JP6997456B2 - Compositions for enhancing plant disease resistance or for controlling plant diseases and their usage methods - Google Patents

Compositions for enhancing plant disease resistance or for controlling plant diseases and their usage methods Download PDF

Info

Publication number
JP6997456B2
JP6997456B2 JP2018519603A JP2018519603A JP6997456B2 JP 6997456 B2 JP6997456 B2 JP 6997456B2 JP 2018519603 A JP2018519603 A JP 2018519603A JP 2018519603 A JP2018519603 A JP 2018519603A JP 6997456 B2 JP6997456 B2 JP 6997456B2
Authority
JP
Japan
Prior art keywords
plant
leaves
enzyme
family
xylanase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018519603A
Other languages
Japanese (ja)
Other versions
JPWO2017204288A1 (en
Inventor
宏子 北本
聡一 釘宮
純 田端
基夫 小板橋
重信 吉田
浩一 植田
貴志 渡部
一朗 光原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Publication of JPWO2017204288A1 publication Critical patent/JPWO2017204288A1/en
Application granted granted Critical
Publication of JP6997456B2 publication Critical patent/JP6997456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)

Description

本発明は、エステラーゼ及び/又はキシラナーゼを使用することで、植物の病害抵抗性を増強又は植物の病害を防除する方法を提供する。 The present invention provides a method for enhancing plant disease resistance or controlling plant disease by using esterase and / or xylanase.

植物には動物の免疫に準じるような生体防御システムが備わっており、この機能が発動すると、植物は、様々な防御システムを作動し、発病しにくい植物体となる。最近、殺菌剤の開発においては、環境保全や薬剤耐性菌回避の観点から、それらの防御システムを利用して病気を抑えようとする薬剤の探索が盛んに行われている。これらの薬剤には、(1)複数の病原菌に対して予防的な効果がある(作用スペクトルが広い)、(2)耐性菌の出現率が極めて低い、(3)防除効果が長期間持続する、(4)生態系自体への直接の影響は少ないという特徴を有している。一方で、こうした活性を持つ化合物の探索や評価が、殺菌性の農薬と比較して困難なため、実用化に至った化合物は限られている。また、国内で市販されている薬剤は、全てイネを対象としているが、様々な作物でも同様な薬剤が必要とされている。 Plants are equipped with a biological defense system that is similar to the immunity of animals, and when this function is activated, the plant activates various defense systems and becomes a plant that is less susceptible to disease. Recently, in the development of fungicides, from the viewpoint of environmental protection and avoidance of drug-resistant bacteria, there is an active search for drugs that try to control diseases by utilizing their defense systems. These drugs have (1) a preventive effect against multiple pathogens (wide spectrum of action), (2) an extremely low incidence of resistant bacteria, and (3) a long-lasting control effect. , (4) It has the characteristic that it has little direct impact on the ecosystem itself. On the other hand, since it is difficult to search for and evaluate compounds having such activity as compared with bactericidal pesticides, the number of compounds that have been put into practical use is limited. In addition, all the drugs marketed in Japan are targeted at rice, but similar drugs are required for various crops.

また、植物の表層は、外界からのストレス、特に蒸散や降雨によって引き起こされる浸透圧ストレス、病原菌の侵入、害虫による食害から身を守るために、クチクラ層とワックスで覆われている。このクチクラ層に含まれるクチン(脂肪酸ポリエステル)を加水分解する酵素はクチナーゼと呼ばれている。 In addition, the surface layer of plants is covered with a cuticle layer and wax to protect themselves from external stress, especially osmotic stress caused by transpiration and rainfall, invasion of pathogens, and feeding damage by pests. The enzyme that hydrolyzes cutin (fatty acid polyester) contained in this cuticle layer is called cutinase.

最近、植物常在性の酵母や糸状菌から得た酵素により、生分解性プラスチック製農業資材を使用後に速やかに分解させるための技術が開発されている(特許文献1及び2)。また、複数の酵素を大量生産する技術も開発されており(特許文献3及び4、非特許文献1)、安価な酵素液が市場で大量に入手可能になる見込みがある。そして、これら糸状菌や酵母由来の生分解性プラスチック分解酵素を高濃度で含む培養ろ液を植物に処理すると、植物が枯れる現象が見出されている。このとき、クチクラ層は薄くなっており、植物病原菌に感染しやすくなることから、生分解性プラスチック分解酵素のようなクチクラ層の一部を分解し得る酵素は、除草剤として有害植物の駆除に用いることができる(特許文献5)。また、酵母Pseudozyma antarctica由来の生分解性プラスチック分解酵素を含む培養液には、キシラナーゼ(ヘミセルロース分解酵素)も含まれていることが見出されている(非特許文献2)。しかしながら、酵母由来の生分解性プラスチック分解酵素で、実際にクチン分解活性を有するものは確認されていなかった。また、生分解性プラスチック分解酵素で、植物の病害抵抗性を増強し、植物の病害を防除する方法も知られていなかった。 Recently, techniques for rapidly decomposing biodegradable plastic agricultural materials after use by enzymes obtained from plant-resident yeast and filamentous fungi have been developed (Patent Documents 1 and 2). In addition, techniques for mass-producing a plurality of enzymes have also been developed (Patent Documents 3 and 4, Non-Patent Document 1), and it is expected that inexpensive enzyme solutions will be available in large quantities on the market. Then, when a culture filtrate containing a high concentration of these biodegradable plastic-degrading enzymes derived from filamentous fungi and yeast is treated on a plant, a phenomenon has been found in which the plant dies. At this time, the cuticle layer is thin and easily infected with phytopathogenic bacteria. Therefore, an enzyme that can decompose a part of the cuticle layer, such as a biodegradable plastic-degrading enzyme, is used as a herbicide for exterminating harmful plants. It can be used (Patent Document 5). It has also been found that a culture medium containing a biodegradable plastic-degrading enzyme derived from yeast Pseudozyma antarctica also contains xylanase (hemicellulose-degrading enzyme) (Non-Patent Document 2). However, no yeast-derived biodegradable plastic-degrading enzyme that actually has cutin-degrading activity has been confirmed. In addition, a method for enhancing plant disease resistance and controlling plant disease with a biodegradable plastic-degrading enzyme has not been known.

特許第4915593号Patent No. 4915593 特許第5082125号Patent No. 5082125 特許第5849297号Patent No. 58492297 国際公開第2014/109360号International Publication No. 2014/109360 特開2014-129287号公報Japanese Unexamined Patent Publication No. 2014-129287

Journal of Oleo Science(2016)、65(3)257-262Journal of Oleo Science (2016), 65 (3) 257-262 AMB Express(2015)、5:36AMB Express (2015), 5:36

これまで、生分解性プラスチック分解酵素及びそれを含む糸状菌又は酵母などの微生物の培養物の応用範囲は限られており、その酵素及び培養物の潜在能力を十分に生かし切れていなかった。本発明は、生分解性プラスチック分解酵素及びそれを含む微生物の培養物の新規用途を提供することを目的としている。 Until now, the range of applications of biodegradable plastic-degrading enzymes and cultures of microorganisms such as filamentous fungi or yeasts containing them has been limited, and the potential of the enzymes and cultures has not been fully utilized. It is an object of the present invention to provide a novel use of a biodegradable plastic degrading enzyme and a culture of a microorganism containing the same.

本発明者らは、上記課題を解決すべく鋭意検討した結果、意外なことに、生分解性プラスチック分解酵素として用いられていた微生物の培養物が、その中に含まれているエステラーゼ及び/又はキシラナーゼの作用を介して、病原菌の感染抑制作用及び病原菌発芽抑制作用を奏すること、並びに、植物のストレス抵抗性遺伝子の発現を上昇させることを見出し、本発明を完成させた。
すなわち、本発明は、以下に示す植物の病害抵抗性増強用又は植物病害防除用組成物、及び、それらを用いた植物の病害抵抗性を増強又は植物の病害を防除する方法を提供するものである。
〔1〕エステラーゼ及び/又はキシラナーゼを含む、植物の病害抵抗性増強用又は植物病害防除用組成物。
〔2〕前記エステラーゼが、生分解性プラスチック分解酵素を含む、前記〔1〕に記載の組成物。
〔3〕前記生分解性プラスチック分解酵素が、クチナーゼ及びクチナーゼ様酵素から成る群から選択される、前記〔2〕に記載の組成物。
〔4〕前記エステラーゼ及び/又は前記キシラナーゼが、微生物培養液又は抽出液である、前記〔1〕~〔3〕のいずれか一項に記載の組成物。
〔5〕前記微生物が、シュードザイマ(Pseudozyma)属、パラフォーマ(Paraphoma)属、クリプトコッカス(Cryptococcus)属、ムコール(Mucor)属、フミコラ(Humicola)属、テルモミセス(Thermomyces)属、タラロミセス(Talaromyces)属、ケトミウム(Chaetomium)属、トルラ(Torula)属、スポロトリクム(Sporotrichum)属、マルブランケア(Malbranchea)属、アルタナリア(Alternaria)属、クラドスポリウム(Cladosporium)属、ぺニシリウム(Penicillium)属、ペキロマイセス(Paecilomyces)属、シュードモナス(Pseudomonas)属、バクテロイデス(Bacteroides)属、及び、アシドボラックス(Acidovorax)属から成る群から選択される、前記〔4〕に記載の組成物。
〔6〕前記エステラーゼの濃度が、0.005~0.5U/mLである、前記〔1〕~〔5〕のいずれか一項に記載の組成物。
〔7〕前記エステラーゼ及び前記キシラナーゼの両方を含む、前記〔1〕~〔6〕のいずれか一項に記載の組成物。
〔8〕前記植物が、クチクラ層を有する、前記〔1〕~〔7〕のいずれか一項に記載の組成物。
〔9〕前記植物が、高等植物である、前記〔1〕~〔8〕のいずれか一項に記載の組成物。
〔10〕前記〔1〕~〔9〕のいずれか一項に記載の組成物によって植物を処理する工程を含む、植物の病害抵抗性を増強又は植物の病害を防除する方法。
〔11〕前記処理工程が、前記組成物を前記植物に噴霧する工程を含む、前記〔10〕に記載の方法。
〔12〕前記噴霧工程が、前記組成物を前記植物の葉1枚あたり0.1~1mL噴霧する工程を含む、前記〔11〕に記載の方法。
As a result of diligent studies to solve the above problems, the present inventors surprisingly found that a culture of microorganisms used as a biodegradable plastic-degrading enzyme was contained in an esterase and / or The present invention has been completed by finding that it exerts an infection-suppressing action and a pathogenic fungus germination-suppressing action on pathogens through the action of xylanase, and increases the expression of stress-resistant genes in plants.
That is, the present invention provides the following composition for enhancing plant disease resistance or plant disease control, and a method for enhancing plant disease resistance or controlling plant disease using them. be.
[1] A composition for enhancing plant disease resistance or controlling plant diseases, which comprises esterase and / or xylanase.
[2] The composition according to the above [1], wherein the esterase contains a biodegradable plastic degrading enzyme.
[3] The composition according to the above [2], wherein the biodegradable plastic degrading enzyme is selected from the group consisting of a cutinase and a cutinase-like enzyme.
[4] The composition according to any one of the above [1] to [3], wherein the esterase and / or the xylanase is a microbial culture solution or an extract.
[5] The microorganisms include the genus Pseudozyma, the genus Paraphoma, the genus Cryptococcus, the genus Mucor, the genus Humicola, the genus Thermomyces, the genus Thermomyces, and the genus Tala. The genus Chaetomium, the genus Torula, the genus Sporotichum, the genus Malbranchea, the genus Alternaria, the genus Cladosporium, the genus Penicillium. ), The composition according to the above [4], which is selected from the group consisting of the genus Pseudomonas, the genus Bacteroides, and the genus Acidovorax.
[6] The composition according to any one of the above [1] to [5], wherein the esterase concentration is 0.005 to 0.5 U / mL.
[7] The composition according to any one of the above [1] to [6], which comprises both the esterase and the xylanase.
[8] The composition according to any one of the above [1] to [7], wherein the plant has a cuticle layer.
[9] The composition according to any one of the above [1] to [8], wherein the plant is a higher plant.
[10] A method for enhancing plant disease resistance or controlling plant disease, which comprises a step of treating a plant with the composition according to any one of the above [1] to [9].
[11] The method according to the above [10], wherein the treatment step comprises a step of spraying the composition onto the plant.
[12] The method according to [11] above, wherein the spraying step comprises spraying 0.1 to 1 mL of the composition per leaf of the plant.

