WO2017204288A1 - Composition for enhancing disease resistance of plants or controlling plant disease, and method for using same - Google Patents

Composition for enhancing disease resistance of plants or controlling plant disease, and method for using same Download PDF

Info

Publication number
WO2017204288A1
WO2017204288A1 PCT/JP2017/019504 JP2017019504W WO2017204288A1 WO 2017204288 A1 WO2017204288 A1 WO 2017204288A1 JP 2017019504 W JP2017019504 W JP 2017019504W WO 2017204288 A1 WO2017204288 A1 WO 2017204288A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
composition
esterase
disease
xylanase
Prior art date
Application number
PCT/JP2017/019504
Other languages
French (fr)
Japanese (ja)
Inventor
宏子 北本
釘宮 聡一
純 田端
基夫 小板橋
吉田 重信
浩一 植田
渡部 貴志
光原 一朗
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2018519603A priority Critical patent/JP6997456B2/en
Publication of WO2017204288A1 publication Critical patent/WO2017204288A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)

Definitions

  • the present invention provides a method for enhancing plant disease resistance or controlling plant diseases by using esterase and / or xylanase.
  • Plants are equipped with a biological defense system that conforms to animal immunity. When this function is activated, the plant activates various defense systems and becomes a plant that is unlikely to become diseased.
  • drugs that use these defense systems to control diseases. These drugs (1) have a preventive effect against multiple pathogens (wide spectrum of action), (2) very low incidence of resistant bacteria, (3) long-term control effect (4) It has the feature that there is little direct influence on the ecosystem itself.
  • it is difficult to search for and evaluate compounds having such activity as compared with bactericidal pesticides only a limited number of compounds have been put to practical use.
  • all the drugs marketed in Japan target rice, but similar drugs are required for various crops.
  • the surface layer of the plant is covered with a cuticle layer and wax in order to protect the body from external stresses, especially osmotic stress caused by transpiration and rainfall, invasion of pathogenic bacteria, and pest damage.
  • An enzyme that hydrolyzes cutin (fatty acid polyester) contained in this cuticle layer is called cutinase.
  • Patent Documents 1 and 2 Recently, a technique for rapidly degrading biodegradable plastic agricultural materials after use with enzymes obtained from plant-resident yeast and filamentous fungi has been developed (Patent Documents 1 and 2). In addition, techniques for mass-producing a plurality of enzymes have been developed (Patent Documents 3 and 4, Non-Patent Document 1), and it is expected that inexpensive enzyme solutions will be available in large quantities on the market. And when a plant is treated with a culture filtrate containing these biodegradable plastic-degrading enzymes derived from filamentous fungi or yeast at a high concentration, a phenomenon has been found that the plant dies. At this time, the cuticle layer is thin and easily infected with phytopathogenic fungi.
  • Enzymes capable of decomposing part of the cuticle layer are used as herbicides to control harmful plants. It can be used (Patent Document 5). Moreover, it has been found that a culture solution containing a biodegradable plastic-degrading enzyme derived from yeast Pseudozyma antarctica also contains xylanase (hemicellulose-degrading enzyme) (Non-patent Document 2). However, no biodegradable plastic-degrading enzyme derived from yeast has actually been confirmed to have a cactinolytic activity. In addition, a method for enhancing plant disease resistance and controlling plant diseases with biodegradable plastic degrading enzymes has not been known.
  • An object of the present invention is to provide a novel use of a biodegradable plastic-degrading enzyme and a culture of a microorganism containing the same.
  • a culture of a microorganism used as a biodegradable plastic degrading enzyme is an esterase and / or contained therein.
  • the present invention has an effect of suppressing the infection of pathogenic bacteria and an effect of suppressing germination of pathogenic bacteria, and increases the expression of stress resistance genes in plants. That is, the present invention provides a plant disease resistance enhancing or plant disease controlling composition described below, and a method for enhancing plant disease resistance or controlling plant diseases using them. is there.
  • a composition for enhancing plant disease resistance or controlling plant diseases comprising esterase and / or xylanase.
  • composition according to [1], wherein the esterase contains a biodegradable plastic degrading enzyme contains a biodegradable plastic degrading enzyme.
  • the biodegradable plastic degrading enzyme is selected from the group consisting of a cutinase and a cutinase-like enzyme.
  • the microorganism is a genus Pseudozyma, a Paraforma, a Cryptococcus, a Mucor, a Humicola, a Thermomyces, a Taromomis, or a Taromomis,
  • [6] The composition according to any one of [1] to [5], wherein the esterase concentration is 0.005 to 0.5 U / mL.
  • a method for enhancing plant disease resistance or controlling plant disease comprising the step of treating the plant with the composition according to any one of [1] to [9].
  • the disease resistance of plants is enhanced by esterase, which is a biodegradable plastic-degrading enzyme contained in a culture of microorganisms, and / or xylanase contained in the culture.
  • Plant diseases can be controlled. Plant disease resistance enhancers have been studied for a long time, but only three types of drugs targeting rice are known as products that have become domestic products.
  • the disease resistance enhancing action or disease controlling action by the esterase and / or xylanase of the present invention can be used not only for gramineous plants but also for a wide variety of crop species such as tomato, syleusona, and tobacco, and has versatility. high.
  • esterase and xylanase which are the active ingredients of the present invention are not low molecular weight compounds known as conventional disease resistance enhancers but are proteins, they are easily decomposed in the natural world. There is no persistence in the environment caused by compounds, and the environmental load is low.
  • the graph which shows the symptom change of a leaf micrograph of pathogenic spore. Graph of germination rate of pathogenic fungus spores. Graph of DNA amount derived from pathogenic bacteria. Photomicrograph of leaves containing pathogenic bacteria. Graph of stress resistance genes in plants. The graph of the reactive oxygen species response gene of a plant.
  • the present invention relates to a composition for enhancing plant disease resistance or controlling plant diseases, which comprises esterase and / or xylanase.
  • esterase refers to a hydrolase that decomposes an ester into an acid and an alcohol by a chemical reaction with water.
  • esterase of the present invention various esterases can be used without limitation as long as they have an activity of decomposing a part of the cuticle layer. For example, they are used as biodegradable plastic degrading enzymes. The enzyme may be used.
  • biodegradable plastic degrading enzyme refers to an enzyme having an activity of degrading biodegradable plastic. Any enzyme can be used in the composition of the present invention without limitation as long as it has an activity of degrading biodegradable plastics. For example, cutinase or cutinase-like enzyme may be employed.
  • the activity of degrading the biodegradable plastic is measured by measuring the degradation activity of polybutylene succinate-co-adipate (PBSA) emulsion, or PBSA, polybutylene succinate, polybutylene adipate terephthalate, polylactic acid, etc. This can be determined by measuring the degradation activity of the biodegradable plastic film.
  • PBSA polybutylene succinate-co-adipate
  • xylanase refers to an enzyme having an activity of decomposing xylan into xylose, and can decompose hemicellulose in the plant cell wall.
  • various xylanases can be used without limitation as long as they have an activity of degrading hemicellulose.
  • the esterase and the xylanase can be produced by microorganisms.
  • esterase and / or xylanase isolated and purified from the microorganism may be used, and the culture solution (culture filtrate) or extract of the microorganism is used as esterase and / or xylanase.
  • the microorganism that produces the esterase and / or the xylanase is not particularly limited, and examples thereof include the genus Pseudozyma, the genus Paraforma, the genus Cryptococcus, the genus Mucor, and the Humicola.
  • Thermomyces Thermomyces, Talaromyces, Ketomium, Torula, Sporotrichum, Malbrana
  • the genus Spodium the genus Penicillium, Pequillomyce (Paecilomyces) genus Pseudomonas (Pseudomonas) genus Bacteroides (Bacteroides) genus, and it may be a microorganism selected from the group consisting of Acidovorax (Acidovorax) genus.
  • the biodegradable plastic degrading enzyme as the esterase is preferably Pseudozyma antarctica (for example, GB-4 (1) W strain, GB-4 (0) -HPM7 strain (incorporated administrative agency, Product Evaluation Technology Infrastructure Organization, Patent Microorganism Deposit) Yeast deposited at the Center; Deposit No. NITE BP-02238) and OMM62-2 strain (Yeast deposited at the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, Accession No. NITE BP-02239) Esterase (PaE), Paraphoma-related fungus cutinase-like enzyme (PCLE), or cutinase-like enzyme 1 (CmCut1).
  • Pseudozyma antarctica for example, GB-4 (1) W strain, GB-4 (0) -HPM7 strain (incorporated administrative agency, Product Evaluation Technology Infrastructure Organization, Patent Microorganism Deposit) Yeast deposited at the Center; Deposit No. NITE BP-02238) and OMM62-2 strain
  • PCLE is Paraphoma such as Paraphoma genus B47-9 strain (filamentous fungus deposited at the National Institute of Technology and Evaluation of Microorganisms of the National Institute of Technology and Evaluation; Accession Number NITE P-573; refer to Japanese Patent No. 5082125 if necessary)
  • CmCut1 is a Cryptococcus magnus such as Cryptococcus magnus genus BPD1A strain (yeast deposited with the Patent Microorganism Depositary of the National Institute of Technology and Evaluation of the Independent Administrative Institution; Accession Number NITE P-02134) Or it is an enzyme produced by its related bacteria.
  • the concentration of the esterase in the composition of the present invention can be appropriately adjusted according to the type of plant to be applied and the type of the pathogen.
  • the esterase concentration may be, for example, 0.005 to 0.5 U / mL, preferably 0.006 to 0.2 U / mL, and more preferably 0.007 to 0.07 U / mL.
  • the esterase titer shown here is determined by measuring the decrease in turbidity of polybutylene succinate-co-adipate (PBSA) emulsion (Showa Denko EM-301), a biodegradable plastic. It has been decided. The titer when the value of OD660nm was decreased by 1 per minute was defined as 1U.
  • a buffer solution for measuring enzyme activity for example, a Tris-HCl buffer solution (20 mM Tris-HCl, pH 6.8, with or without calcium chloride (2 mM) may be used.
  • the concentration of the xylanase in the composition of the present invention can be appropriately adjusted according to the type of plant to be applied and the type of the pathogenic fungus.
  • the concentration of the xylanase may be, for example, 0.001 to 5.0 U / mL, and preferably 0.005 to 1.0 U / mL.
  • the titer of xylanase shown here is the amount of xylose produced when xylan is decomposed, Agric. Biol. Chem. (1980), 44 (12), 2943-2949, measured by a modified method of the Somogi-Nelson method. The titer that produces 1 ⁇ mol of xylose per minute was defined as 1 U.
  • the esterase or the xylanase may be used alone, or both may be used in combination. By using both enzymes having different action mechanisms in combination, a synergistic plant disease resistance enhancing action and / or plant disease controlling action is achieved.
  • the esterase and the xylanase are used in combination, the isolated and purified esterase and xylanase may be blended in the same composition, but a microorganism culture solution or extract containing these enzymes from the beginning is used. This is convenient.
  • a composition containing only the esterase and a composition containing only the xylanase may be used simultaneously or sequentially.
  • Plant disease resistance enhancement means, for example, elevation of injury response genes such as PIN2 (proteinase inhibitor 2) and LapA1 (leucine aminopeptidase A1), and disease response genes such as PR4 (pathogenesis related 4) and PRB1b.
  • an enhancement of the physiological response of a plant to a disease can be an indicator.
  • plant disease control described in the present specification refers to suppressing symptom changes in plants as a result regardless of the mechanism of action. Examples of the action mechanism for controlling plant diseases include, but are not limited to, changes in physiological responses of plants as described above, changes in symbiotic microflora, or attenuation of pathogenic bacteria. Absent.
  • the composition of the present invention can be used for various plants because it exhibits non-specific plant disease resistance enhancing action and plant disease controlling action regardless of the kind of plant or disease.
  • the composition of the present invention may be used, for example, for plants having a cuticle layer, or higher plants such as a seed plant (a gymnosperm or angiosperm) and a fern plant.
  • the composition of the present invention can be used for various crops, for example, mallow, akaza, cruciferous, iridaceae, iridaceae, gramineous, saccharidaceae, araliaceae, cucurbitaceae, cypressaceae, asteraceae, walnutaceae.
  • Mulberry poppy, primrose, primaceae, taro, cactaceae, perilla, cypridaceae, ginger, waterlily, violet, sericaceae, gypsaceae, azalea, camellia, euphorbiaceae, eggplant Family, urchinaceae, rose family, antaceae family, convolvulaceae family, sorghum family, grape family, beech family, button family, matabidae family, legume family, mandarin family, genus magnolia family, saxifrage family, lily family, orchid family, agave family, And you may use with respect to the crops which belong to the family selected from the group which consists of Gentianaceae.
  • the composition of this invention can enhance the resistance with respect to various diseases, such as mold disease, bacterial disease, and viral disease, or can control such various diseases.
  • composition of the present invention may further contain other arbitrary components as long as the disease resistance enhancing action or the plant disease control action of the plant is not inhibited.
  • composition of the present invention may further contain other active ingredients in order to further enhance the disease resistance enhancing action or plant disease controlling action of the plant.
  • the present invention also relates to a method for enhancing plant disease resistance or controlling plant diseases, comprising the step of treating a plant with a plant disease resistance enhancing composition or plant disease controlling composition.
  • a method for the treatment various methods can be used without limitation as long as it results in enhancing the disease resistance of the plant or controlling the disease of the plant.
  • the treatment step may include a step of spraying the composition onto the plant.
  • the application site part of the said composition is not specifically limited, For example, the leaf, stem, fruit, etc. of the said plant may be sufficient.
  • the application amount of the composition can be appropriately adjusted according to the application method and application site, and for example, 0.1 to 1 mL of spray per leaf of the plant may be used.
  • Example 1 (1) Preparation of culture filtrate of Pseudozyma antarctica (P. antarctica) Antarctica (GB-4 (1) W strain) was precultured in YM medium (yeast extract malt extract medium) shown in Table 1.
  • YM medium yeast extract malt extract medium
  • a 50-fold diluted solution of an antifoaming agent (trade name “Shin-Etsu Silicone KM-72F”, manufactured by Shin-Etsu Chemical Co., Ltd.) is intermittently used using an anti-foam sensor. About 40 mL was added by 72 hours after the start of culture. In addition, the pH drop due to ammonium ion consumption in the medium is detected by a sensor, and ammonia water is automatically added to the medium as an alkali adjustment solution to adjust the pH to 6.0 in order to add a nitrogen source and adjust the pH. did.
  • an antifoaming agent trade name “Shin-Etsu Silicone KM-72F”, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a fed-batch medium having the composition shown in Table 3 was fed at a rate of 0.5 L / d.
  • the culture solution after 72 hours of cultivation was filtered through CELLULOSE ACEDATE filter paper (manufactured by ADVANTEC) having a pore size of 0.45 ⁇ m to prepare a culture filtrate.
  • This culture filtrate was used in the following tests. P.P. Even if another antarctica strain (GB-4 (0) -HPM7 strain or OMM62-2 strain) is used, the culture filtrate should be prepared in the same manner as when the GB-4 (1) W strain is used. And could be used as well.
  • FIG. 1A shows a photograph of a cut leaf that was sprayed with a pathogenic fungus spore after each enzyme treatment
  • FIG. 1B shows the ratio of the observed cut leaf state (no change, yellowing, or disease symptoms).
  • a graph is shown.
  • the 1.0 U / mL and 8.0 U / mL treatment groups promoted infection efficiency and promoted disease symptoms
  • the 0.1 U / mL treatment group promoted the same symptoms as the control group.
  • the symptom on day 10 was reduced compared to the control group.
  • FIG. 2A shows an optical microscope observation photograph of mold spores on the leaf surface two days after spraying the pathogenic fungus spores after each enzyme treatment
  • FIG. 2B is a graph of the average germination rate of the observed mold spores (error range is Standard error calculated from 4 tests).
  • Fig. 3 shows the results of analysis using the ⁇ -tubulin gene as an index, that is, the average value of the relative amount of ⁇ -tubulin gene relative to the correction with the amount of Actin gene in tomato (the error range is calculated from 5 tests). Standard error).
  • the amount of pathogenic bacteria is remarkably high in the 1.0 U / mL and 8.0 U / mL treatment sections, and it can be confirmed that the pathogenic bacteria are infected.
  • the 0.01 U / mL and 0.1 U / mL treatment groups it was confirmed that the pathogenic bacteria were clearly suppressed as compared with the control group.
  • RNA is extracted from the leaves on the third day after inoculation with pathogenic bacteria (B. c.), And various stress resistance-related genes of plants (PIN2 and LapA, which are injury response genes) are analyzed by qRT-PCR. In addition, the expression levels of disease-responsive genes PR4 and PRB1b) were examined (corrected with tomato Actin gene dosage). Three cut leaves were used for each treatment section.
  • FIG. 5 shows the average value of the relative expression level of various stress resistance-related genes with respect to the actin gene of tomato (the error range is a standard error calculated from three tests). As a result, it was confirmed that the expression of the stress resistance-related gene was increased according to the culture filtrate treatment concentration.
  • Example 2 Effects on monocotyledonous plants and their pathogens Antarctica culture filtrate was diluted as in Example 1.
  • An esterase titer of 0.01 U / mL was sprayed on the leaves of oats, which are gramineous plants, and kept warm in a sealed container (humidity 100%, temperature 22 ° C.). .
  • the control filtrate was sprayed with a culture filtrate in which the enzyme was inactivated by autoclaving. After 72 hours of spraying, the inoculum was inoculated into a culture solution (OD610: 0.65) of a pathogenic bacterium, B. gonorrhoeae, which infects a monocotyledon oat.
  • FIG. 7B shows a graph of disease severity calculated from lesions observed on the third day after inoculation with pathogenic bacteria.
  • the symptom on the third day of inoculation was reduced as compared with the control group, and the disease severity was reduced.
  • FIG. 8A shows the third day after spraying with pathogenic fungi after each enzyme treatment
  • FIG. 8B shows a graph of disease severity calculated from lesions observed on the third day after spraying the pathogenic fungus spores.
  • FIG. 9A shows a photograph showing lesions on the fifth day after virus inoculation
  • FIG. 9B shows the average value of the average diameter (mm) of lesions on each of the three leaves measured on the fifth day after virus inoculation.
  • a graph (the error range is a standard error calculated from three tests) is shown.
  • the asterisk in FIG. 9B indicates that as a result of performing a significant difference test at a significance level of 0.01 by the t-test, the lesions were significantly reduced with respect to the control group.
  • the plant disease resistance enhancing or plant disease controlling composition of the present invention has a nonspecific resistance enhancing action against various diseases such as mold disease, bacterial disease, and viral disease. And it was found that it exerts a control action.
  • PCLE which is a cutinase-like enzyme derived from the filamentous fungus Paraphoma genus B47-9 (accession number NITE P-573), is prepared (see the preparation method described below). Prepared to mL. PCLE is known to have high substrate decomposition activity in the presence of calcium chloride when PBSA, which is polyester, is used as the substrate. Therefore, the test was conducted with or without 2 mM calcium chloride in the solution. As a control, the buffer used for dilution (20 mM Tris-HCl, pH 8.8) was used.
  • FIG. 10A shows a photograph of the fourth day after inoculation of pathogenic bacteria in various enzyme treatments
  • FIG. 10B shows a graph of disease severity calculated from lesions observed on the fourth day after inoculation of pathogenic bacteria.
  • PaE purification P. simple biodegradable plastic degradation using the affinity of enzyme and substrate published in "Agricultural Environment Technology Laboratory 2012 Research Results Information (Vol. 29)" PaE was purified according to the “Enzyme purification method” (http://www.niaes.affrc.go.jp/sinfo/result/result29/result29 — 42.html).
  • Endome purification method http://www.niaes.affrc.go.jp/sinfo/result/result29/result29 — 42.html.
  • xylanase P. While the antarctica culture filtrate was concentrated by ultrafiltration, it was replaced with 1.2 M ammonium sulfate / 50 mM sodium phosphate buffer.
  • CmCut1 which is a cutinase-like enzyme, was isolated and purified from the culture filtrate of the basidiomycete Cryptococcus magnus strain BPD1A strain (Accession No. NITE P-02134) (see the preparation method described later).
  • CmCut1 was prepared to 0.01 U / mL with an esterase titer using a buffer solution (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM)).
  • a buffer solution (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM)
  • the buffer used for dilution (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM) was used.
  • 0.6 mL of the prepared enzyme solution was sprayed on the leaves of dwarf tomato (MicroTom), which is a solanaceous plant, and kept warm in a sealed container (humidity 100%, temperature 22 ° C.). 72 hours after spraying, each cut leaf was sprayed with 0.6 mL of pathogenic filamentous fungus (Bc) spores (5 ⁇ 10 4 spores / mL). Observed as a disease symptom that brown lesions are formed (may be covered with mold), and calculated the disease severity based on the following formula "Guide for conducting tests" (see Japan Plant Protection Association, published in February 2003)). Each test was repeated twice, using 5 cut leaves for each test section.
  • Mc pathogenic filamentous fungus
  • FIG. 11A shows the pathogenic fungal spores after spray treatment with buffer or CmCut1 solution Photo 7th day after spraying.
  • 11B shows a graph of disease severity calculated from lesions observed on the seventh day after nebulization of pathogenic fungi.
  • the symptom on the seventh day after spore spraying was reduced compared to the control group, and the disease severity decreased.
  • CmCut1 is a biodegradable plastic degrading enzyme. It was confirmed that the purified CmCut1 was purified until a single band was shown by silver staining after SDS gel electrophoresis.
  • the culture of microorganisms conventionally known as a biodegradable plastic-degrading enzyme source has enhanced plant disease resistance or the plant's disease resistance through at least the activities of esterase and xylanase contained therein. It was found to control the disease.
  • the esterase and xylanase used in the present invention can be prepared from a microorganism culture solution whose productivity has been improved to promote the degradation of agricultural biodegradable multifilms stretched in the field, and is inexpensively mass-produced. Is something that can be done.
  • esterase and xylanase are easily decomposed in nature, have no persistence in the environment caused by low molecular weight compounds, and have a low environmental load.
  • the plant disease resistance enhancing or plant disease controlling composition of the present invention can be applied to various plants or various diseases and is highly versatile. Therefore, the present invention has high industrial applicability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The purpose of the present invention is to provide a novel use for biodegradable-plastic-degrading enzymes and a culture of microorganisms including the same. Esterase and/or xylanase can be used to enhance the disease resistance of plants or control plant disease.

