line segment d in FIG. 3).
  • the second phase delay occurs when the light passes through the liquid crystal layer 2 (eg, In the clockwise circular arrow b in Fig. 5, the third phase delay occurs when the light passes through the optical compensation film 4 (as indicated by the counterclockwise circular arrow e in Fig. 5), and finally, through the counter substrate 3 A fourth phase delay is produced (as indicated by the downward straight arrow c in Figure 5).
  • the line connecting the start point of the upward straight arrow a and the end point of the downward straight arrow c represents the amount of light leakage of the liquid crystal display device, since both are at the origin (in FIG.
  • the display panel of the present embodiment further includes a first protective layer and a second protective layer.
  • the first protective layer and the second protective layer are respectively located on both sides of the optical compensation film 4 to effectively protect the optical compensation film 4.
  • the specific preparation process of the optical compensation film 4 in the display panel is as follows:
  • a first protective layer is formed on the inner side of the cassette substrate 3;
  • an optical compensation film 4 is formed on the first protective layer and cured
  • the optical compensation film 4 itself has high temperature resistance, it does not cause other process defects.
  • FIG. 6 is a comparison diagram of light leakage conditions of the display panel of the present embodiment and the conventional display panel.
  • the left side (a) is a simulation diagram of light leakage of the conventional display panel
  • the right side (b) is In the simulation diagram of the light leakage of the display panel of the embodiment, it can be seen that the relative value of the light leakage of the display panel in the dark state is about 1%, and the relative value of the light leakage of the display panel in this embodiment is about 0% in the dark state. That is to say, the display panel of the present embodiment has almost no light leakage phenomenon in a dark state.
  • the display panel of this embodiment can be designed not only as a vertical alignment type (VA) display panel but also as an in-plane switching type (IPS) display panel.
  • VA vertical alignment type
  • IPS in-plane switching type
  • the optical axis direction and the phase retardation amount of the liquid crystal layer 2 are respectively canceled by the optical axis direction and the phase retard amount of the optical compensation film 4, thereby causing the phase of the upper and lower layers of the display panel to illuminate the light.
  • the amount of delay cancels each other to reduce or eliminate the effect of light leakage.
  • FIG. 7 is a comparison diagram of the VT curve of the in-plane switching display panel of the present embodiment and the conventional in-plane switching display panel.
  • the left side view (a) is a conventional in-plane switching.
  • the VT graph of the type display panel, and the graph (b) on the right side are VT graphs of the in-plane switching display panel of the present embodiment, wherein the vertical axis T represents the transmittance and the horizontal axis V represents the voltage magnitude.
  • the existing in-plane switching type display The transmittance of the panel in the dark state (the screen is dark after power-on) is about 0.2%, and the transmittance in the bright state (the screen is dark after power-on) is about 30%;
  • the in-plane switching type display panel has a transmittance of about 0.02% in a dark state and a transmittance of about 30% in a bright state.
  • the transmittance in the dark state is significantly smaller than that in the existing in-plane under the condition of ensuring the transmittance in the bright state.
  • the switching type display panel has a size close to 0, that is, there is almost no light leakage under the dark state, and the dark state light leakage condition is effectively improved.
  • the display panel of the present embodiment has an effect of compensating for a phase retardation amount of light passing through the liquid crystal layer by providing an optical compensation film on a side of the counter substrate close to the liquid crystal layer, thereby canceling the phase delay of the light as a whole.
  • the amount of light leakage is greatly reduced, especially in the dark state, the amount of light leakage is almost completely eliminated, and the contrast of the display panel and the display quality of the screen are greatly improved.
  • the present embodiment provides a display panel having a structure similar to that of Embodiment 1, which differs from Embodiment 1 in that an optical compensation film is located on a side of the array substrate close to the liquid crystal layer.
  • FIG. 8 is a schematic structural diagram of a display panel according to the present embodiment.
  • the display panel includes an array substrate 1 , a counter substrate 3 , and a liquid crystal layer 2 between the array substrate 1 and the counter substrate 3 .
  • An optical compensation film 4 is disposed on one side of the liquid crystal layer 2, and further includes a lower polarizer 5 on the outer side of the array substrate 1 and an upper polarizer 6 on the outer side of the counter substrate 3.