本発明に従えば、微生物の培養物中に含まれている生分解性プラスチック分解酵素であるエステラーゼ、及び/又は、同培養物中に含まれているキシラナーゼにより、植物の病害抵抗性を増強又は植物の病害を防除することができる。植物の病害抵抗性増強剤は、古くから研究されているが、現在国内で製品になったものは、イネを対象とする3種の薬剤しか知られていない。しかしながら、本発明のエステラーゼ及び/又はキシラナーゼによる病害抵抗性増強作用又は病害防除作用は、イネ科植物だけではなく、トマト、シロイナズナ、及びタバコなどの幅広い作物種で利用できるものであり、汎用性が高い。また、本発明の有効成分であるエステラーゼ及びキシラナーゼは、従来の病害抵抗性増強剤として知られていたような低分子化合物ではなく、タンパク質であるので、これは自然界で容易に分解され、低分子化合物などで起こる環境中への残存性はなく、環境負荷が低い。 According to the present invention, esterase, which is a biodegradable plastic-degrading enzyme contained in a culture of microorganisms, and / or xylanase contained in the culture enhances disease resistance of plants or enhances disease resistance of plants. It can control plant diseases. Although plant disease resistance enhancers have been studied for a long time, only three kinds of drugs targeting rice are currently known as products in Japan. However, the disease resistance enhancing action or disease controlling action by esterase and / or xylanase of the present invention can be used not only in grasses but also in a wide range of crop species such as tomato, white sardine, and tobacco, and is versatile. high. Further, since esterase and xylanase, which are the active ingredients of the present invention, are proteins rather than small molecule compounds known as conventional disease resistance enhancers, they are easily decomposed in nature and are small molecules. There is no persistence in the environment caused by compounds, etc., and the environmental load is low.

葉の病徴変化を示す写真。A photograph showing changes in leaf symptom. 葉の病徴変化を示すグラフ。A graph showing changes in leaf symptom. 病原菌胞子の顕微鏡写真。Micrograph of pathogen spores. 病原菌胞子の発芽率のグラフ。Graph of germination rate of pathogen spores. 病原菌由来のDNA量のグラフ。Graph of the amount of DNA derived from a pathogen. 病原菌を含む葉の顕微鏡写真。A photomicrograph of a leaf containing a pathogen. 植物のストレス抵抗性遺伝子のグラフ。Graph of plant stress resistance genes. 植物の活性酸素種応答遺伝子のグラフ。Graph of active oxygen species response genes of plants. 葉の写真。A photo of the leaves. 発病度のグラフ。Graph of the degree of morbidity. 葉の写真。A photo of the leaves. 発病度のグラフ。Graph of the degree of morbidity. 葉の写真。A photo of the leaves. 病斑直径のグラフ。Graph of lesion diameter. 葉の写真。A photo of the leaves. 発病度のグラフ。Graph of the degree of morbidity. 葉の写真。A photo of the leaves. 発病度のグラフ。Graph of the degree of morbidity.

本発明は、エステラーゼ及び/又はキシラナーゼを含む、植物の病害抵抗性増強用又は植物病害防除用組成物に関するものである。
本明細書に記載の「エステラーゼ」とは、エステルを水との化学反応で酸とアルコールに分解する加水分解酵素のことをいう。本発明のエステラーゼとしては、クチクラ層の一部を分解する活性を有しているものであれば、種々のエステラーゼを制限なく使用することができ、例えば、生分解性プラスチック分解酵素として利用されている酵素を採用してもよい。
The present invention relates to a composition for enhancing plant disease resistance or controlling plant diseases, which comprises esterase and / or xylanase.
As used herein, the term "esterase" refers to a hydrolase that decomposes an ester into an acid and an alcohol by a chemical reaction with water. As the esterase of the present invention, various esterases can be used without limitation as long as they have an activity of decomposing a part of the cuticle layer, and are used, for example, as a biodegradable plastic-degrading enzyme. You may adopt the enzyme that is present.

本明細書に記載の「生分解性プラスチック分解酵素」とは、生分解性プラスチックを分解する活性を有する酵素のことをいう。本発明の組成物には、生分解性プラスチックを分解する活性を有する酵素であれば、種々の酵素を制限なく使用することができ、例えば、クチナーゼ又はクチナーゼ様酵素を採用してもよい。前記生分解性プラスチックを分解する活性は、ポリブチレンサクシネート-co-アジペート(PBSA)エマルジョンの分解活性を測定することにより、あるいは、PBSA、ポリブチレンサクシネート、ポリブチレンアジペートテレフタレート、及びポリ乳酸などの生分解性プラスチックフィルムの分解活性を測定することにより、決定することができる。 As used herein, the term "biodegradable plastic-degrading enzyme" refers to an enzyme having an activity of degrading biodegradable plastic. In the composition of the present invention, various enzymes can be used without limitation as long as they have an activity of degrading biodegradable plastics, and for example, cutinase or cutinase-like enzyme may be adopted. The activity of degrading the biodegradable plastic can be determined by measuring the degrading activity of the polybutylene succinate-co-adipate (PBSA) emulsion, or by measuring PBSA, polybutylene succinate, polybutylene adipate terephthalate, polylactic acid and the like. It can be determined by measuring the decomposition activity of the biodegradable plastic film of.

本明細書に記載の「キシラナーゼ」とは、キシランをキシロースに分解する活性を有する酵素のことをいい、植物細胞壁中のヘミセルロースを分解することができる。本発明の組成物には、ヘミセルロースを分解する活性を有する酵素であれば、種々のキシラナーゼを制限なく使用することができる。 As used herein, the term "xylanase" refers to an enzyme having an activity of decomposing xylose into xylose, and can decompose hemicellulose in a plant cell wall. In the composition of the present invention, various xylanases can be used without limitation as long as they are enzymes having an activity of decomposing hemicellulose.

前記エステラーゼ及び前記キシラナーゼは、微生物によって産生され得る。本発明の組成物には、当該微生物から単離精製したエステラーゼ及び/又はキシラナーゼを使用してもよく、当該微生物の培養液(培養ろ液)又は抽出液をエステラーゼ及び/又はキシラナーゼとして使用してもよい。前記エステラーゼ及び/又は前記キシラナーゼを産生する微生物は、特に限定されるものではないが、例えば、シュードザイマ(Pseudozyma)属、パラフォーマ(Paraphoma)属、クリプトコッカス(Cryptococcus)属、ムコール(Mucor)属、フミコラ(Humicola)属、テルモミセス(Thermomyces)属、タラロミセス(Talaromyces)属、ケトミウム(Chaetomium)属、トルラ(Torula)属、スポロトリクム(Sporotrichum)属、マルブランケア(Malbranchea)属、アルタナリア(Alternaria)属、クラドスポリウム(Cladosporium)属、ぺニシリウム(Penicillium)属、ペキロマイセス(Paecilomyces)属、シュードモナス(Pseudomonas)属、バクテロイデス(Bacteroides)属、及び、アシドボラックス(Acidovorax)属から成る群から選択される微生物であってもよい。 The esterase and the xylanase can be produced by microorganisms. In the composition of the present invention, esterase and / or xylanase isolated and purified from the microorganism may be used, and the culture solution (culture filtrate) or extract of the microorganism is used as esterase and / or xylanase. May be good. The microorganism that produces the esterase and / or the xylanase is not particularly limited, and is, for example, the genus Pseudozyma, the genus Paraphoma, the genus Cryptococcus, the genus Mucor, and Fumicola. (Humicola), Thermomyces, Talaromyces, Chaetomium, Torula, Sporotichum, Malbranke (Malbran) Consists of the genus Cladosporium, the genus Penicillium, the genus Pecilomyces, the genus Pseudomonas, the genus Bacteroides, and the genus Acidovorax. There may be.

