WO2017204055A1 - Brittle substrate cutting method - Google Patents

Brittle substrate cutting method Download PDF

Info

Publication number
WO2017204055A1
WO2017204055A1 PCT/JP2017/018536 JP2017018536W WO2017204055A1 WO 2017204055 A1 WO2017204055 A1 WO 2017204055A1 JP 2017018536 W JP2017018536 W JP 2017018536W WO 2017204055 A1 WO2017204055 A1 WO 2017204055A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
tip
brittle substrate
blade edge
cutting
Prior art date
Application number
PCT/JP2017/018536
Other languages
French (fr)
Japanese (ja)
Inventor
曽山 浩
淳史 井村
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN201780032003.5A priority Critical patent/CN109219505B/en
Priority to JP2018519215A priority patent/JP6645577B2/en
Priority to KR1020187033990A priority patent/KR102167941B1/en
Publication of WO2017204055A1 publication Critical patent/WO2017204055A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/027Scoring tool holders; Driving mechanisms therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/105Details of cutting or scoring means, e.g. tips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for dividing a brittle substrate.
  • a crack line is formed on a brittle substrate.
  • “crack line” means that a crack partially progressing in the thickness direction of the brittle substrate extends in a line shape on the surface of the brittle substrate.
  • a so-called break process is performed. Specifically, by applying a stress to the brittle substrate, the cracks in the crack line are completely advanced in the thickness direction. Thereby, a brittle board
  • substrate is parted along a crack line.
  • Patent Document 1 a depression on the upper surface of a glass plate is generated during scribing.
  • this indentation is referred to as a “scribe line”.
  • a crack extending in the downward direction from the scribe line is generated.
  • the crack line is formed simultaneously with the formation of the scribe line.
  • Patent Document 2 a cutting technique that is significantly different from the above-described typical cutting technique has been proposed.
  • this technique first, by generating plastic deformation by sliding the blade edge on the brittle substrate, a groove shape called “scribe line” in Patent Document 2 is formed.
  • this groove shape is referred to as a “trench line”.
  • the crack line is formed by extending the crack along the trench line. That is, unlike a typical technique, a trench line without a crack is once formed, and then a crack line is formed along the trench line. Thereafter, a normal breaking process is performed along the crack line.
  • the trench line without cracks used in the technique of Patent Document 2 can be formed by sliding the blade edge with a lower load than a typical scribe line with simultaneous crack formation. When the load is small, the damage applied to the cutting edge is reduced. Therefore, according to this cutting technique, the life of the cutting edge can be extended.
  • a cutting tool having a blade edge and a shank as its holder is used.
  • the cutting instrument has an axial direction, and the shank extends along the axial direction.
  • the trench line is formed by sliding the blade edge on the brittle substrate.
  • the cutting edge is held by a holder extending along the axial direction.
  • the axial direction is inclined with respect to the upper surface of the brittle substrate. The direction in which the axial direction is projected onto the brittle substrate corresponds to the sliding direction of the blade edge.
  • the direction in which the axial direction is projected onto the glass substrate corresponds to the sliding direction of the blade edge.
  • the sliding direction of the cutting edge is not constant, it is necessary to provide a mechanism for controlling the attitude of the cutting edge.
  • the necessity of adjusting and controlling the posture of the cutting edge can lead to disadvantages such as an increase in the cost of the cutting device, an increase in time required for the process, and a decrease in the accuracy of the scribe position.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a method for cutting a brittle substrate that does not require adjustment of the posture of the blade edge according to the sliding direction of the blade edge. It is.
  • the method for cutting a brittle substrate includes the following steps a) to e). a) A brittle substrate having one surface and a thickness direction perpendicular to the one surface is prepared. b) A cutting edge provided with a tip having axial symmetry in the axial direction is prepared. c) By sliding the tip of the blade edge on one surface while making the axial direction of the blade edge perpendicular to one surface of the brittle substrate, the trench line having a groove shape is deformed by one of the brittle substrates by plastic deformation. Formed on the surface. The trench line is formed so as to obtain a crackless state in which the brittle substrate is continuously connected in the direction intersecting the trench line below the trench line.
  • a crack line is formed by extending a crack of the brittle substrate in the thickness direction along the trench line.
  • the brittle substrate is disconnected continuously in the direction crossing the trench line below the trench line by the crack line.
  • the brittle substrate is divided along the crack line.
  • the axial direction of the cutting edge is perpendicular to the one surface.
  • the relationship between the axial direction and the sliding direction is constant without depending on the sliding direction. Therefore, it is not necessary to adjust the posture of the blade edge according to the sliding direction of the blade edge.
  • FIG. 1 It is a perspective view which shows roughly the structure of the cutting tool used for the cutting method of the brittle board
  • FIG. 6 is a schematic end view taken along line VI-VI in FIG. 5. It is a top view which shows roughly the 2nd process of the cutting method of a brittle board
  • FIG. 8 is a schematic end view taken along line VIII-VIII in FIG. 7. It is a top view which shows roughly the 1st process of the cutting method of the brittle board
  • FIG. 1 It is a top view which shows roughly 1 process of the cutting method of the brittle board
  • FIG. 22 is a schematic end view taken along line XXII-XXII in FIG. 21. It is a top view which shows roughly the 2nd process of the cutting method of a brittle board
  • FIG. 27 is a schematic cross-sectional view taken along line XXVII-XXVII in FIG. 26.
  • FIG. 27 is a schematic sectional view taken along line XXVIII-XXVIII in FIG. 26.
  • FIG. 27 is a schematic cross-sectional view taken along line XXIX-XXIX in FIG. 26. It is a top view which shows roughly 1 process of the cutting method of the brittle board
  • FIG. 31 is a schematic cross-sectional view taken along line XXXI-XXXI in FIG. 30.
  • FIG. 31 is a schematic cross-sectional view taken along line XXXII-XXXII in FIG. 30.
  • FIG. 34 is a schematic cross-sectional view taken along line XXXIV-XXXIV in FIG. 33.
  • FIG. 34 is a schematic cross-sectional view taken along line XXXV-XXXV in FIG. 33.
  • FIG. 38 is a schematic sectional view taken along line XXXVIII-XXXVIII in FIG. 37.
  • FIG. 39 is an example of the surface shape of the tip of the blade edge along line AA in FIG.
  • FIG. 39 is an example of the surface shape of the tip of the blade edge along line AA in FIG.
  • FIG. 1 and FIG. 2 are perspective view schematically showing a configuration of a cutting instrument 50 used in the method for cutting glass substrate 4 (brittle substrate) in the present embodiment.
  • FIG. 3 is a partial cross-sectional view of the vicinity of the tip 51N of the blade edge 51 of FIGS.
  • the cutting instrument 50 has a cutting edge 51 and a support part 52.
  • the cutting edge 51 and the support portion 52 may be an integral member made of the same material.
  • the blade edge 51 is provided with a tip 51N having axial symmetry in the axial direction AX. That is, the surface of the tip 51N is a surface obtained by rotating a curve around the axial direction AX.
  • the surface of the tip 51N is a curved surface having a convex shape toward the outside.
  • the surface of the tip 51N may be a part of a spherical surface.
  • the radius of curvature of the tip 51N is preferably 3 ⁇ m or more and 40 ⁇ m or less.
  • the surface of the tip 51N may be a conical surface, and the apex of this conical surface may be rounded.
  • the dimension of the tip 51N along the axial direction AX is typically 0.5 ⁇ m or more, and usually 1.0 ⁇ m or more is sufficient, and preferably 2.0 ⁇ m or more.
  • the “axial symmetry” described above is preferably ideal geometric axial symmetry, but may be substantial axial symmetry in view of the action on the glass substrate 4. The latter is referred to as “pseudo axial symmetry” in the present specification, and details thereof will be described in a tenth embodiment to be described later.
  • the entire cutting edge 51 including the tip 51N has axial symmetry in the axial direction AX.
  • the blade edge 51 includes a right cone shape having axial symmetry in the axial direction AX, and a tip 51N is provided at the apex of the right cone shape.
  • the angle of the apex of the right cone shape is preferably 120 ° or more, and more preferably 130 ° or more. Moreover, this angle is preferably 160 ° or less, and more preferably 150 ° or less.
  • the support part 52 preferably extends along the axial direction AX.
  • the entire cutting instrument 50 may have axial symmetry in the axial direction AX.
  • a glass substrate 4 (FIG. 2) to be divided is prepared.
  • the glass substrate 4 has an upper surface SF1 (one surface) and an opposite lower surface SF2 (other surface).
  • An edge ED is provided on the upper surface SF1.
  • the upper surface SF1 is typically flat. In the example shown in FIG. 5, the edge ED has a rectangular shape.
  • the glass substrate 4 has a thickness direction DT perpendicular to the upper surface SF1.
  • the above-described cutting tool 50 (FIGS. 1 to 3) having the blade edge 51 is prepared.
  • step S30 (FIG. 4), a trench line TL having a linear shape is formed. Specifically, the following steps are performed.
  • the tip 51N of the blade edge 51 (FIGS. 1 to 3) is pressed against the upper surface SF1 at the position N1. As a result, the tip 51N comes into contact with the glass substrate 4.
  • the position N1 is preferably away from the edge ED of the upper surface SF1 of the glass substrate 4 as shown. In that case, it is possible to avoid the cutting edge 51 from colliding with the edge ED of the upper surface SF ⁇ b> 1 of the glass substrate 4 at the start of sliding of the cutting edge 51.
  • the tip 51N of the blade edge 51 is slid on the upper surface SF1 while making the axial direction AX of the blade edge 51 perpendicular to the upper surface SF1 of the glass substrate 4 (see the arrow in FIG. 5).
  • a load is applied to the blade edge 51 from the outside during sliding. This load direction is perpendicular to the upper surface SF1. Plastic deformation is generated on the upper surface SF1 by sliding.
  • the trench line TL having a groove shape is formed on the upper surface SF1 of the glass substrate 4 by this plastic deformation.
  • the trench line TL is a crackless state in which the glass substrate 4 is continuously connected in the direction DC (FIG. 6) intersecting the extending direction (lateral direction in FIG. 5) of the trench line TL below the trench line TL. It is formed so that a state is obtained.
  • the trench line TL is formed by plastic deformation, but no crack is formed along the trench line TL.
  • the load applied to the cutting edge 51 is so small that cracks do not occur at the time of forming the trench line TL, and creates an internal stress state that can generate cracks in a later process. It is adjusted so as to be large enough to cause plastic deformation.
  • the trench line TL is preferably generated only by plastic deformation of the glass substrate 4, and in this case, no scraping occurs on the upper surface SF ⁇ b> 1 of the glass substrate 4.
  • the load on the blade edge 51 should not be excessively increased. By not scraping, it is possible to avoid undesirable fine fragments on the upper surface SF1. However, some shaving is usually acceptable.
  • the formation of the trench line TL is performed between the position N1 and the position N3e by sliding the tip 51N of the blade edge 51 from the position N1 to the position N3e via the position N2.
  • the position N2 is away from the edge ED of the upper surface SF1 of the glass substrate 4.
  • the position N3e is located at the edge ED of the upper surface SF1 of the glass substrate 4. Therefore, the blade edge 51 slid to form the trench line TL finally reaches the position N3e.
  • the crackless state is maintained when the cutting edge 51 is located at the position N2, and further maintained until the moment when the cutting edge 51 reaches the position N3e.
  • the blade edge 51 cuts down the edge ED of the upper surface SF1 of the glass substrate 4.
  • the above-mentioned cut-down causes a fine breakage at position N3e.
  • a crack is generated so as to release the internal stress in the vicinity of the trench line TL.
  • a crack in the glass substrate 4 in the thickness direction DT extends from the position N3e located at the edge ED of the upper surface SF1 of the glass substrate 4 along the trench line TL (see the arrow in FIG. 7).
  • the formation of the crack line CL is started.
  • step S50 (FIG. 4)
  • the crack line CL is formed from the position N3e to the position N1.
  • the direction in which the crack line CL extends along the trench line TL (arrow in FIG. 7) is opposite to the direction in which the trench line TL is formed (arrow in FIG. 5).
  • the speed at which the blade edge 51 slides from the position N2 to the position N3e may be smaller than the speed from the position N1 to the position N2.
  • the load applied to the blade edge 51 from the position N2 to the position N3e may be larger than the load from the position N1 to the position N2 within a range in which the crackless state is maintained.
  • continuous connection is broken in the direction DC (FIG. 8) where the glass substrate 4 intersects the extending direction (lateral direction in FIG. 7) of the trench line TL below the trench line TL by the crack line CL.
  • continuous connection means a connection that is not interrupted by a crack.
  • the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL. Further, a slightly continuous connection may be left immediately below the trench line TL.
  • step S60 the glass substrate 4 is divided along the crack line CL. That is, a so-called break process is performed.
  • the breaking process can be performed by applying an external force to the glass substrate 4. For example, by pressing a stress applying member (for example, a member called “break bar”) on the lower surface SF2 toward the crack line CL (FIG. 8) on the upper surface SF1 of the glass substrate 4, cracks in the crack line CL are obtained. Is applied to the glass substrate 4.
  • a stress applying member for example, a member called “break bar”
  • the glass substrate 4 is divided.
  • the crack line CL forming process described above is essentially different from a so-called break process.
  • the breaking process the already formed cracks are further extended in the thickness direction to completely separate the substrate.
  • the formation process of the crack line CL brings about a change from a crackless state obtained by forming the trench line TL to a state having cracks. This change is considered to be caused by the release of internal stress that the crackless state has.
  • the axial direction AX of the cutting edge 51 is relative to the upper surface SF1. It is assumed to be vertical (FIG. 2). Thereby, the relationship between the axial direction AX and the sliding direction DA becomes constant without depending on the direction DA in which the tip 51N of the blade edge 51 is slid. Therefore, it is not necessary to adjust the posture of the blade edge 51 according to the sliding direction DA of the blade edge 51.
  • the axial direction AX of the blade edge 51 is relative to the upper surface SF1. It is assumed to be vertical. Therefore, effects similar to those of the present embodiment can be obtained in other embodiments.
  • the trench line TL has a linear shape.
  • the trench line TL includes a curved shape.
  • the process of forming the trench line TL will be described in detail.
  • trench line TL has a curved shape.
  • the step of forming the trench line TL includes the step of sliding the tip 51N of the blade edge 51 in the direction DA1 (first direction), and then the tip 51N in the direction DA2 (second). Sliding in the direction).
  • direction DA2 is different from direction DA1. Further, the sliding direction DA of the tip 51N of the blade edge 51 continuously changes between the direction DA1 and the direction DA2, as indicated by a broken line in the figure.
  • a crack line is formed along the trench line TL. Referring to FIG. 11, glass substrate 4 is divided along this crack line.
  • the sliding direction DA changes between the direction DA1 and the direction DA2.
  • the tip 51N of the blade edge 51 has axial symmetry, and the axial direction AX of the blade edge 51 is perpendicular to the upper surface SF1 (FIG. 2).
  • the relationship between the direction AX and the sliding direction DA is not affected. Therefore, it is not necessary to adjust the posture of the blade edge 51 according to the sliding direction DA of the blade edge 51. In other words, even when the trench line TL including the curved portion is formed, it is not necessary to adjust the posture of the blade edge 51 according to the sliding direction DA of the blade edge 51.
  • trench line TL substantially includes a closed curve.
  • the sliding direction DA changes in all directions as shown by the broken line in the figure.
  • the tip 51N of the blade edge 51 is slid in all directions. Since the configuration other than the above is substantially the same as the configuration of the second embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof will not be repeated.
  • a crack line is formed along the trench line TL. Referring to FIG. 16, glass substrate 4 is divided along this crack line.
  • the cutting edge 51 is almost stopped relative to the glass substrate 4. If the posture of the blade edge 51 is adjusted in such a stopped state, the tip 51N of the blade edge 51 or the glass substrate 4 is likely to be damaged. According to the present embodiment, it is not necessary to adjust the posture of the blade edge 51, and thus the above-described damage can be avoided.
  • trench line TL formed in the present embodiment includes a trench line TL1 and a trench line TL2 that are parallel to each other.
  • the trench line TL1 and the trench line TL2 are alternately formed.
  • the direction DA toward the front end 51N is set as the direction DA1 while the front end 51N of the blade edge 51 is brought into contact with the upper surface SF1 of the glass substrate 4.
  • the direction DA toward the front end portion 51N is set as the direction DA2 while the front end portion 51N of the blade edge 51 is brought into contact with the upper surface SF1 of the glass substrate 4.
  • the direction DA1 and the direction DA2 are opposite to each other. Accordingly, as shown in FIG. 18, the direction DA toward which the tip 51N is directed is either the direction DA1 or the direction DA2. In the formation of the trench line TL, the sliding direction DA is discontinuously changed between the direction DA1 and the direction DA2.
  • both the trench line TL1 and the trench line TL2 are formed by sliding in the direction DA1, the cutting edge 51 is moved from one edge (left edge in the figure) to the other edge (right edge in the figure). After the trench line TL1 is formed by being moved to, an operation only for returning the blade edge 51 toward the one edge is required. On the other hand, according to the present embodiment, the trench line TL2 is formed during this operation. This reduces the time required for the process. Therefore, productivity can be improved.
  • the blade edge 51 when the trench line TL is formed, the blade edge 51 may be rotated around the axial direction AX (see the rotation RT in the figure).
  • the rotation RT may be performed while sliding the tip 51N of the blade edge 51 on the upper surface SF1 of the glass substrate 4.
  • the rotation RT may be performed constantly during sliding or may be performed intermittently.
  • the rotation RT may be performed without sliding the tip 51N of the blade edge 51 on the upper surface SF1 of the glass substrate 4.
  • the cutting edge 51 is rotated with the cutting edge 51 stopped or with the cutting edge 51 separated from the glass substrate 4.
  • the lubricant when the trench line TL is formed, the lubricant may be supplied to a position where the tip portion 51N of the blade edge 51 slides on the upper surface SF1 of the glass substrate 4. .
  • the cutting edge 51 is slid at the position where the lubricant is supplied and at the position where the lubricant is supplied.
  • Step S32 may be included.
  • the lubricant for example, a lubricating oil that is liquid at normal temperature or a solid lubricant that is normal at normal temperature can be used.
  • the blade edge 51 that slides on the upper surface SF1 of the glass substrate 4 is likely to be worn when the trench line TL is formed. According to the present embodiment, such wear can be suppressed.
  • step S10 glass substrate 4 similar to that in the first embodiment is prepared.
  • an assist line AL is provided in advance on the upper surface SF1 of the glass substrate 4.
  • assist line AL has an assist trench line TLa and an assist crack line CLa.
  • the assist trench line TLa has a groove shape.
  • the assist crack line CLa is configured by a crack in the glass substrate 4 in the thickness direction DT extending along the assist trench line TLa.
  • the assist line AL is provided by the process of simultaneously forming the assist trench line TLa and the assist crack line CLa on the upper surface SF1 of the glass substrate 4.
  • Such an assist line AL can be formed by a conventional typical scribing method.
  • such an assist line AL can be formed when the cutting edge rides on the edge ED of the upper surface SF1 of the glass substrate 4 and moves on the upper surface SF1, as indicated by an arrow in FIG.
  • the cutting edge is preferably one that is rotatably held (wheel type). In other words, it is preferable that the cutting edge is not sliding but rotating on the glass substrate 4.
  • the starting point of the assist line AL is the edge ED in FIG. 21, it may be separated from the edge ED.
  • the assist line AL may be formed by a method similar to the method of forming the crack line CL in any of the first to seventh embodiments. Further, the assist line AL may be formed using a blade edge that is slid on the glass substrate 4. Alternatively, the assist line AL may be formed using the cutting edge 51 in order to facilitate the preparation of the cutting edge for the assist line AL described above.
  • step S20 (FIG. 4), the same blade edge 51 as that of the first embodiment is prepared.
  • trench line TL is formed in step S30 (FIG. 4).
  • the trench line TL is formed by sliding the blade edge 51 from the position N1 to the position N3a via the position N2 between the position N1 and the position N3a.
  • the position N3a is disposed on the assist line AL.
  • the position N2 is disposed between the position N1 and the position N3a.
  • the blade edge 51 is further slid to the position N4 beyond the position N3a on the assist line AL.
  • the position N4 is preferably away from the edge ED.
  • the cutting edge 51 slid as described above to form the trench line TL intersects the assist line AL at the position N3a. This intersection causes a fine breakdown at the position N3a. Starting from this breakdown, a crack is generated so as to release the internal stress in the vicinity of the trench line TL. Specifically, a crack in the glass substrate 4 in the thickness direction extends from the position N3a located on the assist line AL along the trench line TL (see the arrow in FIG. 24). In other words, the formation of the crack line CL (FIG. 24) is started. Thereby, as step S50 (FIG. 4), the crack line CL is formed from the position N3a to the position N1.
  • the blade edge 51 is separated from the glass substrate 4 after reaching the position N3a.
  • the blade edge 51 is separated from the glass substrate 4 after sliding to the position N4 beyond the position N3a.
  • step S60 the glass substrate 4 is divided along the crack line CL as in the first embodiment.
  • the method for dividing the glass substrate 4 of the present embodiment is performed.
  • the blade edge 51 cuts down the glass substrate 4 at a position N3e (FIG. 5).
  • such cut-down is not necessary. Thereby, the damage to the blade edge
  • the glass substrate 4 may be divided along the assist line AL after the trench line TL intersecting with the assist line AL is formed. Thereby, an opportunity to start the formation of the crack line CL can be obtained.
  • the tip 51N of the blade edge 51 is slid on the upper surface SF1 while the axial direction AX of the blade edge 51 is perpendicular to the upper surface SF1 of the glass substrate 4.
  • This sliding is performed from the start point N1 to the end point N3 via the intermediate point N2.
  • plastic deformation is generated on the upper surface SF1 of the glass substrate 4.
  • a trench line TL extending from the start point N1 to the end point N3 via the midpoint N2 is formed on the upper surface SF1 (FIG. 4: step S30).
  • the process of forming each of the trench lines TL includes a process of forming a low load section LR as a part of the trench line TL (FIG. 25: Step S30L) and a process of forming a high load section HR as a part of the trench line TL. (FIG. 25: Step S30H).
  • a low load section LR is formed from the start point N1 to the midpoint N2
  • a high load section HR is formed from the midpoint N2 to the end point N3.
  • the load applied to the cutting edge 51 in the process of forming the high load section HR is higher than the load used in the process of forming the low load section LR.
  • the load applied to the cutting edge 51 in the process of forming the low load section LR is lower than the load used in the process of forming the high load section HR, for example, 30 to 50 of the load in the high load section HR. %. Therefore, the width of the trench line in the high load section HR is larger than the width of the low load section LR. Moreover, as shown in FIG. 27, the depth of the high load section HR is larger than the depth of the low load section LR.
  • the cross section of the trench line TL has, for example, a V shape with an angle of about 150 °.
  • the distance of the high load section HR is small considering the life of the cutting edge 51.
  • the scribe speed is reduced in the high load section HR in order to sufficiently increase the load in the high load section HR at a smaller distance. That is, since it is difficult to control to increase the load of the cutting edge 51 instantaneously, in practice, scribing is performed while increasing the load until a predetermined load is reached in a certain section starting from the position N2. . Therefore, by reducing the speed in the high load section HR, the load can be increased at a smaller distance, and the entire distance of the high load section HR can be reduced.
  • a crackless state is obtained in which the glass substrate 4 is continuously connected in the direction DC (FIGS. 28 and 29) intersecting the trench line TL immediately below the trench line TL.
  • the load applied to the blade edge is made large enough to cause plastic deformation of the glass substrate 4 and small enough not to generate cracks starting from this plastic deformation part.
  • step S50 the process of forming a crack line
  • an assist line AL that intersects the high load section HR is formed on the upper surface SF1 of the glass substrate 4.
  • the assist line AL is accompanied by a crack that penetrates in the thickness direction of the glass substrate 4.
  • the assist line AL can be formed by a normal scribing method.
  • the glass substrate 4 is separated along the assist line AL. This separation can be performed by a normal break process. As a result of this separation, the crack of the glass substrate 4 in the thickness direction is extended along the trench line TL only in the high load section HR of the trench line TL.
  • the crack line CL is formed along a part of the trench line TL as described above. Specifically, the crack line CL is formed in a portion between the side newly generated by the separation and the midpoint N2 in the high load section HR. The direction in which the crack line CL is formed is opposite to the direction DA (FIG. 26) in which the trench line TL is formed.
  • the glass substrate 4 is continuously disconnected in the direction DC intersecting the extending direction of the trench line TL immediately below the high load section HR of the trench line TL by the crack line CL.
  • continuous connection means a connection that is not interrupted by a crack.
  • the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL.
  • Step S60 a breaking process for dividing the glass substrate 4 along the trench line TL is performed.
  • the crack is extended along the low load section LR starting from the crack line CL.
  • the direction in which the crack extends (arrow PR in FIG. 36) is opposite to the direction DA (FIG. 26) in which the trench line TL is formed.
  • the glass substrate 4 is divided.
  • the cutting edge in the low load section LR as compared with the high load section HR.
  • the load applied to 51 (FIG. 1) is reduced. Thereby, damage to the blade edge 51 can be reduced.
  • the trench line TL does not have a crack that is a starting point at which the glass substrate 4 is divided. Therefore, when arbitrary processing is performed on the glass substrate 4 in this state, even if an unexpected stress is applied to the trench line TL, unintentional division of the glass substrate 4 is unlikely to occur. Therefore, the above process can be performed more stably.
  • the trench line TL is formed before the assist line AL is formed. Thereby, it is possible to avoid the influence of the assist line AL when the trench line TL is formed. In particular, the formation abnormality immediately after the cutting edge 51 passes over the assist line AL for forming the trench line TL can be avoided.
  • FIG. 37 is a perspective view schematically showing the configuration of the cutting instrument 150 in the present embodiment.
  • the cutting instrument 150 has a cutting edge 151 provided with a tip 151N instead of the cutting edge 51 (FIG. 2) provided with a tip 51N.
  • the blade edge 151 has a polygonal pyramid shape having rounded vertices.
  • the polygonal pyramid has a side surface SD and a ridge line RG.
  • a tip 151N is provided at the apex of the polygonal pyramid.
  • Line XXXVIII-XXXVIII corresponds to a cross section perpendicular to the axial direction AX in the vicinity of the boundary between the tip portion 151N and the other portion of the blade edge 151.
  • FIG. 37 corresponds to a cross section perpendicular to the axial direction AX in the vicinity of the boundary between the tip portion 151N and the other portion of the blade edge 151.
  • the tip portion 151N has n points PT corresponding to the n ridge lines RG (FIG. 37), and each of the points PT is in contact with the circumscribed circle CC.
  • the tip portion 151N has n sides SD corresponding to n side surfaces SD (FIG. 37), and each of the sides SD has a dimension DS. As the size of the circumscribed circle CC is constant and n increases, the dimension DS decreases, and as a result, the cross-sectional shape of the tip portion 151N approaches a circle.
  • n As n increases, the axial symmetry of the tip 151N in the axial direction AX approaches ideal geometric symmetry. Therefore, if n is large to some extent, it can be said that the tip portion 151N has axial symmetry in terms of its function. That is, it can be said that the tip portion 151N has the pseudo-axisymmetric property described above. According to the study of the present inventor, if the dimension DS is 1 ⁇ m or less, it can be said that the tip portion 151N has pseudo-axisymmetric property. For example, n satisfying this condition can be calculated from the angle of the tip portion 151N and the radius of curvature of the tip portion 151N near the axis AX. An example of this calculation will be described below.
  • Each of the tip portions 151Na to 151Nc has tip angles of 120 °, 130 °, and 140 °. Since the radius of curvature R in the vicinity of the axis AX is 3 ⁇ m, when the dimension along the axial direction AX of the tip 51N is 1 ⁇ m, each of the tips 151Na to 151Nc has a diameter of 5.08 ⁇ m, 5.62 ⁇ m, and 6.56 ⁇ m.
  • each of the tip portions 151Na to 151Nc has a circumference of 15.96 ⁇ m, 17.65 ⁇ m, and 20.60 ⁇ m. Therefore, n that makes the dimension DS (FIG. 38) 1 ⁇ m or less is 16 or more in the case of the tip portion 151Na, 18 or more in the case of the tip portion 151Nb, and 21 or more in the case of the tip portion 151Nc.
  • Each of the tip portions 151Ni to 151Nk has tip angles of 120 °, 130 °, and 140 °. Since the radius of curvature R in the vicinity of the axis AX is 5 ⁇ m, when the dimension along the axial direction AX of the tip 51N is 1 ⁇ m, each of the tips 151Ni to 151Nk has a diameter of 6.17 ⁇ m, 6.51 ⁇ m, and 7.26 ⁇ m.
  • each of the tip portions 151Ni to 151Nk has a circumference of 19.38 ⁇ m, 20.45 ⁇ m, and 22.80 ⁇ m. Therefore, n which sets the dimension DS (FIG. 38) to 1 ⁇ m or less is 20 or more in the case of the tip portion 151Ni, 21 or more in the case of the tip portion 151Nj, and 23 or more in the case of the tip portion 151Nk.
  • n is preferably 16 or more. If n ⁇ 25, pseudo axial symmetry can be obtained while using an arbitrary tip angle and radius of curvature within the range normally used. In view of workability and processing time for forming the tip, n is preferably not unnecessarily large, and therefore n is preferably 25 or less.
  • the tip of a diamond piece may be given a substantially polygonal pyramid shape by polishing the tip of a piece of material having a polygonal column shape (for example, a diamond piece) a plurality of times.
  • R chamfering may be performed on the ridgeline RG (FIG. 37).
  • the straight portion of the side SD (FIG. 38) is shortened, so that the shape of the tip portion 151N is closer to a circle. That is, the axial symmetry of the distal end portion 151N is closer to an ideal one. In this case, pseudo axial symmetry can be obtained even with smaller n.
  • the edge of the upper surface SF1 is rectangular is illustrated, but other shapes may be used.
  • the upper surface may be curved.
  • the trench line TL is linear has been described, the trench line TL may be curved.
  • the glass substrate 4 was used as a brittle board
  • substrate may be made from brittle materials other than glass, for example, may be made from ceramics, silicon, a compound semiconductor, sapphire, or quartz.
  • AL assist line CL crack line AX axial direction SF1 upper surface (one surface) HR High load section LR Low load section TL, TL1, TL2 Trench line 4 Glass substrate (brittle substrate) 50, 150 Cutting tool 51, 151 Cutting edge 51N, 151N, 151Na to 151Nc, 151Ni to 151Nk Tip 52 Support

