WO2017206322A1 - 天文图像噪声去除方法 - Google Patents

天文图像噪声去除方法 Download PDF

Info

Publication number
WO2017206322A1
WO2017206322A1 PCT/CN2016/093513 CN2016093513W WO2017206322A1 WO 2017206322 A1 WO2017206322 A1 WO 2017206322A1 CN 2016093513 W CN2016093513 W CN 2016093513W WO 2017206322 A1 WO2017206322 A1 WO 2017206322A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
noise
wavelet
coefficient
astronomical
Prior art date
Application number
PCT/CN2016/093513
Other languages
English (en)
French (fr)
Inventor
张丛
Original Assignee
深圳市樊溪电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市樊溪电子有限公司 filed Critical 深圳市樊溪电子有限公司
Publication of WO2017206322A1 publication Critical patent/WO2017206322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30192Weather; Meteorology

Definitions

  • the invention relates to an astronomical image processing method, in particular to a method for superimposing and removing a dark frame by using a wavelet curve method to remove noise in an astronomical image.
  • sources of noise here, including thermal imaging noise (black current) inside the astronomical CCD sensor, and Poisson noise in the presence of photon flux.
  • image quality standards There are many specific image quality standards in astronomy, all of which come from astronomical image processing algorithms and are also specified in the field of multimedia signal processing.
  • the astronomical and photometric algorithms provide a lot of information about the astrological targets: brightness profile (PSF), position and amplitude, and so on. But these algorithms will fail due to the low signal to noise ratio.
  • the solution to this technical problem is solved by removing dark frames from the captured image.
  • this method does not work in the case of imaging devices with very short shutter speeds and non-linear sensitivities.
  • meteor automatic imaging analyzers as imaging devices, conventional algorithms cannot be used for these systems.
  • Image data is imaged. So for astronomers and those dealing with astronomical data, denoising is still a huge challenge.
  • the orthogonal wavelet transform can be used to decompose the digital signal into corresponding calibration functions and wavelet functions, and include resolution information used for decomposition and detailed information such as the calibrated wavelet coefficients.
  • the two-way orthogonal wavelet transform has been successfully applied in image compression technology, this method is not convenient for the field of data analysis.
  • Data analysis includes denoising, deconvolution, and target detection. This is mainly due to the loss caused by the translational non-deformation characteristic in the discrete wavelet transform (DWT) method, so that when the wavelet coefficients of the image are corrected, the image is reconstructed, and a large number of artifacts are generated.
  • DWT discrete wavelet transform
  • the Meteor Automated Imaging Analyzer System is an evolutionary system of current analog system solutions for bistable observation meteors with Gigabit Ethernet cameras and advanced scanning CCDs, image recognizers and optical lenses. As an input element of the optical system. All of these components can cause optical anomalies and non-uniform noise, especially due to the non-uniform sensitivity of the image intensifier. At this time, the traditional denoising method cannot be used because it is not effective enough.
  • This method applies a wavelet curve coefficient threshold to the processed image after the corresponding removal of the dark threshold transform. Thresholding is the method of determining the weight of each coefficient. If a suitable coefficient is greater than the threshold, then this coefficient is important, otherwise it is not important.
  • An astronomical image denoising method includes the following steps:
  • test astronomical image which can be from a frame in the acquired video, select a dark frame And the flat field acquired by the Meteor Auto Imaging Analyzer.
  • the flat field image is added in the case of dark frame clipping, which is used to correct the pixel-to-pixel variation in the CCD response, and the variation and error caused by the image detector itself not being uniformly illuminated, and then the composite of the flat field image will be added thereafter.
  • Image normalization to avoid microchannel structure of the image intensifier;
  • Thresholding of wavelet transform and curve change are performed on the image.
  • the original image s 0 is corrected using the uncorrected filter h 0 , and the result is smoothed.
  • Curve change This change opens up the possibility of analyzing the image under different size blocks, which decompose the image into a set of wavelet bands and analyze each band within the original local ridgelet transform.
  • Each decomposition level can change the block size.
  • k is chosen to be 3 because the rule of thumb for explaining the normal distribution, almost all values (about 99.7%) fall within 3 times the mean standard deviation; calculate the noise under each decomposition scale j Standard variance, if ⁇ j,l is small, then the wavelet coefficient weight is small, can not be used to eliminate noise, if ⁇ j, l is larger, then the wavelet coefficient weight is larger, can be used to eliminate noise calculation;
  • the invention adopts the combination of the three methods and thresholds the key parameters, so the processing efficiency and effect of the image greatly improve the box enhancement, effectively removing more than 97% of the noise.
  • Figure 1 is a half-maximum full-wave pattern of a stellar object
  • 3 is a (a) original no-noise image, (b) after dark frame elimination, according to an embodiment of the present invention The noise image, (c) the noise image after wavelet transform and (d) the image comparison after curve transformation.
  • FIG. 1 is a half-maximum full-wave pattern of a stellar object
  • FIG. 2 is a wavelet transform calculation image according to an embodiment of the present invention.
  • a method for astronomical image denoising according to the present invention comprises the following steps:
  • the flat field image is added in the case of dark frame clipping, which is used to correct the pixel-to-pixel variation in the CCD response, and the variation and error caused by the image detector itself not being uniformly illuminated, and then the composite of the flat field image will be added thereafter.
  • Image normalization to avoid microchannel structure of the image intensifier;
  • Thresholding of wavelet transform and curve change are performed on the image.
  • the original image s 0 is corrected using the uncorrected filter h 0 , and the result is smoothed.
  • Curve change This change opens up the possibility of analyzing the image under different size blocks, which decompose the image into a set of wavelet bands and analyze each band within the original local ridgelet transform.
  • Each decomposition level can change the block size.
  • k is chosen to be 3 because the rule of thumb for explaining the normal distribution, almost all values (about 99.7%) fall within 3 times the mean standard deviation; calculate the noise under each decomposition scale j Standard variance, if ⁇ j,l is small, then the wavelet coefficient weight is small, can not be used to eliminate noise, if ⁇ j, l is larger, then the wavelet coefficient weight is larger, can be used to eliminate noise calculation;
  • Embodiment We select the noise-carrying original image after dark frame elimination in FIG. 3(b) as the base image to be processed in the embodiment, and perform corresponding denoising using the method disclosed in the present invention.
  • Cube B3 spline calibration filter, Table 1 is different after 2D wavelet transform It can be seen from the standard deviation value of the decomposition stage that the image quality gradually becomes better as the decomposition stage increases.
  • Table 2 shows the effectiveness of each method presented by the objective mean square error (MSE) standard and the peak signal-to-noise ratio (PSNR) standard after joint calculation by the three methods, and the average image calculated from the acquired video sequence. It is considered to be the original image without noise.
  • MSE objective mean square error
  • PSNR peak signal-to-noise ratio