前記エステラーゼとしての生分解性プラスチック分解酵素は、好ましくは、Pseudozyma antarctica(例えば、GB-4(1)W株、GB-4(0)-HPM7株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された酵母;受託番号NITE BP-02238)及びOMM62-2株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された酵母;受託番号NITE BP-02239)など)により産生されるエステラーゼ(PaE)、Paraphoma属類縁菌クチナーゼ様酵素(PCLE)、又は、クチナーゼ様酵素1(CmCut1)である。PCLEは、Paraphoma属類縁菌B47-9株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された糸状菌;受託番号NITE P-573;要すれば特許第5082125号参照)などのParaphoma属類縁菌により産生される酵素であり、CmCut1は、Cryptococcus magnus類縁菌BPD1A株(独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託された酵母;受託番号NITE P-02134)などのCryptococcus magnus又はその類縁菌により産生される酵素である。 The biodegradable plastic-degrading enzyme as the esterase is preferably Pseudozyma antagonist (for example, GB-4 (1) W strain, GB-4 (0) -HPM7 strain (Patent Microorganism Deposit, National Institute of Technology and Evaluation). Yeast deposited at the center; deposit number NITE BP-02238) and OMM62-2 strain (yeast deposited at the National Institute of Technology and Evaluation Patent Microorganisms Depositary; accession number NITE BP-02239), etc.) Estelase (PaE), Paraphoma genus related bacterium cutinase-like enzyme (PCLE), or cutinase-like enzyme 1 (CmCut1). PCLE is a Paraphoma strain such as Paraphoma-related strain B47-9 (filamentous fungus deposited at the National Institute of Technology and Evaluation Patent Microorganisms Depositary; Accession No. NITE P-573; see Patent No. 5082125 if necessary). CmCut1 is an enzyme produced by genus related bacteria, and CmCut1 is a Cryptococcus magnus such as Cryptococcus magnus strain BPD1A (yeast deposited at the National Institute of Technology and Evaluation Patent Microorganisms Depositary; Accession No. NITE P-02134). Or an enzyme produced by its relatives.

本発明の組成物中における前記エステラーゼの濃度は、適用対象の植物の種類及びその病原菌の種類に応じて適宜調整され得る。前記エステラーゼの濃度は、例えば0.005~0.5U/mLであってもよく、好ましくは0.006~0.2U/mL、さらに好ましくは0.007~0.07U/mLである。
なお、ここで示すエステラーゼの力価は、生分解性プラスチックであるポリブチレンサクシネート-co-アジペート(PBSA)エマルジョン(昭和電工株式会社、EM-301)の濁度の減少量を測定することで決定されたものである。OD660nmの値を1分間に1低下させるときの力価を1Uと定義した。酵素活性測定時の緩衝液としては、例えば、トリス塩酸緩衝液(20mM Tris-HCl、pH6.8、塩化カルシウム(2mM)なし又はあり)を使用してもよい。
The concentration of the esterase in the composition of the present invention can be appropriately adjusted according to the type of the plant to be applied and the type of the pathogen thereof. The concentration of the esterase may be, for example, 0.005 to 0.5 U / mL, preferably 0.006 to 0.2 U / mL, and more preferably 0.007 to 0.07 U / mL.
The titer of esterase shown here is measured by measuring the amount of decrease in turbidity of polybutylene succinate-co-adipate (PBSA) emulsion (Showa Denko KK, EM-301), which is a biodegradable plastic. It has been decided. The titer when the value of OD660 nm is decreased by 1 per minute is defined as 1U. As the buffer solution for measuring the enzyme activity, for example, Tris-hydrochloric acid buffer solution (20 mM Tris-HCl, pH 6.8, with or without calcium chloride (2 mM)) may be used.

本発明の組成物中における前記キシラナーゼの濃度は、適用対象の植物の種類及びその病原菌の種類に応じて適宜調整され得る。前記キシラナーゼの濃度は、例えば0.001~5.0U/mLであってもよく、好ましくは0.005~1.0U/mLである。
なお、ここで示すキシラナーゼの力価は、キシランを分解したときに生じるキシロースの量を、Agric.Biol.Chem.(1980)、44(12)、2943-2949に示されているようなソモギ-ネルソン法の改良法によって測定されたものである。1分間に1μmolのキシロースを生成する力価を1Uと定義した。
The concentration of the xylanase in the composition of the present invention can be appropriately adjusted according to the type of the plant to be applied and the type of the pathogen thereof. The concentration of the xylanase may be, for example, 0.001 to 5.0 U / mL, preferably 0.005 to 1.0 U / mL.
The titer of xylanase shown here is the amount of xylose produced when xylan is decomposed. Biol. Chem. It was measured by an improved method of the Somogi-Nelson method as shown in (1980), 44 (12), 2943-2949. The titer to produce 1 μmol of xylose per minute was defined as 1 U.

本発明の組成物には、前記エステラーゼ又は前記キシラナーゼを単独で使用してもよいが、両者を併せて使用してもよい。作用機序の異なる両酵素を併用することで、相乗的な植物の病害抵抗性増強作用及び/又は植物病害防除作用が奏される。前記エステラーゼ及び前記キシラナーゼを併用する際には、それぞれ単離精製したエステラーゼ及びキシラナーゼを同じ組成物中に配合してもよいが、これらの酵素を始めから含んでいる微生物培養液又は抽出液を使用すると簡便である。あるいは、前記エステラーゼのみ含む組成物及び前記キシラナーゼのみを含む組成物を、同時又は連続的に使用してもよい。 In the composition of the present invention, the esterase or the xylanase may be used alone, or both may be used in combination. By using both enzymes having different mechanisms of action in combination, a synergistic plant disease resistance enhancing action and / or a plant disease controlling action is exhibited. When the esterase and the xylanase are used in combination, the isolated and purified esterase and the xylanase may be blended in the same composition, respectively, but a microbial culture solution or an extract containing these enzymes from the beginning is used. Then it is convenient. Alternatively, the composition containing only the esterase and the composition containing only the xylanase may be used simultaneously or continuously.

本明細書に記載の「植物の病害抵抗性増強」とは、当該植物に任意の病原体が接触しても感染が成立しないもしくは病徴が軽減されるような状況が誘導されることを指す。「植物の病害抵抗性増強」は、例えば、PIN2(proteinase inhibitor 2)及びLapA1(leucine aminopeptidase A1)などの傷害応答遺伝子の上昇、PR4(pathogenesis related 4)及びPRB1bなどの病害応答遺伝子の上昇、並びに、活性酸素種の放出のように、病害に対する植物の生理的な応答の増強が指標となる場合もある。また、本明細書に記載の「植物病害防除」とは、作用機序に関わらず、結果として植物における病徴変化を抑制することをいう。植物病害防除の作用機序としては、例えば、上述のような植物の生理的な応答の変化、共生微生物叢の変化、又は、病原菌の弱毒化などが挙げられるが、これらに限定されるものではない。 As used herein, the term "enhanced disease resistance of a plant" refers to inducing a situation in which infection is not established or symptoms are alleviated even if an arbitrary pathogen comes into contact with the plant. "Enhanced plant disease resistance" refers to, for example, elevation of injury response genes such as PIN2 (proteinase inhibitor 2) and LapA1 (leucine oxygen protected A1), elevation of PR4 (patogenesis reacted 4) and PRB1b, and disease response. In some cases, such as the release of reactive oxygen species, enhanced physiological response of plants to disease is an indicator. In addition, the term "plant disease control" described in the present specification means to suppress changes in symptom symptoms in plants as a result, regardless of the mechanism of action. The mechanism of action for controlling plant diseases includes, for example, changes in the physiological response of plants as described above, changes in the symbiotic microbial flora, or attenuation of pathogens, but is not limited thereto. do not have.

本発明の組成物は、植物の種類や病害の種類によらず、非特異的に植物の病害抵抗性増強作用及び植物病害防除作用を奏するので、種々の植物に対して使用することができる。本発明の組成物は、例えば、クチクラ層を有する植物、又は、種子植物(裸子植物又は被子植物)及びシダ植物などの高等植物に対して使用してもよい。また、本発明の組成物は、種々の農作物、例えば、アオイ科、アカザ科、アブラナ科、アヤメ科、イソマツ科、イネ科、イワタバコ科、ウコギ科、ウリ科、カキノキ科、キク科、クルミ科、クワ科、ケシ科、ゴマノハグサ科、サクラソウ科、サトイモ科、サボテン科、シソ科、シュウカイドウ科、ショウガ科、スイレン科、スミレ科、セリ科、センリョウ科、ツツジ科、ツバキ科、トウダイグサ科、ナス科、ナデシコ科、バラ科、ヒガンバナ科、ヒルガオ科、フウロソウ科、ブドウ科、ブナ科、ボタン科、マタタビ科、マメ科、ミカン科、ヤマノイモ科、ユキノシタ科、ユリ科、ラン科、リュウゼツラン科、及び、リンドウ科から成る群から選択される科に属する農作物に対して使用してもよい。そして、本発明の組成物は、例えば、カビ病、バクテリア病、及び、ウイルス病などの種々の病害に対する抵抗性を増強又はそのような種々の病害を防除することができる。 The composition of the present invention can be used for various plants because it has a non-specific effect of enhancing plant disease resistance and a plant disease control effect regardless of the type of plant or the type of disease. The composition of the present invention may be used for, for example, a plant having a cuticle layer, or a higher plant such as a seed plant (angiosperm or angiosperm) and a fern plant. In addition, the composition of the present invention comprises various agricultural products such as Aoi family, Akaza family, Abrana family, Ayame family, Isomatsu family, Rice family, Iwatobacco family, Ukogi family, Uri family, Kakinoki family, Kiku family, and Walnut family. , Kuwa family, Keshi family, Sesame family, Sakurasou family, Satoimo family, Cactus family, Perilla family, Shukaidou family, Ginger family, Water lily family, Violet family, Seri family, Senryo family, Tsutsuji family, Tsubaki family, Todaigusa family, Family, Nadesico family, Rose family, Higanbana family, Hirugao family, Fuurosou family, Vine family, Beech family, Button family, Matatabi family, Bean family, Mikan family, Yamanoimo family, Yukinoshita family, Yuri family, Orchid family, Ryuzetsuran family, It may also be used for agricultural products belonging to a family selected from the group consisting of the Lindou family. The composition of the present invention can enhance resistance to various diseases such as mold disease, bacterial disease, and viral disease, or control such various diseases.