  • the display panel of the present embodiment can achieve the same technical effect as the display panel of Embodiment 1, and can cancel the phase delay of the light as a whole, greatly reducing the amount of light leakage, especially in the dark state, the light leakage is almost completely eliminated.
  • the amount greatly improves the contrast of the display panel and the display quality of the screen.
  • the embodiment provides a display device including any one of the display panels of Embodiment 1 and Embodiment 2.
  • the display device can be any product or component having display function such as electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator and the like.
  • the display device of the embodiment includes any one of the display panels of Embodiment 1 and Embodiment 2, which can cancel the phase delay of the light as a whole, greatly reducing the amount of light leakage, and particularly completely eliminating light leakage in a dark state.
  • the amount greatly improves the contrast of the display panel and the display quality of the screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种显示面板,包括阵列基板(1)、对盒基板(3)以及位于阵列基板(1)与对盒基板(3)之间的液晶层(2),在液晶层(2)的任一侧还设置有光学补偿膜(4),光学补偿膜(4)用于补偿光线经过液晶层(2)而产生的相位延迟量。显示面板漏光量小,能有效减小或消除漏光现象。显示装置,包括显示面板。

Description

显示面板和显示装置
本公开要求申请日为2016年6月1日、申请号为CN201610382230.8、发明创造名称为显示面板和显示装置的发明专利申请的优先权。
技术领域
本公开属于显示技术领域,具体涉及一种显示面板和显示装置。
背景技术
液晶显示面板(Liquid Crystal Display,简称LCD)已广泛使用在各式电子信息装置上,例如电视、计算机、手机、个人数字助理(PDA)等。
目前,LCD的结构如图1所示,其包括阵列基板1、对盒基板3以及位于阵列基板1与对盒基板3之间的液晶层2,还包括位于阵列基板1外侧的下偏光片5和位于对盒基板3外侧的上偏光片6。LCD主要分为垂直取向型液晶显示面板(VA-LCD)和面内切换型液晶显示面板(IPS-LCD)。其中,VA-LCD中的液晶为竖直排列,对比度较高,在暗态下液晶不会造成漏光,但是,其视角较小,斜向时,光线经过液晶层会发生相位延迟,从而造成漏光;IPS-LCD中的液晶为水平排列,对比度不高,但视角较大。但是,IPS-LCD在组装的过程中,其周边采用机械固定,将导致受力不均造成弯曲变形,在弯曲变形的情况下,应力集中的区域将会产生漏光。
IPS-LCD在应力集中的区域将会产生漏光的原因在于:玻璃基板在没有受到应力作用时为各向同性介质,不会产生双折射现象;在受到应力作用产生变形时,玻璃基板的折射率发生变化,而产生双折射现象,此时,若玻璃基板的光轴不与偏光片的偏振方向平行或垂直,则造成漏光。
因此,设计一种漏光量小、甚至不存在漏光现象的显示面板和显示装置是目前亟待解决的技术问题。
发明内容
本公开为至少部分解决现有的上述问题,提供一种显示面板和显示装置。该显示面板和显示装置相比现有的显示面板和显示装置极大地减小了漏光量。
解决本发明技术问题所采用的一种技术方案是:提供一种显示面板,包括阵列基板、对盒基板以及位于所述阵列基板与所述对盒基板之间的液晶层,在所述液晶层的任一侧还设置有光学补偿膜,所述光学补偿膜用于补偿光线经过所述液晶层而产生的相位延迟量。
