WO2017206503A1 - 分离混合输入的rf信号和电源信号的电路和方法 - Google Patents

分离混合输入的rf信号和电源信号的电路和方法 Download PDF

Info

Publication number
WO2017206503A1
WO2017206503A1 PCT/CN2016/113124 CN2016113124W WO2017206503A1 WO 2017206503 A1 WO2017206503 A1 WO 2017206503A1 CN 2016113124 W CN2016113124 W CN 2016113124W WO 2017206503 A1 WO2017206503 A1 WO 2017206503A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
input
module
voltage
power signal
Prior art date
Application number
PCT/CN2016/113124
Other languages
English (en)
French (fr)
Inventor
徐坤显
王文收
Original Assignee
广州视源电子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2017206503A1 publication Critical patent/WO2017206503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers

Definitions

  • This invention relates to the field of signal processing techniques, and more particularly to circuits and methods for separating mixed input RF signals and power signals.
  • a large-sized magnetic wire wound inductor component for example, a rod-type plug-in inductor with a length of 3-4 CM
  • the length of the wire is not easy to install the magnetic core wound inductor component in the RF shield.
  • the core wound inductor component also brings about the attenuation of the high frequency part of the RF signal (such as 400MHZ-800MHZ). The higher the RF signal frequency. The more the attenuation is; in addition, the cost of such a core winding inductance is also high.
  • the harmonic signal of the power signal interferes with the low frequency portion of the RF signal (such as 55 MHz - 90 MHz).
  • the circuit and method for separating the mixed input RF signal and the power signal provided by the embodiment of the present invention can separate the mixed input RF signal and the DC/AC power signal, and improve the receiving sensitivity of the RF signal.
  • An aspect of the present invention provides a circuit for separating a mixed input RF signal and a power signal, comprising: a signal separation module, a rectifier module, a DC-DC conversion module, and an interference suppression module; the input end of the signal separation module is connected to the input end of the mixed signal, the mixed signal includes an RF signal and a DC/AC power signal; and an output end of the signal separation module is connected The high frequency head, the other output end is connected to the input end of the rectifier module through the interference suppression module; the output end of the rectifier module is connected to the input end of the DC-DC conversion module, and the voltage output by the DC-DC conversion module is used to supply power to the TV drive system circuit;
  • the signal separation module is configured to separate an RF signal from the mixed signal, input the obtained RF signal to a radio frequency signal pin of the tuner; and separate a corresponding power signal from the mixed signal;
  • the rectifier module is configured to rectify the input power signal to a corresponding DC voltage
  • the DC-DC conversion module is configured to convert the rectified DC voltage into a DC voltage suitable for a TV driving system
  • the interference suppression module is configured to suppress reverse interference of the harmonic signals generated during rectification and DC-DC conversion on the RF signal.
  • the present invention also provides a method of separating a mixed input RF signal and a power signal, comprising:
  • the separated RF signal is input to the RF signal pin of the tuner; the separated power signal is rectified and DC-DC converted, and the harmonic signal generated during the rectification and DC-DC conversion is applied to the RF signal. Reverse interference is suppressed.
  • the RF signal and the DC signal/AC are separated from the mixed signal by the signal separation module; the separated power signal is rectified into a DC voltage by the rectifier module; and the DC voltage obtained by the rectification is converted into a DC voltage by the DC-DC conversion module
  • the DC voltage compatible with the TV driving system; the interference suppression module suppresses the reverse interference of the harmonic signals generated during the rectification and DC-DC conversion to the RF signal.
  • the solution of the above embodiment of the present invention can separate the mixed input RF signal and the DC/AC power signal, realize power supply to the TV driving system through the RF signal line, and avoid interference of the power signal by the entire frequency band of the RF signal, and improve the full frequency band of the RF signal. Sensitivity; and low implementation cost and versatility.
  • FIG. 1 is a schematic structural diagram of a circuit for separating a mixed input RF signal and a power signal according to an embodiment
  • FIG. 2 is a schematic structural diagram of a signal separation module of an embodiment
  • FIG. 3 is a schematic structural diagram of an interference suppression module according to an embodiment
  • FIG. 4 is a schematic structural diagram of a DC-DC conversion module according to an embodiment
  • FIG. 5 is a flow chart of a method of separating a circuit for mixing an input RF signal and a power signal in accordance with an embodiment.
  • FIG. 1 is a schematic block diagram of a circuit for separating a mixed input RF signal and a power supply signal according to an embodiment.
  • the RF signal line and the power signal line need not be separated, and the RF signal and the power signal can be mixed and input through the RF signal line.
  • the power signal can be either a DC power signal or an AC power signal.
  • the circuit for separating the input RF signal and the power signal receives the input mixed signal, it is required to separate the signal contained therein, send the RF signal to the high frequency head, and use the power signal therein as
  • the TV driver system circuit supplies power; in addition, the sensitivity of the received RF signal must be ensured as much as possible.
  • the circuit includes: a signal separation module, a rectifier module, a DC-DC conversion module, and an interference suppression module.
  • the input of the signal separation module is connected to the input terminal RF_IN (in the embodiment of the present invention, the RF signal line) of the mixed signal, and the mixed signal includes an RF signal and a DC/AC power signal.
  • the two output ends of the signal separation module are respectively connected to the input end of the high frequency head and the rectifier module, the output end of the rectifier module is connected to the input end of the DC-DC conversion module, and the voltage output by the DC-DC conversion module is the circuit of the TV drive system. powered by.
  • the signal separation module in the embodiment of the present invention is connected to the input end of the rectifier module through the interference suppression module. The following describes each module.