本発明の組成物は、その植物の病害抵抗性増強作用又は植物病害防除作用を阻害しない限り、他の任意の成分をさらに含んでもよい。また、本発明の組成物は、その植物の病害抵抗性増強作用又は植物病害防除作用をより高めるために、他の有効成分をさらに含んでもよい。 The composition of the present invention may further contain any other component as long as it does not inhibit the disease resistance enhancing action or the plant disease controlling action of the plant. In addition, the composition of the present invention may further contain other active ingredients in order to further enhance the disease resistance enhancing action or the plant disease controlling action of the plant.

ある態様では、本発明は、植物の病害抵抗性増強用組成物又は植物病害防除用組成物によって植物を処理する工程を含む、植物の病害抵抗性を増強又は植物の病害を防除する方法にも関する。当該処理の方法としては、結果として植物の病害抵抗性を増強又は植物の病害を防除するような方法であれば、種々の方法を制限なく使用することができる。例えば、前記処理工程は、前記組成物を前記植物に噴霧する工程を含んでもよい。前記組成物の適用部位は、特に限定されないが、例えば、前記植物の葉、茎、又は、果実などであってもよい。前記組成物の適用量は、適用方法及び適用部位に応じて適宜調整され得るが、例えば、前記植物の葉1枚あたり0.1~1mL噴霧してもよい。 In some embodiments, the invention also comprises a method of enhancing plant disease resistance or controlling plant disease, comprising treating the plant with a plant disease resistance enhancing composition or a plant disease controlling composition. Related. As the method of the treatment, various methods can be used without limitation as long as it is a method for enhancing the disease resistance of the plant or controlling the disease of the plant as a result. For example, the treatment step may include spraying the composition onto the plant. The application site of the composition is not particularly limited, but may be, for example, the leaves, stems, fruits, or the like of the plant. The amount of the composition applied may be appropriately adjusted depending on the method of application and the site of application, and for example, 0.1 to 1 mL may be sprayed per leaf of the plant.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the scope of the present invention is not limited to these Examples.

<実施例1>
(1)Pseudozyma antarctica(P.antarctica)の培養ろ液の調製
P.antarctica(GB-4(1)W株)を表1に示すYM培地(yeast extract malt extract medium)で前培養した。

Figure 0006997456000001
<Example 1>
(1) Preparation of culture filtrate of Pseudozyma antarctica (P. antarctica) P. Antarctica (GB-4 (1) W strain) was precultured in YM medium (yeast extract malt extract medium) shown in Table 1.
Figure 0006997456000001

5L容のジャーファーメンターに、表2に示した組成の培地3Lを加え、上記P.antarcticaの前培養液を30mL接種して、これを30℃、撹拌速度500rpm、通気量8LPMで培養した。

Figure 0006997456000002
To a 5 L volume of jar fermenter, 3 L of the medium having the composition shown in Table 2 was added, and the above P.I. Antarctica preculture solution was inoculated with 30 mL and cultured at 30 ° C., a stirring speed of 500 rpm, and an aeration rate of 8 LPM.
Figure 0006997456000002

高泡形成による培養液の流出を防止するため、消泡剤(商品名「信越シリコーンKM-72F」、信越化学工業株式会社製)の50倍希釈液を、消泡センサーを利用して断続的に自動滴下し、培養開始後72時間までにおおよそ40mL添加した。
また、培地中のアンモニウムイオンの消費によるpHの低下をセンサーで感知し、窒素源の追加とpHの調整のため、培地にアンモニア水をアルカリ調整溶液として自動滴下してpHを6.0に調整した。培養開始24時間後から、表3に示した組成の流加培地を0.5L/dの速度で流加した。最終的に72時間培養したときの培養液を孔径0.45μmのCELLULOSE ACETATEろ紙(ADVANTEC製)でろ過して、培養ろ液を調製した。この培養ろ液を、以下の各試験で使用した。なお、P.antarcticaの別の菌株(GB-4(0)-HPM7株又はOMM62-2株)を用いても、GB-4(1)W株を用いた場合と同様の方法で培養ろ液を調製することができ、かつ同様に使用することができた。

Figure 0006997456000003
In order to prevent the outflow of the culture solution due to the formation of high foam, a 50-fold diluted solution of defoaming agent (trade name "Shin-Etsu Silicone KM-72F", manufactured by Shin-Etsu Chemical Co., Ltd.) is intermittently applied using a defoaming sensor. By 72 hours after the start of culturing, approximately 40 mL was added.
In addition, the sensor detects the decrease in pH due to the consumption of ammonium ions in the medium, and in order to add a nitrogen source and adjust the pH, ammonia water is automatically added dropwise to the medium as an alkali adjusting solution to adjust the pH to 6.0. did. From 24 hours after the start of culturing, the fed medium having the composition shown in Table 3 was fed at a rate of 0.5 L / d. Finally, the culture broth after culturing for 72 hours was filtered through a CELLULOSE ACETATE filter paper (manufactured by ADVANTEC) having a pore size of 0.45 μm to prepare a culture filtrate. This culture filtrate was used in each of the following tests. In addition, P. Even if another strain of Antarctica (GB-4 (0) -HPM7 strain or OMM62-2 strain) is used, a culture filtrate is prepared in the same manner as when the GB-4 (1) W strain is used. And could be used in the same way.
Figure 0006997456000003

(2)切り取り葉への噴霧処理
P.antarcticaの培養ろ液(エステラーゼの力価:8.0U/mL)を20mMトリス塩酸緩衝液(pH8.8)で希釈し、0.01U/mL、0.1U/mL、1.0U/mLの溶液を調製した。矮性のトマト(MicroTom)から切り取った葉1枚に対して、0.01U/mL~8.0U/mLの各溶液を0.6mLずつ噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後(3日後)に、それぞれの切り取り葉に病原性糸状菌(灰色カビ病菌(ボトリティス・シネレア(Botrytis cinerea)、B.c.))の胞子(5×104胞子/mL)を0.6mLずつ噴霧した。各処理区につき5枚の切り取り葉を用い、酵素処理10日目すなわち胞子処理7日後に、葉の様子を観察した。褐色の病斑を形成する状態(カビに覆われることもある)を病徴、明らかな病徴は見られないが葉の緑色が褪色している状態を黄化、病徴も黄化も見られなかった状態を無変化、として評価をした。図1Aに、各酵素処理の後、病原菌胞子の噴霧処理を行った切り取り葉の写真を示し、図1Bに、観察した切り取り葉の状態(無変化、黄化、又は病徴)の割合についてのグラフを示す。これらの図から理解できるように、1.0U/mL及び8.0U/mL処理区では、感染効率が促進され病徴が助長されたが、0.1U/mL処理区では、対照区と同程度の病徴であり、0.01U/mL処理区では、10日目の病徴が対照区に比べて軽減されていた。
(2) Spray treatment on cut leaves P. Dilute antarctica culture filtrate (esterase titer: 8.0 U / mL) with 20 mM Tris-hydrogen buffer (pH 8.8) to 0.01 U / mL, 0.1 U / mL, 1.0 U / mL. A solution was prepared. 0.6 mL of each solution of 0.01 U / mL to 8.0 U / mL was sprayed on one leaf cut from dwarf tomato (MicroTom), and kept warm while moisturizing in a closed container (humidity). 100%, temperature 22 ° C.). The control group was sprayed with a culture filtrate in which the enzyme was inactivated by autoclave treatment. 72 hours (3 days) after spraying, spores (5 x 10 4 spores / mL) of pathogenic filamentous fungi (Botrytis cinerea, B.c.) were applied to each cut leaf. Sprayed 0.6 mL each. Five cut leaves were used for each treatment group, and the appearance of the leaves was observed 10 days after the enzyme treatment, that is, 7 days after the spore treatment. Symptoms of brown lesions (sometimes covered with mold), yellowing of leaves with no obvious signs but fading green of leaves, no signs or yellowing The state of not being changed was evaluated as unchanged. FIG. 1A shows photographs of cut leaves subjected to spray treatment of pathogen spores after each enzyme treatment, and FIG. 1B shows the percentage of observed cut leaf states (no change, yellowing, or symptom). The graph is shown. As can be understood from these figures, in the 1.0 U / mL and 8.0 U / mL treatment groups, the infection efficiency was promoted and the symptom was promoted, but in the 0.1 U / mL treatment group, it was the same as the control group. It was a degree of symptom, and the symptom on the 10th day was alleviated in the 0.01 U / mL treatment group as compared with the control group.

(3)病原菌の発芽率
病原菌(B.c.)の胞子接種後2日目の葉表面のカビ胞子及び菌糸は、トリパンブルーで染色した。各処理区につき4枚の切り取り葉を用い、顕微鏡で観察した。図2Aに、各酵素処理後、病原菌胞子を噴霧した2日後の葉表面のカビ胞子の光学顕微鏡観察写真を示し、図2Bに、観察したカビ胞子の発芽率の平均値のグラフ(誤差範囲は4回の試験から算出した標準誤差)を示す。ここで、図2Bの異なるアルファベット(a、b、及びc)は、テューキーの検定によって有意水準0.05で有意差検定を行った結果、各処理区の間で発芽率が有意に異なっていることを示しており、同じアルファベットは、各処理区の間で発芽率に有意差がないことを示している。具体的には、0.01U/mL、0.1U/mL、1.0U/mL処理区ではいずれも、対照区及び8.0U/mL処理区に比べて病原菌胞子の発芽が有意に抑えられていた(図2A及び2B)。対照区及び8.0U/mL処理区では、病原菌胞子が発芽し、その発芽管が葉表面に広がっている様子が観察された。特に8.0U/mL処理区では、発芽率が対照区よりも有意に高かった。
(3) Germination rate of pathogens The mold spores and hyphae on the leaf surface on the second day after inoculation with the spores of the pathogen (B.c.) were stained with trypan blue. Four cut leaves were used for each treatment group and observed under a microscope. FIG. 2A shows an optical microscopic observation photograph of mold spores on the leaf surface 2 days after spraying the pathogenic bacterial spores after each enzyme treatment, and FIG. 2B shows a graph of the average value of the germination rate of the observed mold spores (error range is: The standard error calculated from 4 tests) is shown. Here, the different alphabets (a, b, and c) in FIG. 2B are significantly different in germination rate among the treatment groups as a result of performing a significance test at a significance level of 0.05 by Tukey's test. The same alphabet indicates that there is no significant difference in germination rate between the treatment groups. Specifically, in all of the 0.01 U / mL, 0.1 U / mL, and 1.0 U / mL treated groups, the germination of pathogenic spores was significantly suppressed as compared with the control group and the 8.0 U / mL treated group. (FIGS. 2A and 2B). In the control group and the 8.0 U / mL treatment group, pathogen spores were observed to germinate and the germination tubes spread on the leaf surface. Especially in the 8.0 U / mL treatment group, the germination rate was significantly higher than that in the control group.