Description

植物の病害抵抗性増強用又は植物病害防除用組成物及びそれらの使用方法Composition for enhancing plant disease resistance or controlling plant disease and methods for using them
 本発明は、エステラーゼ及び/又はキシラナーゼを使用することで、植物の病害抵抗性を増強又は植物の病害を防除する方法を提供する。 The present invention provides a method for enhancing plant disease resistance or controlling plant diseases by using esterase and / or xylanase.
 植物には動物の免疫に準じるような生体防御システムが備わっており、この機能が発動すると、植物は、様々な防御システムを作動し、発病しにくい植物体となる。最近、殺菌剤の開発においては、環境保全や薬剤耐性菌回避の観点から、それらの防御システムを利用して病気を抑えようとする薬剤の探索が盛んに行われている。これらの薬剤には、(1)複数の病原菌に対して予防的な効果がある(作用スペクトルが広い)、(2)耐性菌の出現率が極めて低い、(3)防除効果が長期間持続する、(4)生態系自体への直接の影響は少ないという特徴を有している。一方で、こうした活性を持つ化合物の探索や評価が、殺菌性の農薬と比較して困難なため、実用化に至った化合物は限られている。また、国内で市販されている薬剤は、全てイネを対象としているが、様々な作物でも同様な薬剤が必要とされている。 Plants are equipped with a biological defense system that conforms to animal immunity. When this function is activated, the plant activates various defense systems and becomes a plant that is unlikely to become diseased. In recent years, in the development of bactericides, from the viewpoint of environmental protection and avoidance of drug-resistant bacteria, there has been an active search for drugs that use these defense systems to control diseases. These drugs (1) have a preventive effect against multiple pathogens (wide spectrum of action), (2) very low incidence of resistant bacteria, (3) long-term control effect (4) It has the feature that there is little direct influence on the ecosystem itself. On the other hand, since it is difficult to search for and evaluate compounds having such activity as compared with bactericidal pesticides, only a limited number of compounds have been put to practical use. In addition, all the drugs marketed in Japan target rice, but similar drugs are required for various crops.
 また、植物の表層は、外界からのストレス、特に蒸散や降雨によって引き起こされる浸透圧ストレス、病原菌の侵入、害虫による食害から身を守るために、クチクラ層とワックスで覆われている。このクチクラ層に含まれるクチン(脂肪酸ポリエステル)を加水分解する酵素はクチナーゼと呼ばれている。 Also, the surface layer of the plant is covered with a cuticle layer and wax in order to protect the body from external stresses, especially osmotic stress caused by transpiration and rainfall, invasion of pathogenic bacteria, and pest damage. An enzyme that hydrolyzes cutin (fatty acid polyester) contained in this cuticle layer is called cutinase.
 最近、植物常在性の酵母や糸状菌から得た酵素により、生分解性プラスチック製農業資材を使用後に速やかに分解させるための技術が開発されている(特許文献1及び2)。また、複数の酵素を大量生産する技術も開発されており(特許文献3及び4、非特許文献1)、安価な酵素液が市場で大量に入手可能になる見込みがある。そして、これら糸状菌や酵母由来の生分解性プラスチック分解酵素を高濃度で含む培養ろ液を植物に処理すると、植物が枯れる現象が見出されている。このとき、クチクラ層は薄くなっており、植物病原菌に感染しやすくなることから、生分解性プラスチック分解酵素のようなクチクラ層の一部を分解し得る酵素は、除草剤として有害植物の駆除に用いることができる(特許文献5)。また、酵母Pseudozyma antarctica由来の生分解性プラスチック分解酵素を含む培養液には、キシラナーゼ(ヘミセルロース分解酵素)も含まれていることが見出されている(非特許文献2)。しかしながら、酵母由来の生分解性プラスチック分解酵素で、実際にクチン分解活性を有するものは確認されていなかった。また、生分解性プラスチック分解酵素で、植物の病害抵抗性を増強し、植物の病害を防除する方法も知られていなかった。 Recently, a technique for rapidly degrading biodegradable plastic agricultural materials after use with enzymes obtained from plant-resident yeast and filamentous fungi has been developed (Patent Documents 1 and 2). In addition, techniques for mass-producing a plurality of enzymes have been developed (Patent Documents 3 and 4, Non-Patent Document 1), and it is expected that inexpensive enzyme solutions will be available in large quantities on the market. And when a plant is treated with a culture filtrate containing these biodegradable plastic-degrading enzymes derived from filamentous fungi or yeast at a high concentration, a phenomenon has been found that the plant dies. At this time, the cuticle layer is thin and easily infected with phytopathogenic fungi. Enzymes capable of decomposing part of the cuticle layer, such as biodegradable plastic degrading enzymes, are used as herbicides to control harmful plants. It can be used (Patent Document 5). Moreover, it has been found that a culture solution containing a biodegradable plastic-degrading enzyme derived from yeast Pseudozyma antarctica also contains xylanase (hemicellulose-degrading enzyme) (Non-patent Document 2). However, no biodegradable plastic-degrading enzyme derived from yeast has actually been confirmed to have a cactinolytic activity. In addition, a method for enhancing plant disease resistance and controlling plant diseases with biodegradable plastic degrading enzymes has not been known.
特許第4915593号Patent No. 4915593 特許第5082125号Patent No. 5082125 特許第5849297号Patent No. 5849297 国際公開第2014/109360号International Publication No. 2014/109360 特開2014-129287号公報JP 2014-129287 A
 これまで、生分解性プラスチック分解酵素及びそれを含む糸状菌又は酵母などの微生物の培養物の応用範囲は限られており、その酵素及び培養物の潜在能力を十分に生かし切れていなかった。本発明は、生分解性プラスチック分解酵素及びそれを含む微生物の培養物の新規用途を提供することを目的としている。 Until now, the application range of biodegradable plastic-degrading enzymes and cultures of microorganisms such as filamentous fungi or yeast containing them has been limited, and the potential of the enzymes and cultures has not been fully utilized. An object of the present invention is to provide a novel use of a biodegradable plastic-degrading enzyme and a culture of a microorganism containing the same.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、意外なことに、生分解性プラスチック分解酵素として用いられていた微生物の培養物が、その中に含まれているエステラーゼ及び/又はキシラナーゼの作用を介して、病原菌の感染抑制作用及び病原菌発芽抑制作用を奏すること、並びに、植物のストレス抵抗性遺伝子の発現を上昇させることを見出し、本発明を完成させた。
 すなわち、本発明は、以下に示す植物の病害抵抗性増強用又は植物病害防除用組成物、及び、それらを用いた植物の病害抵抗性を増強又は植物の病害を防除する方法を提供するものである。
〔1〕エステラーゼ及び/又はキシラナーゼを含む、植物の病害抵抗性増強用又は植物病害防除用組成物。
〔2〕前記エステラーゼが、生分解性プラスチック分解酵素を含む、前記〔1〕に記載の組成物。
〔3〕前記生分解性プラスチック分解酵素が、クチナーゼ及びクチナーゼ様酵素から成る群から選択される、前記〔2〕に記載の組成物。
〔4〕前記エステラーゼ及び/又は前記キシラナーゼが、微生物培養液又は抽出液である、前記〔1〕~〔3〕のいずれか一項に記載の組成物。
〔5〕前記微生物が、シュードザイマ(Pseudozyma)属、パラフォーマ(Paraphoma)属、クリプトコッカス(Cryptococcus)属、ムコール(Mucor)属、フミコラ(Humicola)属、テルモミセス(Thermomyces)属、タラロミセス(Talaromyces)属、ケトミウム(Chaetomium)属、トルラ(Torula)属、スポロトリクム(Sporotrichum)属、マルブランケア(Malbranchea)属、アルタナリア(Alternaria)属、クラドスポリウム(Cladosporium)属、ぺニシリウム(Penicillium)属、ペキロマイセス(Paecilomyces)属、シュードモナス(Pseudomonas)属、バクテロイデス(Bacteroides)属、及び、アシドボラックス(Acidovorax)属から成る群から選択される、前記〔4〕に記載の組成物。
〔6〕前記エステラーゼの濃度が、0.005~0.5U/mLである、前記〔1〕~〔5〕のいずれか一項に記載の組成物。
〔7〕前記エステラーゼ及び前記キシラナーゼの両方を含む、前記〔1〕~〔6〕のいずれか一項に記載の組成物。
〔8〕前記植物が、クチクラ層を有する、前記〔1〕~〔7〕のいずれか一項に記載の組成物。
〔9〕前記植物が、高等植物である、前記〔1〕~〔8〕のいずれか一項に記載の組成物。
〔10〕前記〔1〕~〔9〕のいずれか一項に記載の組成物によって植物を処理する工程を含む、植物の病害抵抗性を増強又は植物の病害を防除する方法。
〔11〕前記処理工程が、前記組成物を前記植物に噴霧する工程を含む、前記〔10〕に記載の方法。
〔12〕前記噴霧工程が、前記組成物を前記植物の葉1枚あたり0.1~1mL噴霧する工程を含む、前記〔11〕に記載の方法。
As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that a culture of a microorganism used as a biodegradable plastic degrading enzyme is an esterase and / or contained therein. Through the action of xylanase, the present inventors have found that the present invention has an effect of suppressing the infection of pathogenic bacteria and an effect of suppressing germination of pathogenic bacteria, and increases the expression of stress resistance genes in plants.
That is, the present invention provides a plant disease resistance enhancing or plant disease controlling composition described below, and a method for enhancing plant disease resistance or controlling plant diseases using them. is there.
[1] A composition for enhancing plant disease resistance or controlling plant diseases comprising esterase and / or xylanase.
[2] The composition according to [1], wherein the esterase contains a biodegradable plastic degrading enzyme.
[3] The composition according to [2], wherein the biodegradable plastic degrading enzyme is selected from the group consisting of a cutinase and a cutinase-like enzyme.
[4] The composition according to any one of [1] to [3], wherein the esterase and / or the xylanase is a microorganism culture solution or an extract.
[5] The microorganism is a genus Pseudozyma, a Paraforma, a Cryptococcus, a Mucor, a Humicola, a Thermomyces, a Taromomis, or a Taromomis, The genus Chaetomium, the genus Torula, the genus Sporotricum, the genus Malblanche, the genus Alternaria, the genus Cladosporium, the genus Penicillium, Penicillium ) Genus, Pseudomonas genus, Ba Teroidesu (Bacteroides) genus, and is selected from the group consisting of Acidovorax (Acidovorax) genus composition according to the above [4].
[6] The composition according to any one of [1] to [5], wherein the esterase concentration is 0.005 to 0.5 U / mL.
[7] The composition according to any one of [1] to [6], comprising both the esterase and the xylanase.
[8] The composition according to any one of [1] to [7], wherein the plant has a cuticle layer.
[9] The composition according to any one of [1] to [8], wherein the plant is a higher plant.
[10] A method for enhancing plant disease resistance or controlling plant disease, comprising the step of treating the plant with the composition according to any one of [1] to [9].
[11] The method according to [10], wherein the treatment step includes a step of spraying the composition onto the plant.
[12] The method according to [11], wherein the spraying step includes a step of spraying 0.1 to 1 mL of the composition per leaf of the plant.
 本発明に従えば、微生物の培養物中に含まれている生分解性プラスチック分解酵素であるエステラーゼ、及び/又は、同培養物中に含まれているキシラナーゼにより、植物の病害抵抗性を増強又は植物の病害を防除することができる。植物の病害抵抗性増強剤は、古くから研究されているが、現在国内で製品になったものは、イネを対象とする3種の薬剤しか知られていない。しかしながら、本発明のエステラーゼ及び/又はキシラナーゼによる病害抵抗性増強作用又は病害防除作用は、イネ科植物だけではなく、トマト、シロイナズナ、及びタバコなどの幅広い作物種で利用できるものであり、汎用性が高い。また、本発明の有効成分であるエステラーゼ及びキシラナーゼは、従来の病害抵抗性増強剤として知られていたような低分子化合物ではなく、タンパク質であるので、これは自然界で容易に分解され、低分子化合物などで起こる環境中への残存性はなく、環境負荷が低い。 According to the present invention, the disease resistance of plants is enhanced by esterase, which is a biodegradable plastic-degrading enzyme contained in a culture of microorganisms, and / or xylanase contained in the culture. Plant diseases can be controlled. Plant disease resistance enhancers have been studied for a long time, but only three types of drugs targeting rice are known as products that have become domestic products. However, the disease resistance enhancing action or disease controlling action by the esterase and / or xylanase of the present invention can be used not only for gramineous plants but also for a wide variety of crop species such as tomato, syleusona, and tobacco, and has versatility. high. In addition, since the esterase and xylanase which are the active ingredients of the present invention are not low molecular weight compounds known as conventional disease resistance enhancers but are proteins, they are easily decomposed in the natural world. There is no persistence in the environment caused by compounds, and the environmental load is low.
葉の病徴変化を示す写真。A photograph showing changes in leaf symptom. 葉の病徴変化を示すグラフ。The graph which shows the symptom change of a leaf. 病原菌胞子の顕微鏡写真。Micrograph of pathogenic spore. 病原菌胞子の発芽率のグラフ。Graph of germination rate of pathogenic fungus spores. 病原菌由来のDNA量のグラフ。Graph of DNA amount derived from pathogenic bacteria. 病原菌を含む葉の顕微鏡写真。Photomicrograph of leaves containing pathogenic bacteria. 植物のストレス抵抗性遺伝子のグラフ。Graph of stress resistance genes in plants. 植物の活性酸素種応答遺伝子のグラフ。The graph of the reactive oxygen species response gene of a plant. 葉の写真。Leaf photo. 発病度のグラフ。Disease severity graph. 葉の写真。Leaf photo. 発病度のグラフ。Disease severity graph. 葉の写真。Leaf photo. 病斑直径のグラフ。Graph of lesion diameter. 葉の写真。Leaf photo. 発病度のグラフ。Disease severity graph. 葉の写真。Leaf photo. 発病度のグラフ。Disease severity graph.
 本発明は、エステラーゼ及び/又はキシラナーゼを含む、植物の病害抵抗性増強用又は植物病害防除用組成物に関するものである。