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Complex Calculations (AREA)

Abstract

一种天文图像去噪声方法,在半最大值全波等重要的光子数据处理方面也可以使用,这种方法是将含有所采集恒星场的图像被平面场分割,从而修正CCD相机对入射光的响应,在相应的去除暗阈变换后对所处理的图像施加小波曲线系数门限化,如果某个适当的系数大于阈值,那么这个系数是重要的,否则就是不重要的。上述方法能够有效消除天文图像中光学异常和非一致性噪声,特别是图像增强器的非一致性敏感度引起的噪声,达到提高工作效率的目的。

Description

天文图像噪声去除方法 技术领域
本发明涉及一种天文图像处理方法,特别是采用小波曲线方法叠加去除暗帧的方法对天文图像中的噪声进行去除。
背景技术
在较低亮度下获得的天文图像,这些数据中会有很高的噪声。这里存在很多的噪声源,在使用天文CCD传感器的内部还包括热成像噪声(黑电流),另外光子流存在的情况下还有泊松噪声。在天文学中有很多具体的图像质量标准,这些标准都来自于天文图象处理算法并且在多媒体信号处理领域也作了具体的规定。天文和光度算法提供了关于星象目标的很多信息:亮度轮廓(PSF),位置和幅度等。但是这些算法会由于很低的信噪比而失效。这一技术问题的解决现有技术是通过从捕捉的图像中去除暗帧的方式解决的。然而,在很短的快门速度和非线性敏感度的成像设备情况下,这种方法就不能奏效了,例如在流星自动成像分析仪作为成像设备的情况下,就不能采用传统算法对这些系统的图像数据进行成像。因此对天文学家和那些处理天文数据的人来说,去噪仍然是一个巨大的挑战。
目前已经存在很多离散小波变换算法,使用正交的小波变换可以将数字信号进行分解,分解为相应的标定功能和小波功能,而且包含分解所使用的分辨率信息以及标定出的小波系数等细节信息,然而双向正交小波变换虽然在图像压缩技术中被成功的实用,然而对于数据分析这一领域而言这种方法并不方便, 数据分析其中就包括去噪,反褶积,目标检测等。这主要是由于离散小波变换(DWT)方法中的平移不变形特性引起的损失,从而当图像的小波系数被修正后图像被重构,而产生大量的非自然信号。出于这个原因,天文学家可能会采用连续连续小波变化,即使这样会在变换过程中付出相当大量的溶于实践,并且没有重建操作符。对于一些应用。例如分形分析或者物体检测领域来说,这些缺陷并没有表现出很大的影响,因为没有必要使用重构。而对于其他的应用,需要重构的时候,这种变化的缺陷就很明显了。
流星自动成像分析仪系统是目前模拟系统解决方案的一种进化系统,用于双稳态观测流星,其配备千兆位以太网相机以及先进的扫描式CCD欻国难其,图像识别器以及光学镜头作为光学系统的输入元件。所有这些部件都可能会产生光学异常和非一致性噪声,特别是图像增强器的非一致性敏感度引起的。这时候传统的去噪方法就不能使用了,因为就不足够有效了。
因此本发明的目的在于提供一种新型的天文图像噪声处理方法。在半最大值全波等重要的光子数据处理方面也可以使用。这种方法是在相应的去除暗阈变换后对所处理的图像施加小波曲线系数门限化。门限化是确定各个系数权重的方法。如果某个适当的系数大于阈值,那么这个系数是重要的,否则就是不重要的。
发明内容
本发明的目的是要提供一种能够更有效果的去除天文图像中噪声的方法。
本发明的目的通过如下方案实现:
一种天文图象去噪声方法,包括如下步骤:
(1)选择一个测试天文图像,可以来自所获取的视频中的一帧,选择暗帧 以及流星自动成像分析仪采集的平面场。