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A cutting edge (51) provided with a distal end section (51N) having axial symmetry in an axial direction (AX) is prepared. While orienting the axial direction (AX) of the cutting edge (51) so as to be perpendicular to one surface (SF1) of a brittle substrate (4), the distal end section (51N) of the cutting edge (51) is moved on the one surface (SF1) in a sliding manner, thereby forming a trench line in a crack-free state. A crack line is formed by extending a crack in the brittle substrate (4) along the trench line (TL) in a thickness direction (DT). The brittle substrate (4) is cut along the crack line.

Description

脆性基板の分断方法Method for dividing brittle substrate
 本発明は脆性基板の分断方法に関する。 The present invention relates to a method for dividing a brittle substrate.
 フラットディスプレイパネルまたは太陽電池パネルなどの電気機器の製造において、脆性基板を分断することがしばしば必要となる。典型的な分断方法においては、まず、脆性基板上にクラックラインが形成される。本明細書において「クラックライン」とは、脆性基板の厚さ方向に部分的に進行したクラックが脆性基板の表面上においてライン状に延びているもののことを意味する。次に、いわゆるブレイク工程が行われる。具体的には、脆性基板に応力を印加することによって、クラックラインのクラックが厚さ方向に完全に進行させられる。これにより、クラックラインに沿って脆性基板が分断される。 In the manufacture of electrical devices such as flat display panels or solar cell panels, it is often necessary to break the brittle substrate. In a typical cutting method, first, a crack line is formed on a brittle substrate. In this specification, “crack line” means that a crack partially progressing in the thickness direction of the brittle substrate extends in a line shape on the surface of the brittle substrate. Next, a so-called break process is performed. Specifically, by applying a stress to the brittle substrate, the cracks in the crack line are completely advanced in the thickness direction. Thereby, a brittle board | substrate is parted along a crack line.
 特許文献1によれば、ガラス板の上面にあるくぼみがスクライブ時に生じる。この特許文献1においては、このくぼみが「スクライブライン」と称されている。また、このスクライブラインの刻設と同時に、スクライブラインから直下方向に延びるクラックが発生する。この特許文献1の技術に見られるように、従来の典型的な技術においては、スクライブラインの形成と同時にクラックラインが形成される。 According to Patent Document 1, a depression on the upper surface of a glass plate is generated during scribing. In this Patent Document 1, this indentation is referred to as a “scribe line”. Further, simultaneously with the engraving of the scribe line, a crack extending in the downward direction from the scribe line is generated. As can be seen from the technique of Patent Document 1, in the conventional typical technique, the crack line is formed simultaneously with the formation of the scribe line.
 特許文献2によれば、上記の典型的な分断技術とは顕著に異なる分断技術が提案されている。この技術によれば、まず、脆性基板上での刃先の摺動によって塑性変形を発生させることにより、この特許文献2において「スクライブライン」と称される溝形状が形成される。本明細書においては、以降において、この溝形状のことを「トレンチライン」と称する。トレンチラインが形成されている時点では、その下方にクラックは形成されない。その後にトレンチラインに沿ってクラックを伸展させることで、クラックラインが形成される。つまり、典型的な技術とは異なり、クラックを伴わないトレンチラインがいったん形成され、その後にトレンチラインに沿ってクラックラインが形成される。その後、クラックラインに沿って通常のブレイク工程が行われる。 According to Patent Document 2, a cutting technique that is significantly different from the above-described typical cutting technique has been proposed. According to this technique, first, by generating plastic deformation by sliding the blade edge on the brittle substrate, a groove shape called “scribe line” in Patent Document 2 is formed. Hereinafter, this groove shape is referred to as a “trench line”. At the time when the trench line is formed, no crack is formed below the trench line. Then, the crack line is formed by extending the crack along the trench line. That is, unlike a typical technique, a trench line without a crack is once formed, and then a crack line is formed along the trench line. Thereafter, a normal breaking process is performed along the crack line.
 上記特許文献2の技術で用いられる、クラックを伴わないトレンチラインは、クラックの同時形成を伴う典型的なスクライブラインに比して、より低い荷重での刃先の摺動により形成可能である。荷重が小さいことにより、刃先に加わるダメージが小さくなる。よって、この分断技術によれば、刃先の寿命を延ばすことができる。 The trench line without cracks used in the technique of Patent Document 2 can be formed by sliding the blade edge with a lower load than a typical scribe line with simultaneous crack formation. When the load is small, the damage applied to the cutting edge is reduced. Therefore, according to this cutting technique, the life of the cutting edge can be extended.
 上記特許文献2において、刃先と、そのホルダとしてのシャンクとを有するカッティング器具が用いられる。カッティング器具は軸方向を有しており、シャンクは軸方向に沿って延在している。トレンチラインは、脆性基板上における刃先の摺動によって形成される。刃先は、軸方向に沿って延在するホルダに保持される。軸方向は、脆性基板の上面に対して傾斜している。軸方向を脆性基板上へ射影した方向が、刃先の摺動方向に対応している。 In Patent Document 2, a cutting tool having a blade edge and a shank as its holder is used. The cutting instrument has an axial direction, and the shank extends along the axial direction. The trench line is formed by sliding the blade edge on the brittle substrate. The cutting edge is held by a holder extending along the axial direction. The axial direction is inclined with respect to the upper surface of the brittle substrate. The direction in which the axial direction is projected onto the brittle substrate corresponds to the sliding direction of the blade edge.
特開平9-188534号公報JP-A-9-188534 国際公開第2015/151755号International Publication No. 2015/151755
 上記特許文献2によれば、軸方向をガラス基板上へ射影した方向が、刃先の摺動方向に対応している。言い換えれば、脆性基板に対する基板刃先の作用に異方性が存在する。このため、刃先の摺動方向に対応して、軸方向を調整する必要がある。よって、脆性基板の分断装置に、軸方向が摺動方向に対応するように刃先の姿勢を調整するための機構を設ける必要がある。また特に、刃先の摺動方向が一定でない場合には、刃先の姿勢を制御する機構を設ける必要がある。刃先の姿勢の調整および制御の必要性は、分断装置のコストの増加や、工程に要する時間の増大、スクライブ位置の精度の低下などのデメリットにつながり得る。 According to Patent Document 2, the direction in which the axial direction is projected onto the glass substrate corresponds to the sliding direction of the blade edge. In other words, there is anisotropy in the action of the substrate edge on the brittle substrate. For this reason, it is necessary to adjust an axial direction corresponding to the sliding direction of a blade edge | tip. Therefore, it is necessary to provide a mechanism for adjusting the posture of the blade edge in the brittle substrate cutting apparatus so that the axial direction corresponds to the sliding direction. In particular, when the sliding direction of the cutting edge is not constant, it is necessary to provide a mechanism for controlling the attitude of the cutting edge. The necessity of adjusting and controlling the posture of the cutting edge can lead to disadvantages such as an increase in the cost of the cutting device, an increase in time required for the process, and a decrease in the accuracy of the scribe position.
 本発明は以上のような課題を解決するためになされたものであり、その目的は、刃先の摺動方向に応じて刃先の姿勢を調整する必要がない、脆性基板の分断方法を提供することである。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a method for cutting a brittle substrate that does not require adjustment of the posture of the blade edge according to the sliding direction of the blade edge. It is.
 本発明の一の局面に従う脆性基板の分断方法は、以下の工程a)~e)を有する。
a)一の面と、一の面に垂直な厚さ方向とを有する脆性基板が準備される。
b)軸方向における軸対称性を有する先端部が設けられた刃先が準備される。
c)脆性基板の一の面に対して刃先の軸方向を垂直としつつ、一の面上において刃先の先端部を摺動させることによって、溝形状を有するトレンチラインが塑性変形により脆性基板の一の面上に形成される。トレンチラインは、トレンチラインの下方において脆性基板がトレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように形成される。
d)トレンチラインに沿って厚さ方向における脆性基板のクラックを伸展させることによって、クラックラインが形成される。クラックラインによってトレンチラインの下方において脆性基板はトレンチラインと交差する方向において連続的なつながりが断たれている。
e)クラックラインに沿って脆性基板が分断される。
The method for cutting a brittle substrate according to one aspect of the present invention includes the following steps a) to e).
a) A brittle substrate having one surface and a thickness direction perpendicular to the one surface is prepared.
b) A cutting edge provided with a tip having axial symmetry in the axial direction is prepared.
c) By sliding the tip of the blade edge on one surface while making the axial direction of the blade edge perpendicular to one surface of the brittle substrate, the trench line having a groove shape is deformed by one of the brittle substrates by plastic deformation. Formed on the surface. The trench line is formed so as to obtain a crackless state in which the brittle substrate is continuously connected in the direction intersecting the trench line below the trench line.
d) A crack line is formed by extending a crack of the brittle substrate in the thickness direction along the trench line. The brittle substrate is disconnected continuously in the direction crossing the trench line below the trench line by the crack line.
e) The brittle substrate is divided along the crack line.
 なお、上記「a)」~「e)」のアルファベット文字は、工程を区別するために付されているものであり、工程の実施の順番について含意するものではない。 Note that the alphabet letters “a)” to “e)” above are attached to distinguish the processes, and do not imply the order of execution of the processes.
 本発明によれば、軸対称性を有する先端部が設けられた刃先が脆性基板の一の面上を摺動させられる際に、一の面に対して刃先の軸方向が垂直とされる。これにより、摺動方向に依存することなく、軸方向と摺動方向との関係が一定となる。よって、刃先の摺動方向に応じて刃先の姿勢を調整する必要がない。 According to the present invention, when the cutting edge provided with the tip portion having axial symmetry is slid on one surface of the brittle substrate, the axial direction of the cutting edge is perpendicular to the one surface. As a result, the relationship between the axial direction and the sliding direction is constant without depending on the sliding direction. Therefore, it is not necessary to adjust the posture of the blade edge according to the sliding direction of the blade edge.
本発明の実施の形態1における脆性基板の分断方法に用いられるカッティング器具の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the cutting tool used for the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法に用いられるカッティング器具の構成を概略的に示す側面図である。It is a side view which shows roughly the structure of the cutting tool used for the cutting method of the brittle board | substrate in Embodiment 1 of this invention. 図1および図2の刃先の先端部の近傍の部分断面図である。It is a fragmentary sectional view of the vicinity of the front-end | tip part of the blade edge | tip of FIG. 1 and FIG. 本発明の実施の形態1における脆性基板の分断方法の構成を概略的に示すフロー図である。It is a flowchart which shows schematically the structure of the brittle board | substrate parting method in Embodiment 1 of this invention. 本発明の実施の形態1における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of a brittle board | substrate in Embodiment 1 of this invention. 図5の線VI-VIに沿う概略端面図である。FIG. 6 is a schematic end view taken along line VI-VI in FIG. 5. 本発明の実施の形態1における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 1 of this invention. 図7の線VIII-VIIIに沿う概略端面図である。FIG. 8 is a schematic end view taken along line VIII-VIII in FIG. 7. 本発明の実施の形態2における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of the brittle board | substrate in Embodiment 2 of this invention. 図9の工程における、脆性基板上での刃先の摺動方向を説明する図である。It is a figure explaining the sliding direction of the blade edge | tip on a brittle board | substrate in the process of FIG. 本発明の実施の形態2における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 2 of this invention. 本発明の実施の形態3における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 3 of this invention. 図12の工程における、脆性基板上での刃先の摺動方向を説明する図である。It is a figure explaining the sliding direction of the blade edge | tip on a brittle board | substrate in the process of FIG. 本発明の実施の形態4における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of the brittle board | substrate in Embodiment 4 of this invention. 図14の工程における、脆性基板上での刃先の摺動方向を説明する図である。It is a figure explaining the sliding direction of the blade edge | tip on a brittle board | substrate in the process of FIG. 本発明の実施の形態4における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 4 of this invention. 本発明の実施の形態5における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 5 of this invention. 図17の工程における、脆性基板上での刃先の摺動方向を説明する図である。It is a figure explaining the sliding direction of the blade edge | tip on a brittle board | substrate in the process of FIG. 本発明の実施の形態6における脆性基板の分断方法の一工程を概略的に示す側面図である。It is a side view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 6 of this invention. 本発明の実施の形態7における脆性基板の分断方法の一部構成を概略的に示すフロー図である。It is a flowchart which shows roughly the partial structure of the cutting method of a brittle board | substrate in Embodiment 7 of this invention. 本発明の実施の形態8における脆性基板の分断方法の第1の工程を概略的に示す上面図である。It is a top view which shows roughly the 1st process of the cutting method of a brittle board | substrate in Embodiment 8 of this invention. 図21の線XXII-XXIIに沿う概略端面図である。FIG. 22 is a schematic end view taken along line XXII-XXII in FIG. 21. 本発明の実施の形態8における脆性基板の分断方法の第2の工程を概略的に示す上面図である。It is a top view which shows roughly the 2nd process of the cutting method of a brittle board | substrate in Embodiment 8 of this invention. 本発明の実施の形態8における脆性基板の分断方法の第3の工程を概略的に示す上面図である。It is a top view which shows roughly the 3rd process of the cutting method of a brittle board | substrate in Embodiment 8 of this invention. 本発明の実施の形態9における脆性基板の分断方法の一部構成を概略的に示すフロー図である。It is a flowchart which shows schematically the partial structure of the cutting method of a brittle board | substrate in Embodiment 9 of this invention. 本発明の実施の形態9における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 9 of this invention. 図26の線XXVII-XXVIIに沿う概略断面図である。FIG. 27 is a schematic cross-sectional view taken along line XXVII-XXVII in FIG. 26. 図26の線XXVIII-XXVIIIに沿う概略断面図である。FIG. 27 is a schematic sectional view taken along line XXVIII-XXVIII in FIG. 26. 図26の線XXIX-XXIXに沿う概略断面図である。FIG. 27 is a schematic cross-sectional view taken along line XXIX-XXIX in FIG. 26. 本発明の実施の形態9における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 9 of this invention. 図30の線XXXI-XXXIに沿う概略断面図である。FIG. 31 is a schematic cross-sectional view taken along line XXXI-XXXI in FIG. 30. 図30の線XXXII-XXXIIに沿う概略断面図である。FIG. 31 is a schematic cross-sectional view taken along line XXXII-XXXII in FIG. 30. 本発明の実施の形態9における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 9 of this invention. 図33の線XXXIV-XXXIVに沿う概略断面図である。FIG. 34 is a schematic cross-sectional view taken along line XXXIV-XXXIV in FIG. 33. 図33の線XXXV-XXXVに沿う概略断面図である。FIG. 34 is a schematic cross-sectional view taken along line XXXV-XXXV in FIG. 33. 本発明の実施の形態9における脆性基板の分断方法の一工程を概略的に示す上面図である。It is a top view which shows roughly 1 process of the cutting method of the brittle board | substrate in Embodiment 9 of this invention. 本発明の実施の形態10における脆性基板の分断方法に用いられるカッティング器具の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the cutting instrument used for the cutting method of the brittle board | substrate in Embodiment 10 of this invention. 図37の線XXXVIII-XXXVIIIに沿う概略断面図である。FIG. 38 is a schematic sectional view taken along line XXXVIII-XXXVIII in FIG. 37. 図38の線A-Aに沿う、刃先の先端部の表面形状の例である。FIG. 39 is an example of the surface shape of the tip of the blade edge along line AA in FIG. 図38の線A-Aに沿う、刃先の先端部の表面形状の例である。FIG. 39 is an example of the surface shape of the tip of the blade edge along line AA in FIG.
