WO2017203879A1 - Motor control device and control method, and pump system - Google Patents

Motor control device and control method, and pump system Download PDF

Info

Publication number
WO2017203879A1
WO2017203879A1 PCT/JP2017/015080 JP2017015080W WO2017203879A1 WO 2017203879 A1 WO2017203879 A1 WO 2017203879A1 JP 2017015080 W JP2017015080 W JP 2017015080W WO 2017203879 A1 WO2017203879 A1 WO 2017203879A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
duty ratio
motor
power supply
control device
Prior art date
Application number
PCT/JP2017/015080
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 富永
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Publication of WO2017203879A1 publication Critical patent/WO2017203879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a motor control device, a control method, and a pump system.
  • a solar inverter is provided with a device for detecting voltage, and the power of the solar cell is monitored.
  • the control unit that controls the driving of the motor, there is a possibility that a time lag occurs.
  • a time lag occurs, it becomes impossible to control the drive of the motor at an appropriate rotational speed.
  • the present invention provides a motor control device and a control method capable of driving a motor at an appropriate rotational speed with good responsiveness in accordance with the output status of a power supply unit. Further, by using the present invention in a pump system, it is possible to efficiently pump water even in an environment where electric power infrastructure is not established.
  • An exemplary motor control device of the present invention is a control device that controls driving of a motor that is supplied with electric power from a power supply unit, and includes a drive circuit unit that energizes the motor, and the drive circuit unit.
  • the control unit includes a power supply voltage calculation unit that calculates a voltage value of the power supply unit based on a current value detected by the current detection unit, and a motor voltage based on the voltage value calculated by the power supply voltage calculation unit.
  • An adjustment unit for adjusting the rotational speed.
  • the exemplary pump system of the present invention includes the power supply unit, the pump unit including the motor, and the exemplary control device of the present invention described above.
  • An exemplary motor control method of the present invention is a motor control method driven by electric power supplied from a power supply unit, and includes a first step of detecting a current value of a current supplied to the motor; A second step of calculating a voltage value of the power supply unit based on the detected current value; and a third step of adjusting the rotational speed of the motor based on the calculated voltage value.
  • the exemplary present invention it is possible to provide a motor control device and a control method capable of driving a motor at an appropriate rotational speed with good responsiveness in accordance with the output state of the power supply unit. Further, according to the present invention, it is possible to provide a pump system that can efficiently pump water even in an environment where electric power infrastructure is not prepared.
  • FIG. 1 is a block diagram showing a configuration of a pump system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a pump unit and its surroundings included in the pump system according to the embodiment of the present invention.
  • FIG. 3 is a block diagram of a control unit included in the control device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing an example of the operation of the control device according to the embodiment of the present invention.
  • FIG. 5 is a block diagram for explaining a modification of the control device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a pump system 1 according to an embodiment of the present invention.
  • the pump system 1 includes a power supply unit 10, a pump unit 20, and a control device 30.
  • the power supply unit 10 includes a power generation unit 11 and a power conditioner (Power Conditioning System: PCS) 12.
  • the power generation unit 11 generates power using natural energy. For this reason, the pump system 1 of this embodiment can be used even in an area where electric power infrastructure is not established.
  • the power generation unit 11 may be, for example, any one of a solar power generation device, a wind power generation device, a wave power generation device, and a geothermal power generation device.
  • the wave power generation device is a device that generates power using wave energy such as seawater. Further, the power generation unit 11 may include a plurality of types of power generation devices that use these natural energies.
  • the power generation unit 11 is a solar power generation device.
  • the PCS 12 appropriately converts power generated by the power generation unit 11. When the power generation unit 11 is a solar power generation device, the PCS 12 converts DC power into AC power.
  • the pump unit 20 has a motor 21.
  • the motor 21 is a brushless motor.
  • FIG. 2 is a schematic diagram illustrating a configuration of the pump unit 20 and the periphery thereof included in the pump system 1 according to the embodiment of the present invention.
  • the pump unit 20 has an impeller unit 22 connected to a motor 21.
  • the impeller portion 22 has blades (not shown) that rotate when the motor 21 is driven.
  • the pump system 1 has a running water cable 40 connected to the impeller unit 22 and a water storage tank 41.
  • the pump unit 20 is immersed in, for example, an underground water source. By driving the motor 21, the blades of the impeller portion 22 rotate to suck up water. The water sucked up by the impeller unit 22 is pumped to the ground through the running water cable 40. The pumped water is stored in the water storage tank 41.
  • the control device 30 is supplied with electric power from the power supply unit 10 and controls driving of the motor 21.
  • the control device 30 is connected to the motor 21 with a cable and is disposed on the ground.
  • the control apparatus 30 is accommodated in one control box with PCS12.
  • the control device 30 is driven by a command from an input device (not shown).
  • the input device may be provided in a housing that accommodates the control device 30 or may be a remote controller.
  • the input device may include, for example, a power switch that turns on and off the control device 30.
  • the input device may have a plurality of input keys for operating the control device 30.
  • the input key may be a button or a touch panel, for example. ⁇ 2. Details of control device>
  • the control device 30 includes a drive circuit unit 31, a control unit 32, and a current detection unit 33.
  • the drive circuit unit 31 energizes the motor 21.
  • the drive circuit unit 31 is an inverter in detail.
  • the drive circuit unit 31 is a PWM (Pulse Width Modulation) control type inverter.