(2)将含有所采集恒星场的图像被平面场分割,从而修正CCD相机对入射光的响应,并且避免在图像增强器内产生微通道结构;
(3)使用以下三种方法执行测试图像去噪声:暗帧剪除,小波变换和曲线变化,并且在变换过程中施加系数门限化:
暗帧剪除情况下加入平场图像,该平场图像用于修正CCD响应中像素到像素的变化,以及图像探测器自身没有被均匀照亮引起的变化和误差,此后将加入平场图像的复合图像归一化从而避免图像增强器的微通道结构;
小波变换和曲线变化的门限化:对图像进行小波变换和曲线变化,第一分解阶段(j=0),使用未经修正的滤波器h0对原始图像s0进行修正,结果获得平滑后的矩阵s1,然后将s0减去s1获得与第一分解水平对应的小波系数,其对应最微小的细节:ω1=s0-s1,此后将j递加1,即j=j+1,然后将滤波器扩展2j-1个零,将其插入到多个滤波器系数之间,计算平滑矩阵s2=s1*k1(*对应卷积)以及第二分解水平的小波系数:ω2=s2-s1等,如果停在这里,那么原始的图像s0为s2,ω11和ω2的和,根据经度要求,还可以继续到更下级的分解水平;
曲线变化:该变化打开了在不同尺寸块下分析图像的可能,第一代曲线变换将图像分解为一组小波带并且在原始的本地脊波变换内分析每个带。每个分解水平可以改变块尺寸。离散曲线变化算法的架构为:在J级分解水平(标度)下采用小波变化处理图像并且获得一组小波系数ω={ω1,...,ωJ,cJ},设定B1=Bmin,其中B为区块尺寸,通常取Bmin=16,对于j=1,...,J循环执行采用块尺寸Bj将子带B1=Bmin分块为多个子块ωj并且对每块应用数字脊波变换,如果j以2为模等于1,那么Bj+1=2Bj,否则Bj+1=Bj
(4)系数门限化:设定图像采集过程中CCD传感器接收大于40个光子,那么传感器内聚集的泊松噪声分布与高斯分布几乎无法区分,假定存在静态高斯噪声,将小波系数ωj,l(j-分解水平,l-像素指数)与高斯噪声标准方差σj进行比较:
Figure PCTCN2016093513-appb-000001
通常将k选择为3,原因在于用于说明正态分布的经验法则,几乎所有的数值(大约99.7%)均落入平均值标准方差3倍范围内;计算每个分解标度j下的噪声标准方差,如果ωj,l较小,那么该小波系数权重较小,不能用于消除噪声,如果ωj,l较大,那么该小波系数权重较大,可以用于消除噪声的计算;
(5)最后,监测用于描述科学重要信息变化的客观天文图像质量标准参数,即恒星幅值m和半最大值全波,判定其是否落入天文图像噪声去除的要求范围内,从而确定是否将图像中的噪声去除达到后续数据处理要求
本发明由于采用了三种方法的结合并且对关键参数进行门限化处理,因此对图像的处理效率和效果都大大提高盒增强,有效去除了97%以上的噪声。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
附图1为恒星物体的半最大值全波图形;
附图2为根据本发明实施例的小波变换计算图像;
附图3为根据本发明实施例的(a)原始没有噪声图像,(b)暗帧消除后 的噪声图像,(c)使用小波变换后的噪声图像以及(d)曲线变换后的图像比较。
具体实施方式
如图1-3所示,附图1为恒星物体的半最大值全波图形,附图2为根据本发明实施例的小波变换计算图像。本发明的一种天文图象去噪声方法,包括如下步骤:
(1)选择一个测试天文图像,可以来自所获取的视频中的一帧,选择暗帧以及流星自动成像分析仪采集的平面场。