在一个实施例中的方式,所述光学补偿膜对光线的相位延迟量与所述液晶层中液晶对 光线的相位延迟量相等。
在一个实施例中的方式,所述光学补偿膜为第一光学补偿膜,所述第一光学补偿膜满足下列光学条件式:nx>ny=nz,其中,nx表示在光学补偿膜表面上的X轴方向上的折射率、ny表示在光学补偿膜表面上的Y轴方向上的折射率、nz表示在光学补偿膜厚度上的Z轴方向的折射率,且所述第一光学补偿膜的光轴方向与所述液晶层中液晶的长轴方向相互垂直。
在一个实施例中的方式,所述光学补偿膜为第二光学补偿膜,所述第二光学补偿膜满足下列光学条件式:nx<ny=nz,其中,nx表示在光学补偿膜表面上的X轴方向上的折射率、ny表示在光学补偿膜表面上的Y轴方向上的折射率、nz表示在光学补偿膜厚度上的Z轴方向的折射率,且所述第二光学补偿膜的光轴方向与所述液晶层中液晶的长轴方向相互平行。
在一个实施例中的方式,所述光学补偿膜满足下列光学条件式:1.4≤nx≤2.0,1.4≤ny≤2.0,1.4≤nz≤2.0,且(nx-ny)*d等于所述液晶层中液晶对光线的相位延迟量,其中,d为光学补偿膜的厚度。
在一个实施例中的方式,还包括第一保护层和第二保护层,所述第一保护层和所述第二保护层分别位于所述光学补偿膜的两侧。
在一个实施例中的方式,所述光学补偿膜位于所述对盒基板或所述阵列基板靠近所述液晶层的一侧。
在一个实施例中的方式,所述对盒基板对光线的相位延迟量与所述阵列基板对光线的相位延迟量相等、且所述对盒基板的光轴方向与所述阵列基板的光轴方向正交。
在一个实施例中的方式,所述光学补偿膜的材料包括三醋酸纤维素酯。
本公开提供的另一种技术方案:一种显示装置,包括上述的显示面板。
本公开某些实施例中的显示面板和显示装置,通过在液晶层的任一侧设置有光学补偿膜,起到对经过阵列基板、液晶层和对盒基板的光线进行相位延迟量补偿的作用,从而在整体上抵消光线的相位延迟,极大地降低了漏光量,提高了显示面板和显示装置的对比度和画面的显示质量。
附图说明
图1为现有的液晶显示面板的结构示意图;
图2为本发明实施例1的显示面板的结构示意图;
图3为现有的液晶显示面板漏光的原理示意图;
图4为现有的液晶显示面板漏光的模拟图;
图5为图2的显示面板漏光的原理示意图;
图6为图2的显示面板与现有的显示面板漏光状况的比较图;
图7为本实施例的面内切换型显示面板与现有的面内切换型显示面板的VT曲线的比 较图;
图8为本发明实施例2的显示面板的结构示意图。
其中,附图标记为:
1、阵列基板;2、液晶层;3、对盒基板;4、光学补偿膜;5、下偏光片;6、上偏光片。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
实施例1:
本实施例提供一种显示面板,该显示面板中,在对盒基板靠近液晶层的一侧设置有光学补偿膜,该光学补偿膜用于补偿光线经过液晶层而产生的相位延迟量。
图2为本实施例的显示面板的结构示意图,如图2所示,显示面板包括阵列基板1、对盒基板3以及位于阵列基板1与对盒基板3之间的液晶层2,在对盒基板3靠近液晶层2的一侧设置有光学补偿膜4,还包括位于阵列基板1外侧的下偏光片5和位于对盒基板3外侧的上偏光片6。
其中,光学补偿膜4的材料包括三醋酸纤维素酯(TAC),其对光线的相位延迟量与液晶层2中液晶对光线的相位延迟量相等,从而,使光学补偿膜4能够起到抵消光线在经过液晶层2造成的相位延迟,避免该显示面板在受到应力作用时发生漏光的现象。
具体的,光学补偿膜4可以选用第一光学补偿膜,第一光学补偿膜的光轴方向与液晶层2中液晶的长轴方向相互垂直(正交)。在业界,第一光学补偿膜也称为:+a-plate,其满足下列光学条件式:nx>ny=nz,其中,nx表示在光学补偿膜表面上的X轴方向上的折射率、ny表示在光学补偿膜表面上的Y轴方向上的折射率、nz表示在光学补偿膜厚度上的Z轴方向的折射率,其中,1.4≤nx≤2.0,1.4≤ny≤2.0,1.4≤nz≤2.0,第一光学补偿膜的面内相位延迟量Ro=(nx-ny)*d,d为光学补偿膜的厚度,Ro的大小等于液晶层2中液晶对光线的相位延迟量,其大小范围一般为:280~400nm。
同理,光学补偿膜4也可以选用第二光学补偿膜,第二光学补偿膜的光轴方向与液晶层中液晶的长轴方向相互平行。在业界,第二光学补偿膜也称为:-a-plate,其满足下列光学条件式:nx<ny=nz,其中,nx表示在光学补偿膜表面上的X轴方向上的折射率、ny表示在光学补偿膜表面上的Y轴方向上的折射率、nz表示在光学补偿膜厚度上的Z轴方向的折射率,其中,1.4≤nx≤2.0,1.4≤ny≤2.0,1.4≤nz≤2.0,第二光学补偿膜的面内相位延迟量Ro=(nx-ny)*d,d为光学补偿膜的厚度,Ro的大小等于液晶层2中液晶对光线的相位延迟量,其大小范围一般为:280~400nm。
在显示面板弯曲时会产生应力作用,由于阵列基板1和对盒基板3中均包括玻璃 底板,光线在经过显示面板的阵列基板1和对盒基板3的过程将产生相应的延迟,进而造成漏光。玻璃底板对光线的相位延迟量的计算公式如下:
Ro=C*t*s    (1)