 本明細書に記載の「エステラーゼ」とは、エステルを水との化学反応で酸とアルコールに分解する加水分解酵素のことをいう。本発明のエステラーゼとしては、クチクラ層の一部を分解する活性を有しているものであれば、種々のエステラーゼを制限なく使用することができ、例えば、生分解性プラスチック分解酵素として利用されている酵素を採用してもよい。
The present invention relates to a composition for enhancing plant disease resistance or controlling plant diseases, which comprises esterase and / or xylanase.
As used herein, “esterase” refers to a hydrolase that decomposes an ester into an acid and an alcohol by a chemical reaction with water. As the esterase of the present invention, various esterases can be used without limitation as long as they have an activity of decomposing a part of the cuticle layer. For example, they are used as biodegradable plastic degrading enzymes. The enzyme may be used.
 本明細書に記載の「生分解性プラスチック分解酵素」とは、生分解性プラスチックを分解する活性を有する酵素のことをいう。本発明の組成物には、生分解性プラスチックを分解する活性を有する酵素であれば、種々の酵素を制限なく使用することができ、例えば、クチナーゼ又はクチナーゼ様酵素を採用してもよい。前記生分解性プラスチックを分解する活性は、ポリブチレンサクシネート-co-アジペート(PBSA)エマルジョンの分解活性を測定することにより、あるいは、PBSA、ポリブチレンサクシネート、ポリブチレンアジペートテレフタレート、及びポリ乳酸などの生分解性プラスチックフィルムの分解活性を測定することにより、決定することができる。 As used herein, the term “biodegradable plastic degrading enzyme” refers to an enzyme having an activity of degrading biodegradable plastic. Any enzyme can be used in the composition of the present invention without limitation as long as it has an activity of degrading biodegradable plastics. For example, cutinase or cutinase-like enzyme may be employed. The activity of degrading the biodegradable plastic is measured by measuring the degradation activity of polybutylene succinate-co-adipate (PBSA) emulsion, or PBSA, polybutylene succinate, polybutylene adipate terephthalate, polylactic acid, etc. This can be determined by measuring the degradation activity of the biodegradable plastic film.
 本明細書に記載の「キシラナーゼ」とは、キシランをキシロースに分解する活性を有する酵素のことをいい、植物細胞壁中のヘミセルロースを分解することができる。本発明の組成物には、ヘミセルロースを分解する活性を有する酵素であれば、種々のキシラナーゼを制限なく使用することができる。 The “xylanase” described in the present specification refers to an enzyme having an activity of decomposing xylan into xylose, and can decompose hemicellulose in the plant cell wall. In the composition of the present invention, various xylanases can be used without limitation as long as they have an activity of degrading hemicellulose.
 前記エステラーゼ及び前記キシラナーゼは、微生物によって産生され得る。本発明の組成物には、当該微生物から単離精製したエステラーゼ及び/又はキシラナーゼを使用してもよく、当該微生物の培養液(培養ろ液)又は抽出液をエステラーゼ及び/又はキシラナーゼとして使用してもよい。前記エステラーゼ及び/又は前記キシラナーゼを産生する微生物は、特に限定されるものではないが、例えば、シュードザイマ(Pseudozyma)属、パラフォーマ(Paraphoma)属、クリプトコッカス(Cryptococcus)属、ムコール(Mucor)属、フミコラ(Humicola)属、テルモミセス(Thermomyces)属、タラロミセス(Talaromyces)属、ケトミウム(Chaetomium)属、トルラ(Torula)属、スポロトリクム(Sporotrichum)属、マルブランケア(Malbranchea)属、アルタナリア(Alternaria)属、クラドスポリウム(Cladosporium)属、ぺニシリウム(Penicillium)属、ペキロマイセス(Paecilomyces)属、シュードモナス(Pseudomonas)属、バクテロイデス(Bacteroides)属、及び、アシドボラックス(Acidovorax)属から成る群から選択される微生物であってもよい。 The esterase and the xylanase can be produced by microorganisms. In the composition of the present invention, esterase and / or xylanase isolated and purified from the microorganism may be used, and the culture solution (culture filtrate) or extract of the microorganism is used as esterase and / or xylanase. Also good. The microorganism that produces the esterase and / or the xylanase is not particularly limited, and examples thereof include the genus Pseudozyma, the genus Paraforma, the genus Cryptococcus, the genus Mucor, and the Humicola. (Humicola), Thermomyces, Talaromyces, Ketomium, Torula, Sporotrichum, Malbrana The genus Spodium, the genus Penicillium, Pequillomyce (Paecilomyces) genus Pseudomonas (Pseudomonas) genus Bacteroides (Bacteroides) genus, and it may be a microorganism selected from the group consisting of Acidovorax (Acidovorax) genus.
 前記エステラーゼとしての生分解性プラスチック分解酵素は、好ましくは、Pseudozyma antarctica(例えば、GB-4(1)W株、GB-4(0)-HPM7株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された酵母;受託番号NITE BP-02238)及びOMM62-2株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された酵母;受託番号NITE BP-02239)など)により産生されるエステラーゼ(PaE)、Paraphoma属類縁菌クチナーゼ様酵素(PCLE)、又は、クチナーゼ様酵素1(CmCut1)である。PCLEは、Paraphoma属類縁菌B47-9株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された糸状菌;受託番号NITE P-573;要すれば特許第5082125号参照)などのParaphoma属類縁菌により産生される酵素であり、CmCut1は、Cryptococcus magnus類縁菌BPD1A株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された酵母;受託番号NITE P-02134)などのCryptococcus magnus又はその類縁菌により産生される酵素である。 The biodegradable plastic degrading enzyme as the esterase is preferably Pseudozyma antarctica (for example, GB-4 (1) W strain, GB-4 (0) -HPM7 strain (incorporated administrative agency, Product Evaluation Technology Infrastructure Organization, Patent Microorganism Deposit) Yeast deposited at the Center; Deposit No. NITE BP-02238) and OMM62-2 strain (Yeast deposited at the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, Accession No. NITE BP-02239) Esterase (PaE), Paraphoma-related fungus cutinase-like enzyme (PCLE), or cutinase-like enzyme 1 (CmCut1). PCLE is Paraphoma such as Paraphoma genus B47-9 strain (filamentous fungus deposited at the National Institute of Technology and Evaluation of Microorganisms of the National Institute of Technology and Evaluation; Accession Number NITE P-573; refer to Japanese Patent No. 5082125 if necessary) CmCut1 is a Cryptococcus magnus such as Cryptococcus magnus genus BPD1A strain (yeast deposited with the Patent Microorganism Depositary of the National Institute of Technology and Evaluation of the Independent Administrative Institution; Accession Number NITE P-02134) Or it is an enzyme produced by its related bacteria.
 本発明の組成物中における前記エステラーゼの濃度は、適用対象の植物の種類及びその病原菌の種類に応じて適宜調整され得る。前記エステラーゼの濃度は、例えば0.005~0.5U/mLであってもよく、好ましくは0.006~0.2U/mL、さらに好ましくは0.007~0.07U/mLである。
 なお、ここで示すエステラーゼの力価は、生分解性プラスチックであるポリブチレンサクシネート-co-アジペート(PBSA)エマルジョン(昭和電工株式会社、EM-301)の濁度の減少量を測定することで決定されたものである。OD660nmの値を1分間に1低下させるときの力価を1Uと定義した。酵素活性測定時の緩衝液としては、例えば、トリス塩酸緩衝液(20mM Tris-HCl、pH6.8、塩化カルシウム(2mM)なし又はあり)を使用してもよい。
The concentration of the esterase in the composition of the present invention can be appropriately adjusted according to the type of plant to be applied and the type of the pathogen. The esterase concentration may be, for example, 0.005 to 0.5 U / mL, preferably 0.006 to 0.2 U / mL, and more preferably 0.007 to 0.07 U / mL.
The esterase titer shown here is determined by measuring the decrease in turbidity of polybutylene succinate-co-adipate (PBSA) emulsion (Showa Denko EM-301), a biodegradable plastic. It has been decided. The titer when the value of OD660nm was decreased by 1 per minute was defined as 1U. As a buffer solution for measuring enzyme activity, for example, a Tris-HCl buffer solution (20 mM Tris-HCl, pH 6.8, with or without calcium chloride (2 mM)) may be used.
 本発明の組成物中における前記キシラナーゼの濃度は、適用対象の植物の種類及びその病原菌の種類に応じて適宜調整され得る。前記キシラナーゼの濃度は、例えば0.001~5.0U/mLであってもよく、好ましくは0.005~1.0U/mLである。
 なお、ここで示すキシラナーゼの力価は、キシランを分解したときに生じるキシロースの量を、Agric.Biol.Chem.(1980)、44(12)、2943-2949に示されているようなソモギ-ネルソン法の改良法によって測定されたものである。1分間に1μmolのキシロースを生成する力価を1Uと定義した。
The concentration of the xylanase in the composition of the present invention can be appropriately adjusted according to the type of plant to be applied and the type of the pathogenic fungus. The concentration of the xylanase may be, for example, 0.001 to 5.0 U / mL, and preferably 0.005 to 1.0 U / mL.
The titer of xylanase shown here is the amount of xylose produced when xylan is decomposed, Agric. Biol. Chem. (1980), 44 (12), 2943-2949, measured by a modified method of the Somogi-Nelson method. The titer that produces 1 μmol of xylose per minute was defined as 1 U.
 本発明の組成物には、前記エステラーゼ又は前記キシラナーゼを単独で使用してもよいが、両者を併せて使用してもよい。作用機序の異なる両酵素を併用することで、相乗的な植物の病害抵抗性増強作用及び/又は植物病害防除作用が奏される。前記エステラーゼ及び前記キシラナーゼを併用する際には、それぞれ単離精製したエステラーゼ及びキシラナーゼを同じ組成物中に配合してもよいが、これらの酵素を始めから含んでいる微生物培養液又は抽出液を使用すると簡便である。あるいは、前記エステラーゼのみ含む組成物及び前記キシラナーゼのみを含む組成物を、同時又は連続的に使用してもよい。 In the composition of the present invention, the esterase or the xylanase may be used alone, or both may be used in combination. By using both enzymes having different action mechanisms in combination, a synergistic plant disease resistance enhancing action and / or plant disease controlling action is achieved. When the esterase and the xylanase are used in combination, the isolated and purified esterase and xylanase may be blended in the same composition, but a microorganism culture solution or extract containing these enzymes from the beginning is used. This is convenient. Alternatively, a composition containing only the esterase and a composition containing only the xylanase may be used simultaneously or sequentially.
 本明細書に記載の「植物の病害抵抗性増強」とは、当該植物に任意の病原体が接触しても感染が成立しないもしくは病徴が軽減されるような状況が誘導されることを指す。「植物の病害抵抗性増強」は、例えば、PIN2(proteinase inhibitor 2)及びLapA1(leucine aminopeptidase A1)などの傷害応答遺伝子の上昇、PR4(pathogenesis related 4)及びPRB1bなどの病害応答遺伝子の上昇、並びに、活性酸素種の放出のように、病害に対する植物の生理的な応答の増強が指標となる場合もある。また、本明細書に記載の「植物病害防除」とは、作用機序に関わらず、結果として植物における病徴変化を抑制することをいう。植物病害防除の作用機序としては、例えば、上述のような植物の生理的な応答の変化、共生微生物叢の変化、又は、病原菌の弱毒化などが挙げられるが、これらに限定されるものではない。 The “enhancement of disease resistance of a plant” described in the present specification refers to the induction of a situation in which infection is not established or disease symptoms are reduced even when any pathogen contacts the plant. “Plant disease resistance enhancement” means, for example, elevation of injury response genes such as PIN2 (proteinase inhibitor 2) and LapA1 (leucine aminopeptidase A1), and disease response genes such as PR4 (pathogenesis related 4) and PRB1b. In some cases, such as the release of reactive oxygen species, an enhancement of the physiological response of a plant to a disease can be an indicator. In addition, “plant disease control” described in the present specification refers to suppressing symptom changes in plants as a result regardless of the mechanism of action. Examples of the action mechanism for controlling plant diseases include, but are not limited to, changes in physiological responses of plants as described above, changes in symbiotic microflora, or attenuation of pathogenic bacteria. Absent.
 本発明の組成物は、植物の種類や病害の種類によらず、非特異的に植物の病害抵抗性増強作用及び植物病害防除作用を奏するので、種々の植物に対して使用することができる。本発明の組成物は、例えば、クチクラ層を有する植物、又は、種子植物(裸子植物又は被子植物)及びシダ植物などの高等植物に対して使用してもよい。また、本発明の組成物は、種々の農作物、例えば、アオイ科、アカザ科、アブラナ科、アヤメ科、イソマツ科、イネ科、イワタバコ科、ウコギ科、ウリ科、カキノキ科、キク科、クルミ科、クワ科、ケシ科、ゴマノハグサ科、サクラソウ科、サトイモ科、サボテン科、シソ科、シュウカイドウ科、ショウガ科、スイレン科、スミレ科、セリ科、センリョウ科、ツツジ科、ツバキ科、トウダイグサ科、ナス科、ナデシコ科、バラ科、ヒガンバナ科、ヒルガオ科、フウロソウ科、ブドウ科、ブナ科、ボタン科、マタタビ科、マメ科、ミカン科、ヤマノイモ科、ユキノシタ科、ユリ科、ラン科、リュウゼツラン科、及び、リンドウ科から成る群から選択される科に属する農作物に対して使用してもよい。そして、本発明の組成物は、例えば、カビ病、バクテリア病、及び、ウイルス病などの種々の病害に対する抵抗性を増強又はそのような種々の病害を防除することができる。 The composition of the present invention can be used for various plants because it exhibits non-specific plant disease resistance enhancing action and plant disease controlling action regardless of the kind of plant or disease. The composition of the present invention may be used, for example, for plants having a cuticle layer, or higher plants such as a seed plant (a gymnosperm or angiosperm) and a fern plant. In addition, the composition of the present invention can be used for various crops, for example, mallow, akaza, cruciferous, iridaceae, iridaceae, gramineous, saccharidaceae, araliaceae, cucurbitaceae, cypressaceae, asteraceae, walnutaceae. , Mulberry, poppy, primrose, primaceae, taro, cactaceae, perilla, cypridaceae, ginger, waterlily, violet, sericaceae, gypsaceae, azalea, camellia, euphorbiaceae, eggplant Family, urchinaceae, rose family, antaceae family, convolvulaceae family, sorghum family, grape family, beech family, button family, matabidae family, legume family, mandarin family, genus magnolia family, saxifrage family, lily family, orchid family, agave family, And you may use with respect to the crops which belong to the family selected from the group which consists of Gentianaceae. And the composition of this invention can enhance the resistance with respect to various diseases, such as mold disease, bacterial disease, and viral disease, or can control such various diseases.