  • the signal separating module is configured to separate the RF signal and the DC power signal/the AC power signal in the set frequency range from the mixed signal; and input the separated RF signal to the high frequency head;
  • the rectifier module is configured to rectify the input DC power signal/AC power signal into a DC voltage
  • the DC-DC conversion module is configured to convert the rectified DC voltage into a DC voltage compatible with the TV driving system to supply power to the TV driving system circuit;
  • the interference suppression module is configured to suppress reverse interference of the harmonic signals generated during rectification and DC-DC conversion on the RF signal.
  • the interference suppression module may specifically include: a magnetic bar winding inductance LB1, a two-stage cascaded common mode inductance LC1 (ie, a first common mode inductance), and an LC2 (ie, a second common mode inductance) ), parallel capacitors CT27 (ie, the first capacitor) and CT30 (ie, the second capacitor), and capacitor CB3 (ie, the third capacitor), CB4 (ie, the fourth capacitor); common-mode inductor LC1 two output terminals and the common-mode inductor The two inputs of the LC2 are connected.
  • one end of the magnetic bar winding inductance LB1 is connected to the RF_VCC end, the other end of the LB1 is connected to one end of the CB3, the input end of the first coil of the common mode inductor LC1, and the other end of the capacitor CB3 and the input end of the second coil of the common mode inductor LC1 are grounded.
  • the capacitor CB4 is shorted between the common mode inductors LC1 and LC2; one end of the capacitor CT27 is connected to the signal input end of the interference suppression module, and the other end of the capacitor CT27 is shared with the ground pin of the high frequency head; the output of the common mode inductor LC2 two coils
  • the terminals are respectively used as two output ends of the interference suppression module (L-1, N-1 terminals shown in FIG. 3). Adjusting the inductance parameters of common mode inductors LC1 and LC2 and the capacitance of capacitors CB3 and CB4 can suppress common mode interference in different frequency bands; adjusting the parameters of magnetic bar winding inductance LB1 and capacitance CT27 and CT30 can suppress differential modes of different frequency bands interference.
  • the other end of the inductor LB1 is connected to one end of the capacitor CB3 and the input end of the first coil of the LC1 through the fuse FB6; the output end of the first coil of the LC1 is connected to the CB4 end, and the LC2
  • the input end of a coil, the output end of the second coil of LC1 is connected to the other end of CB4, the input end of the second inductor of LC2, and the input end of the first coil of LC2 serves as the first output end L-1 of the interference suppression module,
  • the output of the second coil of LC2 acts as the second output N-1 of the interference suppression module.
  • the rectifier module is a rectifier bridge, and two input ends thereof (ie, A end and B end shown in FIG. 3) are respectively connected to two output ends of the interference suppression module (L-1 end and N-1 end).
  • the interference suppression module can suppress interference of higher harmonics and noise generated during rectification and DC-DC conversion on the full frequency band of the RF signal of the digital television signal.
  • the mixed signal contains not only a high frequency RF signal but also a DC or AC power signal to be supplied to the system.
  • the mixed signal is divided into two paths, one is separated by a capacitor CT7, and an RF signal is obtained, and the high frequency head is entered, and the first of the RFT1 sockets of the high frequency head is obtained.
  • the pin is the input of the RF signal; the capacitor CT7 not only filters out the DC signal, but also filters out the low frequency power frequency AC power signal.
  • the other way is to obtain the AC power signal with the DC power signal/frequency within the set range (for example, 50-60 Hz) through the inductor LT5, and send it to the RF_VCC terminal.
  • the above-mentioned separation circuit can be set to block the set frequency threshold by setting the parameters of the inductor LT5 (because the RF signal is proposed as a high frequency signal, According to the frequency range of the RF signal, such as a frequency signal above 600 MHz, and the AC power signal in the DC or set frequency range is turned on to send the power signal to the subsequent rectifier module for processing; On the other hand, since the distributed capacitance of the inductance element is small, it is possible to input a useful RF signal to a high level. The frequency is not lost.
  • the chip type inductor can be used, the cost is low, and the miniaturized patch mounting is convenient, and the shield is shielded in the shield of the high frequency head, and the wiring is short, and it is not easy to introduce additional interference, thereby reducing RF signal attenuation. .
  • the DC-DC conversion module includes: a PWM controller UB1 suitable for the mains input, a transformer TB101, a diode DB8 (ie, a first diode), and a DB9 (ie, Two diodes) and filter capacitor EB2.
  • the VCC pin of the PWM controller UB1 is simultaneously connected to the diode DB9 cathode, the filter capacitor EB2 anode, the diode DB8 cathode, the diode DB9 anode is connected to the first output terminal L-1 of the interference suppression module, and the filter capacitor EB2 cathode is connected to the cathode
  • the first voltage output terminal SGND of the rectifier module in the circuit shown in FIGS. 3 and 4, the first voltage output terminal SGND is used as the ground of the output voltage signal
  • the diode DB8 is connected to the second winding of the transformer TB101
  • the transformer TB101 is A winding is connected to the second voltage output terminal Vbridge of the rectifier module.
  • the filter capacitor EB2 is charged through the diode DB9 when the AC power signal is at a negative half cycle voltage.
  • the filter capacitor EB2 will not discharge. Therefore, after several power signal cycles, the voltage on the filter capacitor EB2 can reach the startup voltage of the PWM controller UB1 (ie, the voltage of the VCC pin of the PWM controller UB1 reaches the startup voltage of the PWM controller UB1), that is, the VCC of the UB1.
  • the pin voltage can reach the startup voltage of UB1.
  • the filter capacitor EB2 Without the diode DB9, the filter capacitor EB2 will discharge during the negative half cycle voltage of the AC power signal, causing the voltage on the filter capacitor EB2 to always reach the startup voltage of the PWM controller UB1. For example, when an AC power signal input of about 18V is input, the filter capacitor EB2 will never reach the DC voltage of the DC-DC starting 17V.