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 <実施の形態1>
 図1および図2のそれぞれは、本実施の形態におけるガラス基板4(脆性基板)の分断方法に用いられるカッティング器具50の構成を概略的に示す斜視図である。図3は、図1および図2の刃先51の先端部51Nの近傍の部分断面図である。
<Embodiment 1>
Each of FIG. 1 and FIG. 2 is a perspective view schematically showing a configuration of a cutting instrument 50 used in the method for cutting glass substrate 4 (brittle substrate) in the present embodiment. FIG. 3 is a partial cross-sectional view of the vicinity of the tip 51N of the blade edge 51 of FIGS.
 カッティング器具50は刃先51および支持部52を有している。刃先51と支持部52とは、同一材料からなる一体の部材であってもよい。 The cutting instrument 50 has a cutting edge 51 and a support part 52. The cutting edge 51 and the support portion 52 may be an integral member made of the same material.
 刃先51には、図3に示すように、軸方向AXにおける軸対称性を有する先端部51Nが設けられている。すなわち、先端部51Nの表面は、軸方向AX周りに曲線を回転させることによって得られる面である。先端部51Nの表面は、外側に向かって凸形状を有する曲面である。先端部51Nの表面は、球面の一部であってもよい。先端部51Nの曲率半径は、3μm以上40μm以下であることが好ましい。先端部51Nの表面は、円錐面であってもよく、この円錐面の頂点は丸められていてもよい。先端部51Nの軸方向AXに沿っての寸法は、典型的には0.5μm以上であり、通常1.0μm以上あれば十分であり、好ましくは2.0μm以上である。これにより、刃先51のうち、ガラス基板4に直接接触することになる部分が、通常、先端部51Nに実質的に含まれる。なお、上述した「軸対称性」は、好ましくは理想的な幾何学的軸対称性であるが、ガラス基板4への作用に鑑みての実質的な軸対称性であってもよい。後者を本明細書では「疑似的軸対称性」と称し、その詳細については、後述する実施の形態10において説明する。 As shown in FIG. 3, the blade edge 51 is provided with a tip 51N having axial symmetry in the axial direction AX. That is, the surface of the tip 51N is a surface obtained by rotating a curve around the axial direction AX. The surface of the tip 51N is a curved surface having a convex shape toward the outside. The surface of the tip 51N may be a part of a spherical surface. The radius of curvature of the tip 51N is preferably 3 μm or more and 40 μm or less. The surface of the tip 51N may be a conical surface, and the apex of this conical surface may be rounded. The dimension of the tip 51N along the axial direction AX is typically 0.5 μm or more, and usually 1.0 μm or more is sufficient, and preferably 2.0 μm or more. Thereby, the part which will contact the glass substrate 4 directly among the blade edge | tips 51 is normally substantially contained in the front-end | tip part 51N. The “axial symmetry” described above is preferably ideal geometric axial symmetry, but may be substantial axial symmetry in view of the action on the glass substrate 4. The latter is referred to as “pseudo axial symmetry” in the present specification, and details thereof will be described in a tenth embodiment to be described later.
 好ましくは、先端部51Nを含む刃先51の全体が、軸方向AXにおける軸対称性を有している。図3においては、刃先51は、軸方向AXにおける軸対称性を有する直円錐形状を含み、この直円錐形状の頂点に先端部51Nが設けられている。軸方向AXを含む断面(図3)において、先端部51Nの形状を無視すれば、この直円錐形状の頂点の角度は、120°以上が好ましく、130°以上がより好ましい。またこの角度は、160°以下が好ましく、150°以下がより好ましい。 Preferably, the entire cutting edge 51 including the tip 51N has axial symmetry in the axial direction AX. In FIG. 3, the blade edge 51 includes a right cone shape having axial symmetry in the axial direction AX, and a tip 51N is provided at the apex of the right cone shape. In the cross section including the axial direction AX (FIG. 3), if the shape of the tip 51N is ignored, the angle of the apex of the right cone shape is preferably 120 ° or more, and more preferably 130 ° or more. Moreover, this angle is preferably 160 ° or less, and more preferably 150 ° or less.
 支持部52は軸方向AXに沿って延在していることが好ましい。カッティング器具50の全体が、軸方向AXにおける軸対称性を有していてもよい。 The support part 52 preferably extends along the axial direction AX. The entire cutting instrument 50 may have axial symmetry in the axial direction AX.
 次に、図4に示すフロー図を参照しつつ、ガラス基板4の分断方法について、以下に説明する。 Next, a method for dividing the glass substrate 4 will be described below with reference to the flowchart shown in FIG.
 ステップS10(図4)にて、分断されることになるガラス基板4(図2)が準備される。ガラス基板4は、上面SF1(一の面)と、その反対の下面SF2(他の面)とを有している。上面SF1には縁EDが設けられている。上面SF1は、典型的には平坦である。図5で示す例においては、縁EDは長方形状を有する。ガラス基板4は、上面SF1に垂直な厚さ方向DTを有する。またステップS20(図4)にて、上述した、刃先51を有するカッティング器具50(図1~図3)が準備される。 In step S10 (FIG. 4), a glass substrate 4 (FIG. 2) to be divided is prepared. The glass substrate 4 has an upper surface SF1 (one surface) and an opposite lower surface SF2 (other surface). An edge ED is provided on the upper surface SF1. The upper surface SF1 is typically flat. In the example shown in FIG. 5, the edge ED has a rectangular shape. The glass substrate 4 has a thickness direction DT perpendicular to the upper surface SF1. In step S20 (FIG. 4), the above-described cutting tool 50 (FIGS. 1 to 3) having the blade edge 51 is prepared.
 図5を参照して、ステップS30(図4)にて、直線形状を有するトレンチラインTLが形成される。具体的には、以下の工程が行われる。 Referring to FIG. 5, in step S30 (FIG. 4), a trench line TL having a linear shape is formed. Specifically, the following steps are performed.
 まず、刃先51(図1~図3)の先端部51Nが上面SF1に位置N1で押し付けられる。これにより先端部51Nがガラス基板4に接触する。位置N1は、図示されているように、ガラス基板4の上面SF1の縁EDから離れていることが好ましい。その場合、刃先51の摺動開始時に、刃先51がガラス基板4の上面SF1の縁EDに衝突することが避けられる。 First, the tip 51N of the blade edge 51 (FIGS. 1 to 3) is pressed against the upper surface SF1 at the position N1. As a result, the tip 51N comes into contact with the glass substrate 4. The position N1 is preferably away from the edge ED of the upper surface SF1 of the glass substrate 4 as shown. In that case, it is possible to avoid the cutting edge 51 from colliding with the edge ED of the upper surface SF <b> 1 of the glass substrate 4 at the start of sliding of the cutting edge 51.
 次に、ガラス基板4の上面SF1に対して刃先51の軸方向AXを垂直としつつ、上面SF1上において刃先51の先端部51Nが摺動させられる(図5の矢印参照)。摺動時に刃先51には外部から荷重が印加される。この荷重方向は上面SF1に対して垂直である。摺動によって上面SF1上に塑性変形が発生させられる。 Next, the tip 51N of the blade edge 51 is slid on the upper surface SF1 while making the axial direction AX of the blade edge 51 perpendicular to the upper surface SF1 of the glass substrate 4 (see the arrow in FIG. 5). A load is applied to the blade edge 51 from the outside during sliding. This load direction is perpendicular to the upper surface SF1. Plastic deformation is generated on the upper surface SF1 by sliding.
 この塑性変形により、溝形状(図6参照)を有するトレンチラインTLがガラス基板4の上面SF1上に形成される。トレンチラインTLは、トレンチラインTLの下方においてガラス基板4がトレンチラインTLの延在方向(図5における横方向)と交差する方向DC(図6)において連続的につながっている状態であるクラックレス状態が得られるように形成される。クラックレス状態においては、塑性変形によるトレンチラインTLは形成されているものの、それに沿ったクラックは形成されていない。クラックレス状態を得るために、刃先51に加えられる荷重は、トレンチラインTL形成時点ではクラックが発生しない程度に小さく、かつ、後の工程でクラックを発生させることができる内部応力の状態を作り出すような塑性変形が発生する程度大きくなるように調整される。 The trench line TL having a groove shape (see FIG. 6) is formed on the upper surface SF1 of the glass substrate 4 by this plastic deformation. The trench line TL is a crackless state in which the glass substrate 4 is continuously connected in the direction DC (FIG. 6) intersecting the extending direction (lateral direction in FIG. 5) of the trench line TL below the trench line TL. It is formed so that a state is obtained. In the crackless state, the trench line TL is formed by plastic deformation, but no crack is formed along the trench line TL. In order to obtain a crackless state, the load applied to the cutting edge 51 is so small that cracks do not occur at the time of forming the trench line TL, and creates an internal stress state that can generate cracks in a later process. It is adjusted so as to be large enough to cause plastic deformation.
 トレンチラインTLは、ガラス基板4の塑性変形のみによって生じることが好ましく、その場合、ガラス基板4の上面SF1上で削れが生じない。削れを避けるためには、刃先51の荷重を過度に高くしなければよい。削れがないことにより、上面SF1上に、好ましくない微細な破片が生じることが避けられる。ただし、若干の削れは、通常、許容され得る。 The trench line TL is preferably generated only by plastic deformation of the glass substrate 4, and in this case, no scraping occurs on the upper surface SF <b> 1 of the glass substrate 4. In order to avoid cutting, the load on the blade edge 51 should not be excessively increased. By not scraping, it is possible to avoid undesirable fine fragments on the upper surface SF1. However, some shaving is usually acceptable.
 トレンチラインTLの形成は、位置N1および位置N3eの間で、位置N1から位置N2を経由して位置N3eへ刃先51の先端部51Nを摺動させることによって行われる。位置N2は、ガラス基板4の上面SF1の縁EDから離れている。位置N3eは、ガラス基板4の上面SF1の縁EDに位置している。よって、トレンチラインTLを形成するために摺動させられた刃先51は、最終的に位置N3eに達する。クラックレス状態は、刃先51が位置N2に位置している時点で維持されており、さらに、刃先51が位置N3eに達する瞬間まで維持されている。刃先51が位置N3eに達すると、刃先51は、ガラス基板4の上面SF1の縁EDを切り下ろす。 The formation of the trench line TL is performed between the position N1 and the position N3e by sliding the tip 51N of the blade edge 51 from the position N1 to the position N3e via the position N2. The position N2 is away from the edge ED of the upper surface SF1 of the glass substrate 4. The position N3e is located at the edge ED of the upper surface SF1 of the glass substrate 4. Therefore, the blade edge 51 slid to form the trench line TL finally reaches the position N3e. The crackless state is maintained when the cutting edge 51 is located at the position N2, and further maintained until the moment when the cutting edge 51 reaches the position N3e. When the blade edge 51 reaches the position N3e, the blade edge 51 cuts down the edge ED of the upper surface SF1 of the glass substrate 4.
 図7および図8を参照して、上記の切り下ろしによって、位置N3eに微細な破壊が生じる。この破壊を起点として、トレンチラインTL付近の内部応力を解放するようにクラックが発生する。具体的には、ガラス基板4の上面SF1の縁EDに位置する位置N3eからトレンチラインTLに沿って、厚さ方向DTにおけるガラス基板4のクラックが伸展する(図7における矢印参照)。言い換えれば、クラックラインCLの形成が開始される。これにより、ステップS50(図4)として、位置N3eから位置N1へクラックラインCLが形成される。トレンチラインTLに沿ってクラックラインCLが伸展する方向(図7の矢印)は、トレンチラインTLが形成された方向(図5の矢印)と逆である。 Referring to FIG. 7 and FIG. 8, the above-mentioned cut-down causes a fine breakage at position N3e. Starting from this breakdown, a crack is generated so as to release the internal stress in the vicinity of the trench line TL. Specifically, a crack in the glass substrate 4 in the thickness direction DT extends from the position N3e located at the edge ED of the upper surface SF1 of the glass substrate 4 along the trench line TL (see the arrow in FIG. 7). In other words, the formation of the crack line CL is started. Thereby, as step S50 (FIG. 4), the crack line CL is formed from the position N3e to the position N1. The direction in which the crack line CL extends along the trench line TL (arrow in FIG. 7) is opposite to the direction in which the trench line TL is formed (arrow in FIG. 5).
 なお、クラックラインCLの形成をより確実にするために、刃先51が位置N2から位置N3eを摺動する速度を、位置N1から位置N2における速度より小さくしてもよい。同様に、位置N2から位置N3eにおいて刃先51に印加される荷重を、クラックレス状態が維持される範囲で位置N1から位置N2における荷重よりも大きくしてもよい。 In order to make the formation of the crack line CL more reliable, the speed at which the blade edge 51 slides from the position N2 to the position N3e may be smaller than the speed from the position N1 to the position N2. Similarly, the load applied to the blade edge 51 from the position N2 to the position N3e may be larger than the load from the position N1 to the position N2 within a range in which the crackless state is maintained.
 クラックラインCLによってトレンチラインTLの下方においてガラス基板4はトレンチラインTLの延在方向(図7における横方向)と交差する方向DC(図8)において連続的なつながりが断たれている。ここで「連続的なつながり」とは、言い換えれば、クラックによって遮られていないつながりのことである。なお、上述したように連続的なつながりが断たれている状態において、クラックラインCLのクラックを介してガラス基板4の部分同士が接触していてもよい。また、トレンチラインTLの直下にわずかに連続的なつながりが残されていてもよい。 The continuous connection is broken in the direction DC (FIG. 8) where the glass substrate 4 intersects the extending direction (lateral direction in FIG. 7) of the trench line TL below the trench line TL by the crack line CL. Here, “continuous connection” means a connection that is not interrupted by a crack. In addition, in the state where the continuous connection is cut as described above, the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL. Further, a slightly continuous connection may be left immediately below the trench line TL.