 本発明の組成物は、その植物の病害抵抗性増強作用又は植物病害防除作用を阻害しない限り、他の任意の成分をさらに含んでもよい。また、本発明の組成物は、その植物の病害抵抗性増強作用又は植物病害防除作用をより高めるために、他の有効成分をさらに含んでもよい。 The composition of the present invention may further contain other arbitrary components as long as the disease resistance enhancing action or the plant disease control action of the plant is not inhibited. In addition, the composition of the present invention may further contain other active ingredients in order to further enhance the disease resistance enhancing action or plant disease controlling action of the plant.
 ある態様では、本発明は、植物の病害抵抗性増強用組成物又は植物病害防除用組成物によって植物を処理する工程を含む、植物の病害抵抗性を増強又は植物の病害を防除する方法にも関する。当該処理の方法としては、結果として植物の病害抵抗性を増強又は植物の病害を防除するような方法であれば、種々の方法を制限なく使用することができる。例えば、前記処理工程は、前記組成物を前記植物に噴霧する工程を含んでもよい。前記組成物の適用部位は、特に限定されないが、例えば、前記植物の葉、茎、又は、果実などであってもよい。前記組成物の適用量は、適用方法及び適用部位に応じて適宜調整され得るが、例えば、前記植物の葉1枚あたり0.1~1mL噴霧してもよい。 In one aspect, the present invention also relates to a method for enhancing plant disease resistance or controlling plant diseases, comprising the step of treating a plant with a plant disease resistance enhancing composition or plant disease controlling composition. Related. As a method for the treatment, various methods can be used without limitation as long as it results in enhancing the disease resistance of the plant or controlling the disease of the plant. For example, the treatment step may include a step of spraying the composition onto the plant. Although the application site | part of the said composition is not specifically limited, For example, the leaf, stem, fruit, etc. of the said plant may be sufficient. The application amount of the composition can be appropriately adjusted according to the application method and application site, and for example, 0.1 to 1 mL of spray per leaf of the plant may be used.
 以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the scope of the present invention is not limited to these examples.
<実施例1>
(1)Pseudozyma antarctica(P.antarctica)の培養ろ液の調製
 P.antarctica(GB-4(1)W株)を表1に示すYM培地(yeast extract malt extract medium)で前培養した。
Figure JPOXMLDOC01-appb-I000001
<Example 1>
(1) Preparation of culture filtrate of Pseudozyma antarctica (P. antarctica) Antarctica (GB-4 (1) W strain) was precultured in YM medium (yeast extract malt extract medium) shown in Table 1.
Figure JPOXMLDOC01-appb-I000001
 5L容のジャーファーメンターに、表2に示した組成の培地3Lを加え、上記P.antarcticaの前培養液を30mL接種して、これを30℃、撹拌速度500rpm、通気量8LPMで培養した。
Figure JPOXMLDOC01-appb-I000002
To a 5 L jar fermenter, 3 L of a medium having the composition shown in Table 2 was added. 30 mL of the Antarctica preculture was inoculated and cultured at 30 ° C., a stirring speed of 500 rpm, and an aeration rate of 8 LPM.
Figure JPOXMLDOC01-appb-I000002
 高泡形成による培養液の流出を防止するため、消泡剤(商品名「信越シリコーンKM-72F」、信越化学工業株式会社製)の50倍希釈液を、消泡センサーを利用して断続的に自動滴下し、培養開始後72時間までにおおよそ40mL添加した。
 また、培地中のアンモニウムイオンの消費によるpHの低下をセンサーで感知し、窒素源の追加とpHの調整のため、培地にアンモニア水をアルカリ調整溶液として自動滴下してpHを6.0に調整した。培養開始24時間後から、表3に示した組成の流加培地を0.5L/dの速度で流加した。最終的に72時間培養したときの培養液を孔径0.45μmのCELLULOSE ACETATEろ紙(ADVANTEC製)でろ過して、培養ろ液を調製した。この培養ろ液を、以下の各試験で使用した。なお、P.antarcticaの別の菌株(GB-4(0)-HPM7株又はOMM62-2株)を用いても、GB-4(1)W株を用いた場合と同様の方法で培養ろ液を調製することができ、かつ同様に使用することができた。
Figure JPOXMLDOC01-appb-I000003
In order to prevent the culture fluid from flowing out due to the formation of high bubbles, a 50-fold diluted solution of an antifoaming agent (trade name “Shin-Etsu Silicone KM-72F”, manufactured by Shin-Etsu Chemical Co., Ltd.) is intermittently used using an anti-foam sensor. About 40 mL was added by 72 hours after the start of culture.
In addition, the pH drop due to ammonium ion consumption in the medium is detected by a sensor, and ammonia water is automatically added to the medium as an alkali adjustment solution to adjust the pH to 6.0 in order to add a nitrogen source and adjust the pH. did. From 24 hours after the start of the culture, a fed-batch medium having the composition shown in Table 3 was fed at a rate of 0.5 L / d. Finally, the culture solution after 72 hours of cultivation was filtered through CELLULOSE ACEDATE filter paper (manufactured by ADVANTEC) having a pore size of 0.45 μm to prepare a culture filtrate. This culture filtrate was used in the following tests. P.P. Even if another antarctica strain (GB-4 (0) -HPM7 strain or OMM62-2 strain) is used, the culture filtrate should be prepared in the same manner as when the GB-4 (1) W strain is used. And could be used as well.
Figure JPOXMLDOC01-appb-I000003
(2)切り取り葉への噴霧処理
 P.antarcticaの培養ろ液(エステラーゼの力価:8.0U/mL)を20mMトリス塩酸緩衝液(pH8.8)で希釈し、0.01U/mL、0.1U/mL、1.0U/mLの溶液を調製した。矮性のトマト(MicroTom)から切り取った葉1枚に対して、0.01U/mL~8.0U/mLの各溶液を0.6mLずつ噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後(3日後)に、それぞれの切り取り葉に病原性糸状菌(灰色カビ病菌(ボトリティス・シネレア(Botrytis cinerea)、B.c.))の胞子(5×104胞子/mL)を0.6mLずつ噴霧した。各処理区につき5枚の切り取り葉を用い、酵素処理10日目すなわち胞子処理7日後に、葉の様子を観察した。褐色の病斑を形成する状態(カビに覆われることもある)を病徴、明らかな病徴は見られないが葉の緑色が褪色している状態を黄化、病徴も黄化も見られなかった状態を無変化、として評価をした。図1Aに、各酵素処理の後、病原菌胞子の噴霧処理を行った切り取り葉の写真を示し、図1Bに、観察した切り取り葉の状態(無変化、黄化、又は病徴)の割合についてのグラフを示す。これらの図から理解できるように、1.0U/mL及び8.0U/mL処理区では、感染効率が促進され病徴が助長されたが、0.1U/mL処理区では、対照区と同程度の病徴であり、0.01U/mL処理区では、10日目の病徴が対照区に比べて軽減されていた。
(2) Spray treatment on cut leaves Antarctica culture filtrate (esterase titer: 8.0 U / mL) was diluted with 20 mM Tris-HCl buffer (pH 8.8) to obtain 0.01 U / mL, 0.1 U / mL, 1.0 U / mL. A solution was prepared. Each leaf cut from dwarf tomato (MicroTom) was sprayed with 0.6 mL of each solution of 0.01 U / mL to 8.0 U / mL and kept warm in a sealed container (humidity) 100%, temperature 22 ° C.). The control filtrate was sprayed with a culture filtrate in which the enzyme was inactivated by autoclaving. 72 hours after spraying (3 days later), spores (5 × 10 4 spores / mL) of pathogenic filamentous fungi (Gray mold fungus (Botrytis cinerea, B.c.)) were applied to each cut leaf. Sprayed with 0.6 mL each. Five cut leaves were used for each treatment group, and the state of the leaves was observed on the 10th day after the enzyme treatment, that is, 7 days after the spore treatment. Symptoms that form brown lesions (may be covered with mold), no obvious symptoms, but yellowing of leaves that are green in green color, both symptom and yellowing The state that was not able to be evaluated was evaluated as unchanged. FIG. 1A shows a photograph of a cut leaf that was sprayed with a pathogenic fungus spore after each enzyme treatment, and FIG. 1B shows the ratio of the observed cut leaf state (no change, yellowing, or disease symptoms). A graph is shown. As can be seen from these figures, the 1.0 U / mL and 8.0 U / mL treatment groups promoted infection efficiency and promoted disease symptoms, whereas the 0.1 U / mL treatment group promoted the same symptoms as the control group. In the 0.01 U / mL treatment group, the symptom on day 10 was reduced compared to the control group.
(3)病原菌の発芽率
 病原菌(B.c.)の胞子接種後2日目の葉表面のカビ胞子及び菌糸は、トリパンブルーで染色した。各処理区につき4枚の切り取り葉を用い、顕微鏡で観察した。図2Aに、各酵素処理後、病原菌胞子を噴霧した2日後の葉表面のカビ胞子の光学顕微鏡観察写真を示し、図2Bに、観察したカビ胞子の発芽率の平均値のグラフ(誤差範囲は4回の試験から算出した標準誤差)を示す。ここで、図2Bの異なるアルファベット(a、b、及びc)は、テューキーの検定によって有意水準0.05で有意差検定を行った結果、各処理区の間で発芽率が有意に異なっていることを示しており、同じアルファベットは、各処理区の間で発芽率に有意差がないことを示している。具体的には、0.01U/mL、0.1U/mL、1.0U/mL処理区ではいずれも、対照区及び8.0U/mL処理区に比べて病原菌胞子の発芽が有意に抑えられていた(図2A及び2B)。対照区及び8.0U/mL処理区では、病原菌胞子が発芽し、その発芽管が葉表面に広がっている様子が観察された。特に8.0U/mL処理区では、発芽率が対照区よりも有意に高かった。
(3) Germination rate of pathogenic bacteria Mold spores and mycelia on the leaf surface on the second day after inoculation with pathogenic bacteria (Bc) were stained with trypan blue. Four cut leaves were used for each treatment group and observed with a microscope. FIG. 2A shows an optical microscope observation photograph of mold spores on the leaf surface two days after spraying the pathogenic fungus spores after each enzyme treatment, and FIG. 2B is a graph of the average germination rate of the observed mold spores (error range is Standard error calculated from 4 tests). Here, the different alphabets (a, b, and c) in FIG. 2B are significantly different in germination rates among the treatment groups as a result of a significant difference test at a significance level of 0.05 by Tukey's test. The same alphabet indicates that there is no significant difference in germination rate between each treatment group. Specifically, germination of pathogenic bacteria spores is significantly suppressed in the 0.01 U / mL, 0.1 U / mL, and 1.0 U / mL treatment groups as compared to the control group and 8.0 U / mL treatment group. (FIGS. 2A and 2B). In the control group and the 8.0 U / mL treatment group, it was observed that the germs spores germinated and the germ tubes spread on the leaf surface. In particular, in the 8.0 U / mL treatment group, the germination rate was significantly higher than that in the control group.
(4)葉における病原菌の存在量
 病原菌(B.c.)の胞子接種後3日目の葉からDNAを抽出し、qPCRで病原菌のDNA量を定量した。各処理区につき5枚の切り取り葉を用いた。図3に、灰色カビ病菌β-チューブリン遺伝子を指標にした解析結果、すなわちトマトのActin遺伝子量で補正に対するβ-チューブリン遺伝子量の相対値の平均値(誤差範囲は5回の試験から算出した標準誤差)を示す。その結果、病原菌の量は、1.0U/mLや8.0U/mL処理区で顕著に高く、病原菌に感染していることが確認できる。一方で、0.01U/mL、0.1U/mL処理区では、対照区に比べて病原菌が明らかに少なく抑えられていることが確認できた。
(4) Abundance of pathogenic bacteria in leaves DNA was extracted from leaves on the third day after spore inoculation with pathogenic bacteria (Bc), and the DNA amount of pathogenic bacteria was quantified by qPCR. Five cut leaves were used for each treatment section. Fig. 3 shows the results of analysis using the β-tubulin gene as an index, that is, the average value of the relative amount of β-tubulin gene relative to the correction with the amount of Actin gene in tomato (the error range is calculated from 5 tests). Standard error). As a result, the amount of pathogenic bacteria is remarkably high in the 1.0 U / mL and 8.0 U / mL treatment sections, and it can be confirmed that the pathogenic bacteria are infected. On the other hand, in the 0.01 U / mL and 0.1 U / mL treatment groups, it was confirmed that the pathogenic bacteria were clearly suppressed as compared with the control group.
 また、葉の断面における病原菌の存在を調べるために各処理区につき4枚の切り取り葉をパラフィンに包埋し、葉の切片(厚さ10μm)を作製して、チオニン・オレンジGで染色した。カビ胞子及び菌糸は、チオニンで暗紫色に、植物細胞壁は、オレンジGで橙色に染色され得る。作製した葉切片を光学顕微鏡で観察した結果、1.0U/mLや8.0U/mL酵素処理区では、病原菌が葉内部に侵入している様子が観察されたが、0.01U/mL、0.1U/mL処理区では、病原菌の侵入は対照区と同程度であった(図4)。 Further, in order to examine the presence of pathogenic bacteria in the cross section of the leaf, four cut leaves were embedded in paraffin for each treatment section, a leaf section (thickness 10 μm) was prepared, and stained with thionine orange G. Mold spores and mycelia can be stained dark purple with thionine and plant cell walls can be stained orange with orange G. As a result of observing the prepared leaf section with an optical microscope, in the 1.0 U / mL and 8.0 U / mL enzyme treatment sections, it was observed that pathogenic bacteria had invaded the inside of the leaf, but 0.01 U / mL, In the 0.1 U / mL treatment group, the invasion of pathogenic bacteria was similar to the control group (FIG. 4).