  • the filter capacitor EB2 By connecting the diode DB9, the filter capacitor EB2 can be charged in the positive half cycle voltage of the AC power signal, and the filter capacitor EB2 can be prevented from being discharged in the negative half cycle voltage of the AC power signal, so that the voltage on the filter capacitor EB2 can reach the above The startup voltage of the PWM controller UB1.
  • the PWM controller UB1 When it is detected that the voltage on EB2 reaches the startup voltage of the PWM controller UB1, the PWM controller UB1 is activated. And after the PWM controller UB1 is started, the output voltage of the second voltage output terminal Vbridge of the rectifier module passes through the second winding of the transformer TB101 and the diode DB8 to maintain the PWM controller UB1 to operate normally.
  • the low-cost ordinary PWM controller is used to make the controller pass the AC voltage input cycle through the diode DB9, and the VCC pin voltage of the PWM controller can reach the minimum startup voltage, which effectively solves the problem of the controller. Startup issue.
  • a DC-DC PWM controller with a common mains input as a power signal is used, and the starting voltage is 17V or more; the versatility of the conversion circuit is strong, and the leakage is realized in a low-cost manner. isolation.
  • the DC-DC conversion module further includes: capacitors CB6, CB7, CB9-CB13, filter capacitor EB1, resistors RB2-RB5, RB8-RB13, RB15, RB18, RB25, diode DB5, parallel connection of the package Diode DB7, MOS depletion field effect transistor QB1, phototransistor PCB1B.
  • the first winding of the transformer TB101 (the first and third windings in FIG.
  • QB1 drain is connected to DB5 positive pole
  • QB1 gate is connected to RB11 end, RB8 end, DB7 positive pole
  • RB11 other end, RB15 end, RB25 end are connected to QB1 source
  • QB1 source is also connected to the first voltage output of rectifier module through RB19 SGND.
  • the COMP pin of the PWM controller UB1 is connected to one end of CB11 and the drain of PCB1B.
  • the OTP pin of UB1 is connected to one end of RB18.
  • the GND pin of UB1, the other end of CB11, the source of PCB1B, and the other end of RB18 are connected to the SGND output of the rectifier module.
  • the OUT pin of UB1 is connected to the other end of RB8, the end of RB13, the other end of RB13 is connected to the negative terminal of DB7; the VCC pin of UB1 is connected to the negative terminal of DB9 through RB9, the positive terminal of DB9 is connected to the L-1 end; the VCC pin of UB1 is also connected to the end of CB13, The EB2 positive terminal; the CS pin of UB1 is connected to one end of CB12, the other end of RB15, the other end of CB12, the other end of CB13, and the negative terminal of EB2 are connected to the SGND output end of the rectifier module.
  • the primary winding of the second winding of the transformer TB101 (the 5 and 6 windings in Fig. 4) is connected to one end of the RB10, the other end of the RB10 is connected to one end of the RB12, the positive end of the DB8, the other end of the RB12 is connected to the end of the CB10, and the other end of the DB8 and the other end of the CB10 are connected to the EB2. positive electrode.
  • the voltage value of the DC power signal in the mixed signal is 18-42V
  • the voltage effective value of the AC power signal in the mixed signal is 18V-28V. That is, the above circuit of the embodiment of the present invention can supply power to the television driving system through the RF signal line for both the DC power signal of 18-42V and the AC power signal of 18V-28V.
  • the power-on circuit of the PWM controller UB1 is the L-1 position before the VCC pin is connected to the input rectification, and the filter capacitor EB2 (capacity is 10uF) connected to the VCC pin.
  • the EB2 is charged by the diode DB9.
  • the live line is a negative half-cycle voltage
  • the EB2 discharge can be prevented by the diode DB9 that is connected. Therefore, the voltage on EB2 can reach above 17V to enable the PWM controller UB1 to start.
  • the rectified power supply signal connected through diode DB8 is supplied to the subsequent VCC pin current of UB1 to make it work normally.
  • the charging current is too small at startup, and the positive half-cycle charging time of one hot line input is not enough to start the UB1 charging to above 17V. If there is no diode DB9, multiple positive half cycle charging It will also discharge with a negative half-cycle for many times, and the VCC voltage of UB1 can never reach above 17V.
  • the ground of the tuner is the same ground as the input AC power signal, there is no common mode capacitor between the primary and secondary of the DC-DC conversion. Because if there is a common mode capacitor, the inductor LB1 will not suppress the common mode interference generated during the rectifier bridge and DC-DC conversion process, and the common mode interference of the primary power signal will flow to the secondary power signal through the common mode capacitor. Ground, then to the high frequency head, this ground is also the ground of the RF signal, thus interfering with the RF signal. Therefore, if the DC-DC primary secondary indirectly charges, the lower the RF signal frequency, the worse its reception capability.
  • the present invention also provides a method for separating the mixed input RF signal and the power signal. As shown in FIG. 5, the method includes:
  • step S11 the input mixed signal is received, and the mixed signal includes an RF signal and a DC/AC power signal.
  • the voltage value of the DC power signal in the mixed signal is 18-42V
  • the mixed signal is The rms voltage of the AC power signal is 18V-28V.
  • Step S12 separating the RF signal and the corresponding power signal from the mixed signal
  • Step S13 inputting the separated RF signal into the tuner; rectifying and DC-DC converting the separated power signal, and reversing the RF signal generated by the rectification and DC-DC conversion process Interference is suppressed.
  • the DC voltage suitable for the TV driving system can be supplied to the TV driving system circuit; and the RF signal of the RF signal pin of the high frequency head can also be input to the TV system. Provide RF signals.
  • the mixed signal can be divided into two paths, one through the capacitive element to block the power signal in the mixed signal to obtain an RF signal, and the other through the inductive element to block the RF signal in the mixed signal, A power signal is obtained, and the power signal is a DC signal or an AC power signal whose frequency is within a set range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Noise Elimination (AREA)