 次に、ステップS60(図4)にて、クラックラインCLに沿ってガラス基板4が分断される。すなわち、いわゆるブレイク工程が行なわれる。ブレイク工程は、ガラス基板4への外力の印加によって行ない得る。たとえば、ガラス基板4の上面SF1上のクラックラインCL(図8)に向かって下面SF2上に応力印加部材(たとえば、「ブレイクバー」と称される部材)を押し付けることによって、クラックラインCLのクラックを開くような応力がガラス基板4へ印加される。なおクラックラインCLがその形成時に厚さ方向DTに完全に進行した場合は、クラックラインCLの形成とガラス基板4の分断とが同時に生じる。 Next, in step S60 (FIG. 4), the glass substrate 4 is divided along the crack line CL. That is, a so-called break process is performed. The breaking process can be performed by applying an external force to the glass substrate 4. For example, by pressing a stress applying member (for example, a member called “break bar”) on the lower surface SF2 toward the crack line CL (FIG. 8) on the upper surface SF1 of the glass substrate 4, cracks in the crack line CL are obtained. Is applied to the glass substrate 4. When the crack line CL is completely advanced in the thickness direction DT at the time of formation, the formation of the crack line CL and the division of the glass substrate 4 occur simultaneously.
 以上によりガラス基板4の分断が行なわれる。なお上述したクラックラインCLの形成工程は、いわゆるブレイク工程と本質的に異なっている。ブレイク工程は、既に形成されているクラックを厚さ方向にさらに伸展させることで基板を完全に分離するものである。一方、クラックラインCLの形成工程は、トレンチラインTLの形成によって得られたクラックレス状態から、クラックを有する状態への変化をもたらすものである。この変化は、クラックレス状態が有する内部応力の開放によって生じると考えられる。 Thus, the glass substrate 4 is divided. Note that the crack line CL forming process described above is essentially different from a so-called break process. In the breaking process, the already formed cracks are further extended in the thickness direction to completely separate the substrate. On the other hand, the formation process of the crack line CL brings about a change from a crackless state obtained by forming the trench line TL to a state having cracks. This change is considered to be caused by the release of internal stress that the crackless state has.
 本実施の形態によれば、軸対称性を有する先端部51Nが設けられた刃先51がガラス基板4の上面SF1上を摺動させられる際に、上面SF1に対して刃先51の軸方向AXが垂直とされる(図2)。これにより、刃先51の先端部51Nが摺動させられる方向DAに依存することなく、軸方向AXと摺動方向DAとの関係が一定となる。よって、刃先51の摺動方向DAに応じて刃先51の姿勢を調整する必要がない。 According to the present embodiment, when the cutting edge 51 provided with the axially symmetrical tip 51N is slid on the upper surface SF1 of the glass substrate 4, the axial direction AX of the cutting edge 51 is relative to the upper surface SF1. It is assumed to be vertical (FIG. 2). Thereby, the relationship between the axial direction AX and the sliding direction DA becomes constant without depending on the direction DA in which the tip 51N of the blade edge 51 is slid. Therefore, it is not necessary to adjust the posture of the blade edge 51 according to the sliding direction DA of the blade edge 51.
 なお、後述する他の実施の形態においても、トレンチラインTLの形成のために刃先51がガラス基板4の上面SF1上を摺動させられる際に、上面SF1に対して刃先51の軸方向AXが垂直とされる。よって、他の実施の形態においても、本実施の形態と同様の効果が得られる。 In other embodiments described later, when the blade edge 51 is slid on the upper surface SF1 of the glass substrate 4 to form the trench line TL, the axial direction AX of the blade edge 51 is relative to the upper surface SF1. It is assumed to be vertical. Therefore, effects similar to those of the present embodiment can be obtained in other embodiments.
 <実施の形態2>
 実施の形態1においては、トレンチラインTLが直線形状を有している。これに対して、本実施の形態においては、トレンチラインTLは曲線形状を含む。以下、トレンチラインTLを形成する工程について詳述する。
<Embodiment 2>
In the first embodiment, the trench line TL has a linear shape. On the other hand, in the present embodiment, the trench line TL includes a curved shape. Hereinafter, the process of forming the trench line TL will be described in detail.
 図9を参照して、本実施の形態においては、トレンチラインTLは曲線形状を有する。これに対応して、トレンチラインTLを形成する工程は、刃先51の先端部51Nを方向DA1(第1方向)に向かって摺動させる工程と、その後に、先端部51Nを方向DA2(第2方向)に向かって摺動させる工程とを含む。 Referring to FIG. 9, in the present embodiment, trench line TL has a curved shape. Correspondingly, the step of forming the trench line TL includes the step of sliding the tip 51N of the blade edge 51 in the direction DA1 (first direction), and then the tip 51N in the direction DA2 (second). Sliding in the direction).
 図10を参照して、方向DA2は方向DA1とは異なる。また刃先51の先端部51Nの摺動方向DAは、方向DA1と方向DA2との間で、図中の破線で示すように、連続的に変化する。 Referring to FIG. 10, direction DA2 is different from direction DA1. Further, the sliding direction DA of the tip 51N of the blade edge 51 continuously changes between the direction DA1 and the direction DA2, as indicated by a broken line in the figure.
 続いて、トレンチラインTLに沿ってクラックラインが形成される。図11を参照して、このクラックラインに沿ってガラス基板4が分断される。 Subsequently, a crack line is formed along the trench line TL. Referring to FIG. 11, glass substrate 4 is divided along this crack line.
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the first embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 本実施の形態においては、摺動方向DAが方向DA1と方向DA2との間で変化する。刃先51の先端部51Nが軸対称性を有し、かつ、上面SF1に対して刃先51の軸方向AXが垂直とされる(図2)ことから、上述した摺動方向DAの変化は、軸方向AXと摺動方向DAとの関係に影響を及ぼさない。よって、刃先51の摺動方向DAに応じて刃先51の姿勢を調整する必要がない。言い換えれば、曲線部を含むトレンチラインTLが形成される際においても、刃先51の摺動方向DAに応じて刃先51の姿勢を調整する必要がない。 In the present embodiment, the sliding direction DA changes between the direction DA1 and the direction DA2. The tip 51N of the blade edge 51 has axial symmetry, and the axial direction AX of the blade edge 51 is perpendicular to the upper surface SF1 (FIG. 2). The relationship between the direction AX and the sliding direction DA is not affected. Therefore, it is not necessary to adjust the posture of the blade edge 51 according to the sliding direction DA of the blade edge 51. In other words, even when the trench line TL including the curved portion is formed, it is not necessary to adjust the posture of the blade edge 51 according to the sliding direction DA of the blade edge 51.
 <実施の形態3>
 図12を参照して、本実施の形態においては、トレンチラインTLは、実質的に、閉曲線を含む。これに対応して、図13に示すように、摺動方向DAは、図中の破線で示すように、全方向にわたって変化する。言い換えれば、刃先51の先端部51Nは、全方向に向かって摺動させられる。なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
<Embodiment 3>
Referring to FIG. 12, in the present embodiment, trench line TL substantially includes a closed curve. Correspondingly, as shown in FIG. 13, the sliding direction DA changes in all directions as shown by the broken line in the figure. In other words, the tip 51N of the blade edge 51 is slid in all directions. Since the configuration other than the above is substantially the same as the configuration of the second embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof will not be repeated.
 <実施の形態4>
 図14および図15を参照して、本実施の形態においては、トレンチラインTLが形成される際に、刃先51の先端部51Nをガラス基板4の上面SF1上に接触させつつ、先端部51Nが向かう方向DAが方向DA1から方向DA2に不連続に変化させられる。
<Embodiment 4>
Referring to FIGS. 14 and 15, in the present embodiment, when trench line TL is formed, tip 51N is brought into contact with top surface SF1 of glass substrate 4 while tip 51N of blade edge 51 is in contact with top surface SF1. The heading direction DA is discontinuously changed from the direction DA1 to the direction DA2.
 続いて、トレンチラインTLに沿ってクラックラインが形成される。図16を参照して、このクラックラインに沿ってガラス基板4が分断される。 Subsequently, a crack line is formed along the trench line TL. Referring to FIG. 16, glass substrate 4 is divided along this crack line.
 なお、上記以外の構成については、上述した実施の形態2の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the second embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 方向DAが不連続に変化する瞬間においては、刃先51はガラス基板4に対して相対的にほぼ停止している。このような停止状態において、仮に刃先51の姿勢が調整されたとすると、刃先51の先端部51Nまたはガラス基板4へダメージが生じやすい。本実施の形態によれば、刃先51の姿勢を調整する必要がないので、上述したダメージを避けることができる。 At the moment when the direction DA changes discontinuously, the cutting edge 51 is almost stopped relative to the glass substrate 4. If the posture of the blade edge 51 is adjusted in such a stopped state, the tip 51N of the blade edge 51 or the glass substrate 4 is likely to be damaged. According to the present embodiment, it is not necessary to adjust the posture of the blade edge 51, and thus the above-described damage can be avoided.
 <実施の形態5>
 図17を参照して、本実施の形態において形成されるトレンチラインTLは、互いに平行なトレンチラインTL1およびトレンチラインTL2を含む。トレンチラインTL1およびトレンチラインTL2は交互に形成される。トレンチラインTL1が形成される際には、刃先51の先端部51Nをガラス基板4の上面SF1上に接触させつつ、先端部51Nが向かう方向DAが方向DA1とされる。トレンチラインTL2が形成される際には、刃先51の先端部51Nをガラス基板4の上面SF1上に接触させつつ、先端部51Nが向かう方向DAが方向DA2とされる。方向DA1と方向DA2とは、互いに反対である。よって、図18に示すように、先端部51Nが向かう方向DAは、方向DA1および方向DA2のいずれかである。トレンチラインTLの形成において、摺動方向DAは、方向DA1と方向DA2との間で不連続に変化させられる。
<Embodiment 5>
Referring to FIG. 17, trench line TL formed in the present embodiment includes a trench line TL1 and a trench line TL2 that are parallel to each other. The trench line TL1 and the trench line TL2 are alternately formed. When the trench line TL1 is formed, the direction DA toward the front end 51N is set as the direction DA1 while the front end 51N of the blade edge 51 is brought into contact with the upper surface SF1 of the glass substrate 4. When the trench line TL2 is formed, the direction DA toward the front end portion 51N is set as the direction DA2 while the front end portion 51N of the blade edge 51 is brought into contact with the upper surface SF1 of the glass substrate 4. The direction DA1 and the direction DA2 are opposite to each other. Accordingly, as shown in FIG. 18, the direction DA toward which the tip 51N is directed is either the direction DA1 or the direction DA2. In the formation of the trench line TL, the sliding direction DA is discontinuously changed between the direction DA1 and the direction DA2.
 なお、上記以外の構成については、上述した実施の形態4の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。 Since the configuration other than the above is substantially the same as the configuration of the fourth embodiment described above, the same or corresponding elements are denoted by the same reference numerals, and description thereof is not repeated.
 仮に、トレンチラインTL1およびトレンチラインTL2の両方が、方向DA1の摺動によって形成されたとすると、刃先51を一方の縁(図中、左の縁)から他方の縁(図中、右の縁)へ移動させることでトレンチラインTL1を形成した後に、刃先51を上記一方の縁の方へ戻すためだけの動作が必要となる。これに対して本実施の形態によれば、この動作中にトレンチラインTL2が形成される。これにより、工程に必要な時間が短縮される。よって生産性を向上させることができる。 If both the trench line TL1 and the trench line TL2 are formed by sliding in the direction DA1, the cutting edge 51 is moved from one edge (left edge in the figure) to the other edge (right edge in the figure). After the trench line TL1 is formed by being moved to, an operation only for returning the blade edge 51 toward the one edge is required. On the other hand, according to the present embodiment, the trench line TL2 is formed during this operation. This reduces the time required for the process. Therefore, productivity can be improved.
 <実施の形態6>
 図19を参照して、上述した各実施の形態において、トレンチラインTLが形成される際に、刃先51が軸方向AX周りに回転させられてもよい(図中、回転RT参照)。回転RTは、ガラス基板4の上面SF1上において刃先51の先端部51Nを摺動させながら行われてもよい。回転RTは、摺動中、常時行われてもよく、間欠的に行われてもよい。あるいは、回転RTは、ガラス基板4の上面SF1上において刃先51の先端部51Nを摺動させることなく行われてもよい。この場合、刃先51が停止した状態で、または刃先51がガラス基板4から離れた状態で、刃先51が回転させられる。
<Embodiment 6>
Referring to FIG. 19, in each of the embodiments described above, when the trench line TL is formed, the blade edge 51 may be rotated around the axial direction AX (see the rotation RT in the figure). The rotation RT may be performed while sliding the tip 51N of the blade edge 51 on the upper surface SF1 of the glass substrate 4. The rotation RT may be performed constantly during sliding or may be performed intermittently. Alternatively, the rotation RT may be performed without sliding the tip 51N of the blade edge 51 on the upper surface SF1 of the glass substrate 4. In this case, the cutting edge 51 is rotated with the cutting edge 51 stopped or with the cutting edge 51 separated from the glass substrate 4.
 本実施の形態によれば、刃先51の局所的な摩耗が避けられる。よって刃先51の寿命を延ばすことができる。 According to the present embodiment, local wear of the cutting edge 51 can be avoided. Therefore, the life of the blade edge 51 can be extended.
 <実施の形態7>
 上述した各実施の形態において、トレンチラインTLが形成される際に、ガラス基板4の上面SF1上において刃先51の先端部51Nが摺動することになる位置に、潤滑剤が供給されてもよい。言い換えれば、トレンチラインTLを形成する工程(図4:ステップS30)は、図20に示すように、潤滑剤を供給するステップS31と、潤滑剤が供給された位置において刃先51が摺動されるステップS32とを含んでもよい。潤滑剤としては、たとえば常温で液体の潤滑油または常温で固体の潤滑剤を用い得る。
<Embodiment 7>
In each of the above-described embodiments, when the trench line TL is formed, the lubricant may be supplied to a position where the tip portion 51N of the blade edge 51 slides on the upper surface SF1 of the glass substrate 4. . In other words, in the process of forming the trench line TL (FIG. 4: step S30), as shown in FIG. 20, the cutting edge 51 is slid at the position where the lubricant is supplied and at the position where the lubricant is supplied. Step S32 may be included. As the lubricant, for example, a lubricating oil that is liquid at normal temperature or a solid lubricant that is normal at normal temperature can be used.
 上述した各実施の形態においては、トレンチラインTLの形成時に、ガラス基板4の上面SF1と摺動する刃先51が摩耗しやすくなる。本実施の形態によれば、このような摩耗を抑制することができる。 In each of the embodiments described above, the blade edge 51 that slides on the upper surface SF1 of the glass substrate 4 is likely to be worn when the trench line TL is formed. According to the present embodiment, such wear can be suppressed.