(5)植物の応答解析
 病原菌(B.c.)の胞子接種後3日目の葉からRNAを抽出し、qRT-PCRで植物の各種ストレス抵抗性関連遺伝子(傷害応答遺伝子であるPIN2及びLapA並びに病害応答遺伝子であるPR4及びPRB1b)の発現量を調べた(トマトのActin遺伝子量で補正)。各処理区につき3枚の切り取り葉を用いた。図5に、トマトのActin遺伝子に対する各種ストレス抵抗性関連遺伝子の相対的発現量の平均値(誤差範囲は3回の試験から算出した標準誤差)を示す。その結果、培養ろ液処理濃度に応じて、前記ストレス抵抗性関連遺伝子の発現が上昇していることが確認された。
(5) Plant Response Analysis RNA is extracted from the leaves on the third day after inoculation with pathogenic bacteria (B. c.), And various stress resistance-related genes of plants (PIN2 and LapA, which are injury response genes) are analyzed by qRT-PCR. In addition, the expression levels of disease-responsive genes PR4 and PRB1b) were examined (corrected with tomato Actin gene dosage). Three cut leaves were used for each treatment section. FIG. 5 shows the average value of the relative expression level of various stress resistance-related genes with respect to the actin gene of tomato (the error range is a standard error calculated from three tests). As a result, it was confirmed that the expression of the stress resistance-related gene was increased according to the culture filtrate treatment concentration.
 植物は、クチクラ層の破壊やエリシターなどを検知すると、活性酸素を放出するので、ストレス抵抗性関連遺伝子だけでなく、活性酸素種応答遺伝子も発現することが知られている。抽出したRNAを用いたqRT-PCRで活性酸素種応答遺伝子の発現量の変化を調べたところ、特に0.01U/mLの培養ろ液処理で、トマトのActin遺伝子に対するペルオキシダーゼ(POD)やスーパーオキシドディスムターゼ(SOD)の相対的発現量の平均値(誤差範囲は3回の試験から算出した標準誤差)が上昇することが確認された(図6)。 It is known that plants detect not only stress resistance-related genes but also reactive oxygen species response genes because they release active oxygen when the cuticle layer destruction or elicitor is detected. Changes in the expression level of reactive oxygen species responsive genes were examined by qRT-PCR using the extracted RNA. Peroxidase (POD) and superoxide for the tomato Actin gene, especially with 0.01 U / mL culture filtrate treatment It was confirmed that the average value of the relative expression level of dismutase (SOD) (the error range is a standard error calculated from three tests) was increased (FIG. 6).
(6)クチンの分解活性
 植物の葉をP.antarcticaの培養ろ液で処理すると、クチクラ層から炭素鎖長16や18の脂肪酸が抽出されることが確認されている(Uedaら、Appl.Micorobiol.Biotechnol.,2015)。そこで、植物表層のクチクラ層を構成する成分のうちクチン(脂肪酸ポリエステル)に関して、P.antarcticaの培養ろ液による分解性を調べた。トマト果皮から調製したクチンを当該培養ろ液で処理すると、反応溶液中に、クチンの分解物であるωヒドロキシヘキサデカン酸が検出された。このことから、P.antarcticaの培養ろ液に、植物からクチンモノマーを遊離させる活性があることがわかった。
(6) Decomposition activity of cutin It has been confirmed that fatty acids having carbon chain lengths of 16 and 18 are extracted from the cuticular layer when treated with an antarctica culture filtrate (Ueda et al., Appl. Microbiol. Biotechnol., 2015). Therefore, regarding the cutin (fatty acid polyester) among the components constituting the cuticle layer of the plant surface layer, P.P. The degradability of the Antarctica by the culture filtrate was examined. When cutin prepared from tomato peel was treated with the culture filtrate, ω-hydroxyhexadecanoic acid, which is a degradation product of cutin, was detected in the reaction solution. From this, P.I. It was found that the culture solution of antarctica has an activity to release the cutin monomer from the plant.
<実施例2>
(1)単子葉植物とその病原菌に対する効果
 P.antarcticaの培養ろ液を実施例1と同様に希釈した。エステラーゼの力価で0.01U/mLの溶液を、イネ科植物であるエンバクの葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後に、単子葉植物であるエンバクに感染する病原性細菌のすじ枯病菌の培養液(OD610:0.65)に浸漬接種した。各処理区につき4枚の切り取り葉を用い、同じ試験を2回反復した。楕円状の褐色斑(病斑)が縦に広がって形成される状態を病徴として観察した。また、病斑面積を観察し、以下の式に基づいて、発病度を計算した(発病度の計算方法については「イネ・ムギ等殺菌剤圃場試験法」(社団法人日本植物防疫協会、平成16年3月発行)を参照)。
  発病度=100×(0×n0+0.5×n1+1×n2+2×n3+3×n4+4×n5)/4N
   n0:病斑がない葉の数
   n1:病斑が葉の1/8以下である葉の数
   n2:病斑が葉の1/4前後である葉の数
   n3:病斑が葉の1/2前後である葉の数
   n4:病斑が葉の3/4前後である葉の数
   n5:病斑が葉の7/8以上である葉の数
   N:調査した葉の総数
 図7Aに、各酵素処理の後、病原性細菌接種後3日目の写真を示し、図7Bに、病原性細菌接種後3日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、0.01U/mL処理区では、接種3日目の病徴が対照区に比べて軽減され、発病度が低下した。
<Example 2>
(1) Effects on monocotyledonous plants and their pathogens Antarctica culture filtrate was diluted as in Example 1. An esterase titer of 0.01 U / mL was sprayed on the leaves of oats, which are gramineous plants, and kept warm in a sealed container (humidity 100%, temperature 22 ° C.). . The control filtrate was sprayed with a culture filtrate in which the enzyme was inactivated by autoclaving. After 72 hours of spraying, the inoculum was inoculated into a culture solution (OD610: 0.65) of a pathogenic bacterium, B. gonorrhoeae, which infects a monocotyledon oat. The same test was repeated twice using 4 cut leaves for each treatment group. A state in which an elliptical brown spot (sickness spot) spreads vertically was observed as a symptom. In addition, the lesion area was observed, and the disease severity was calculated based on the following formula (for the disease severity calculation method, “Field test method for fungicides such as rice and wheat” (Japan Plant Protection Association, 2004) Issue in March).
Disease severity = 100 x (0 x n0 + 0.5 x n1 + 1 x n2 + 2 x n3 + 3 x n4 + 4 x n5) / 4N
n0: The number of leaves without lesions n1: The number of leaves whose lesions are 1/8 or less of the leaves n2: The number of leaves whose lesions are around 1/4 of the leaves n3: The number of leaves 1 / of the leaves The number of leaves that are around 2 n4: The number of leaves whose lesion is around 3/4 of the leaf n5: The number of leaves whose lesion is 7/8 or more of the leaf N: The total number of leaves investigated Figure 7A A photograph of the third day after inoculation with pathogenic bacteria after each enzyme treatment is shown, and FIG. 7B shows a graph of disease severity calculated from lesions observed on the third day after inoculation with pathogenic bacteria. As can be understood from these figures, in the 0.01 U / mL treatment group, the symptom on the third day of inoculation was reduced as compared with the control group, and the disease severity was reduced.
(2)アブラナ科植物とその病原菌に対する効果
 P.antarcticaの培養ろ液を実施例1と同様に希釈した。エステラーゼの力価で0.01U/mLの溶液を、アブラナ科植物であるシロイヌナズナのロゼット葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後に、病原性糸状菌(灰色カビ病菌)の胞子(5×104胞子/mL)を噴霧した。各処理区につき8枚の切り取ったロゼット葉を用い、同じ試験を2回反復した。褐色の病斑が形成される状態を病徴として観察し、以下の式に基づいて、発病度を計算した(発病度の計算方法については「新農薬実用化試験実施の手引き」(社団法人日本植物防疫協会、平成15年2月発行)を参照)。
  発病度=100×(0×n0+1×n1+2×n2+3×n3+4×n4)/4N
   n0:病斑がない葉の数
   n1:病斑がわずか(数個)である葉の数
   n2:病斑が葉の1/4未満である葉の数
   n3:病斑が葉の1/4~1/2未満である葉の数
   n4:病斑が葉の1/2以上である葉の数
   N:調査した葉の総数
 図8Aに、各酵素処理の後、病原菌胞子噴霧後3日目の写真を示し、図8Bに、病原菌胞子噴霧後3日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、0.01U/mL処理区では、胞子噴霧後7日目の病徴が対照区に比べて軽減され、発病度が低下した。
(2) Brassicaceae plants and their effects on pathogenic bacteria. Antarctica culture filtrate was diluted as in Example 1. A solution of 0.01 U / mL of esterase titer was sprayed on rosette leaves of Arabidopsis thaliana, which was a cruciferous plant, and kept warm in a sealed container (humidity 100%, temperature 22 ° C. ). The control filtrate was sprayed with a culture filtrate in which the enzyme was inactivated by autoclaving. 72 hours after spraying, spores (5 × 10 4 spores / mL) of pathogenic filamentous fungi (gray mold fungus) were sprayed. The same test was repeated twice using 8 cut rosette leaves for each treatment section. The condition of brown lesions was observed as a symptom, and the disease severity was calculated based on the following formula. (For the calculation method of disease severity, "Guidelines for conducting a new pesticide practical application test" (Japan Corporate (See Plant Protection Association, issued February 2003)).
Disease severity = 100 x (0 x n0 + 1 x n1 + 2 x n2 + 3 x n3 + 4 x n4) / 4N
n0: number of leaves without lesions n1: number of leaves with few (several) lesions n2: number of leaves with lesions less than 1/4 of leaves n3: lesions 1/4 of leaves Number of leaves that are less than ½ n4: Number of leaves with lesions greater than or equal to ½ of leaf N: Total number of leaves investigated Figure 8A shows the third day after spraying with pathogenic fungi after each enzyme treatment FIG. 8B shows a graph of disease severity calculated from lesions observed on the third day after spraying the pathogenic fungus spores. As can be understood from these figures, in the 0.01 U / mL treatment group, the symptom on the seventh day after spore spraying was reduced compared to the control group, and the disease severity decreased.
(3)植物病害ウイルスに対する効果
 P.antarcticaの培養ろ液を実施例1と同様に希釈した。エステラーゼの力価で0.01U/mLの溶液を、ナス科植物であるタバコ(Samsun NN)の葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度20℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後に、植物病害ウイルスのタバコモザイクウイルス(TMV-OM株)溶液(4μg/mL)を、カーボランダムを用いて機械接種した。植物がウイルスの拡がりを抑えるために、植物自身が壊死することで形成された病斑を観察し、葉1枚につき少なくとも57個の病斑直径を計測して、その平均直径を求めた。各処理区につき3枚の切り取り葉を用いた。
 図9Aに、ウイルス接種後5日目の病斑を示す写真を示し、図9Bに、ウイルス接種後5日目に計測した3枚の葉それぞれにおける病斑の平均直径(mm)の平均値のグラフ(誤差範囲は3回の試験から算出した標準誤差)を示す。ここで、図9Bのアスタリスクは、t検定によって有意水準0.01で有意差検定を行った結果、対照区に対して有意に病斑が小さくなったことを示している。すなわち、0.01U/mL処理区では、接種5日後の病斑の大きさが対照区に比べて有意に小さくなっていた(図9A及び9B)。
 以上の結果から、本発明の植物の病害抵抗性増強用又は植物病害防除用組成物は、カビ病、バクテリア病、及びウイルス病などの種々の病害に対して、非特異的に抵抗性増強作用及び防除作用を奏することがわかった。
(3) Effect on plant disease virus Antarctica culture filtrate was diluted as in Example 1. A solution of 0.01 U / mL with the esterase titer was sprayed on leaves of tobacco (Samsun NN), which is a solanaceous plant, and kept warm in a sealed container (100% humidity, Temperature 20 ° C.). The control filtrate was sprayed with a culture filtrate in which the enzyme was inactivated by autoclaving. 72 hours after spraying, a plant disease virus tobacco mosaic virus (TMV-OM strain) solution (4 μg / mL) was mechanically inoculated using carborundum. In order for the plant to suppress the spread of the virus, the lesion formed by the necrosis of the plant itself was observed, and the diameter of at least 57 lesions was measured per leaf, and the average diameter was determined. Three cut leaves were used for each treatment section.
FIG. 9A shows a photograph showing lesions on the fifth day after virus inoculation, and FIG. 9B shows the average value of the average diameter (mm) of lesions on each of the three leaves measured on the fifth day after virus inoculation. A graph (the error range is a standard error calculated from three tests) is shown. Here, the asterisk in FIG. 9B indicates that as a result of performing a significant difference test at a significance level of 0.01 by the t-test, the lesions were significantly reduced with respect to the control group. That is, in the 0.01 U / mL treatment group, the size of lesions 5 days after inoculation was significantly smaller than that in the control group (FIGS. 9A and 9B).
From the above results, the plant disease resistance enhancing or plant disease controlling composition of the present invention has a nonspecific resistance enhancing action against various diseases such as mold disease, bacterial disease, and viral disease. And it was found that it exerts a control action.
<実施例3>