Abstract

本发明涉及分离混合输入的RF信号和电源信号的电路和方法。所述电路包括:信号分离模块、整流模块以及DC-DC转换模块;信号分离模块的输入端连接混合信号的输入端;所述信号分离模块的两输出端分别连接高频头和整流模块的输入端,整流模块的输出端连接DC-DC转换模块的输入端,用DC-DC转换模块输出的电压为电视驱动系统电路供电;所述信号分离模块通过干扰抑制模块与整流模块的输入端连接,以抑制整流及DC-DC转换过程中产生的谐波信号对RF信号的反向干扰。本发明能够分离混合输入的RF信号和直流/交流电源信号,且提高RF信号的接收灵敏度。

Description

分离混合输入的RF信号和电源信号的电路和方法 技术领域
本发明涉及信号处理技术领域,特别是涉及分离混合输入的RF信号和电源信号的电路和方法。
背景技术
市面上的电视系统中,为了防止电源信号对低频RF(射频)信号的干扰,电源信号输入和RF信号输入是分开的。因此在PCB布线过程中,需将两者的走线尽可能分开,需要两条输入线。
近年来,在特定领域出现了将电源信号和RF信号混合输入的技术,即将低压直流电源信号和RF信号均通过RF信号线传输。例如医院电视系统,普通的市电直接输入不符合高等级的安全需求,需要转换成低安全电压的电源信号作为电视的输入电压,又不改变原有的布线系统,这就出现了RF信号与电源信号同时由RF线输入的需求;对于新建的医院,有与RF信号与低压电源信号在同一条RF线上输入到电视,方便简洁,也越来越多的采用此技术。
然而目前的技术中,对于输入的混合信号,需采用一个尺寸较大的磁芯绕线电感元件(例如长3-4CM的棒型插件电感)来分离混合输入的电源信号与RF信号,存在走线长,不易将磁芯绕线电感元件安装在RF屏蔽罩内的问题;同时磁芯绕线电感元件还会带来RF信号高频部分(如400MHZ-800MHZ)的衰减,RF信号频率越高衰减越多;此外,这样的磁芯绕线电感的成本也较高。并且,还存在电源信号的谐波信号对RF信号低频部分(如55MHZ--90MHZ)产生干扰的问题。
因此,现有的分离混合输入的RF信号和电源信号的方案,成本高,且实现效果不理想。
发明内容
基于此,本发明实施例提供的分离混合输入的RF信号和电源信号的电路和方法,能够分离混合输入的RF信号和直流/交流电源信号,且提高RF信号的接收灵敏度。
本发明一方面提供分离混合输入的RF信号和电源信号的电路,包括:信号分离模块、 整流模块、DC-DC转换模块以及干扰抑制模块;信号分离模块的输入端连接混合信号的输入端,所述混合信号包括RF信号和直流/交流电源信号;所述信号分离模块的一输出端连接高频头,另一输出端通过干扰抑制模块连接整流模块的输入端;整流模块的输出端连接DC-DC转换模块的输入端,用DC-DC转换模块输出的电压为电视驱动系统电路供电;
所述信号分离模块,用于从所述混合信号中分离得到RF信号,将得到的RF信号输入至高频头的射频信号引脚;以及从所述混合信号中分离得到对应的电源信号;
所述整流模块,用于将输入的电源信号整流为对应的直流电压;
所述DC-DC转换模块,用于将整流得到的直流电压转换为与电视驱动系统相适应的直流电压;
所述干扰抑制模块,用于抑制整流及DC-DC转换过程中产生的谐波信号对RF信号的反向干扰。
本发明还提供了一种分离混合输入的RF信号和电源信号的方法,包括:
接收输入的混合信号,该混合信号包括RF信号和直流/交流电源信号;
从所述混合信号中分离得到RF信号和对应的电源信号;
将分离得到的RF信号输入至高频头的射频信号引脚;将分离得到的电源信号进行整流和DC-DC转换,并对整流和DC-DC转换过程中产生的谐波信号对RF信号的反向干扰进行抑制。
上述技术方案,通过信号分离模块从混合信号中分离得到RF信号和直流信号/交流;通过整流模块将分离得到的电源信号整流为直流电压;通过DC-DC转换模块将整流得到的直流电压转换为与电视驱动系统相适应的直流电压;通过干扰抑制模块抑制整流及DC-DC转换过程中产生的谐波信号对RF信号的反向干扰。本发明上述实施例的方案,能够分离混合输入的RF信号和直流/交流电源信号,实现通过RF信号线向电视驱动系统供电,且避免RF信号全频段受到电源信号的干扰,提高RF信号全频段的灵敏度;并且实现成本低,且通用性强。
附图说明
图1为一实施例的分离混合输入的RF信号和电源信号的电路的示意性结构图;
图2为一实施例的信号分离模块的示意性结构图;
图3为一实施例的干扰抑制模块的示意性结构图;
图4为一实施例的DC-DC转换模块的示意性结构图;
图5为一实施例的分离混合输入的RF信号和电源信号的电路的方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1为一实施例的分离混合输入的RF信号和电源信号的电路的示意性结构图。在本发明实施例中,在PCB布线过程中,无需将RF信号线和电源信号线的走线分开,可将RF信号和电源信号通过RF信号线混合输入。所述电源信号既可为直流电源信号,也可以为交流电源信号。本发明实施例的分离混合输入的RF信号和电源信号的电路接收到输入的混合信号时,需要对其包含的信号进行分离,将其中的RF信号送至高频头,并用其中的电源信号为电视驱动系统电路供电;此外,还需尽量保证接收到的RF信号的灵敏度。
结合图1-图4所示,下面对本发明实施例的分离混合输入的RF信号和电源信号的电路进行说明。