式中,Ro表示玻璃底板对光线的相位延迟量,C表示玻璃底板的光弹性系数,t表示玻璃底板的厚度,s表示玻璃底板受到的应力。
其中,玻璃底板受到的应力s的计算公式如下:
s=E*t/(2R)    (2)
式中,E表示玻璃的杨氏模量,t表示玻璃底板的厚度,R表示曲率半径。其中,R的值根据具体的产品具体设计,其大小范围一般在1000~8000nm。
根据公式(1)、公式(2)即可求得阵列基板1和对盒基板3中玻璃底板对光线的相位延迟量。
本实施例的显示面板中,以下偏光片5为基准,设下偏光片5的透过轴角度为0°、对光线的相位延迟量为0nm,则其他各层结构相对于下偏光片5的透过轴的角度和相位延迟量等光学参数如下:
阵列基板1:光轴方向120°,相位延迟量9nm;
液晶层2:光轴方向0°,相位延迟量350nm;
光学补偿膜4:光轴方向0/90°,相位延迟量350nm;
对盒基板3:光轴方向30°,相位延迟量9nm;
上偏光片6:透过轴角度90°,相位延迟量0nm。
所以,本实施例的显示面板中,对盒基板3对光线的相位延迟量与阵列基板1对光线的相位延迟量相等、且对盒基板3的光轴方向与阵列基板1的光轴方向正交。因此,阵列基板1的光轴方向和相位延迟量与对盒基板3和上偏光片6的光轴方向和相位延迟量抵消,液晶层2的光轴方向和相位延迟量与光学补偿膜4的光轴方向和相位延迟量抵消,从而,使显示面板中上下各层结构对光线对光线的相位延迟量相互抵消,达到减小或消除漏光的效果。
现有的显示面板的在受力变形的情况下会造成漏光,具体的,如图3的邦加球所示,光线经过阵列基板1时产生第一次相位延迟(如图3中向上的直线箭头a所示),光线经过液晶层2时产生第二次相位延迟(如图3中顺时针的圆弧箭头b所示),光线经过对盒基板3时产生第三次相位延迟(如图3中向下的直线箭头c所示)。其中,向上的直线箭头a的起点与向下的直线箭头c的终点的连线代表该液晶显示面板的漏光量(如图3中虚线段d所示)。
另外,图4为现有的液晶显示面板漏光的模拟图,其中横轴表示液晶显示面板的长边,纵轴表示液晶显示面板的短边,竖条图标表示液晶显示面板中不同颜色对应的漏光量。该液晶显示面板四个角落模拟的漏光量为0.7%,也就是说,若在亮态的亮度值为400nit的条件下,则液晶显示面板边缘四角的漏光量将高达400*0.7%=2.8nit。
然而,本实施例的显示面板中的液晶层2与光学补偿膜4视为一个整体,其相位延迟量Ro=(nx-ny)*d(式中,d表示整体的厚度)能够降为0,同时,阵列基板1对光线的相位延迟量与对盒基板3对光线的相位延迟量相等、相互抵消,从而减小或消除漏光。如图5的邦加球所示,光线经过阵列基板1时产生第一次相位延迟(如图5中向上的直线箭头a所示),光线经过液晶层2时产生第二次相位延迟(如图5中顺时针的圆弧箭头b所示),光线经过光学补偿膜4时产生第三次相位延迟(如图5中逆时针的圆弧箭头e所示),最后,经过对盒基板3时产生第四次相位延迟(如图5中向下的直线箭头c所示)。这样,向上的直线箭头a的起点与向下的直线箭头c的终点的连线代表该液晶显示装置的漏光量,此时由于二者均在原点(图5中,为了避免表示第一次相位延迟的向上直线箭头a与表示第四次相位延迟的向下直线箭头c重合、导致不能区分,因此,将两条直线箭头错开表示,实际上两条直线箭头是重合的)。从图5中可以看出,本实施例的显示面板的漏光量几乎为0。
此外,本实施例的显示面板还包括第一保护层和第二保护层,第一保护层和第二保护层分别位于光学补偿膜4的两侧,对光学补偿膜4进行有效保护。
该显示面板中光学补偿膜4的具体制备过程为:
首先,在对盒基板3的内侧形成第一保护层;
接着,在第一保护层上形成光学补偿膜4、并固化;
然后,在光学补偿膜4上形成第二保护层;
最后,按照正常的工艺制备其他各层结构。
在制备过程中,因为光学补偿膜4本身具有耐高温的性能,所以不会造成其他的工艺不良现象。
图6为本实施例的显示面板与现有的显示面板漏光状况的比较图,如图6所示,左侧(a)为现有的显示面板漏光的模拟图,右侧(b)为本实施例的显示面板漏光的模拟图,可以看出,现有的显示面板在暗态下漏光相对值约为1%,本实施例的显示面板在暗态下漏光相对值约为0%,也就是说,本实施例的显示面板在暗态下几乎不存在漏光现象。
本实施例的显示面板不仅可以设计为垂直取向型(VA)显示面板,也可以设计为面内切换型(IPS)显示面板。在面内切换型显示面板中,液晶层2的光轴方向和相位延迟量与光学补偿膜4的光轴方向和相位延迟量分别抵消,从而,使显示面板中上下各层结构对光线的相位延迟量相互抵消,达到减小或消除漏光的效果。
图7为本实施例的面内切换型显示面板与现有的面内切换型显示面板的VT曲线的比较图,如图7所示,左侧的图(a)为现有的面内切换型显示面板的VT曲线图,右侧的图(b)为本实施例的面内切换型显示面板的VT曲线图,其中,纵轴T表示透过率,横轴V表示电压大小。可以看出,在现有的面内切换型显示面板中各层结构的光学参数与本实施例的面内切换型显示面板相同的条件下,现有的面内切换型显示 面板在暗态下(加电后画面显示为暗)的透过率约为0.2%,在亮态下(加电后画面显示为暗)的透过率约为30%;而本实施例的面内切换型显示面板在暗态下的透过率约为0.02%,在亮态下的透过率约为30%。比较可知,本实施例的面内切换型显示面板,由于增设了光学补偿膜4,在保证亮态下的透过率的条件下,在暗态下的透过率明显小于现有的面内切换型显示面板、且大小趋近于0,也就是说,暗态条件下几乎不存在漏光的现象,有效地改善了暗态漏光状况。