 P.antarcticaの培養ろ液中に含まれる成分のうち、何が植物の病害抵抗性増強作用及び植物病害防除作用に寄与しているのかを確認するため、P.antarcticaの培養ろ液から、エステラーゼであるPaE、及び、キシラナーゼを分離精製した(後述の調製方法を参照)。PaEは、20mMトリス塩酸緩衝液(pH8.8)を用いて、エステラーゼの力価で0.01U/mLに希釈した。キシラナーゼは、P.antarcticaの培養ろ液を使用した試験結果を考慮して、植物の病害抵抗性増強又は植物病害防除に有効と考えられる濃度範囲になるように、20mMトリス塩酸緩衝液(pH8.8)を用いて、キシラナーゼの力価で0.01U/mLに希釈した。また、糸状菌であるParaphoma属類縁菌B47-9株(受託番号NITE P-573)由来のクチナーゼ様酵素であるPCLEも用意し(後述の調製方法を参照)エステラーゼの力価で0.01U/mLに調製した。なお、PCLEは、ポリエステルであるPBSAを基質に用いた場合に、塩化カルシウム存在下で基質の分解活性が高くなることが知られている。そこで、溶液中に2mM塩化カルシウムあり又はなしの場合で試験を行った。対照区としては、希釈に用いた緩衝液(20mM Tris-HCl、pH8.8)を使用した。
<Example 3>
P. In order to confirm what contributes to the plant disease resistance enhancing action and the plant disease controlling action among the components contained in the culture filtrate of antarctica, The esterase PaE and xylanase were separated and purified from the Antarctica culture filtrate (see the preparation method described later). PaE was diluted to 0.01 U / mL with the titer of esterase using 20 mM Tris-HCl buffer (pH 8.8). Xylanase has been described in P.P. In consideration of the test results using the culture filtrate of anantarcica, 20 mM Tris-HCl buffer (pH 8.8) was used so that the concentration range would be effective for enhancing plant disease resistance or controlling plant diseases. Dilute to 0.01 U / mL with xylanase titer. Also, PCLE, which is a cutinase-like enzyme derived from the filamentous fungus Paraphoma genus B47-9 (accession number NITE P-573), is prepared (see the preparation method described below). Prepared to mL. PCLE is known to have high substrate decomposition activity in the presence of calcium chloride when PBSA, which is polyester, is used as the substrate. Therefore, the test was conducted with or without 2 mM calcium chloride in the solution. As a control, the buffer used for dilution (20 mM Tris-HCl, pH 8.8) was used.
 調製した各酵素溶液を、イネ科植物であるエンバクの葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。噴霧72時間後に、単子葉植物に感染するすじ枯病菌の培養液(OD610:0.65)に浸漬接種した。各処理区につき6枚の切り取り葉を用いた。図10Aに、各種酵素処理における、病原性細菌接種後4日目の写真を示し、図10Bに、病原性細菌接種後4日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、PaE処理区、キシラナーゼ処理区、及びPCLE(カルシウムあり)処理区では、接種4日目の病徴が対照区に比べて軽減されていた。一方、PCLE(カルシウムなし)処理区では、病徴の軽減効果は確認できなかった(図10A及び10B)。
 これらの結果より、エステラーゼ及びキシラナーゼのそれぞれが、病害抵抗性増強作用及び植物病害防除作用に寄与していることがわかった。
0.6 mL of each prepared enzyme solution was sprayed onto oat leaves, which are grasses, and kept warm in a sealed container (humidity 100%, temperature 22 ° C.). 72 hours after spraying, the seedling was inoculated by immersion in a culture solution (OD610: 0.65) of a Japanese wilt disease that infects monocotyledonous plants. Six cut leaves were used for each treatment section. FIG. 10A shows a photograph of the fourth day after inoculation of pathogenic bacteria in various enzyme treatments, and FIG. 10B shows a graph of disease severity calculated from lesions observed on the fourth day after inoculation of pathogenic bacteria. As can be understood from these figures, in the PaE-treated group, the xylanase-treated group, and the PCLE (with calcium) -treated group, the symptoms on the fourth day of inoculation were reduced compared to the control group. On the other hand, in the PCLE (no calcium) treatment section, the symptom reduction effect could not be confirmed (FIGS. 10A and 10B).
From these results, it was found that each of esterase and xylanase contributed to the disease resistance enhancing action and the plant disease controlling action.
(PaEの精製)
 P.antarcticaの培養ろ液から、「独立行政法人農業環境技術研究所 平成24年度研究成果情報(第29集)」に掲載されている「酵素と基質の親和性を利用した簡単な生分解性プラスチック分解酵素精製法」(http://www.niaes.affrc.go.jp/sinfo/result/result29/result29_42.html)に従って、PaEを精製した。
(キシラナーゼの精製)
 P.antarcticaの培養ろ液を限外濾過で濃縮しつつ、1.2M硫酸アンモニウム/50mMリン酸ナトリウム緩衝液に置換した。この溶液をブチルセファロース4FF(GEヘルスケア)カラムに通して、PaE及びキシラナーゼをカラムに吸着させた。緩衝液中の硫酸アンモニウム濃度を徐々に下げて、キシラナーゼだけをカラムから溶出させて(PaEはまだカラムに吸着されている)、PaE活性画分を含まないキシラナーゼを得た。
(PCLEの精製)
 Czapek-Dox液体培地に、唯一の炭素源としてPBSAエマルジョン(昭和電工株式会社、EM-301)を加え、Paraphoma属類縁菌B47-9株(受託番号NITE P-573)を振とう培養した。培養液から糸状菌の菌体を除去して、培養ろ液を調製した。当該培養ろ液から、「独立行政法人農業環境技術研究所 平成24年度研究成果情報(第29集)」に掲載されている「酵素と基質の親和性を利用した簡単な生分解性プラスチック分解酵素精製法」(http://www.niaes.affrc.go.jp/sinfo/result/result29/result29_42.html)に従って、PCLEを精製した。
(PeE purification)
P. simple biodegradable plastic degradation using the affinity of enzyme and substrate published in "Agricultural Environment Technology Laboratory 2012 Research Results Information (Vol. 29)" PaE was purified according to the “Enzyme purification method” (http://www.niaes.affrc.go.jp/sinfo/result/result29/result29 — 42.html).
(Purification of xylanase)
P. While the antarctica culture filtrate was concentrated by ultrafiltration, it was replaced with 1.2 M ammonium sulfate / 50 mM sodium phosphate buffer. This solution was passed through a butyl sepharose 4FF (GE Healthcare) column to adsorb PaE and xylanase to the column. The ammonium sulfate concentration in the buffer was gradually decreased, and only xylanase was eluted from the column (PaE was still adsorbed on the column) to obtain a xylanase containing no PaE active fraction.
(Purification of PCLE)
PBSA emulsion (Showa Denko KK, EM-301) was added to Czapek-Dox liquid medium as the sole carbon source, and Paraphoma-related bacteria B47-9 (accession number NITE P-573) was cultured with shaking. Filamentous fungi were removed from the culture solution to prepare a culture filtrate. From the culture filtrate, a simple biodegradable plastic-degrading enzyme using the affinity between the enzyme and the substrate is published in "Agricultural Environmental Technology Research Institute 2012 Research Results Information (Vol. 29)". PCLE was purified according to “Purification method” (http://www.niaes.affrc.go.jp/sinfo/result/result29/result29 — 42.html).
<実施例4>
 担子菌であるCryptococcus magnus類縁菌BPD1A株(受託番号NITE P-02134)の培養ろ液から、クチナーゼ様酵素であるCmCut1を分離精製した(後述の調製方法を参照)。CmCut1は、緩衝液(20mM Tris-HCl、pH6.8、塩化カルシウム(2mM))を用いて、エステラーゼの力価で0.01U/mLに調製した。対照区としては、希釈に用いた緩衝液(20mM Tris-HCl、pH6.8、塩化カルシウム(2mM))を使用した。
 調製した酵素溶液を、ナス科植物である矮性トマト(MicroTom)の葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。噴霧72時間後に、それぞれの切り取り葉に病原性糸状菌(B.c.)の胞子(5×104胞子/mL)を0.6mLずつ噴霧した。褐色の病斑が形成される状態(カビに覆われることもある)を病徴として観察し、以下の式に基づいて、発病度を計算した(発病度の計算方法については「新農薬実用化試験実施の手引き」(社団法人日本植物防疫協会、平成15年2月発行)を参照)。各試験区につき5枚の切り取り葉を用い、各試験を2回反復した。
  発病度=100×(0×n0+1×n1+2×n2+3×n3+4×n4)/4N
   n0:病斑がない葉の数
   n1:病斑がわずか(数個)である葉の数
   n2:病斑が葉の1/4未満である葉の数
   n3:病斑が葉の1/4~1/2未満である葉の数
   n4:病斑が葉の1/2以上である葉の数
   N:調査した葉の総数
 図11Aに、緩衝液又はCmCut1溶液を噴霧処理した後、病原菌胞子噴霧後7日目の写真。図11Bは、病原菌胞子噴霧後7日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、0.01U/mL処理区では、胞子噴霧後7日目の病徴が対照区に比べて軽減され、発病度が低下した。
<Example 4>
CmCut1, which is a cutinase-like enzyme, was isolated and purified from the culture filtrate of the basidiomycete Cryptococcus magnus strain BPD1A strain (Accession No. NITE P-02134) (see the preparation method described later). CmCut1 was prepared to 0.01 U / mL with an esterase titer using a buffer solution (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM)). As a control, the buffer used for dilution (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM)) was used.
0.6 mL of the prepared enzyme solution was sprayed on the leaves of dwarf tomato (MicroTom), which is a solanaceous plant, and kept warm in a sealed container (humidity 100%, temperature 22 ° C.). 72 hours after spraying, each cut leaf was sprayed with 0.6 mL of pathogenic filamentous fungus (Bc) spores (5 × 10 4 spores / mL). Observed as a disease symptom that brown lesions are formed (may be covered with mold), and calculated the disease severity based on the following formula "Guide for conducting tests" (see Japan Plant Protection Association, published in February 2003)). Each test was repeated twice, using 5 cut leaves for each test section.
Disease severity = 100 x (0 x n0 + 1 x n1 + 2 x n2 + 3 x n3 + 4 x n4) / 4N
n0: number of leaves without lesions n1: number of leaves with few (several) lesions n2: number of leaves with lesions less than 1/4 of leaves n3: lesions 1/4 of leaves Number of leaves that are less than ½ n4: Number of leaves with lesions greater than or equal to ½ of leaves N: Total number of leaves examined FIG. 11A shows the pathogenic fungal spores after spray treatment with buffer or CmCut1 solution Photo 7th day after spraying. FIG. 11B shows a graph of disease severity calculated from lesions observed on the seventh day after nebulization of pathogenic fungi. As can be understood from these figures, in the 0.01 U / mL treatment group, the symptom on the seventh day after spore spraying was reduced compared to the control group, and the disease severity decreased.
(CmCut1の精製)
 Curyptcoccus属類縁菌magnus株を、Appl.Microbiol.Biotechnol.(2013)、97:7679-7688に記載された方法に従って培養し、得られた培養液を、7000rpmで5分間遠心分離して、菌体を除去した。得られた培養上清を、孔径0.45μmのろ紙(製品名:Cellulose acetate C045A090C、アドバンテック株式会社製)を使用してフィルターろ過した。そして、Appl.Microbiol.Biotechnol.(2014)、98:4457-4465に従ってPBSAエマルジョンに対するアフィニティークロマトグラフィーを行い、生分解性プラスチック分解酵素であるCmCut1を精製した。精製CmCut1については、SDSゲル電気泳動後の銀染色で単一バンドを示すまで精製されていることを確認した。
(Purification of CmCut1)
A strain of the genus Cryptcoccus genus bacterium, Magnus strain, was prepared by using Appl. Microbiol. Biotechnol. (2013), 97: 7679-7688, and the resulting culture was centrifuged at 7000 rpm for 5 minutes to remove the cells. The obtained culture supernatant was filtered using a filter paper having a pore diameter of 0.45 μm (product name: Cellulose acetate C045A090C, manufactured by Advantech Co., Ltd.). And Appl. Microbiol. Biotechnol. (2014), 98: 4457-4465, affinity chromatography on PBSA emulsion was performed to purify CmCut1, which is a biodegradable plastic degrading enzyme. It was confirmed that the purified CmCut1 was purified until a single band was shown by silver staining after SDS gel electrophoresis.
 以上より、従来生分解性プラスチック分解酵素源として知られていた微生物の培養物は、少なくとも、その中に含まれているエステラーゼ及びキシラナーゼの活性を介して、植物の病害抵抗性を増強又は植物の病害を防除することがわかった。 From the above, the culture of microorganisms conventionally known as a biodegradable plastic-degrading enzyme source has enhanced plant disease resistance or the plant's disease resistance through at least the activities of esterase and xylanase contained therein. It was found to control the disease.
 本発明で使用されたエステラーゼ及びキシラナーゼは、圃場に張った農業用生分解性マルチフィルムの分解促進のために生産性が向上されている微生物培養液から調製され得るものであり、安価に大量生産することができるものである。また、エステラーゼ及びキシラナーゼは、自然界で容易に分解され、低分子化合物などで起こる環境中への残存性はなく、環境負荷が低い。さらに、本発明の植物の病害抵抗性増強用又は植物病害防除用組成物は、種々の植物又は種々の病害に対して適用できるものであり、汎用性が高い。したがって、本発明は産業上の利用可能性が高い。 The esterase and xylanase used in the present invention can be prepared from a microorganism culture solution whose productivity has been improved to promote the degradation of agricultural biodegradable multifilms stretched in the field, and is inexpensively mass-produced. Is something that can be done. In addition, esterase and xylanase are easily decomposed in nature, have no persistence in the environment caused by low molecular weight compounds, and have a low environmental load. Furthermore, the plant disease resistance enhancing or plant disease controlling composition of the present invention can be applied to various plants or various diseases and is highly versatile. Therefore, the present invention has high industrial applicability.
[規則26に基づく補充 15.06.2017] 
Figure WO-DOC-RO134
[Supplement under rule 26 15.06.2017]
Figure WO-DOC-RO134