如图1所示,所述电路包括:信号分离模块、整流模块、DC-DC转换模块以及干扰抑制模块。信号分离模块的输入端连接混合信号的输入端RF_IN(本发明实施例中即RF信号线),所述混合信号包括RF信号和直流/交流电源信号。所述信号分离模块的两输出端分别连接高频头和整流模块的输入端,整流模块的输出端连接DC-DC转换模块的输入端,用DC-DC转换模块输出的电压为电视驱动系统电路供电。并且,本发明实施例中所述信号分离模块是通过干扰抑制模块与整流模块的输入端连接的。下面对各模块进行说明。
其中,所述信号分离模块,用于从所述混合信号中分离得到RF信号和直流电源信号/设定频率范围内的交流电源信号;并将分离得到的RF信号输入至高频头;
所述整流模块,用于将输入的直流电源信号/交流电源信号整流为直流电压;
所述DC-DC转换模块,用于将整流得到的直流电压转换为与电视驱动系统相适应的直流电压,以向电视驱动系统电路供电;
所述干扰抑制模块,用于抑制整流及DC-DC转换过程中产生的谐波信号对RF信号的反向干扰。
如图3所示,为了减小DC-DC变换产生的噪声、电流谐波信号及整流产生的电流谐 波反向干扰到RF信号,所述干扰抑制模块具体可包括:磁棒绕线电感LB1,两级级联的共模电感LC1(即第一共模电感)和LC2(即第二共模电感),并联的电容CT27(即第一电容)和CT30(即第二电容),以及电容CB3(即第三电容)、CB4(即第四电容);共模电感LC1两输出端分别与共模电感LC2两输入端连接。其中,磁棒绕线电感LB1一端连接RF_VCC端,LB1另一端连接CB3一端、共模电感LC1的第一线圈的输入端,电容CB3另一端、共模电感LC1的第二线圈的输入端均接地,电容CB4短接在共模电感LC1、LC2之间;电容CT27一端连接干扰抑制模块的信号输入端,电容CT27另一端与高频头的接地引脚共地;共模电感LC2两线圈的输出端分别作为干扰抑制模块的两输出端(如图3所示的L-1、N-1端)。调节共模电感LC1、LC2的电感参数和电容CB3、CB4的电容大小,可抑制不同频段的共模干扰;调节磁棒绕线电感LB1和电容CT27、CT30的参数,可抑制不同频段的差模干扰。
作为一优选实施方式,如图3所示,所述电感LB1另一端通过保险丝FB6连接电容CB3一端、LC1的第一线圈的输入端;LC1的第一线圈的输出端连接CB4一端、LC2的第一线圈的输入端,LC1的第二线圈的输出端连接CB4另一端、LC2的第二电感线圈的输入端,LC2的第一线圈的输入端作为干扰抑制模块的第一输出端L-1,LC2的第二线圈的输出端作为干扰抑制模块的第二输出端N-1。如图3所示,所述整流模块为整流桥,其两个输入端(即图3所示的A端和B端)分别连接所述干扰抑制模块的两个输出端(L-1端和N-1端)。通过该干扰抑制模块,可抑制整流及DC-DC转换过程中产生的高次谐波和噪声对数字电视信号的RF信号的全频段的干扰。
所述混合信号里面不仅含有高频RF信号,同时也含有要给系统供电的直流或交流电源信号。作为一优选实施方式,如图2所示,本实施例中将所述混合信号分为两路,一路经过电容CT7隔直,得到RF信号,进入高频头,高频头RFT1插座的第一引脚为RF信号的输入;电容CT7不仅要滤掉直流信号,同时也要将滤除低频工频交流电源信号。另一路通过电感LT5,得到直流电源信号/频率在设定范围内(例如50~60Hz)的交流电源信号,输送到RF_VCC端。由于电视系统常用的电源信号比RF信号的频率低很多,因此通过上述的分离电路,通过设置电感LT5的参数,使其能够阻断设定频率阈值(由于RF信号提出为高频信号,这里可根据RF信号的频率范围进行设定,如600MHZ)以上的频率信号,而导通直流或设定频率范围内的交流电源信号导通,以将电源信号送入后续的整流模块进行处理;另一方面,由于电感元件的分布电容小,能够把有用的RF信号输入到高 频头而不受到损失。优选的,可采用贴片型电感,其成本低、且方便小型化贴片安装,方便将其屏蔽在高频头的屏蔽罩内,并且走线短,不易引入额外干扰,从而降低RF信号衰减。
作为一优选实施方式,如图4所示,所述DC-DC转换模块包括:适用于市电输入的PWM控制器UB1,变压器TB101,二极管DB8(即第一二极管)、DB9(即第二二极管)和滤波电容EB2。其中,PWM控制器UB1的VCC引脚同时连接二极管DB9负极、滤波电容EB2正极、二极管DB8负极,二极管DB9正极连接所述干扰抑制模块的第一输出端L-1,滤波电容EB2负极连接所述整流模块的第一电压输出端SGND(如图3、4所示的电路中,第一电压输出端SGND作为输出电压信号的地),二极管DB8正极连接变压器TB101的第二绕组;变压器TB101的第一绕组连接整流模块的第二电压输出端Vbridge。若所述干扰抑制模块的第一输出端L-1输出的是交流电源信号,在交流电源信号的正半周电压时,通过二极管DB9对滤波电容EB2充电,当所述交流电源信号在负半周电压时,由于接入了二极管DB9,滤波电容EB2将不会放电。因此,经过若干个电源信号周期,滤波电容EB2上的电压可达到PWM控制器UB1的启动电压(即PWM控制器UB1的VCC引脚的电压达到PWM控制器UB1的启动电压),即UB1的VCC引脚电压可达到UB1的启动电压。若没有二极管DB9,在交流电源信号的负半周电压时,滤波电容EB2将放电,导致滤波电容EB2上的电压始终难以达到PWM控制器UB1的启动电压。例如:在18V左右的交流电源信号输入时,滤波电容EB2将始终无法达到DC-DC启动的17V直流电压。通过接入二极管DB9,既可在交流电源信号的正半周电压对滤波电容EB2充电,又可在交流电源信号的负半周电压时防止滤波电容EB2放电,因此滤波电容EB2上的电压能够达到所述PWM控制器UB1的启动电压。