本实施例的显示面板,通过在对盒基板靠近液晶层的一侧设置有光学补偿膜,起到补偿光线经过液晶层而产生的相位延迟量的作用,从而在整体上抵消光线的相位延迟,极大地减小了漏光量,尤其是在暗态下几乎完全消除了漏光量,极大地提高了显示面板的对比度和画面的显示质量。
实施例2:
本实施例提供一种显示面板,其具有与实施例1的显示面板类似的结构,其与实施例1的区别在于,光学补偿膜位于阵列基板靠近液晶层的一侧。
图8为本实施例的显示面板的结构示意图,如图8所示,显示面板包括阵列基板1、对盒基板3以及位于阵列基板1与对盒基板3之间的液晶层2,在阵列基板1靠近液晶层2的一侧设置有光学补偿膜4,还包括位于阵列基板1外侧的下偏光片5和位于对盒基板3外侧的上偏光片6。
本实施例的显示面板的其他结构以及各层的光学条件与实施例1中的对应结构相同,这里不再赘述。
本实施例的显示面板能够起到与实施例1的显示面板相同的技术效果,能够在整体上抵消光线的相位延迟,极大地减小了漏光量,尤其是在暗态下几乎完全消除了漏光量,极大地提高了显示面板的对比度和画面的显示质量。
实施例3:
本实施例提供一种显示装置,其包括实施例1和实施例2中任意一种显示面板。该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本实施例的显示装置包括实施例1和实施例2中任意一种显示面板,能够在整体上抵消光线的相位延迟,极大地减小了漏光量,尤其是在暗态下几乎完全消除了漏光量,极大地提高了显示面板的对比度和画面的显示质量。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种显示面板,包括阵列基板、对盒基板以及位于所述阵列基板与所述对盒基板之间的液晶层,其特征在于,在所述液晶层的任一侧还设置有光学补偿膜,所述光学补偿膜用于补偿光线经过所述液晶层而产生的相位延迟量。
  2. 根据权利要求1所述的显示面板,其中,所述光学补偿膜对光线的相位延迟量与所述液晶层中液晶对光线的相位延迟量相等。
  3. 根据权利要求2所述的显示面板,其中,所述光学补偿膜为第一光学补偿膜,所述第一光学补偿膜满足下列光学条件式:nx>ny=nz,其中,nx表示在光学补偿膜表面上的X轴方向上的折射率、ny表示在光学补偿膜表面上的Y轴方向上的折射率、nz表示在光学补偿膜厚度上的Z轴方向的折射率,且所述第一光学补偿膜的光轴方向与所述液晶层中液晶的长轴方向相互垂直。
  4. 根据权利要求2所述的显示面板,其中,所述光学补偿膜为第二光学补偿膜,所述第二光学补偿膜满足下列光学条件式:nx<ny=nz,其中,nx表示在光学补偿膜表面上的X轴方向上的折射率、ny表示在光学补偿膜表面上的Y轴方向上的折射率、nz表示在光学补偿膜厚度上的Z轴方向的折射率,且所述第二光学补偿膜的光轴方向与所述液晶层中液晶的长轴方向相互平行。
  5. 根据权利要求3或4所述的显示面板,其中,所述光学补偿膜还满足下列光学条件式:1.4≤nx≤2.0,1.4≤ny≤2.0,1.4≤nz≤2.0,且(nx-ny)*d等于所述液晶层中液晶对光线的相位延迟量,其中,d为光学补偿膜的厚度。
  6. 根据权利要求1所述的显示面板,其中,还包括第一保护层和第二保护层,所述第一保护层和所述第二保护层分别位于所述光学补偿膜的两侧。
  7. 根据权利要求1所述的显示面板,其中,所述光学补偿膜位于所述对盒基板或所述阵列基板靠近所述液晶层的一侧。
  8. 根据权利要求1所述的显示面板,其中,所述对盒基板对光线的相位延迟量与所述阵列基板对光线的相位延迟量相等、且所述对盒基板的光轴方向与所述阵列基板的光轴方向正交。
  9. 根据权利要求1所述的显示面板,其中,所述光学补偿膜的材料包括三醋酸纤维素酯。
  10. 一种显示装置,其中,包括权利要求1-9任一所述的显示面板。
PCT/CN2017/073383 2016-06-01 2017-02-13 显示面板和显示装置 WO2017206541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/577,121 US20190018272A1 (en) 2016-06-01 2017-02-13 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610382230.8 2016-06-01
CN201610382230.8A CN105842927A (zh) 2016-06-01 2016-06-01 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2017206541A1 true WO2017206541A1 (zh) 2017-12-07