(2)将含有所采集恒星场的图像被平面场分割,从而修正CCD相机对入射光的响应,并且避免在图像增强器内产生微通道结构;
(3)使用以下三种方法执行测试图像去噪声:暗帧剪除,小波变换和曲线变化,并且在变换过程中施加系数门限化:
暗帧剪除情况下加入平场图像,该平场图像用于修正CCD响应中像素到像素的变化,以及图像探测器自身没有被均匀照亮引起的变化和误差,此后将加入平场图像的复合图像归一化从而避免图像增强器的微通道结构;
小波变换和曲线变化的门限化:对图像进行小波变换和曲线变化,第一分解阶段(j=0),使用未经修正的滤波器h0对原始图像s0进行修正,结果获得平滑后的矩阵s1,然后将s0减去s1获得与第一分解水平对应的小波系数,其对应最微小的细节:ω1=s0-s1,此后将j递加1,即j=j+1,然后将滤波器扩展2j-1个零,将其插入到多个滤波器系数之间,计算平滑矩阵s2=s1*k1(*对应卷积)以及第二分解水平的小波系数:ω2=s2-s1等,如果停在这里,那么原始的图像s0为s2,ω11和ω2的和,根据经度要求,还可以继续到更下级的分解水平;
曲线变化:该变化打开了在不同尺寸块下分析图像的可能,第一代曲线变换将图像分解为一组小波带并且在原始的本地脊波变换内分析每个带。每个分解水平可以改变块尺寸。离散曲线变化算法的架构为:在J级分解水平(标度)下采用小波变化处理图像并且获得一组小波系数ω={ω1,...,ωJ,cJ},设定B1=Bmin,其中B为区块尺寸,通常取Bmin=16,对于j=1,...,J循环执行采用块尺寸Bj将子带B1=Bmin分块为多个子块ωj并且对每块应用数字脊波变换,如果j以2为模等于1,那么Bj+1=2Bj,否则Bj+1=Bj
(4)系数门限化:设定图像采集过程中CCD传感器接收大于40个光子,那么传感器内聚集的泊松噪声分布与高斯分布几乎无法区分,假定存在静态高斯噪声,将小波系数ωj,l(j-分解水平,l-像素指数)与高斯噪声标准方差σj进行比较:
Figure PCTCN2016093513-appb-000002
通常将k选择为3,原因在于用于说明正态分布的经验法则,几乎所有的数值(大约99.7%)均落入平均值标准方差3倍范围内;计算每个分解标度j下的噪声标准方差,如果ωj,l较小,那么该小波系数权重较小,不能用于消除噪声,如果ωj,l较大,那么该小波系数权重较大,可以用于消除噪声的计算;
(5)最后,监测用于描述科学重要信息变化的客观天文图像质量标准参数,即恒星幅值m和半最大值全波,判定其是否落入要求范围内,从而确定是否将图像中的噪声去除达到后续数据处理要求。
实施例:我们选择附图3(b)中的经过暗帧消除后的带有噪声的原始图像作为实施例所要处理的基础图像,采用本发明所公开的方法进行相应的去噪其中滤波器采用立方体B3样条标定滤波器,表1表是经过2D小波变换后在不同 分解阶段的标准偏差值,可以看出,图像质量随着分解阶段的不断增加而逐渐变好。
表1 不同分解阶段模拟的高斯噪声标准偏差指
Figure PCTCN2016093513-appb-000003
附表2表示经过三种方法联合计算后通过客观的均方差(MSE)标准以及峰值信噪比(PSNR)标准呈现的每种方法的有效性,从所获取的视频序列中计算得到的平均图像被认为是没有出现噪声的原始图像。
表2 计算得到的去噪声图像的MSE和PSNR
去噪声方法 MSE PSNR(Db)
暗帧去除 14.4 36.55
小波变换 9.87 38.2
曲线变换 4.95 41.18
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (1)