当检测到EB2上的电压达到PWM控制器UB1的启动电压时,PWM控制器UB1启动。并且在PWM控制器UB1启动之后,由整流模块的第二电压输出端Vbridge的输出电压经过变压器TB101的第二绕组和二极管DB8,维持PWM控制器UB1正常工作。通过上述的转换电路,采用低成本的普通PWM控制器,通过二极管DB9使控制器经若干个交流电压输入周期后,PWM控制器的VCC引脚电压能达到最小启动电压,有效解决了控制器难以启动的问题。
优选的,本发明实施例中采用的是普通市电为电源信号输入的DC-DC PWM控制器,其启动电压为17V以上;使得转换电路的通用性强,便于以低成本的方式实现了漏电隔离。
如图4所示,所述DC-DC转换模块还包括:电容CB6、CB7、CB9-CB13,滤波电容EB1,电阻RB2-RB5、RB8-RB13、RB15、RB18、RB25,二极管DB5,封装的并联二极管DB7,MOS耗尽型场效应管QB1,光敏三极管PCB1B。其中,变压器TB101的第一绕组(图4中的1、3绕组)的初级线圈一端、CB6一端、CB7一端、RB2一端均连接整流模块的Vbridge输出端,CB7另一端连接RB5一端、DB5负极,RB2另一端连接RB5另一端,EB1并联在CB6两端,RB3并联在RB2两端,RB4并联在RB5两端,DB5正极、CB9一端均连接变压器TB101的第一绕组的初级线圈另一端。QB1漏极连接DB5正极,QB1栅极连接RB11一端、RB8一端、DB7正极;RB11另一端、RB15一端、RB25一端均连接QB1源极;QB1源极还通过RB19连接整流模块的第一电压输出端SGND。PWM控制器UB1的COMP引脚连接CB11一端、PCB1B漏极,UB1的OTP引脚连接RB18一端,UB1的GND引脚、CB11另一端、PCB1B源极、RB18另一端均连接整流模块的SGND输出端;UB1的OUT引脚连接RB8另一端、RB13一端,RB13另一端连接DB7负极;UB1的VCC引脚通过RB9连接DB9负极,DB9正极连接L-1端;UB1的VCC引脚还连接CB13一端、EB2正极;UB1的CS引脚连接CB12一端、RB15另一端,CB12另一端、CB13另一端、EB2负极均连接整流模块的SGND输出端。变压器TB101的第二绕组(图4中的5、6绕组)的初级线圈一端连接RB10一端,RB10另一端连接RB12一端、DB8正极,RB12另一端连接CB10一端,DB8负极、CB10另一端均连接EB2正极。
优选的,本发明实施例中混合信号中的直流电源信号的电压值为18-42V,所述混合信号中的交流电源信号的电压有效值为18V-28V。即通过本发明实施例的上述电路,既可通过RF信号线给电视驱动系统既可供18-42V的直流电源信号,又可以采用18V-28V的交流电源信号供电。
如图4,输入交流市电时,PWM控制器UB1的上电启动的电路是VCC引脚接到输入整流之前的L-1位置,对于连接到VCC引脚的滤波电容EB2(容量为10uF)来说,交流火线在正半周电压时,通过二极管DB9对EB2充电,当火线是负半周的电压时,通过接入的二极管DB9可防止EB2放电。所以EB2上的电压能够达到17V以上,以使PWM控制器UB1启动。UB1启动后就由变压器TB101的5、6绕组(见图4所示),通过二极管DB8接入的整流后的电源信号供给UB1后继的VCC引脚电流,使其正常工作。对于最低为18V交流输入的医院电视来说,其启动时充电电流太小,一次的火线输入的正半周充电时间不足以使UB1充电到17V以上启动工作。若没有二极管DB9,多次的正半周的充电 也会随着多次的负半周放电,UB1的VCC电压永远无法达到17V以上。
由于高频头的地与输入的交流电源信号的地是同一个地,所以DC-DC转换的初次级间不能有共模电容。因为如果存在共模电容,电感LB1将对整流桥与DC-DC转换过程中产生的共模干扰无法良好的抑制,初级电源信号的共模干扰就会通过共模电容流到次级电源信号的地,再流到高频头地,这个地也是RF信号的地,从而干扰到RF信号。因此如果DC-DC初次级间接上电容,RF信号频率越低其接收能力越差。
基于上述实施例的分离混合输入的RF信号和电源信号的电路,本发明还提供了一种分离混合输入的RF信号和电源信号的方法,如图5所示,该方法包括:
步骤S11,接收输入的混合信号,该混合信号包括RF信号和直流/交流电源信号;本发明实施例中,所述混合信号中的直流电源信号的电压值为18-42V,所述混合信号中的交流电源信号的电压有效值为18V-28V。
步骤S12,从所述混合信号中分离得到RF信号和对应的电源信号;
步骤S13,将分离得到的RF信号输入高频头;将分离得到的电源信号先后进行整流和DC-DC转换,并对整流和DC-DC转换过程中产生的谐波信号对RF信号的反向干扰进行抑制。
通过上述分离混合输入的RF信号和电源信号的方法,可得到与电视驱动系统相适应的直流电压向电视驱动系统电路供电;同时也能通过输入高频头射频信号引脚的RF信号向电视系统提供射频信号。
优选的,在步骤S12中,可将所述混合信号分为两路,一路通过电容元件以隔断混合信号中的电源信号,得到RF信号;另一路通过电感元件以隔断混合信号中的RF信号,得到电源信号,所述电源信号为直流信号或者频率在设定范围内的交流电源信号。
在上述分离混合输入的RF信号和电源信号的电路及的方法的实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。可以理解,其中所使用的术语“第一”、“第二”等在本文中用于区分对象,但这些对象不受这些术语限制。