(4)葉における病原菌の存在量
病原菌(B.c.)の胞子接種後3日目の葉からDNAを抽出し、qPCRで病原菌のDNA量を定量した。各処理区につき5枚の切り取り葉を用いた。図3に、灰色カビ病菌β-チューブリン遺伝子を指標にした解析結果、すなわちトマトのActin遺伝子量で補正に対するβ-チューブリン遺伝子量の相対値の平均値(誤差範囲は5回の試験から算出した標準誤差)を示す。その結果、病原菌の量は、1.0U/mLや8.0U/mL処理区で顕著に高く、病原菌に感染していることが確認できる。一方で、0.01U/mL、0.1U/mL処理区では、対照区に比べて病原菌が明らかに少なく抑えられていることが確認できた。
(4) Abundance of pathogen in leaves DNA was extracted from the leaves on the third day after spore inoculation of the pathogen (B.c.), and the amount of DNA of the pathogen was quantified by qPCR. Five cut leaves were used for each treatment plot. FIG. 3 shows the analysis results using the β-tubulin gene of Gray mold disease as an index, that is, the average value of the relative values of the β-tubulin gene amount with respect to the correction by the Actin gene amount of tomato (the error range is calculated from 5 tests). The standard error) is shown. As a result, the amount of the pathogen is remarkably high in the 1.0 U / mL and 8.0 U / mL treatment groups, and it can be confirmed that the patient is infected with the pathogen. On the other hand, it was confirmed that the pathogens were clearly suppressed in the 0.01 U / mL and 0.1 U / mL treated groups as compared with the control group.

また、葉の断面における病原菌の存在を調べるために各処理区につき4枚の切り取り葉をパラフィンに包埋し、葉の切片(厚さ10μm)を作製して、チオニン・オレンジGで染色した。カビ胞子及び菌糸は、チオニンで暗紫色に、植物細胞壁は、オレンジGで橙色に染色され得る。作製した葉切片を光学顕微鏡で観察した結果、1.0U/mLや8.0U/mL酵素処理区では、病原菌が葉内部に侵入している様子が観察されたが、0.01U/mL、0.1U/mL処理区では、病原菌の侵入は対照区と同程度であった(図4)。 In addition, in order to investigate the presence of pathogens in the cross section of the leaves, four cut leaves were embedded in paraffin for each treatment group, and leaf sections (thickness 10 μm) were prepared and stained with thionin orange G. Mold spores and hyphae can be stained dark purple with thionin and plant cell walls can be stained orange with orange G. As a result of observing the prepared leaf sections with an optical microscope, it was observed that pathogens invaded the inside of the leaves in the 1.0 U / mL and 8.0 U / mL enzyme-treated groups, but 0.01 U / mL. In the 0.1 U / mL treatment group, the invasion of pathogenic bacteria was similar to that in the control group (Fig. 4).

(5)植物の応答解析
病原菌(B.c.)の胞子接種後3日目の葉からRNAを抽出し、qRT-PCRで植物の各種ストレス抵抗性関連遺伝子(傷害応答遺伝子であるPIN2及びLapA並びに病害応答遺伝子であるPR4及びPRB1b)の発現量を調べた(トマトのActin遺伝子量で補正)。各処理区につき3枚の切り取り葉を用いた。図5に、トマトのActin遺伝子に対する各種ストレス抵抗性関連遺伝子の相対的発現量の平均値(誤差範囲は3回の試験から算出した標準誤差)を示す。その結果、培養ろ液処理濃度に応じて、前記ストレス抵抗性関連遺伝子の発現が上昇していることが確認された。
(5) Plant response analysis RNA was extracted from the leaves on the third day after spore inoculation of the pathogen (B.c.), and various stress resistance-related genes (injury response genes PIN2 and LapA) of the plant were extracted by qRT-PCR. In addition, the expression levels of the disease response genes PR4 and PRB1b) were examined (corrected by the amount of Actin gene in tomato). Three cut leaves were used for each treatment plot. FIG. 5 shows the average value of the relative expression levels of various stress resistance-related genes with respect to the Actin gene of tomato (the error range is the standard error calculated from three tests). As a result, it was confirmed that the expression of the stress resistance-related gene was increased according to the culture filtrate treatment concentration.

植物は、クチクラ層の破壊やエリシターなどを検知すると、活性酸素を放出するので、ストレス抵抗性関連遺伝子だけでなく、活性酸素種応答遺伝子も発現することが知られている。抽出したRNAを用いたqRT-PCRで活性酸素種応答遺伝子の発現量の変化を調べたところ、特に0.01U/mLの培養ろ液処理で、トマトのActin遺伝子に対するペルオキシダーゼ(POD)やスーパーオキシドディスムターゼ(SOD)の相対的発現量の平均値(誤差範囲は3回の試験から算出した標準誤差)が上昇することが確認された(図6)。 It is known that plants release not only stress resistance-related genes but also reactive oxygen species response genes because they release active oxygen when they detect destruction of the cuticle layer or elicitor. When the change in the expression level of the reactive oxygen species response gene was examined by qRT-PCR using the extracted RNA, peroxidase (POD) and superoxide for the Actin gene of tomatoes were examined, especially by treatment with a culture filtrate of 0.01 U / mL. It was confirmed that the average value of the relative expression level of dismutase (SOD) (the error range is the standard error calculated from three tests) increased (Fig. 6).

(6)クチンの分解活性
植物の葉をP.antarcticaの培養ろ液で処理すると、クチクラ層から炭素鎖長16や18の脂肪酸が抽出されることが確認されている(Uedaら、Appl.Micorobiol.Biotechnol.,2015)。そこで、植物表層のクチクラ層を構成する成分のうちクチン(脂肪酸ポリエステル)に関して、P.antarcticaの培養ろ液による分解性を調べた。トマト果皮から調製したクチンを当該培養ろ液で処理すると、反応溶液中に、クチンの分解物であるωヒドロキシヘキサデカン酸が検出された。このことから、P.antarcticaの培養ろ液に、植物からクチンモノマーを遊離させる活性があることがわかった。
(6) Degradation activity of cutin P. It has been confirmed that fatty acids having a carbon chain length of 16 or 18 are extracted from the cuticle layer when treated with an Antarctica culture filtrate (Ueda et al., Appl. Microbiol. Biotechnol., 2015). Therefore, regarding the cutin (fatty acid polyester) among the components constituting the cuticle layer on the surface of the plant, P.I. The degradability of Antarctica by the culture filtrate was examined. When cutin prepared from tomato peel was treated with the culture filtrate, ω-hydroxyhexadecanoic acid, which is a decomposition product of cutin, was detected in the reaction solution. From this, P. It was found that the culture filtrate of Antarctica has an activity to release the cutin monomer from the plant.

<実施例2>
(1)単子葉植物とその病原菌に対する効果
P.antarcticaの培養ろ液を実施例1と同様に希釈した。エステラーゼの力価で0.01U/mLの溶液を、イネ科植物であるエンバクの葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後に、単子葉植物であるエンバクに感染する病原性細菌のすじ枯病菌の培養液(OD610:0.65)に浸漬接種した。各処理区につき4枚の切り取り葉を用い、同じ試験を2回反復した。楕円状の褐色斑(病斑)が縦に広がって形成される状態を病徴として観察した。また、病斑面積を観察し、以下の式に基づいて、発病度を計算した(発病度の計算方法については「イネ・ムギ等殺菌剤圃場試験法」(社団法人日本植物防疫協会、平成16年3月発行)を参照)。
発病度=100×(0×n0+0.5×n1+1×n2+2×n3+3×n4+4×n5)/4N
n0:病斑がない葉の数
n1:病斑が葉の1/8以下である葉の数
n2:病斑が葉の1/4前後である葉の数
n3:病斑が葉の1/2前後である葉の数
n4:病斑が葉の3/4前後である葉の数
n5:病斑が葉の7/8以上である葉の数
N:調査した葉の総数
図7Aに、各酵素処理の後、病原性細菌接種後3日目の写真を示し、図7Bに、病原性細菌接種後3日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、0.01U/mL処理区では、接種3日目の病徴が対照区に比べて軽減され、発病度が低下した。
<Example 2>
(1) Effect on monocotyledonous plants and their pathogens P. The culture filtrate of Antarctica was diluted in the same manner as in Example 1. A solution of 0.01 U / mL with an esterase titer was sprayed on the leaves of the gramineous plant, Oat, at 0.6 mL, and kept warm while moisturizing in a closed container (humidity 100%, temperature 22 ° C). .. The control group was sprayed with a culture filtrate in which the enzyme was inactivated by autoclave treatment. Seventy-two hours after spraying, the cells were immersed in a culture solution (OD610: 0.65) of a pathogenic bacterium, streak blight, which infects the monocotyledonous plant Embaku. The same test was repeated twice using 4 cut leaves for each treatment plot. A state in which elliptical brown spots (spots) spread vertically was observed as a symptom. In addition, the lesion area was observed and the degree of disease was calculated based on the following formula (for the method of calculating the degree of disease, "rice, wheat, etc. fungicide field test method" (Japan Plant Protection Association, 2004) (Issued in March, 2014)).
Disease rate = 100 x (0 x n0 + 0.5 x n1 + 1 x n2 + 2 x n3 + 3 x n4 + 4 x n5) / 4N
n0: Number of leaves without lesions
n1: Number of leaves with lesions less than 1/8 of the leaves
n2: Number of leaves whose lesions are around 1/4 of the leaves
n3: Number of leaves whose lesions are around 1/2 of the leaves
n4: Number of leaves whose lesions are around 3/4 of the leaves
n5: Number of leaves with lesions of 7/8 or more of leaves
N: Total number of leaves investigated FIG. 7A shows a photograph on the third day after inoculation with pathogenic bacteria after each enzyme treatment, and FIG. 7B shows a photograph calculated from lesions observed on the third day after inoculation with pathogenic bacteria. The graph of the degree of morbidity is shown. As can be understood from these figures, in the 0.01 U / mL treatment group, the symptoms on the third day of inoculation were alleviated as compared with the control group, and the degree of onset was reduced.