Family

ID=56595611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073383 WO2017206541A1 (zh) 2016-06-01 2017-02-13 显示面板和显示装置

Country Status (3)

Country Link
US (1) US20190018272A1 (zh)
CN (1) CN105842927A (zh)
WO (1) WO2017206541A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842927A (zh) * 2016-06-01 2016-08-10 京东方科技集团股份有限公司 显示面板和显示装置
CN108089377A (zh) 2018-02-13 2018-05-29 京东方科技集团股份有限公司 一种水平电场型的显示面板、其制作方法及显示装置
CN112649987A (zh) * 2019-10-11 2021-04-13 Oppo广东移动通信有限公司 电子设备及其显示模组
CN110945414B (zh) * 2019-11-15 2022-08-19 京东方科技集团股份有限公司 显示装置和操作显示装置的方法
CN111610666B (zh) * 2020-06-24 2023-10-13 京东方科技集团股份有限公司 液晶面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201514527U (zh) * 2009-05-27 2010-06-23 立景光电股份有限公司 液晶面板结构
CN102981311A (zh) * 2012-12-07 2013-03-20 京东方科技集团股份有限公司 显示面板及显示装置
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN104714330A (zh) * 2015-04-07 2015-06-17 京东方科技集团股份有限公司 一种曲面液晶显示面板及其制造方法
CN105182619A (zh) * 2015-10-28 2015-12-23 京东方科技集团股份有限公司 液晶显示面板
CN105842927A (zh) * 2016-06-01 2016-08-10 京东方科技集团股份有限公司 显示面板和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025897A (en) * 1993-12-21 2000-02-15 3M Innovative Properties Co. Display with reflective polarizer and randomizing cavity
EP1832915B1 (en) * 2006-01-31 2012-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device with improved contrast
WO2008093598A1 (ja) * 2007-02-02 2008-08-07 Dai Nippon Printing Co., Ltd. 位相差制御機能を有する光学部材及び液晶ディスプレイ
US7872715B2 (en) * 2007-02-16 2011-01-18 Toppan Printing Co., Ltd. Liquid crystal display device and method for manufacturing the same
US8729253B2 (en) * 2011-04-13 2014-05-20 Eastman Chemical Company Cellulose ester optical films
TWI465805B (zh) * 2012-04-24 2014-12-21 Au Optronics Corp 顯示裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201514527U (zh) * 2009-05-27 2010-06-23 立景光电股份有限公司 液晶面板结构
CN102981311A (zh) * 2012-12-07 2013-03-20 京东方科技集团股份有限公司 显示面板及显示装置
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN104714330A (zh) * 2015-04-07 2015-06-17 京东方科技集团股份有限公司 一种曲面液晶显示面板及其制造方法
CN105182619A (zh) * 2015-10-28 2015-12-23 京东方科技集团股份有限公司 液晶显示面板