  1. 天文图象去噪声方法,其特征在于:包括如下步骤:
    (1)选择一个测试天文图像,可以来自所获取的视频中的一帧,选择暗帧以及流星自动成像分析仪采集的平面场。
    (2)将含有所采集恒星场的图像被平面场分割,从而修正CCD相机对入射光的响应,并且避免在图像增强器内产生微通道结构;
    (3)使用以下三种方法执行测试图像去噪声:暗帧剪除,小波变换和曲线变化,并且在变换过程中施加系数门限化:
    暗帧剪除情况下加入平场图像,该平场图像用于修正CCD响应中像素到像素的变化,以及图像探测器自身没有被均匀照亮引起的变化和误差,此后将加入平场图像的复合图像归一化从而避免图像增强器的微通道结构;
    小波变换和曲线变化的门限化:对图像进行小波变换和曲线变化,第一分解阶段(j=0),使用未经修正的滤波器h0对原始图像s0进行修正,结果获得平滑后的矩阵s1,然后将s0减去s1获得与第一分解水平对应的小波系数,其对应最微小的细节:ω1=s0-s1,此后将j递加1,即j=j+1,然后将滤波器扩展2j-1个零,将其插入到多个滤波器系数之间,计算平滑矩阵s2=s1*k1(*对应卷积)以及第二分解水平的小波系数:ω2=s2-s1等,如果停在这里,那么原始的图像s0为s2,ω11和ω2的和,根据经度要求,还可以继续到更下级的分解水平;
    曲线变化:离散曲线变化算法的架构为:在J级分解水平(标度)下采用小波变化处理图像并且获得一组小波系数ω={ω1,...,ωJ,cJ},设定B1=Bmin,其中B为区块尺寸,通常取Bmin=16,对于j=1,...,J循环执行采用块尺寸Bj将子带B1=Bmin分块为多个子块ωj并且对每块应用数字脊波变换,如果j以2为模等于1,那么Bj+1=2Bj,否则Bj+1=Bj
    (4)系数门限化:设定图像采集过程中CCD传感器接收大于40个光子,那么传感器内聚集的泊松噪声分布与高斯分布几乎无法区分,假定存在静态高斯噪声,将小波系数ωj,l(j-分解水平,l-像素指数)与高斯噪声标准方差σj进行比较:
    Figure PCTCN2016093513-appb-100001
    通常将k选择为3;计算每个分解标度j下的噪声标准方差,如果ωj,l较小,那么该小波系数权重较小,不能用于消除噪声,如果ωj,l较大,那么该小波系数权重较大,可以用于消除噪声的计算;
    (5)最后,监测用于描述科学重要信息变化的客观天文图像质量标准参数,即恒星幅值m和半最大值全波,判定其是否落入图像处理的要求范围内,从而确定是否将图像中的噪声去除达到后续数据处理要求。
PCT/CN2016/093513 2016-06-03 2016-08-05 天文图像噪声去除方法 WO2017206322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610388320.8A CN105894477B (zh) 2016-06-03 2016-06-03 天文图像噪声去除方法
CN2016103883208 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017206322A1 true WO2017206322A1 (zh) 2017-12-07