(2)アブラナ科植物とその病原菌に対する効果
P.antarcticaの培養ろ液を実施例1と同様に希釈した。エステラーゼの力価で0.01U/mLの溶液を、アブラナ科植物であるシロイヌナズナのロゼット葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後に、病原性糸状菌(灰色カビ病菌)の胞子(5×104胞子/mL)を噴霧した。各処理区につき8枚の切り取ったロゼット葉を用い、同じ試験を2回反復した。褐色の病斑が形成される状態を病徴として観察し、以下の式に基づいて、発病度を計算した(発病度の計算方法については「新農薬実用化試験実施の手引き」(社団法人日本植物防疫協会、平成15年2月発行)を参照)。
発病度=100×(0×n0+1×n1+2×n2+3×n3+4×n4)/4N
n0:病斑がない葉の数
n1:病斑がわずか(数個)である葉の数
n2:病斑が葉の1/4未満である葉の数
n3:病斑が葉の1/4~1/2未満である葉の数
n4:病斑が葉の1/2以上である葉の数
N:調査した葉の総数
図8Aに、各酵素処理の後、病原菌胞子噴霧後3日目の写真を示し、図8Bに、病原菌胞子噴霧後3日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、0.01U/mL処理区では、胞子噴霧後7日目の病徴が対照区に比べて軽減され、発病度が低下した。
(2) Effects on Brassicaceae plants and their pathogens P. The culture filtrate of Antarctica was diluted in the same manner as in Example 1. A solution of 0.01 U / mL with an esterase titer was sprayed on the rosette leaves of Arabidopsis thaliana, which is a brassicaceae plant, at 0.6 mL, and kept warm while moisturizing in a closed container (humidity 100%, temperature 22 ° C.). ). The control group was sprayed with a culture filtrate in which the enzyme was inactivated by autoclave treatment. 72 hours after spraying, spores (5 × 10 4 spores / mL) of pathogenic filamentous fungi (Botrytis cinerea) were sprayed. The same test was repeated twice using 8 cut rosette leaves for each treatment plot. The condition in which brown lesions were formed was observed as a symptom, and the degree of morbidity was calculated based on the following formula. See Plant Protection Association, published in February 2003).
Disease rate = 100 x (0 x n0 + 1 x n1 + 2 x n2 + 3 x n3 + 4 x n4) / 4N
n0: Number of leaves without lesions
n1: Number of leaves with few (several) lesions
n2: Number of leaves with lesions less than 1/4 of the leaves
n3: Number of leaves with lesions less than 1/4 to 1/2 of the leaves
n4: Number of leaves whose lesions are more than half of the leaves
N: Total number of leaves investigated FIG. 8A shows a photograph on the third day after spraying the pathogenic spores after each enzyme treatment, and FIG. 8B shows the degree of disease onset calculated from the lesions observed on the third day after spraying the pathogenic spores. The graph of is shown. As can be understood from these figures, in the 0.01 U / mL treatment group, the symptoms on the 7th day after spore spraying were alleviated as compared with the control group, and the degree of onset was reduced.

(3)植物病害ウイルスに対する効果
P.antarcticaの培養ろ液を実施例1と同様に希釈した。エステラーゼの力価で0.01U/mLの溶液を、ナス科植物であるタバコ(Samsun NN)の葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度20℃)。対照区には、オートクレーブ処理で酵素を失活させた培養ろ液を噴霧した。噴霧72時間後に、植物病害ウイルスのタバコモザイクウイルス(TMV-OM株)溶液(4μg/mL)を、カーボランダムを用いて機械接種した。植物がウイルスの拡がりを抑えるために、植物自身が壊死することで形成された病斑を観察し、葉1枚につき少なくとも57個の病斑直径を計測して、その平均直径を求めた。各処理区につき3枚の切り取り葉を用いた。
図9Aに、ウイルス接種後5日目の病斑を示す写真を示し、図9Bに、ウイルス接種後5日目に計測した3枚の葉それぞれにおける病斑の平均直径(mm)の平均値のグラフ(誤差範囲は3回の試験から算出した標準誤差)を示す。ここで、図9Bのアスタリスクは、t検定によって有意水準0.01で有意差検定を行った結果、対照区に対して有意に病斑が小さくなったことを示している。すなわち、0.01U/mL処理区では、接種5日後の病斑の大きさが対照区に比べて有意に小さくなっていた(図9A及び9B)。
以上の結果から、本発明の植物の病害抵抗性増強用又は植物病害防除用組成物は、カビ病、バクテリア病、及びウイルス病などの種々の病害に対して、非特異的に抵抗性増強作用及び防除作用を奏することがわかった。
(3) Effect on plant disease virus P. The culture filtrate of Antarctica was diluted in the same manner as in Example 1. A solution of 0.01 U / mL with an esterase titer was sprayed on the leaves of the Solanaceae plant, Samsun NN, at 0.6 mL, and kept warm while moisturizing in a closed container (humidity 100%,). Temperature 20 ° C). The control group was sprayed with a culture filtrate in which the enzyme was inactivated by autoclave treatment. 72 hours after spraying, a solution of the plant disease virus tobacco mosaic virus (TMV-OM strain) (4 μg / mL) was mechanically inoculated using carborundum. In order for the plant to suppress the spread of the virus, the lesions formed by the necrosis of the plant itself were observed, and the diameters of at least 57 lesions per leaf were measured to determine the average diameter. Three cut leaves were used for each treatment plot.
FIG. 9A shows a photograph showing the lesion on the 5th day after the virus inoculation, and FIG. 9B shows the average value of the average diameter (mm) of the lesion on each of the three leaves measured on the 5th day after the virus inoculation. The graph (the error range is the standard error calculated from three tests) is shown. Here, the asterisk in FIG. 9B indicates that the lesion was significantly smaller than that of the control group as a result of performing the significance test at the significance level of 0.01 by the t-test. That is, in the 0.01 U / mL treated group, the size of the lesion 5 days after inoculation was significantly smaller than that in the control group (FIGS. 9A and 9B).
From the above results, the composition for enhancing disease resistance or controlling plant diseases of the present invention has a non-specific effect of enhancing resistance to various diseases such as mold disease, bacterial disease, and viral disease. And it was found to have a control effect.

<実施例3>
P.antarcticaの培養ろ液中に含まれる成分のうち、何が植物の病害抵抗性増強作用及び植物病害防除作用に寄与しているのかを確認するため、P.antarcticaの培養ろ液から、エステラーゼであるPaE、及び、キシラナーゼを分離精製した(後述の調製方法を参照)。PaEは、20mMトリス塩酸緩衝液(pH8.8)を用いて、エステラーゼの力価で0.01U/mLに希釈した。キシラナーゼは、P.antarcticaの培養ろ液を使用した試験結果を考慮して、植物の病害抵抗性増強又は植物病害防除に有効と考えられる濃度範囲になるように、20mMトリス塩酸緩衝液(pH8.8)を用いて、キシラナーゼの力価で0.01U/mLに希釈した。また、糸状菌であるParaphoma属類縁菌B47-9株(受託番号NITE P-573)由来のクチナーゼ様酵素であるPCLEも用意し(後述の調製方法を参照)エステラーゼの力価で0.01U/mLに調製した。なお、PCLEは、ポリエステルであるPBSAを基質に用いた場合に、塩化カルシウム存在下で基質の分解活性が高くなることが知られている。そこで、溶液中に2mM塩化カルシウムあり又はなしの場合で試験を行った。対照区としては、希釈に用いた緩衝液(20mM Tris-HCl、pH8.8)を使用した。
<Example 3>
P. In order to confirm what of the components contained in the culture filtrate of Antarctica contributes to the disease resistance enhancing action and the plant disease controlling action of plants, P.I. PaE, which is an esterase, and xylanase were separated and purified from the culture filtrate of Antarctica (see the preparation method described later). PaE was diluted to 0.01 U / mL with an esterase titer using 20 mM Tris-hydrochloric acid buffer (pH 8.8). Xylanase is described in P.I. Considering the test results using the culture filtrate of antarctica, 20 mM Tris hydrochloride buffer (pH 8.8) was used so as to have a concentration range considered to be effective for enhancing the disease resistance of plants or controlling plant diseases. , Diluted to 0.01 U / mL with a titer of xylanase. In addition, PCLE, which is a cutinase-like enzyme derived from the filamentous fungus Paraphoma genus B47-9 strain (accession number NITE P-573), is also prepared (see the preparation method described later). Prepared in mL. It is known that PCLE has a high substrate decomposing activity in the presence of calcium chloride when PBSA, which is a polyester, is used as a substrate. Therefore, the test was conducted with or without 2 mM calcium chloride in the solution. As a control group, the buffer solution (20 mM Tris-HCl, pH 8.8) used for dilution was used.

調製した各酵素溶液を、イネ科植物であるエンバクの葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。噴霧72時間後に、単子葉植物に感染するすじ枯病菌の培養液(OD610:0.65)に浸漬接種した。各処理区につき6枚の切り取り葉を用いた。図10Aに、各種酵素処理における、病原性細菌接種後4日目の写真を示し、図10Bに、病原性細菌接種後4日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、PaE処理区、キシラナーゼ処理区、及びPCLE(カルシウムあり)処理区では、接種4日目の病徴が対照区に比べて軽減されていた。一方、PCLE(カルシウムなし)処理区では、病徴の軽減効果は確認できなかった(図10A及び10B)。
これらの結果より、エステラーゼ及びキシラナーゼのそれぞれが、病害抵抗性増強作用及び植物病害防除作用に寄与していることがわかった。
0.6 mL of each prepared enzyme solution was sprayed on the leaves of Gramineae plant, Enbaku, and kept warm while moisturizing in a closed container (humidity 100%, temperature 22 ° C.). 72 hours after spraying, the cells were immersed in a culture solution (OD610: 0.65) of streak blight that infects monocotyledonous plants. Six cut leaves were used for each treatment plot. FIG. 10A shows photographs of the 4th day after inoculation of pathogenic bacteria in various enzyme treatments, and FIG. 10B shows a graph of the degree of onset calculated from lesions observed on the 4th day after inoculation of pathogenic bacteria. As can be understood from these figures, the symptoms on the 4th day of inoculation were alleviated in the PaE-treated group, the xylanase-treated group, and the PCLE (with calcium)-treated group as compared with the control group. On the other hand, in the PCLE (calcium-free) treatment group, the effect of reducing the symptoms could not be confirmed (FIGS. 10A and 10B).
From these results, it was found that each of esterase and xylanase contributes to the disease resistance enhancing action and the plant disease controlling action.