CN105842927A (zh) * 2016-06-01 2016-08-10 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US20190018272A1 (en) 2019-01-17
CN105842927A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2017206541A1 (zh) 显示面板和显示装置
US7511792B2 (en) In-plane switching liquid crystal display having simple structure
JP6238912B2 (ja) 負の二軸性位相差フィルムと+c−プレートを用いた視野角の補償フィルムを含むips液晶表示装置
JP4753882B2 (ja) A−プレートを用いた視野角の補償フィルムを含むips液晶表示装置
US9874782B2 (en) Curved liquid crystal display device
US20050140900A1 (en) In-plane switching liquid crystal display comprising compensation film for angular field of view using +A-plate and +C-plate
US7898628B2 (en) Liquid crystal display device
KR20090101620A (ko) 시야각 보상필름 일체형 편광판 및 이를 포함하는ips-lcd
US9740049B2 (en) Liquid crystal display panel and liquid crystal display device
JP2004206130A (ja) 液晶表示装置
JP2004163939A (ja) 液晶表示装置
JP5414960B2 (ja) 液晶表示装置
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
US9019452B2 (en) Compensation system and liquid crystal display apparatus for liquid crystal panel
US20150378199A1 (en) Liquid crystal display and optical compensation method applied in liquid crystal display
US20150293406A1 (en) Single-Layered Biaxial Compensation Structure For Liquid Crystal Panels And The Liquid Crystal Displays
WO2017033496A1 (ja) タッチパネル付き液晶表示装置
US11187943B2 (en) Fringe field driven liquid crystal display panel and method of determining a direction of an optical axis of a glass layer in a fringe field driven liquid crystal display pane
WO2016101338A1 (zh) 液晶显示器
WO2017166388A1 (zh) 显示基板、液晶显示面板及显示装置
US20160124264A1 (en) Compensation structure for liquid crystal panels and the liquid crystal displays
US20160011449A1 (en) Liquid Crystal Display and Optical Compensation Method Applied in Liquid Crystal Display
US20080123027A1 (en) Liquid crystal display apparatus
US20230168553A1 (en) Array substrate, liquid crystal display panel and liquid crystal display device
US7612844B2 (en) Wide viewing angle liquid crystal display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805488

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17805488

Country of ref document: EP

Kind code of ref document: A1