Family

ID=56710113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093513 WO2017206322A1 (zh) 2016-06-03 2016-08-05 天文图像噪声去除方法

Country Status (2)

Country Link
CN (1) CN105894477B (zh)
WO (1) WO2017206322A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110992360A (zh) * 2019-12-24 2020-04-10 北京安兔兔科技有限公司 设备性能测试方法、装置及电子设备
CN112712486A (zh) * 2020-11-26 2021-04-27 贵州大学 一种基于激活函数的射电天文图像重建方法
CN113435376A (zh) * 2021-07-05 2021-09-24 宝鸡文理学院 基于离散小波变换的双向特征融合深度卷积神经网络构建方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106875361B (zh) * 2017-02-17 2019-06-04 深圳市唯特视科技有限公司 一种基于深度卷积神经网络去除泊松噪声的方法
CN109934789B (zh) * 2019-03-26 2021-01-01 湖南国科微电子股份有限公司 图像去噪方法、装置及电子设备
CN118409729B (zh) * 2024-07-03 2024-08-23 江苏游隼微电子有限公司 一种道路监控图像去噪方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026493A1 (en) * 2001-06-08 2003-02-06 The Regents Of The University Of California Parallel object-oriented, denoising system using wavelet multiresolution analysis
CN101546429A (zh) * 2009-05-05 2009-09-30 西北工业大学 特征空间的弱小目标检测方法
CN101719279A (zh) * 2009-12-23 2010-06-02 西北工业大学 星空图像背景运动估计方法
CN102176741A (zh) * 2011-01-06 2011-09-07 西北工业大学 星空图像中帧转移型ccd传感器拖尾亮线消除方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578088B (zh) * 2013-11-20 2017-01-04 中国人民解放军海军大连舰艇学院 一种星空图像处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026493A1 (en) * 2001-06-08 2003-02-06 The Regents Of The University Of California Parallel object-oriented, denoising system using wavelet multiresolution analysis
CN101546429A (zh) * 2009-05-05 2009-09-30 西北工业大学 特征空间的弱小目标检测方法
CN101719279A (zh) * 2009-12-23 2010-06-02 西北工业大学 星空图像背景运动估计方法
CN102176741A (zh) * 2011-01-06 2011-09-07 西北工业大学 星空图像中帧转移型ccd传感器拖尾亮线消除方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110992360A (zh) * 2019-12-24 2020-04-10 北京安兔兔科技有限公司 设备性能测试方法、装置及电子设备
CN110992360B (zh) * 2019-12-24 2024-01-23 北京安兔兔科技有限公司 设备性能测试方法、装置及电子设备
CN112712486A (zh) * 2020-11-26 2021-04-27 贵州大学 一种基于激活函数的射电天文图像重建方法
CN112712486B (zh) * 2020-11-26 2024-04-26 贵州大学 一种基于激活函数的射电天文图像重建方法
CN113435376A (zh) * 2021-07-05 2021-09-24 宝鸡文理学院 基于离散小波变换的双向特征融合深度卷积神经网络构建方法

Also Published As

Publication number Publication date
CN105894477B (zh) 2019-04-02
CN105894477A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2017206322A1 (zh) 天文图像噪声去除方法
Janani et al. Image enhancement techniques: A study
CN101860667B (zh) 一种快速去除图像中混合噪声的方法
US20020114533A1 (en) Adaptive process for removing streaks in multi-band digital images
US10867374B2 (en) Auto-focusing system and method by determining contrast difference between adjacent pixels using sobel filter
US20170208347A1 (en) Image compression method with negligible and quantifiable information loss and high compression ratio
US9258460B2 (en) Image processing method and apparatus for correcting an image
CN115249211A (zh) 一种基于水下非均匀入射光模型的图像复原方法
CN109141638B (zh) 一种自然光水下偏振成像方法
CN110009575B (zh) 基于稀疏表示的红外图像条带噪声抑制方法
Wang et al. A bilateral filtering based ringing elimination approach for motion-blurred restoration image
CN105825480A (zh) 一种基于蓝宝石表面缺损自动化检测的图像去模糊方法
Deepa et al. A study on denoising of poisson noise in Pap smear microscopic image
Al-Obaidi Image quality assessment for defocused blur images
Hakim et al. Statistical-based Stripe Noise Correction on LAPAN Microsatellite Imagery
Sheela et al. Comparative analysis of various filtering techniques for Speckle noise suppression in Ultrasound images
CN105468889B (zh) 一种量子探测效率测量方法
Xie et al. Thermal Infrared Guided Color Image Dehazing
Sitara et al. Image deblurring in bayesian framework using template based blur estimation
Zhao et al. An improved LR algorithm for image deblurring
CN110706165B (zh) 一种基于EME与Mask的水下图像匀光算法
Abdulmunem et al. Deblurring X-Ray Digital Image Using LRA Algorithm
Jose et al. Least square based image deblurring
HWANG et al. 2Pa6-2 Algorithm to improve underwater object recognition using ROV
Shorman et al. Comparison Image Restoration Methods between Wiener Filter and Richardson Lucy Using SSIM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903704

Country of ref document: EP

Kind code of ref document: A1