以上所述实施例仅表达了本发明的几种实施方式,不能理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种分离混合输入的RF信号和电源信号的电路,其特征在于,包括:信号分离模块、整流模块、DC-DC转换模块以及干扰抑制模块;信号分离模块的输入端连接混合信号的输入端,所述混合信号包括RF信号和直流/交流电源信号;所述信号分离模块的一输出端连接高频头,另一输出端通过干扰抑制模块连接整流模块的输入端;整流模块的输出端连接DC-DC转换模块的输入端,用DC-DC转换模块输出的电压为电视驱动系统电路供电;
    所述信号分离模块,用于从所述混合信号中分离得到RF信号,将得到的RF信号输入至高频头的射频信号引脚;以及从所述混合信号中分离得到对应的电源信号;
    所述整流模块,用于将输入的电源信号整流为对应的直流电压;
    所述DC-DC转换模块,用于将整流得到的直流电压转换为与电视驱动系统相适应的直流电压;
    所述干扰抑制模块,用于抑制整流及DC-DC转换过程中产生的谐波信号对RF信号的反向干扰。
  2. 根据权利要求1所述分离混合输入的RF信号和电源信号的电路,其特征在于,所述干扰抑制模块包括:磁棒绕线电感,两级级联的第一共模电感和第二共模电感,并联的第一电容和第二电容,以及第三电容、第四电容;第一共模电感的两线圈输出端分别与第二共模电感的两线圈输入端连接,第四电容短接在第一共模电感、第二共模电感之间;
    磁棒绕线电感一端作为干扰抑制模块的信号输入端,磁棒绕线电感另一端连接第三电容一端、第一共模电感的第一线圈的输入端,第三电容另一端、第一共模电感的第二线圈的输入端均接地;第一电容一端连接干扰抑制模块的信号输入端,第一电容另一端与高频头的接地引脚共地;第二共模电感的两线圈输出端分别作为干扰抑制模块的两输出端;
    通过调节第一共模电感、第二共模电感的电感参数和第三电容、第四电容的电容大小,抑制对应频段的谐波信号对RF信号的共模干扰;通过调节磁棒绕线电感和第一电容、第二电容的参数,抑制对应频段的谐波信号对RF信号的差模干扰。
  3. 根据权利要求2所述分离混合输入的RF信号和电源信号的电路,其特征在于:
    所述磁棒绕线电感另一端通过保险丝连接第三电容一端、第一共模电感第一线圈的输入端。
  4. 根据权利要求1所述分离混合输入的RF信号和电源信号的电路,其特征在于,所述信号分离模块包括电容元件和电感元件,
    所述信号分离模块将所述混合信号分为两路,一路通过所述电容元件以得到RF信号;另一路通过所述电感元件以得到电源信号,所述电源信号为直流信号或者频率在设定范围内的交流电源信号。
  5. 根据权利要求4所述分离混合输入的RF信号和电源信号的电路,其特征在于,所述电感元件为贴片型电感。
  6. 根据权利要求1所述分离混合输入的RF信号和电源信号的电路,其特征在于,所述DC-DC转换模块包括:适用于市电输入的PWM控制器,变压器,第一二极管、第二二极管和滤波电容;
    PWM控制器的VCC引脚同时连接第二二极管负极、滤波电容正极、第一二极管负极,第二二极管正极连接所述干扰抑制模块的第一输出端,滤波电容负极连接所述整流模块的第一电压输出端,第一二极管正极连接变压器的第二绕组;变压器的第一绕组连接整流模块的第二电压输出端;
    若所述干扰抑制模块的第一输出端输出的是交流电源信号,则在所述交流电源信号的正半周电压时,通过第二二极管对滤波电容充电,在所述交流电源信号的负半周电压时,第二二极管进入反向电压状态,以防止滤波电容放电;当检测到滤波电容上的电压达到PWM控制器的启动电压时,所述PWM控制器启动,并且在其启动之后,由整流模块的第二电压输出端的输出电压经过变压器的第二绕组和第一二极管,维持PWM控制器正常工作。
  7. 根据权利要求6所述分离混合输入的RF信号和电源信号的电路,其特征在于,所述PWM控制器UB1的启动电压为17V以上。
  8. 根据权利要求1所述分离混合输入的RF信号和电源信号的电路,其特征在于,所述混合信号中的直流电源信号的电压值为18-42V,所述混合信号中的交流电源信号的电压有效值为18V-28V。
  9. 一种分离混合输入的RF信号和电源信号的方法,其特征在于,包括:
    接收输入的混合信号,该混合信号包括RF信号和直流/交流电源信号;
    从所述混合信号中分离得到RF信号和对应的电源信号;
    将分离得到的RF信号输入至高频头的射频信号引脚;将分离得到的电源信号进行整流和DC-DC转换,并对整流和DC-DC转换过程中产生的谐波信号对RF信号的反向干扰进行抑制。
  10. 根据权利要求9所述分离混合输入的RF信号和电源信号的方法,其特征在于,所述混合信号中的直流电源信号的电压值为18-42V,所述混合信号中的交流电源信号的电压有效值为18V-28V。
PCT/CN2016/113124 2016-05-31 2016-12-29 分离混合输入的rf信号和电源信号的电路和方法 WO2017206503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610377802.3A CN106067956B (zh) 2016-05-31 2016-05-31 分离混合输入的rf信号和电源信号的电路和方法
CN201610377802.3 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017206503A1 true WO2017206503A1 (zh) 2017-12-07