 <実施の形態8>
 図21を参照して、ステップS10(図4)にて、上記実施の形態1と同様のガラス基板4が準備される。ただし本実施の形態においては、ガラス基板4の上面SF1上に、予めアシストラインALが設けられている。図22を参照して、アシストラインALは、アシストトレンチラインTLaと、アシストクラックラインCLaとを有している。アシストトレンチラインTLaは溝形状を有している。アシストクラックラインCLaは、厚さ方向DTにおけるガラス基板4のクラックがアシストトレンチラインTLaに沿って延びることによって構成されている。
<Eighth embodiment>
Referring to FIG. 21, in step S10 (FIG. 4), glass substrate 4 similar to that in the first embodiment is prepared. However, in the present embodiment, an assist line AL is provided in advance on the upper surface SF1 of the glass substrate 4. Referring to FIG. 22, assist line AL has an assist trench line TLa and an assist crack line CLa. The assist trench line TLa has a groove shape. The assist crack line CLa is configured by a crack in the glass substrate 4 in the thickness direction DT extending along the assist trench line TLa.
 本実施の形態においては、アシストラインALはガラス基板4の上面SF1に、アシストトレンチラインTLaおよびアシストクラックラインCLaを同時に形成する工程によって設けられる。このようなアシストラインALは、従来の典型的なスクライブ方法によって形成され得る。たとえば、このようなアシストラインALは、図21の矢印に示すように、刃先がガラス基板4の上面SF1の縁EDを乗り上げ、そして上面SF1上を移動することによって形成され得る。この刃先は、回動可能に保持されたもの(ホイール型のもの)であることが好ましい。言い換えれば、刃先はガラス基板4上で摺動ではなく回動するものであることが好ましい。 In the present embodiment, the assist line AL is provided by the process of simultaneously forming the assist trench line TLa and the assist crack line CLa on the upper surface SF1 of the glass substrate 4. Such an assist line AL can be formed by a conventional typical scribing method. For example, such an assist line AL can be formed when the cutting edge rides on the edge ED of the upper surface SF1 of the glass substrate 4 and moves on the upper surface SF1, as indicated by an arrow in FIG. The cutting edge is preferably one that is rotatably held (wheel type). In other words, it is preferable that the cutting edge is not sliding but rotating on the glass substrate 4.
 なお、アシストラインALの起点は、図21においては縁EDであるが、縁EDから離れていてもよい。また、アシストラインALは、前述した実施の形態1~7のいずれかにおけるクラックラインCLの形成方法と同様の方法によって形成されてもよい。また、ガラス基板4上で摺動させられる刃先を用いて上記のアシストラインALが形成されていてもよい。あるいは、前述したアシストラインAL用の刃先の準備を容易とするために、上記のアシストラインALがこの刃先51を用いて形成されていてもよい。 In addition, although the starting point of the assist line AL is the edge ED in FIG. 21, it may be separated from the edge ED. The assist line AL may be formed by a method similar to the method of forming the crack line CL in any of the first to seventh embodiments. Further, the assist line AL may be formed using a blade edge that is slid on the glass substrate 4. Alternatively, the assist line AL may be formed using the cutting edge 51 in order to facilitate the preparation of the cutting edge for the assist line AL described above.
 次にステップS20(図4)にて、実施の形態1と同様の刃先51が準備される。 Next, in step S20 (FIG. 4), the same blade edge 51 as that of the first embodiment is prepared.
 図23を参照して、次に、ステップS30(図4)にてトレンチラインTLが形成される。本実施の形態においては、トレンチラインTLの形成は、位置N1および位置N3aの間で、位置N1から位置N2を経由して位置N3aへ刃先51を摺動させることによって行われる。位置N3aはアシストラインAL上に配置されている。位置N2は、位置N1と位置N3aとの間に配置されている。好ましくは、刃先51は、アシストラインAL上の位置N3aを超えてさらに位置N4まで摺動させられる。位置N4は縁EDから離れていることが好ましい。 Referring to FIG. 23, next, trench line TL is formed in step S30 (FIG. 4). In the present embodiment, the trench line TL is formed by sliding the blade edge 51 from the position N1 to the position N3a via the position N2 between the position N1 and the position N3a. The position N3a is disposed on the assist line AL. The position N2 is disposed between the position N1 and the position N3a. Preferably, the blade edge 51 is further slid to the position N4 beyond the position N3a on the assist line AL. The position N4 is preferably away from the edge ED.
 トレンチラインTLを形成するために上記のように摺動させられた刃先51は、位置N3aにおいてアシストラインALと交差する。この交差によって位置N3aに微細な破壊が生じる。この破壊を起点として、トレンチラインTL付近の内部応力を解放するようにクラックが発生する。具体的には、アシストラインAL上に位置する位置N3aからトレンチラインTLに沿って、厚さ方向におけるガラス基板4のクラックが伸展する(図24の矢印参照)。言い換えれば、クラックラインCL(図24)の形成が開始される。これにより、ステップS50(図4)として、位置N3aから位置N1へクラックラインCLが形成される。 The cutting edge 51 slid as described above to form the trench line TL intersects the assist line AL at the position N3a. This intersection causes a fine breakdown at the position N3a. Starting from this breakdown, a crack is generated so as to release the internal stress in the vicinity of the trench line TL. Specifically, a crack in the glass substrate 4 in the thickness direction extends from the position N3a located on the assist line AL along the trench line TL (see the arrow in FIG. 24). In other words, the formation of the crack line CL (FIG. 24) is started. Thereby, as step S50 (FIG. 4), the crack line CL is formed from the position N3a to the position N1.
 刃先51は、位置N3aに達した後、ガラス基板4から離される。好ましくは、刃先51は、位置N3aを超えて位置N4まで摺動した後、ガラス基板4から離される。 The blade edge 51 is separated from the glass substrate 4 after reaching the position N3a. Preferably, the blade edge 51 is separated from the glass substrate 4 after sliding to the position N4 beyond the position N3a.
 次に、ステップS60(図4)にて、実施の形態1と同様に、クラックラインCLに沿ってガラス基板4が分断される。以上により本実施の形態のガラス基板4の分断方法が行われる。 Next, in step S60 (FIG. 4), the glass substrate 4 is divided along the crack line CL as in the first embodiment. Thus, the method for dividing the glass substrate 4 of the present embodiment is performed.
 実施の形態1においては、刃先51が位置N3e(図5)でガラス基板4を切り下ろす。これに対して、本実施の形態によれば、このような切り下ろしが必要ない。これにより、刃先51による切り下ろしの際に生じ得る、刃先51またはガラス基板4へのダメージを避けることができる。 In Embodiment 1, the blade edge 51 cuts down the glass substrate 4 at a position N3e (FIG. 5). On the other hand, according to the present embodiment, such cut-down is not necessary. Thereby, the damage to the blade edge | tip 51 or the glass substrate 4 which may arise in the case of cutting down with the blade edge | tip 51 can be avoided.
 なお、刃先51がアシストラインALと交差しただけでは、クラックラインCLの形成開始のきっかけが得られない場合があり得る。そのような場合は、アシストラインALと交差するトレンチラインTLが形成された後に、ガラス基板4がアシストラインALに沿って分断されればよい。これにより、クラックラインCLの形成開始のきっかけを得ることができる。 It should be noted that there is a case where the trigger for starting the formation of the crack line CL cannot be obtained only by the cutting edge 51 intersecting with the assist line AL. In such a case, the glass substrate 4 may be divided along the assist line AL after the trench line TL intersecting with the assist line AL is formed. Thereby, an opportunity to start the formation of the crack line CL can be obtained.
 <実施の形態9>
 図26を参照して、まず、他の実施の形態と同様、ガラス基板4が準備される(図4:ステップS10)。また刃先51が準備される(図4:ステップS20)。
<Embodiment 9>
Referring to FIG. 26, first, glass substrate 4 is prepared as in the other embodiments (FIG. 4: step S10). Moreover, the blade edge | tip 51 is prepared (FIG. 4: step S20).
 次に、他の実施の形態と同様、ガラス基板4の上面SF1に対して刃先51の軸方向AXを垂直としつつ、上面SF1上において刃先51の先端部51Nが摺動させられる。この摺動は、始点N1から途中点N2を経由して終点N3まで行われる。これによってガラス基板4の上面SF1上に塑性変形が発生させられる。これによって上面SF1上に、始点N1から途中点N2を経由して終点N3へ延びるトレンチラインTLが形成される(図4:ステップS30)。 Next, as in the other embodiments, the tip 51N of the blade edge 51 is slid on the upper surface SF1 while the axial direction AX of the blade edge 51 is perpendicular to the upper surface SF1 of the glass substrate 4. This sliding is performed from the start point N1 to the end point N3 via the intermediate point N2. Thereby, plastic deformation is generated on the upper surface SF1 of the glass substrate 4. As a result, a trench line TL extending from the start point N1 to the end point N3 via the midpoint N2 is formed on the upper surface SF1 (FIG. 4: step S30).
 トレンチラインTLの各々を形成する工程は、トレンチラインTLの一部として低荷重区間LRを形成する工程(図25:ステップS30L)と、トレンチラインTLの一部として高荷重区間HRを形成する工程(図25:ステップS30H)とを含む。図26においては、始点N1から途中点N2まで低荷重区間LRが形成され、途中点N2から終点N3まで高荷重区間HRが形成される。高荷重区間HRを形成する工程において刃先51に加えられる荷重は、低荷重区間LRを形成する工程で用いられる荷重よりも高い。逆に言えば、低荷重区間LRを形成する工程において刃先51に加えられる荷重は、高荷重区間HRを形成する工程で用いられる荷重よりも低く、たとえば、高荷重区間HRの荷重の30~50%程度である。そのため、高荷重区間HRにおけるトレンチラインの幅は、低荷重区間LRの幅よりも大きい。また、図27に示すように、高荷重区間HRの深さは、低荷重区間LRの深さよりも大きい。トレンチラインTLの断面は、たとえば、角度150°程度のV字形状を有する。 The process of forming each of the trench lines TL includes a process of forming a low load section LR as a part of the trench line TL (FIG. 25: Step S30L) and a process of forming a high load section HR as a part of the trench line TL. (FIG. 25: Step S30H). In FIG. 26, a low load section LR is formed from the start point N1 to the midpoint N2, and a high load section HR is formed from the midpoint N2 to the end point N3. The load applied to the cutting edge 51 in the process of forming the high load section HR is higher than the load used in the process of forming the low load section LR. Conversely, the load applied to the cutting edge 51 in the process of forming the low load section LR is lower than the load used in the process of forming the high load section HR, for example, 30 to 50 of the load in the high load section HR. %. Therefore, the width of the trench line in the high load section HR is larger than the width of the low load section LR. Moreover, as shown in FIG. 27, the depth of the high load section HR is larger than the depth of the low load section LR. The cross section of the trench line TL has, for example, a V shape with an angle of about 150 °.
 なお、高荷重区間HRにおいては刃先51へ高い荷重が加えられるため、刃先51の寿命を考慮すれば、高荷重区間HRの距離は小さいことが好ましい。さらに、トレンチラインTL形成中に荷重を変化させる場合、より小さい距離で高荷重区間HRにおける荷重を十分に大きくするため、高荷重区間HRではスクライブ速度が小さくされることが好ましい。すなわち、刃先51の荷重を瞬間的に増加させる制御は困難であることから、実際には位置N2を始点として、一定の区間ではあらかじめ定められた荷重に達するまで荷重が大きくされながらスクライブが行われる。したがって、高荷重区間HRにおける速度を小さくすることで、より小さな距離で高荷重にすることができ、高荷重区間HR全体の距離を小さくすることができる。 In addition, since a high load is applied to the cutting edge 51 in the high load section HR, it is preferable that the distance of the high load section HR is small considering the life of the cutting edge 51. Furthermore, when the load is changed during the formation of the trench line TL, it is preferable that the scribe speed is reduced in the high load section HR in order to sufficiently increase the load in the high load section HR at a smaller distance. That is, since it is difficult to control to increase the load of the cutting edge 51 instantaneously, in practice, scribing is performed while increasing the load until a predetermined load is reached in a certain section starting from the position N2. . Therefore, by reducing the speed in the high load section HR, the load can be increased at a smaller distance, and the entire distance of the high load section HR can be reduced.
 トレンチラインTLを形成する工程は、トレンチラインTLの直下においてガラス基板4がトレンチラインTLと交差する方向DC(図28および図29)において連続的につながっている状態であるクラックレス状態が得られるように行われる。このためには、刃先に加えられる荷重が、ガラス基板4の塑性変形を発生させる程度に大きく、かつ、この塑性変形部を起点としたクラックを発生させない程度に小さくされる。 In the step of forming the trench line TL, a crackless state is obtained in which the glass substrate 4 is continuously connected in the direction DC (FIGS. 28 and 29) intersecting the trench line TL immediately below the trench line TL. To be done. For this purpose, the load applied to the blade edge is made large enough to cause plastic deformation of the glass substrate 4 and small enough not to generate cracks starting from this plastic deformation part.
 次に、クラックラインを形成する工程(図4:ステップS50)が、以下のように行われる。 Next, the process of forming a crack line (FIG. 4: step S50) is performed as follows.
 図30~図32を参照して、まず、ガラス基板4の上面SF1上において高荷重区間HRに交差するアシストラインALが形成される。アシストラインALは、ガラス基板4の厚さ方向に浸透するクラックを伴う。アシストラインALは、通常のスクライブ方法によって形成し得る。 30 to 32, first, an assist line AL that intersects the high load section HR is formed on the upper surface SF1 of the glass substrate 4. The assist line AL is accompanied by a crack that penetrates in the thickness direction of the glass substrate 4. The assist line AL can be formed by a normal scribing method.
 次に、アシストラインALに沿ってガラス基板4が分離される。この分離は、通常のブレイク工程によって行い得る。この分離をきっかけとして、厚さ方向におけるガラス基板4のクラックがトレンチラインTLに沿って、トレンチラインTLのうち高荷重区間HRにのみ伸展させられる。 Next, the glass substrate 4 is separated along the assist line AL. This separation can be performed by a normal break process. As a result of this separation, the crack of the glass substrate 4 in the thickness direction is extended along the trench line TL only in the high load section HR of the trench line TL.
 図33および図34を参照して、以上により、トレンチラインTLの一部に沿ってクラックラインCLが形成される。具体的には、高荷重区間HRのうち、分離によって新たに生じた辺と、途中点N2との間の部分に、クラックラインCLが形成される。クラックラインCLが形成される方向は、トレンチラインTLが形成された方向DA(図26)と反対である。 33 and 34, the crack line CL is formed along a part of the trench line TL as described above. Specifically, the crack line CL is formed in a portion between the side newly generated by the separation and the midpoint N2 in the high load section HR. The direction in which the crack line CL is formed is opposite to the direction DA (FIG. 26) in which the trench line TL is formed.
 なお、分離によって新たに生じた辺と終点N3との間の部分にはクラックラインCLが形成されにくい。この理由は、トレンチラインTL近傍に発生させられる内部応力の分布が、トレンチラインTLの形成方向に依存した異方性を有しているためではないかと推測される。 Note that a crack line CL is hardly formed in a portion between the side newly generated by the separation and the end point N3. This is presumably because the distribution of internal stress generated in the vicinity of the trench line TL has anisotropy depending on the direction in which the trench line TL is formed.