Claims (12)

  1.  エステラーゼ及び/又はキシラナーゼを含む、植物の病害抵抗性増強用又は植物病害防除用組成物。 A composition for enhancing plant disease resistance or controlling plant diseases comprising esterase and / or xylanase.
  2.  前記エステラーゼが、生分解性プラスチック分解酵素を含む、請求項1に記載の組成物。 The composition according to claim 1, wherein the esterase comprises a biodegradable plastic degrading enzyme.
  3.  前記生分解性プラスチック分解酵素が、クチナーゼ及びクチナーゼ様酵素から成る群から選択される、請求項2に記載の組成物。 The composition according to claim 2, wherein the biodegradable plastic degrading enzyme is selected from the group consisting of a cutinase and a cutinase-like enzyme.
  4.  前記エステラーゼ及び/又は前記キシラナーゼが、微生物培養液又は抽出液である、請求項1~3のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the esterase and / or the xylanase is a microorganism culture solution or an extract.
  5.  前記微生物が、シュードザイマ(Pseudozyma)属、パラフォーマ(Paraphoma)属、クリプトコッカス(Cryptococcus)属、ムコール(Mucor)属、フミコラ(Humicola)属、テルモミセス(Thermomyces)属、タラロミセス(Talaromyces)属、ケトミウム(Chaetomium)属、トルラ(Torula)属、スポロトリクム(Sporotrichum)属、マルブランケア(Malbranchea)属、アルタナリア(Alternaria)属、クラドスポリウム(Cladosporium)属、ぺニシリウム(Penicillium)属、ペキロマイセス(Paecilomyces)属、シュードモナス(Pseudomonas)属、バクテロイデス(Bacteroides)属、及び、アシドボラックス(Acidovorax)属から成る群から選択される、請求項4に記載の組成物。 The microorganism may be Pseudozyma, Paraforma, Cryptococcus, Mucor, Humicola, Thermomyces, Taromemis, Taromemis, Taromomis, ), Torula, Sporotrichum, Malblancea, Alternaria, Cladosporium, Penicillium, c, Pequillomyces, e Pseudomonas genus, bacte Idesu (Bacteroides) genus, and is selected from the group consisting of Acidovorax (Acidovorax) genus composition of claim 4.
  6.  前記エステラーゼの濃度が、0.005~0.5U/mLである、請求項1~5のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 5, wherein the esterase concentration is 0.005 to 0.5 U / mL.
  7.  前記エステラーゼ及び前記キシラナーゼの両方を含む、請求項1~6のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 6, comprising both the esterase and the xylanase.
  8.  前記植物が、クチクラ層を有する、請求項1~7のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the plant has a cuticle layer.
  9.  前記植物が、高等植物である、請求項1~8のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the plant is a higher plant.
  10.  請求項1~9のいずれか一項に記載の組成物によって植物を処理する工程を含む、植物の病害抵抗性を増強又は植物の病害を防除する方法。 A method for enhancing plant disease resistance or controlling plant diseases, comprising the step of treating plants with the composition according to any one of claims 1 to 9.
  11.  前記処理工程が、前記組成物を前記植物に噴霧する工程を含む、請求項10に記載の方法。 The method according to claim 10, wherein the treatment step includes a step of spraying the composition onto the plant.
  12.  前記噴霧工程が、前記組成物を前記植物の葉1枚あたり0.1~1mL噴霧する工程を含む、請求項11に記載の方法。 The method according to claim 11, wherein the spraying step includes a step of spraying the composition from 0.1 to 1 mL per leaf of the plant.
PCT/JP2017/019504 2016-05-25 2017-05-25 Composition for enhancing disease resistance of plants or controlling plant disease, and method for using same WO2017204288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519603A JP6997456B2 (en) 2016-05-25 2017-05-25 Compositions for enhancing plant disease resistance or for controlling plant diseases and their usage methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-104064 2016-05-25
JP2016104064 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204288A1 true WO2017204288A1 (en) 2017-11-30