(PaEの精製)
P.antarcticaの培養ろ液から、「独立行政法人農業環境技術研究所 平成24年度研究成果情報(第29集)」に掲載されている「酵素と基質の親和性を利用した簡単な生分解性プラスチック分解酵素精製法」(http://www.niaes.affrc.go.jp/sinfo/result/result29/result29_42.html)に従って、PaEを精製した。
(キシラナーゼの精製)
P.antarcticaの培養ろ液を限外濾過で濃縮しつつ、1.2M硫酸アンモニウム/50mMリン酸ナトリウム緩衝液に置換した。この溶液をブチルセファロース4FF(GEヘルスケア)カラムに通して、PaE及びキシラナーゼをカラムに吸着させた。緩衝液中の硫酸アンモニウム濃度を徐々に下げて、キシラナーゼだけをカラムから溶出させて(PaEはまだカラムに吸着されている)、PaE活性画分を含まないキシラナーゼを得た。
(PCLEの精製)
Czapek-Dox液体培地に、唯一の炭素源としてPBSAエマルジョン(昭和電工株式会社、EM-301)を加え、Paraphoma属類縁菌B47-9株(受託番号NITE P-573)を振とう培養した。培養液から糸状菌の菌体を除去して、培養ろ液を調製した。当該培養ろ液から、「独立行政法人農業環境技術研究所 平成24年度研究成果情報(第29集)」に掲載されている「酵素と基質の親和性を利用した簡単な生分解性プラスチック分解酵素精製法」(http://www.niaes.affrc.go.jp/sinfo/result/result29/result29_42.html)に従って、PCLEを精製した。
(Purification of PaE)
P. From the culture filtrate of antarctica, "Simple biodegradable plastic decomposition using the affinity between enzymes and substrates" published in "National Institute for Agro-Environmental Sciences 2012 Research Results Information (Vol. 29)" The PaE was purified according to the "enzyme purification method" (http://www.niaes.affrc.go.jp/sinfo/result/result29/result29_42.html).
(Purification of xylanase)
P. The culture filtrate of antarctica was concentrated by ultrafiltration and replaced with 1.2 M ammonium sulfate / 50 mM sodium phosphate buffer. This solution was passed through a butyl Sepharose 4FF (GE Healthcare) column and PaE and xylanase were adsorbed on the column. The ammonium sulfate concentration in the buffer was gradually reduced to elute only xylanase from the column (PaE is still adsorbed on the column) to give xylanase without the PaE active fraction.
(Purification of PCLE)
PBSA emulsion (Showa Denko KK, EM-301) was added to Czapek-Dox liquid medium as the only carbon source, and Paraphoma genus B47-9 strain (accession number NITE P-573) was shaken and cultured. The cells of filamentous fungi were removed from the culture medium to prepare a culture filtrate. From the culture filtrate, "a simple biodegradable plastic-degrading enzyme using the affinity between the enzyme and the substrate" published in "National Institute for Agro-Environmental Sciences 2012 Research Results Information (Vol. 29)" PCLE was purified according to the purification method (http://www.niaes.affrc.go.jp/sinfo/result/result29/result29_42.html).

<実施例4>
担子菌であるCryptococcus magnus類縁菌BPD1A株(受託番号NITE P-02134)の培養ろ液から、クチナーゼ様酵素であるCmCut1を分離精製した(後述の調製方法を参照)。CmCut1は、緩衝液(20mM Tris-HCl、pH6.8、塩化カルシウム(2mM))を用いて、エステラーゼの力価で0.01U/mLに調製した。対照区としては、希釈に用いた緩衝液(20mM Tris-HCl、pH6.8、塩化カルシウム(2mM))を使用した。
調製した酵素溶液を、ナス科植物である矮性トマト(MicroTom)の葉に対して0.6mL噴霧し、密閉容器の中で保湿しつつ保温した(湿度100%、温度22℃)。噴霧72時間後に、それぞれの切り取り葉に病原性糸状菌(B.c.)の胞子(5×104胞子/mL)を0.6mLずつ噴霧した。褐色の病斑が形成される状態(カビに覆われることもある)を病徴として観察し、以下の式に基づいて、発病度を計算した(発病度の計算方法については「新農薬実用化試験実施の手引き」(社団法人日本植物防疫協会、平成15年2月発行)を参照)。各試験区につき5枚の切り取り葉を用い、各試験を2回反復した。
発病度=100×(0×n0+1×n1+2×n2+3×n3+4×n4)/4N
n0:病斑がない葉の数
n1:病斑がわずか(数個)である葉の数
n2:病斑が葉の1/4未満である葉の数
n3:病斑が葉の1/4~1/2未満である葉の数
n4:病斑が葉の1/2以上である葉の数
N:調査した葉の総数
図11Aに、緩衝液又はCmCut1溶液を噴霧処理した後、病原菌胞子噴霧後7日目の写真。図11Bは、病原菌胞子噴霧後7日目に観察した病斑から算出した発病度のグラフを示す。これらの図から理解できるように、0.01U/mL処理区では、胞子噴霧後7日目の病徴が対照区に比べて軽減され、発病度が低下した。
<Example 4>
CmCut1 which is a cutinase-like enzyme was separated and purified from the culture filtrate of the Cryptococcus magnus-related bacterium BPD1A strain (accession number NITE P-02134) which is a basidiomycete (see the preparation method described later). CmCut1 was prepared to 0.01 U / mL with an esterase titer using a buffer (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM)). As a control group, the buffer solution used for dilution (20 mM Tris-HCl, pH 6.8, calcium chloride (2 mM)) was used.
0.6 mL of the prepared enzyme solution was sprayed on the leaves of dwarf tomato (MicroTom), which is a Solanaceae plant, and kept warm while moisturizing in a closed container (humidity 100%, temperature 22 ° C.). 72 hours after spraying, 0.6 mL of pathogenic filamentous fungus (B.c.) spores (5 × 10 4 spores / mL) was sprayed on each cut leaf. The state in which brown lesions were formed (may be covered with mold) was observed as a symptom, and the degree of disease was calculated based on the following formula. "Guide for conducting tests" (Japan Plant Protection Association, published in February 2003). Each test was repeated twice, using 5 cut leaves for each test plot.
Disease rate = 100 x (0 x n0 + 1 x n1 + 2 x n2 + 3 x n3 + 4 x n4) / 4N
n0: Number of leaves without lesions
n1: Number of leaves with few (several) lesions
n2: Number of leaves with lesions less than 1/4 of the leaves
n3: Number of leaves with lesions less than 1/4 to 1/2 of the leaves
n4: Number of leaves whose lesions are more than half of the leaves
N: Total number of leaves investigated FIG. 11A is a photograph on the 7th day after spraying the pathogen spores after spraying the buffer solution or CmCut1 solution. FIG. 11B shows a graph of the degree of onset calculated from the lesions observed on the 7th day after spraying the pathogen spores. As can be understood from these figures, in the 0.01 U / mL treatment group, the symptoms on the 7th day after spore spraying were alleviated as compared with the control group, and the degree of onset was reduced.

(CmCut1の精製)
Curyptcoccus属類縁菌magnus株を、Appl.Microbiol.Biotechnol.(2013)、97:7679-7688に記載された方法に従って培養し、得られた培養液を、7000rpmで5分間遠心分離して、菌体を除去した。得られた培養上清を、孔径0.45μmのろ紙(製品名:Cellulose acetate C045A090C、アドバンテック株式会社製)を使用してフィルターろ過した。そして、Appl.Microbiol.Biotechnol.(2014)、98:4457-4465に従ってPBSAエマルジョンに対するアフィニティークロマトグラフィーを行い、生分解性プラスチック分解酵素であるCmCut1を精製した。精製CmCut1については、SDSゲル電気泳動後の銀染色で単一バンドを示すまで精製されていることを確認した。
(Purification of CmCut1)
The Curyptcoccus genus magnus strain was introduced into Appl. Microbiol. Biotechnol. (2013), 97: 7679-7688 was cultured according to the method described, and the obtained culture solution was centrifuged at 7000 rpm for 5 minutes to remove bacterial cells. The obtained culture supernatant was filtered using a filter paper having a pore size of 0.45 μm (product name: Cellulose acetate C045A090C, manufactured by Advantech Co., Ltd.). And, Appl. Microbiol. Biotechnol. Affinity chromatography on PBSA emulsions was performed according to (2014), 98: 4457-4465 to purify the biodegradable plastic degrading enzyme CmCut1. It was confirmed that the purified CmCut1 was purified until it showed a single band by silver staining after SDS gel electrophoresis.

以上より、従来生分解性プラスチック分解酵素源として知られていた微生物の培養物は、少なくとも、その中に含まれているエステラーゼ及びキシラナーゼの活性を介して、植物の病害抵抗性を増強又は植物の病害を防除することがわかった。 From the above, the culture of microorganisms conventionally known as a source of biodegradable plastic-degrading enzymes enhances the disease resistance of plants or enhances the disease resistance of plants at least through the activities of esterase and xylanase contained therein. It was found to control the disease.

本発明で使用されたエステラーゼ及びキシラナーゼは、圃場に張った農業用生分解性マルチフィルムの分解促進のために生産性が向上されている微生物培養液から調製され得るものであり、安価に大量生産することができるものである。また、エステラーゼ及びキシラナーゼは、自然界で容易に分解され、低分子化合物などで起こる環境中への残存性はなく、環境負荷が低い。さらに、本発明の植物の病害抵抗性増強用又は植物病害防除用組成物は、種々の植物又は種々の病害に対して適用できるものであり、汎用性が高い。したがって、本発明は産業上の利用可能性が高い。 The esterase and xylanase used in the present invention can be prepared from a microbial culture medium whose productivity has been improved in order to promote the decomposition of the biodegradable multifilm for agriculture stretched in the field, and can be mass-produced at low cost. Is something that can be done. In addition, esterase and xylanase are easily decomposed in nature, have no persistence in the environment caused by small molecule compounds and the like, and have a low environmental load. Furthermore, the composition for enhancing disease resistance of plants or controlling plant diseases of the present invention can be applied to various plants or various diseases, and is highly versatile. Therefore, the present invention has high industrial applicability.