 図35を参照して、クラックラインCLによってトレンチラインTLの高荷重区間HRの直下において、ガラス基板4はトレンチラインTLの延在方向と交差する方向DCにおいて連続的なつながりが断たれている。ここで「連続的なつながり」とは、言い換えれば、クラックによって遮られていないつながりのことである。なお、上述したように連続的なつながりが断たれている状態において、クラックラインCLのクラックを介してガラス基板4の部分同士が接触していてもよい。 Referring to FIG. 35, the glass substrate 4 is continuously disconnected in the direction DC intersecting the extending direction of the trench line TL immediately below the high load section HR of the trench line TL by the crack line CL. Here, “continuous connection” means a connection that is not interrupted by a crack. In addition, in the state where the continuous connection is cut as described above, the portions of the glass substrate 4 may be in contact with each other through the cracks of the crack line CL.
 次に、トレンチラインTLに沿ってガラス基板4を分断するブレイク工程が行われる(図4:ステップS60)。この際に、ガラス基板4に応力を加えることによってクラックラインCLを起点として低荷重区間LRに沿ってクラックが伸展させられる。クラックが伸展する方向(図36における矢印PR)は、トレンチラインTLが形成された方向DA(図26)と反対である。 Next, a breaking process for dividing the glass substrate 4 along the trench line TL is performed (FIG. 4: Step S60). At this time, by applying a stress to the glass substrate 4, the crack is extended along the low load section LR starting from the crack line CL. The direction in which the crack extends (arrow PR in FIG. 36) is opposite to the direction DA (FIG. 26) in which the trench line TL is formed.
 以上により、ガラス基板4が分断される。 Thus, the glass substrate 4 is divided.
 本実施の形態によれば、ガラス基板4が分断される位置を規定するためのトレンチラインTL(図26および図27)の形成に際して、高荷重区間HRに比して低荷重区間LRにおいて、刃先51(図1)に加えられる荷重が軽減される。これにより刃先51へのダメージを小さくすることができる。 According to the present embodiment, when the trench line TL (FIGS. 26 and 27) for defining the position where the glass substrate 4 is divided is formed, the cutting edge in the low load section LR as compared with the high load section HR. The load applied to 51 (FIG. 1) is reduced. Thereby, damage to the blade edge 51 can be reduced.
 また低荷重区間LRおよび高荷重区間HRのうち低荷重区間LRがクラックレス状態である場合(図33および図34)、ガラス基板4が分断される起点となるクラックが低荷重区間LRにはない。よってこの状態においてガラス基板4に対して任意の処理を行う場合、低荷重区間LRに不慮の応力が加わっても、ガラス基板4の意図しない分断が生じにくい。よって上記処理を安定的に行うことができる。 Further, when the low load section LR of the low load section LR and the high load section HR is in a crackless state (FIGS. 33 and 34), there is no crack in the low load section LR as a starting point at which the glass substrate 4 is divided. . Therefore, when arbitrary processing is performed on the glass substrate 4 in this state, even if an unexpected stress is applied to the low load section LR, unintentional division of the glass substrate 4 is unlikely to occur. Therefore, the above process can be performed stably.
 また低荷重区間LRおよび高荷重区間HRの両方がクラックレス状態である場合(図26および図27)、ガラス基板4が分断される起点となるクラックがトレンチラインTLにない。よってこの状態においてガラス基板4に対して任意の処理を行う場合、トレンチラインTLに不慮の応力が加わっても、ガラス基板4の意図しない分断が生じにくい。よって上記処理をより安定的に行うことができる。 Further, when both the low load section LR and the high load section HR are in a crackless state (FIGS. 26 and 27), the trench line TL does not have a crack that is a starting point at which the glass substrate 4 is divided. Therefore, when arbitrary processing is performed on the glass substrate 4 in this state, even if an unexpected stress is applied to the trench line TL, unintentional division of the glass substrate 4 is unlikely to occur. Therefore, the above process can be performed more stably.
 またトレンチラインTLはアシストラインALの形成前に形成される。これにより、トレンチラインTLの形成時にアシストラインALが影響を及ぼすことを避けることができる。特に、トレンチラインTL形成のために刃先51がアシストラインAL上を通過した直後における形成異常を避けることができる。 Further, the trench line TL is formed before the assist line AL is formed. Thereby, it is possible to avoid the influence of the assist line AL when the trench line TL is formed. In particular, the formation abnormality immediately after the cutting edge 51 passes over the assist line AL for forming the trench line TL can be avoided.
 <実施の形態10>
 本実施の形態においては、前述した実施の形態1において言及された疑似的軸対称性を刃先の先端部が有する場合について説明する。
<Embodiment 10>
In the present embodiment, a case will be described in which the tip portion of the blade edge has the pseudo-axisymmetric property mentioned in the first embodiment.
 図37は、本実施の形態におけるカッティング器具150の構成を概略的に示す斜視図である。カッティング器具150は、先端部51Nが設けられた刃先51(図2)に代り、先端部151Nが設けられた刃先151を有している。刃先151は、丸められた頂点を有する多角錐の形状を有している。多角錐は側面SDと稜線RGとを有している。多角錐の頂点に先端部151Nが設けられている。 FIG. 37 is a perspective view schematically showing the configuration of the cutting instrument 150 in the present embodiment. The cutting instrument 150 has a cutting edge 151 provided with a tip 151N instead of the cutting edge 51 (FIG. 2) provided with a tip 51N. The blade edge 151 has a polygonal pyramid shape having rounded vertices. The polygonal pyramid has a side surface SD and a ridge line RG. A tip 151N is provided at the apex of the polygonal pyramid.
 図38は、図37の線XXXVIII-XXXVIIIに沿う、軸方向AXに垂直な概略断面図である。線XXXVIII-XXXVIII(図37)は、刃先151における先端部151Nとそれ以外の部分との境界近傍における、軸方向AXに垂直な断面に対応している。以下、この断面視における先端部151Nの形状について説明する。 38 is a schematic cross-sectional view perpendicular to the axial direction AX along the line XXXVIII-XXXVIII in FIG. Line XXXVIII-XXXVIII (FIG. 37) corresponds to a cross section perpendicular to the axial direction AX in the vicinity of the boundary between the tip portion 151N and the other portion of the blade edge 151. Hereinafter, the shape of the tip portion 151N in the cross-sectional view will be described.
 先端部151Nの形状は、上記多角錐に対応したn辺多角形(n≧3)であり、好ましくは正多角形である。図38においては16角形(n=16)が例示されている。先端部151Nは、n個の稜線RG(図37)に対応してn個の点PTを有しており、点PTの各々は外接円CCに接している。また先端部151Nは、n個の側面SD(図37)に対応してn個の辺SDを有しており、辺SDの各々は寸法DSを有している。外接円CCの大きさを一定として、nが大きくなるほど、寸法DSは小さくなり、結果として先端部151Nの断面形状は円形に近づいていく。よってnが大きくなるほど、先端部151Nの、軸方向AXにおける軸対称性は、理想的な幾何学的対称性に近づく。よって、nがある程度大きければ、先端部151Nは、その機能上、軸対称性を有しているといえる。すなわち、先端部151Nは、前述した疑似的軸対称性を有しているといえる。本発明者の検討によれば、寸法DSが1μm以下であれば、先端部151Nは疑似的軸対称性を有しているといえる。この条件を満たすnは、例えば、先端部151Nの角度と、軸AX近傍での先端部151Nの曲率半径とから算出され得る。この算出の例について、以下に説明する。 The shape of the tip portion 151N is an n-side polygon (n ≧ 3) corresponding to the polygonal pyramid, preferably a regular polygon. In FIG. 38, a hexagon (n = 16) is illustrated. The tip portion 151N has n points PT corresponding to the n ridge lines RG (FIG. 37), and each of the points PT is in contact with the circumscribed circle CC. The tip portion 151N has n sides SD corresponding to n side surfaces SD (FIG. 37), and each of the sides SD has a dimension DS. As the size of the circumscribed circle CC is constant and n increases, the dimension DS decreases, and as a result, the cross-sectional shape of the tip portion 151N approaches a circle. Therefore, as n increases, the axial symmetry of the tip 151N in the axial direction AX approaches ideal geometric symmetry. Therefore, if n is large to some extent, it can be said that the tip portion 151N has axial symmetry in terms of its function. That is, it can be said that the tip portion 151N has the pseudo-axisymmetric property described above. According to the study of the present inventor, if the dimension DS is 1 μm or less, it can be said that the tip portion 151N has pseudo-axisymmetric property. For example, n satisfying this condition can be calculated from the angle of the tip portion 151N and the radius of curvature of the tip portion 151N near the axis AX. An example of this calculation will be described below.
 図39は、図38の線A-Aに沿う断面視に対応しており、先端部151Nの例として、軸AX近傍で曲率半径R=3μmを有する先端部151Na~151Ncの表面形状を示している。先端部151Na~151Ncのそれぞれは、先端角度120°、130°および140°を有している。軸AX近傍での曲率半径Rが3μmであることから、先端部51Nの軸方向AXに沿っての寸法が1μmの場合、先端部151Na~151Ncのそれぞれは、直径5.08μm、5.62μmおよび6.56μmを有している。言い換えれば、先端部151Na~151Ncのそれぞれは、円周15.96μm、17.65μmおよび20.60μmを有している。よって、寸法DS(図38)を1μm以下とするnは、先端部151Naの場合は16以上であり、先端部151Nbの場合は18以上であり、先端部151Ncの場合は21以上である。 FIG. 39 corresponds to a cross-sectional view along the line AA in FIG. 38, and shows the surface shapes of the tip portions 151Na to 151Nc having a radius of curvature R = 3 μm near the axis AX as an example of the tip portion 151N. Yes. Each of the tip portions 151Na to 151Nc has tip angles of 120 °, 130 °, and 140 °. Since the radius of curvature R in the vicinity of the axis AX is 3 μm, when the dimension along the axial direction AX of the tip 51N is 1 μm, each of the tips 151Na to 151Nc has a diameter of 5.08 μm, 5.62 μm, and 6.56 μm. In other words, each of the tip portions 151Na to 151Nc has a circumference of 15.96 μm, 17.65 μm, and 20.60 μm. Therefore, n that makes the dimension DS (FIG. 38) 1 μm or less is 16 or more in the case of the tip portion 151Na, 18 or more in the case of the tip portion 151Nb, and 21 or more in the case of the tip portion 151Nc.
 図40は、図38の線A-Aに沿う断面視に対応しており、先端部151Nの例として、軸AX近傍で曲率半径R=5μmを有する先端部151Ni~151Nkの表面形状を示している。先端部151Ni~151Nkのそれぞれは、先端角度120°、130°および140°を有している。軸AX近傍での曲率半径Rが5μmであることから、先端部51Nの軸方向AXに沿っての寸法が1μmの場合、先端部151Ni~151Nkのそれぞれは、直径6.17μm、6.51μmおよび7.26μmを有している。言い換えれば、先端部151Ni~151Nkのそれぞれは、円周19.38μm、20.45μmおよび22.80μmを有している。よって、寸法DS(図38)を1μm以下とするnは、先端部151Niの場合は20以上であり、先端部151Njの場合は21以上であり、先端部151Nkの場合は23以上である。 FIG. 40 corresponds to a cross-sectional view along the line AA in FIG. 38, and shows the surface shapes of the tip portions 151Ni to 151Nk having a radius of curvature R = 5 μm near the axis AX as an example of the tip portion 151N. Yes. Each of the tip portions 151Ni to 151Nk has tip angles of 120 °, 130 °, and 140 °. Since the radius of curvature R in the vicinity of the axis AX is 5 μm, when the dimension along the axial direction AX of the tip 51N is 1 μm, each of the tips 151Ni to 151Nk has a diameter of 6.17 μm, 6.51 μm, and 7.26 μm. In other words, each of the tip portions 151Ni to 151Nk has a circumference of 19.38 μm, 20.45 μm, and 22.80 μm. Therefore, n which sets the dimension DS (FIG. 38) to 1 μm or less is 20 or more in the case of the tip portion 151Ni, 21 or more in the case of the tip portion 151Nj, and 23 or more in the case of the tip portion 151Nk.
 図39および図40の検討結果を踏まえれば、例えばn≧16であれば疑似的軸対称性を得ることができる場合がある。よってnは16以上が好ましい。n≧25であれば、通常用いられる範囲内での任意の先端角度および曲率半径を用いつつ疑似的軸対称性を得ることができる。先端部を形成するための作業の作業性および加工時間に鑑みれば、nは不必要に大きくないことが好ましく、よってnは25以下が好ましい。 Based on the examination results of FIG. 39 and FIG. 40, there may be a case where pseudo axial symmetry can be obtained if, for example, n ≧ 16. Therefore, n is preferably 16 or more. If n ≧ 25, pseudo axial symmetry can be obtained while using an arbitrary tip angle and radius of curvature within the range normally used. In view of workability and processing time for forming the tip, n is preferably not unnecessarily large, and therefore n is preferably 25 or less.
 刃先151を得るためには、例えば、多角柱形状を有する材料片(例えばダイヤモンド片)の先端を複数回研磨することによって、このダイヤモンド片の先端部に略多角錐形状が付与されればよい。変形例として、稜線RG(図37)に対してR面取りが施されてもよい。これにより辺SD(図38)の直線部分が短くなるので、先端部151Nの形状は、より円形に近づく。すなわち、先端部151Nの軸対称性は、より理想的なものに近づく。この場合、より小さなnによっても疑似的軸対称性が得られる。 In order to obtain the blade edge 151, for example, the tip of a diamond piece may be given a substantially polygonal pyramid shape by polishing the tip of a piece of material having a polygonal column shape (for example, a diamond piece) a plurality of times. As a modification, R chamfering may be performed on the ridgeline RG (FIG. 37). As a result, the straight portion of the side SD (FIG. 38) is shortened, so that the shape of the tip portion 151N is closer to a circle. That is, the axial symmetry of the distal end portion 151N is closer to an ideal one. In this case, pseudo axial symmetry can be obtained even with smaller n.
 なお上記各実施の形態においては上面SF1の縁が長方形状である場合について図示されているが、他の形状が用いられてもよい。また上面SF1が平坦である場合について説明したが、上面は湾曲していてもよい。またトレンチラインTLが直線状である場合について説明したが、トレンチラインTLは曲線状であってもよい。また脆性基板としてガラス基板4が用いられる場合について説明したが、脆性基板は、ガラス以外の脆性材料から作られていてもよく、たとえば、セラミックス、シリコン、化合物半導体、サファイアまたは石英から作られ得る。 In each of the above embodiments, the case where the edge of the upper surface SF1 is rectangular is illustrated, but other shapes may be used. Moreover, although the case where upper surface SF1 was flat was demonstrated, the upper surface may be curved. Further, although the case where the trench line TL is linear has been described, the trench line TL may be curved. Moreover, although the case where the glass substrate 4 was used as a brittle board | substrate was demonstrated, the brittle board | substrate may be made from brittle materials other than glass, for example, may be made from ceramics, silicon, a compound semiconductor, sapphire, or quartz.
AL アシストライン
CL クラックライン
AX 軸方向
SF1 上面(一の面)
HR 高荷重区間
LR 低荷重区間
TL,TL1,TL2 トレンチライン
4 ガラス基板(脆性基板)
50,150 カッティング器具
51,151 刃先
51N,151N,151Na~151Nc,151Ni~151Nk 先端部
52 支持部
AL assist line CL crack line AX axial direction SF1 upper surface (one surface)
HR High load section LR Low load section TL, TL1, TL2 Trench line 4 Glass substrate (brittle substrate)
50, 150 Cutting tool 51, 151 Cutting edge 51N, 151N, 151Na to 151Nc, 151Ni to 151Nk Tip 52 Support