Family

ID=57420210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113124 WO2017206503A1 (zh) 2016-05-31 2016-12-29 分离混合输入的rf信号和电源信号的电路和方法

Country Status (2)

Country Link
CN (1) CN106067956B (zh)
WO (1) WO2017206503A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282172A (zh) * 2018-01-25 2018-07-13 汽-大众汽车有限公司 一种电源适配器
CN112448623A (zh) * 2019-08-30 2021-03-05 茂达电子股份有限公司 马达驱动电路及方法
CN114123148A (zh) * 2021-11-05 2022-03-01 天津航空机电有限公司 一种航空三线制传感器端口防护电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106067956B (zh) * 2016-05-31 2019-04-09 广州视源电子科技股份有限公司 分离混合输入的rf信号和电源信号的电路和方法
TWI819264B (zh) * 2020-12-25 2023-10-21 立積電子股份有限公司 射頻裝置及其電壓產生與諧波抑制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2318777Y (zh) * 1997-12-04 1999-05-12 淄川机电工程研究所 有线电视智能分支分配器
CN201138785Y (zh) * 2007-11-29 2008-10-22 上海美多通信设备有限公司 开关电源滤波电路
CN201266935Y (zh) * 2008-09-08 2009-07-01 星辰先创通信系统(厦门)有限公司 一种电缆馈电式地面数字信号直放装置
WO2010081333A1 (zh) * 2009-01-16 2010-07-22 中兴通讯股份有限公司 无线通信系统、无线接入方法以及基站
CN106067956A (zh) * 2016-05-31 2016-11-02 广州视源电子科技股份有限公司 分离混合输入的rf信号和电源信号的电路和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003296229A1 (en) * 2003-12-31 2005-08-12 Zte Corporation Adjust equipment and method for array antenna transmitting link
CN101777836B (zh) * 2009-12-31 2013-09-11 南京博兰得电子科技有限公司 电能隔离传输方法及其隔离传输装置
US8390373B2 (en) * 2010-06-08 2013-03-05 MUSIC Group IP Ltd. Ultra-high efficiency switching power inverter and power amplifier
CN203554763U (zh) * 2013-11-13 2014-04-16 江苏宏力光电科技有限公司 一种整合boost和flyback的led电源
CN104754275B (zh) * 2013-12-30 2017-10-20 中国科学院沈阳自动化研究所 一种小型遥控水下机器人共缆传输装置及方法
CN204559391U (zh) * 2015-04-01 2015-08-12 武汉大学 一种开关dc-dc转换器及电磁干扰滤波装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2318777Y (zh) * 1997-12-04 1999-05-12 淄川机电工程研究所 有线电视智能分支分配器
CN201138785Y (zh) * 2007-11-29 2008-10-22 上海美多通信设备有限公司 开关电源滤波电路
CN201266935Y (zh) * 2008-09-08 2009-07-01 星辰先创通信系统(厦门)有限公司 一种电缆馈电式地面数字信号直放装置
WO2010081333A1 (zh) * 2009-01-16 2010-07-22 中兴通讯股份有限公司 无线通信系统、无线接入方法以及基站
CN106067956A (zh) * 2016-05-31 2016-11-02 广州视源电子科技股份有限公司 分离混合输入的rf信号和电源信号的电路和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282172A (zh) * 2018-01-25 2018-07-13 汽-大众汽车有限公司 一种电源适配器
CN108282172B (zh) * 2018-01-25 2023-11-10 一汽-大众汽车有限公司 一种电源适配器
CN112448623A (zh) * 2019-08-30 2021-03-05 茂达电子股份有限公司 马达驱动电路及方法
CN112448623B (zh) * 2019-08-30 2023-06-23 茂达电子股份有限公司 马达驱动电路及方法
CN114123148A (zh) * 2021-11-05 2022-03-01 天津航空机电有限公司 一种航空三线制传感器端口防护电路
CN114123148B (zh) * 2021-11-05 2024-02-09 天津航空机电有限公司 一种航空三线制传感器端口防护电路

Also Published As

Publication number Publication date
CN106067956A (zh) 2016-11-02
CN106067956B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2017206503A1 (zh) 分离混合输入的rf信号和电源信号的电路和方法
US9300241B2 (en) Methods and systems for reducing conducted electromagnetic interference
WO2011125944A1 (ja) 漏れ電流低減装置
TWI692182B (zh) 電壓轉換器以及用於降低共模雜訊的電壓轉換方法
US10033289B2 (en) Insulated synchronous rectification DC/DC converter including capacitor and auxiliary power supply
US8228152B2 (en) Transforming device of power source and transformer thereof
US10608471B2 (en) Multimode wireless power receiver circuit
US10218259B2 (en) Power conversion device
TWM471017U (zh) 用在反激開關電源中的變壓器
TWI481156B (zh) 電源供應裝置
US8917021B2 (en) Power supply apparatus and luminaire
US10873255B2 (en) Power supply device
WO2023246481A1 (zh) 具有emi抑制的驱动电路及汽车电机驱动系统
JP2016158316A (ja) 電源装置
JP2013138562A (ja) ノイズ低減回路
CN114208009A (zh) 电力转换装置
US10014765B2 (en) Single stage power factor correction converter
KR101901946B1 (ko) 노이즈 제거 장치 및 이를 포함하는 공기 조화기
US7113068B2 (en) Winding structure of inductor used in power factor correction circuit
WO2016063652A1 (ja) 充電器
US20210305844A1 (en) Wireless power reception device, and control method therefor
JP2008043096A (ja) 電力変換装置
CN216599430U (zh) 开关电源
US9698703B2 (en) Switching converter having a primary winding divided into a first partial winding and a second partial winding with a tap arranged therebetween
CN214674872U (zh) 一种应用于poe电源的dc输出端传导滤波电路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903883

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903883

Country of ref document: EP

Kind code of ref document: A1