Family

ID=60411809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019504 WO2017204288A1 (en) 2016-05-25 2017-05-25 Composition for enhancing disease resistance of plants or controlling plant disease, and method for using same

Country Status (2)

Country Link
JP (1) JP6997456B2 (en)
WO (1) WO2017204288A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063199A (en) * 2018-10-16 2020-04-23 国立研究開発法人農業・食品産業技術総合研究機構 Composition for controlling pet and method for controlling pest
WO2023190667A1 (en) * 2022-03-29 2023-10-05 ケイワート・サイエンス株式会社 Method for producing silicon compound aqueous solution

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080565A (en) * 1996-09-04 2000-06-27 Cornell Research Foundation, Inc. Cutinases as inducers of plant defense reactions and agents for the control of plant diseases
EP1212944A1 (en) * 2000-12-07 2002-06-12 Korea Kumho Petrochemical Co. Ltd. Plant esterases for protecting plants and uses thereof
WO2004054365A2 (en) * 2002-12-13 2004-07-01 A.M.C. Chemical S.L. Biological control agent and formulations
WO2008030858A2 (en) * 2006-09-05 2008-03-13 Integrated Plant Genetics, Inc. Use of esterase expressed in plants for the control of gram-negative bacteria
JP2008237212A (en) * 2007-02-28 2008-10-09 National Institute For Agro-Environmental Science Biodegradable plastic-decomposing bacteria and method for producing decomposing enzyme
JP2010099066A (en) * 2008-09-29 2010-05-06 National Institute For Agro-Environmental Science New microorganism and biodegradable plastic-degrading enzyme
JP2010525031A (en) * 2007-04-26 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Active substance composition for plant protection
JP2010270086A (en) * 2009-05-25 2010-12-02 Shugo Hama Composition for disease and insect damage-controlling agent, spray agent produced by diluting the same, and method of producing the same
JP2013048563A (en) * 2011-08-30 2013-03-14 National Institute For Agro-Environmental Science Method for producing biodegradable plastic-degrading enzyme and pseudozyma antarctica for use in the same
JP2014129287A (en) * 2012-12-28 2014-07-10 National Institute For Agro-Environmental Science Herbicidal composition comprising enzyme and extermination method of adverse plant
WO2014109360A1 (en) * 2013-01-09 2014-07-17 独立行政法人農業環境技術研究所 Method for highly efficiently producing heterologous protein
WO2015069708A1 (en) * 2013-11-08 2015-05-14 Novozymes Bioag A/S Compositions and methods for treating pests
US20150335031A1 (en) * 2012-08-14 2015-11-26 Marrone Bio Innovations, Inc Bacillus sp. Strain with Antifungal, Antibacterial and Growth Promotion Activity
US20150373992A1 (en) * 2014-06-26 2015-12-31 Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080565A (en) * 1996-09-04 2000-06-27 Cornell Research Foundation, Inc. Cutinases as inducers of plant defense reactions and agents for the control of plant diseases
EP1212944A1 (en) * 2000-12-07 2002-06-12 Korea Kumho Petrochemical Co. Ltd. Plant esterases for protecting plants and uses thereof
WO2004054365A2 (en) * 2002-12-13 2004-07-01 A.M.C. Chemical S.L. Biological control agent and formulations
WO2008030858A2 (en) * 2006-09-05 2008-03-13 Integrated Plant Genetics, Inc. Use of esterase expressed in plants for the control of gram-negative bacteria
JP2008237212A (en) * 2007-02-28 2008-10-09 National Institute For Agro-Environmental Science Biodegradable plastic-decomposing bacteria and method for producing decomposing enzyme
JP2010525031A (en) * 2007-04-26 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Active substance composition for plant protection
JP2010099066A (en) * 2008-09-29 2010-05-06 National Institute For Agro-Environmental Science New microorganism and biodegradable plastic-degrading enzyme
JP2010270086A (en) * 2009-05-25 2010-12-02 Shugo Hama Composition for disease and insect damage-controlling agent, spray agent produced by diluting the same, and method of producing the same
JP2013048563A (en) * 2011-08-30 2013-03-14 National Institute For Agro-Environmental Science Method for producing biodegradable plastic-degrading enzyme and pseudozyma antarctica for use in the same
US20150335031A1 (en) * 2012-08-14 2015-11-26 Marrone Bio Innovations, Inc Bacillus sp. Strain with Antifungal, Antibacterial and Growth Promotion Activity
JP2014129287A (en) * 2012-12-28 2014-07-10 National Institute For Agro-Environmental Science Herbicidal composition comprising enzyme and extermination method of adverse plant
WO2014109360A1 (en) * 2013-01-09 2014-07-17 独立行政法人農業環境技術研究所 Method for highly efficiently producing heterologous protein
WO2015069708A1 (en) * 2013-11-08 2015-05-14 Novozymes Bioag A/S Compositions and methods for treating pests
US20150373992A1 (en) * 2014-06-26 2015-12-31 Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063199A (en) * 2018-10-16 2020-04-23 国立研究開発法人農業・食品産業技術総合研究機構 Composition for controlling pet and method for controlling pest
JP7128514B2 (en) 2018-10-16 2022-08-31 国立研究開発法人農業・食品産業技術総合研究機構 Compositions for controlling pests and methods for controlling pests
WO2023190667A1 (en) * 2022-03-29 2023-10-05 ケイワート・サイエンス株式会社 Method for producing silicon compound aqueous solution

Also Published As

Publication number Publication date
JPWO2017204288A1 (en) 2019-04-18
JP6997456B2 (en) 2022-01-17

Similar Documents

Publication Publication Date Title
Jabeen et al. Microscopic evaluation of the antimicrobial activity of seed extracts of Moringa oleifera
Roberti et al. Induction of PR proteins and resistance by the biocontrol agent Clonostachys rosea in wheat plants infected with Fusarium culmorum
Singh et al. Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani
Kashyap et al. Unraveling microbial volatile elicitors using a transparent methodology for induction of systemic resistance and regulation of antioxidant genes at expression levels in chili against bacterial wilt disease
Yoshida et al. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi
Zhang et al. Antifungal activity of chaetoviridin A from Chaetomium globosum CEF-082 metabolites against Verticillium dahliae in cotton
Nesler et al. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions
Kappel et al. The multilateral efficacy of chitosan and Trichoderma on sugar beet
Atallah et al. Polyphasic characterization of four Aspergillus species as potential biocontrol agents for white mold disease of bean
Cheng et al. Endophytic Bacillus megaterium triggers salicylic acid-dependent resistance and improves the rhizosphere bacterial community to mitigate rice spikelet rot disease
Shcherbakova et al. An extract purified from the mycelium of a tomato wilt-controlling strain of Fusarium sambucinum can protect wheat against Fusarium and common root rots
Wu et al. Evaluating the combined effect of a systemic phenylpyrrole fungicide and the plant growth‐promoting rhizobacteria Paraburkholderia phytofirmans (strain PsJN:: gfp2x) against the grapevine trunk pathogen Neofusicoccum parvum
WO2017204288A1 (en) Composition for enhancing disease resistance of plants or controlling plant disease, and method for using same
Al-Surhanee et al. The antifungal activity of Ag/CHI NPs against Rhizoctonia solani linked with tomato plant health
Somai-Jemmali et al. Brown alga Ascophyllum nodosum extract-based product, Dalgin Active®, triggers defense mechanisms and confers protection in both bread and durum wheat against Zymoseptoria tritici
Pacheco-Trejo et al. Plant defensive responses triggered by trichoderma spp. as tools to face stressful conditions
Saltos-Rezabala et al. Thyme essential oil reduces disease severity and induces resistance against Alternaria linariae in tomato plants
Hassan et al. Chitosan and nano-chitosan for management of Harpophora maydis: Approaches for investigating antifungal activity, pathogenicity, maize-resistant lines, and molecular diagnosis of plant infection
Pasquoto-Stigliani et al. Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control
Abdelraouf et al. Nano-chitosan encapsulated Pseudomonas fluorescens greatly reduces Fusarium wilt infection in tomato
El-Ganainy et al. Lignin-Loaded Carbon Nanoparticles as a Promising Control Agent against Fusarium verticillioides in Maize: Physiological and Biochemical Analyses
RU2646160C2 (en) Strain of pseudomonas fluorescens for protecting plants from phytopathogenic fungi and bacteria and stimulating plant growth
Sun et al. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-L-lysine against Botrytis cinerea
Dinango et al. Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot
Gul et al. Hydropriming and osmotic priming induce resistance against Aspergillus niger in wheat (Triticum aestivum L.) by activating β-1, 3-glucanase, chitinase, and thaumatin-like protein genes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519603

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802874

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802874

Country of ref document: EP

Kind code of ref document: A1