Claims (9)

  1.  a)一の面と、前記一の面に垂直な厚さ方向とを有する脆性基板を準備する工程を備え、さらに
     b)軸方向における軸対称性を有する先端部が設けられた刃先を準備する工程を備え、さらに
     c)前記脆性基板の前記一の面に対して前記刃先の前記軸方向を垂直としつつ、前記一の面上において前記刃先の前記先端部を摺動させることによって、溝形状を有するトレンチラインを塑性変形により前記脆性基板の前記一の面上に形成する工程を備え、前記トレンチラインは、前記トレンチラインの下方において前記脆性基板が前記トレンチラインと交差する方向において連続的につながっている状態であるクラックレス状態が得られるように形成され、さらに
     d)前記トレンチラインに沿って前記厚さ方向における前記脆性基板のクラックを伸展させることによって、クラックラインを形成する工程を備え、前記クラックラインによって前記トレンチラインの下方において前記脆性基板は前記トレンチラインと交差する方向において連続的なつながりが断たれており、さらに
     e)前記クラックラインに沿って前記脆性基板を分断する工程を備える、
    脆性基板の分断方法。
    a) preparing a brittle substrate having one surface and a thickness direction perpendicular to the one surface; and b) preparing a cutting edge provided with a tip having axial symmetry in the axial direction. And c) a groove shape by sliding the tip portion of the blade edge on the one surface while making the axial direction of the blade edge perpendicular to the one surface of the brittle substrate. Forming the trench line on the one surface of the brittle substrate by plastic deformation, the trench line continuously below the trench line in a direction in which the brittle substrate intersects the trench line. It is formed so as to obtain a crackless state that is connected, and d) extends the crack of the brittle substrate in the thickness direction along the trench line. A step of forming a crack line, wherein the brittle substrate is disconnected continuously in the direction intersecting the trench line below the trench line by the crack line; and e) the crack Cutting the brittle substrate along a line,
    Method for cutting a brittle substrate.
  2.  前記工程c)は、
      c1)前記刃先の前記先端部を第1方向に向かって摺動させる工程と、
      c2)前記工程c1)の後に、前記刃先の前記先端部を、前記第1方向と異なる第2方向に向かって摺動させる工程と、
    を含む、請求項1に記載の脆性基板の分断方法。
    Said step c)
    c1) sliding the tip of the blade edge in the first direction;
    c2) After the step c1), the step of sliding the tip of the cutting edge in a second direction different from the first direction;
    The method for dividing a brittle substrate according to claim 1, comprising:
  3.  前記工程c)は、前記刃先の前記先端部を前記脆性基板の前記一の面上に接触させつつ、前記刃先の前記先端部が向かう方向を前記第1の方向から前記第2の方向に不連続に変化させる工程を含む、請求項2に記載の脆性基板の分断方法。 In the step c), the direction of the tip of the cutting edge is not changed from the first direction to the second direction while bringing the tip of the cutting edge into contact with the one surface of the brittle substrate. The method for dividing a brittle substrate according to claim 2, comprising a step of continuously changing.
  4.  前記工程c)において、前記刃先の前記先端部は全方向に向かって摺動させられる、請求項1に記載の脆性基板の分断方法。 The brittle substrate cutting method according to claim 1, wherein, in the step c), the tip of the cutting edge is slid in all directions.
  5.  前記刃先は、前記軸方向における軸対称性を有する直円錐形状を含み、前記刃先の前記先端部は前記直円錐形状の頂点に設けられている、請求項1から4のいずれか1項に記載の脆性基板の分断方法。 The said blade edge | tip contains the right cone shape which has the axial symmetry in the said axial direction, The said front-end | tip part of the said blade edge | tip is provided in the vertex of the said right cone shape. Method for cutting a brittle substrate.
  6.  前記工程c)は、前記軸方向周りに前記刃先を回転させる工程を含む、請求項1から5のいずれか1項に記載の脆性基板の分断方法。 The brittle substrate cutting method according to any one of claims 1 to 5, wherein the step c) includes a step of rotating the blade edge around the axial direction.
  7.  前記軸方向周りに前記刃先を回転させる工程は、前記脆性基板の前記一の面上において前記刃先の前記先端部を摺動させながら前記軸方向周りに前記刃先を回転させる工程を含む、請求項6に記載の脆性基板の分断方法。 The step of rotating the cutting edge around the axial direction includes a step of rotating the cutting edge around the axial direction while sliding the tip of the cutting edge on the one surface of the brittle substrate. 6. The method for dividing a brittle substrate according to 6.
  8.  前記軸方向周りに前記刃先を回転させる工程は、前記脆性基板の前記一の面上において前記刃先の前記先端部を摺動させることなく前記軸方向周りに前記刃先を回転させる工程を含む、請求項6または7に記載の脆性基板の分断方法。 The step of rotating the blade edge around the axial direction includes the step of rotating the blade edge around the axial direction without sliding the tip of the blade edge on the one surface of the brittle substrate. Item 8. The method for dividing a brittle substrate according to Item 6 or 7.
  9.  前記工程c)は、前記脆性基板の前記一の面上において前記刃先の前記先端部が摺動することになる位置に潤滑剤を供給する工程を含む、請求項1から8のいずれか1項に記載の脆性基板の分断方法。 9. The method according to claim 1, wherein the step c) includes a step of supplying a lubricant to a position where the tip portion of the cutting edge slides on the one surface of the brittle substrate. A method for dividing a brittle substrate as described in 1.
PCT/JP2017/018536 2016-05-25 2017-05-17 Brittle substrate cutting method WO2017204055A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780032003.5A CN109219505B (en) 2016-05-25 2017-05-17 Method for dividing brittle substrate
JP2018519215A JP6645577B2 (en) 2016-05-25 2017-05-17 Method of cutting brittle substrate
KR1020187033990A KR102167941B1 (en) 2016-05-25 2017-05-17 Method of dividing brittle substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-103952 2016-05-25
JP2016103952 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204055A1 true WO2017204055A1 (en) 2017-11-30