Figure 0006997456000004
Figure 0006997456000004

Claims (10)

クチナーゼ様酵素及び/又はキシラナーゼを植物の病害抵抗性増強又は植物病害防除の有効成分として含む、植物の病害抵抗性増強用又は植物病害防除用組成物。 A composition for enhancing plant disease resistance or controlling plant disease, which comprises a cutinase-like enzyme and / or xylanase as an active ingredient for enhancing plant disease resistance or controlling plant disease. 前記クチナーゼ様酵素及び/又は前記キシラナーゼが、微生物培養液又は抽出液である、請求項1記載の組成物。 The composition according to claim 1 , wherein the cutinase-like enzyme and / or the xylanase is a microbial culture solution or an extract. 前記微生物が、シュードザイマ(Pseudozyma)属、パラフォーマ(Paraphoma)属、及びクリプトコッカス(Cryptococcus)属ら成る群から選択される、請求項に記載の組成物。 The composition according to claim 2 , wherein the microorganism is selected from the group consisting of the genus Pseudozyma, the genus Paraphoma, and the genus Cryptococcus. 前記クチナーゼ様酵素の濃度が、0.005~0.5U/mLである、請求項1~のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3 , wherein the concentration of the cutinase-like enzyme is 0.005 to 0.5 U / mL. 前記クチナーゼ様酵素及び前記キシラナーゼの両方を含む、請求項1~のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 4 , which comprises both the cutinase-like enzyme and the xylanase. 前記植物が、クチクラ層を有する、請求項1~のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 5 , wherein the plant has a cuticle layer. 前記植物が、高等植物である、請求項1~のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 6 , wherein the plant is a higher plant. 請求項1~のいずれか一項に記載の組成物によって植物を処理する工程を含む、植物の病害抵抗性を増強又は植物の病害を防除する方法。 A method for enhancing plant disease resistance or controlling plant disease, which comprises a step of treating a plant with the composition according to any one of claims 1 to 7 . 前記処理工程が、前記組成物を前記植物に噴霧する工程を含む、請求項に記載の方法。 The method of claim 8 , wherein the treatment step comprises spraying the composition onto the plant. 前記噴霧工程が、前記組成物を前記植物の葉1枚あたり0.1~1mL噴霧する工程を含む、請求項に記載の方法。 The method of claim 9 , wherein the spraying step comprises spraying 0.1 to 1 mL of the composition per leaf of the plant.
JP2018519603A 2016-05-25 2017-05-25 Compositions for enhancing plant disease resistance or for controlling plant diseases and their usage methods Active JP6997456B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016104064 2016-05-25
JP2016104064 2016-05-25
PCT/JP2017/019504 WO2017204288A1 (en) 2016-05-25 2017-05-25 Composition for enhancing disease resistance of plants or controlling plant disease, and method for using same

Publications (2)

Publication Number Publication Date
JPWO2017204288A1 JPWO2017204288A1 (en) 2019-04-18
JP6997456B2 true JP6997456B2 (en) 2022-01-17

Family

ID=60411809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018519603A Active JP6997456B2 (en) 2016-05-25 2017-05-25 Compositions for enhancing plant disease resistance or for controlling plant diseases and their usage methods

Country Status (2)

Country Link
JP (1) JP6997456B2 (en)
WO (1) WO2017204288A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128514B2 (en) * 2018-10-16 2022-08-31 国立研究開発法人農業・食品産業技術総合研究機構 Compositions for controlling pests and methods for controlling pests
WO2023190667A1 (en) * 2022-03-29 2023-10-05 ケイワート・サイエンス株式会社 Method for producing silicon compound aqueous solution

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054365A3 (en) 2002-12-13 2004-12-02 A M C Chemical S L Biological control agent and formulations
WO2008030858A2 (en) 2006-09-05 2008-03-13 Integrated Plant Genetics, Inc. Use of esterase expressed in plants for the control of gram-negative bacteria
JP2008237212A (en) 2007-02-28 2008-10-09 National Institute For Agro-Environmental Science Biodegradable plastic-decomposing bacteria and method for producing decomposing enzyme
JP2010099066A (en) 2008-09-29 2010-05-06 National Institute For Agro-Environmental Science New microorganism and biodegradable plastic-degrading enzyme
JP2010525031A (en) 2007-04-26 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Active substance composition for plant protection
JP2010270086A (en) 2009-05-25 2010-12-02 Shugo Hama Composition for disease and insect damage-controlling agent, spray agent produced by diluting the same, and method of producing the same
JP2013048563A6 (en) 2011-08-30 2013-09-12 独立行政法人農業環境技術研究所 Method for producing biodegradable plastic degrading enzyme and Pseudozyma antarctica used therefor
JP2014129287A (en) 2012-12-28 2014-07-10 National Institute For Agro-Environmental Science Herbicidal composition comprising enzyme and extermination method of adverse plant
WO2014109360A1 (en) 2013-01-09 2014-07-17 独立行政法人農業環境技術研究所 Method for highly efficiently producing heterologous protein
WO2015069708A1 (en) 2013-11-08 2015-05-14 Novozymes Bioag A/S Compositions and methods for treating pests
US20150335031A1 (en) 2012-08-14 2015-11-26 Marrone Bio Innovations, Inc Bacillus sp. Strain with Antifungal, Antibacterial and Growth Promotion Activity
US20150373992A1 (en) 2014-06-26 2015-12-31 Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080565A (en) * 1996-09-04 2000-06-27 Cornell Research Foundation, Inc. Cutinases as inducers of plant defense reactions and agents for the control of plant diseases
EP1212944A1 (en) * 2000-12-07 2002-06-12 Korea Kumho Petrochemical Co. Ltd. Plant esterases for protecting plants and uses thereof
JP5849297B2 (en) * 2011-08-30 2016-01-27 国立研究開発法人農業環境技術研究所 Method for producing biodegradable plastic degrading enzyme and Pseudozyma antarctica used therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054365A3 (en) 2002-12-13 2004-12-02 A M C Chemical S L Biological control agent and formulations
WO2008030858A2 (en) 2006-09-05 2008-03-13 Integrated Plant Genetics, Inc. Use of esterase expressed in plants for the control of gram-negative bacteria
JP2008237212A (en) 2007-02-28 2008-10-09 National Institute For Agro-Environmental Science Biodegradable plastic-decomposing bacteria and method for producing decomposing enzyme
JP2010525031A (en) 2007-04-26 2010-07-22 ビーエーエスエフ ソシエタス・ヨーロピア Active substance composition for plant protection
JP2010099066A (en) 2008-09-29 2010-05-06 National Institute For Agro-Environmental Science New microorganism and biodegradable plastic-degrading enzyme
JP2010270086A (en) 2009-05-25 2010-12-02 Shugo Hama Composition for disease and insect damage-controlling agent, spray agent produced by diluting the same, and method of producing the same
JP2013048563A6 (en) 2011-08-30 2013-09-12 独立行政法人農業環境技術研究所 Method for producing biodegradable plastic degrading enzyme and Pseudozyma antarctica used therefor
US20150335031A1 (en) 2012-08-14 2015-11-26 Marrone Bio Innovations, Inc Bacillus sp. Strain with Antifungal, Antibacterial and Growth Promotion Activity
JP2014129287A (en) 2012-12-28 2014-07-10 National Institute For Agro-Environmental Science Herbicidal composition comprising enzyme and extermination method of adverse plant
WO2014109360A1 (en) 2013-01-09 2014-07-17 独立行政法人農業環境技術研究所 Method for highly efficiently producing heterologous protein
WO2015069708A1 (en) 2013-11-08 2015-05-14 Novozymes Bioag A/S Compositions and methods for treating pests
US20150373992A1 (en) 2014-06-26 2015-12-31 Austrian Institute Of Technology Gmbh Plant-endophyte combinations and uses therefor

Also Published As

Publication number Publication date
JPWO2017204288A1 (en) 2019-04-18
WO2017204288A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
Baysal et al. An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici
Jabeen et al. Microscopic evaluation of the antimicrobial activity of seed extracts of Moringa oleifera
Sarkar et al. The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere
Sawant Trichoderma-foliar pathogen interactions
Chaibub et al. Defence responses in rice plants in prior and simultaneous applications of Cladosporium sp. during leaf blast suppression
Ali et al. Induction of systemic resistance in maize and antibiofilm activity of surfactin from Bacillus velezensis MS20
Radovanović et al. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment
US9534025B2 (en) Method for inducing resistance to stress caused by pathogens in plants
Yang et al. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum
JP6997456B2 (en) Compositions for enhancing plant disease resistance or for controlling plant diseases and their usage methods
Hao et al. Enhanced resistance to Fusarium graminearum in transgenic Arabidopsis plants expressing a modified plant thionin
Sun et al. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-L-lysine against Botrytis cinerea
RU2646160C2 (en) Strain of pseudomonas fluorescens for protecting plants from phytopathogenic fungi and bacteria and stimulating plant growth
Singh et al. Biological control of plant diseases: opportunities and limitations
Al-Najada et al. Molecular identification of spoilage fungi isolated from fruit and vegetables and their control with chitosan
Dinango et al. Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot
Meena et al. Role of microbial bioagents as elicitors in plant defense regulation
JP6253005B2 (en) Herbicidal enzyme-containing composition and harmful plant control method
Ezziyyani et al. Production of Pathogenesis-Related proteins during the induction of resistance to Phytophthora capsici in pepper plants treated with Burkholderia cepacia and Trichoderma harzianum in combination compatible
EP4334480A1 (en) Bacterial strains having fungicidal activity, compositions comprising same and use thereof
Nur Mawaddah et al. The potential of Pseudomonas fluorescens as biological control agent against sheath blight disease in rice: a systematic review
Valan Arasu et al. Biocontrol of Trichoderma gamsii induces soil suppressive and growth‐promoting impacts and rot disease‐protecting activities
Afshan Recent Advancement in Fungal Biocontrol Agents
Amuza et al. Trichoderma spp.-mechanisms of action in the control of storage pathogens-review.
Yi et al. Compound fermentation supernatants of antagonistic bacteria control Rhizoctonia cerealis and promote wheat growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6997456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150