Family

ID=60412293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018536 WO2017204055A1 (en) 2016-05-25 2017-05-17 Brittle substrate cutting method

Country Status (5)

Country Link
JP (1) JP6645577B2 (en)
KR (1) KR102167941B1 (en)
CN (1) CN109219505B (en)
TW (1) TWI740945B (en)
WO (1) WO2017204055A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100469A (en) * 2020-12-24 2022-07-06 三星ダイヤモンド工業株式会社 Method for processing brittle material substrate and method for dividing brittle material substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428728B (en) * 2018-05-14 2019-07-02 云谷(固安)科技有限公司 Array substrate and production method, display panel and production method, display device
US10840267B2 (en) 2018-05-14 2020-11-17 Yungu (Gu'an) Technology Co., Ltd. Array substrates and manufacturing methods thereof, and display panels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007677A (en) * 2004-06-29 2006-01-12 National Institute For Materials Science Diamond polycrystalline substance scriber
JP2014031292A (en) * 2012-08-03 2014-02-20 Mitsuboshi Diamond Industrial Co Ltd Scribing method of tempered glass substrate
JP2014088295A (en) * 2012-10-31 2014-05-15 Amagasaki Kosakusho:Kk Cleaving device for rigid brittle plate
JP2016069195A (en) * 2014-09-26 2016-05-09 三星ダイヤモンド工業株式会社 Substrate segmentation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074143B2 (en) 1995-11-06 2000-08-07 三星ダイヤモンド工業株式会社 Glass cutter wheel
WO2004041493A1 (en) * 2002-11-06 2004-05-21 Mitsuboshi Diamond Industrial Co.,Ltd. Scribe line forming device and scribe line forming method
JP5060880B2 (en) * 2007-09-11 2012-10-31 三星ダイヤモンド工業株式会社 Fragment material substrate cutting apparatus and method
JP5597327B2 (en) * 2010-06-29 2014-10-01 学校法人東京理科大学 Diamond-coated tool and manufacturing method thereof
JP2015191999A (en) * 2014-03-28 2015-11-02 三星ダイヤモンド工業株式会社 Cutting method of silicon substrate
TWI680106B (en) 2014-03-31 2019-12-21 日商三星鑽石工業股份有限公司 Method for cutting brittle material substrate
WO2016047317A1 (en) 2014-09-25 2016-03-31 三星ダイヤモンド工業株式会社 Method for cutting brittle substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007677A (en) * 2004-06-29 2006-01-12 National Institute For Materials Science Diamond polycrystalline substance scriber
JP2014031292A (en) * 2012-08-03 2014-02-20 Mitsuboshi Diamond Industrial Co Ltd Scribing method of tempered glass substrate
JP2014088295A (en) * 2012-10-31 2014-05-15 Amagasaki Kosakusho:Kk Cleaving device for rigid brittle plate
JP2016069195A (en) * 2014-09-26 2016-05-09 三星ダイヤモンド工業株式会社 Substrate segmentation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100469A (en) * 2020-12-24 2022-07-06 三星ダイヤモンド工業株式会社 Method for processing brittle material substrate and method for dividing brittle material substrate
JP7255890B2 (en) 2020-12-24 2023-04-11 三星ダイヤモンド工業株式会社 Processing method and cutting method for brittle material substrate

Also Published As

Publication number Publication date
CN109219505A (en) 2019-01-15
KR102167941B1 (en) 2020-10-20
TWI740945B (en) 2021-10-01
KR20180136528A (en) 2018-12-24
TW201808840A (en) 2018-03-16
CN109219505B (en) 2021-05-07
JP6645577B2 (en) 2020-02-14
JPWO2017204055A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2017204055A1 (en) Brittle substrate cutting method
KR101912685B1 (en) Method for severing brittle substrate
JP6589380B2 (en) Method for forming vertical crack in brittle material substrate and method for dividing brittle material substrate
JP6555354B2 (en) Method for dividing brittle substrate
CN107127899B (en) Method for dividing brittle substrate
TWI605024B (en) Breaking method of brittle substrate
JP6544149B2 (en) Method of forming inclined cracks in brittle material substrate and method of dividing brittle material substrate
CN107108322B (en) Method for dividing brittle substrate
CN106466888B (en) Method for forming vertical crack in brittle material substrate and method for dividing same
JP6648817B2 (en) Method of cutting brittle substrate
JP6589381B2 (en) Method for forming vertical crack in brittle material substrate and method for dividing brittle material substrate
KR20180002495A (en) Method for dividing brittle substrate
JP2017065006A (en) Method of segmenting brittle substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519215

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187033990

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802647

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802647

Country of ref document: EP

Kind code of ref document: A1