  • the control unit 32 controls the drive circuit unit 31.
  • the control unit 32 controls the drive circuit unit 31 with a PWM signal.
  • the control unit 32 is a microcomputer having a CPU (Central Processing Unit) 32a and a memory 32b.
  • the memory 32b includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the ROM stores programs and data necessary for controlling the driving of the motor 21.
  • the current detection unit 33 detects the current value of the current supplied to the motor 21. Specifically, the current detection unit 33 detects the current value of the current flowing through the drive circuit unit 31 when the drive circuit unit 31 energizes the motor 21. The current detection unit 33 outputs the detected current value to the control unit 32.
  • the current detection unit 33 is a current measurement circuit configured using a shunt resistor.
  • the current detection unit 33 may be a current measurement circuit configured using a Hall element or the like.
  • FIG. 3 is a block diagram of the control unit 32 included in the control device 30 according to the embodiment of the present invention.
  • FIG. 3 also shows a drive circuit unit 31 and a current detection unit 33 for easy understanding.
  • the control unit 32 includes an initial value output unit 321, a duty ratio generation unit 322, a rotation speed calculation unit 323, a duty ratio measurement unit 324, a power supply voltage calculation unit 325, an adjustment unit 326, and a determination unit 327.
  • Some or all of these functional units are realized, for example, by the CPU 32a executing various programs stored in the memory 32b.
  • some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • the initial value output unit 321 outputs the initial value of the duty ratio of the PWM signal.
  • the initial value is stored in the memory 32b.
  • the initial value is a duty ratio that sets the rotational speed of the motor 21 to an optimal rotational speed (rated value).
  • This duty ratio is hereinafter referred to as a rated PWM duty ratio.
  • a duty ratio of 80% or the like is stored as an initial value in the memory 32b.
  • the optimum rotational speed is, for example, the rotational speed for flowing water at a predetermined flow rate when used in the above pump system. Since the initial value of the duty ratio of the PWM signal is prepared in advance, the control of the motor 21 can be started quickly and appropriately.
  • the duty ratio generation unit 322 generates a duty ratio of the PWM signal based on the rotation number calculated by the rotation number calculation unit 323.
  • the duty ratio generation unit 322 compares the rotation speed of the motor 21 assumed when the duty ratio is set to the initial value with the rotation speed calculated by the rotation speed calculation section 323 to determine the duty ratio. Generate.
  • the memory 32b stores the number of rotations of the motor 21 that is assumed when the duty ratio is an initial value. This pre-stored rotational speed is hereinafter referred to as a target rotational speed.
  • the rotational speed (for example, 5000 rpm) of the motor 21 when the duty ratio is the rated PWM duty ratio is stored in advance as the target rotational speed.
  • the duty ratio generation unit 322 generates a duty ratio by comparing the current rotation speed of the motor 21 acquired from the rotation speed calculation section 323 with the target rotation speed.
  • the rotation speed calculation unit 323 calculates the rotation speed of the motor 21 based on the current value detected by the current detection unit 33.
  • the rotational speed of the motor 21 and the current used by the motor 21 are in a proportional relationship. For this reason, if the relationship between the rotational speed of the motor 21 to be used and the current value is measured in advance, the rotational speed of the motor 21 can be calculated by detecting the current value of the motor 21.
  • the duty ratio measurement unit 324 detects a change in the duty ratio generated by the duty ratio generation unit 322. In the present embodiment, the duty ratio measurement unit 324 measures a change amount of the duty ratio in a preset time. The duty ratio measuring unit 324 detects that the predetermined duty ratio has changed when the measured change amount exceeds a predetermined threshold.
  • the power supply voltage calculation unit 325 calculates the voltage value of the power supply unit 10 based on the current value detected by the current detection unit 33. In the present embodiment, the power supply voltage calculation unit 325 calculates the voltage value of the power supply unit 10 based on the rotation number calculated by the rotation number calculation unit 323.
  • the inventor of the present application has found that the voltage value of the power supply unit 10 is empirically calculated by the following expression (1).
  • Sv a ⁇ Mr ⁇ (D ⁇ 100) + b
  • Sv Voltage value of power supply unit [V] Mr: Motor rotation speed [rpm]
  • D Duty ratio [%]
  • a, b Constants
  • the constants a and b are determined by the characteristics of the motor 21.
  • the adjustment unit 326 adjusts the rotation speed of the motor 21 based on the voltage value calculated by the power supply voltage calculation unit 325.
  • the adjustment unit 326 adjusts the duty ratio of the PWM signal.
  • the number of rotations of the motor 21 varies by adjusting the duty ratio.
  • the adjustment unit 326 adjusts the duty ratio based on the voltage value calculated by the power supply voltage calculation unit 325 when a predetermined duty ratio variation is detected by the duty ratio measurement unit 324.
  • the adjustment unit 326 adjusts the duty ratio so that the voltage value of the power supply unit 10 approaches the target voltage value.
  • the target voltage value is the voltage value of the power supply unit 10 when the output of the power supply unit 10 is 100% (rated value).
  • the target voltage value is acquired in advance by experiments or the like and stored in the memory 32b.
  • the maximum power that can be output from the power generation unit 11 at that time varies depending on the amount of solar radiation.
  • the relationship between the voltage value and the current value that maximizes the power of the power generation unit 11 varies depending on the variation in the amount of solar radiation.
  • the adjustment unit 326 adjusts the duty ratio so that the voltage value of the power supply unit 10 approaches the target voltage value. Thereby, the motor 21 can be driven in a state in which the power supply unit 10 outputs a value close to the maximum power that can be output at that time, regardless of variations in the amount of solar radiation.
  • the determination unit 327 determines whether to stop driving the motor 21 based on the voltage value calculated by the power supply voltage calculation unit 325. In the present embodiment, the determination unit 327 determines to stop driving the motor 21 when the voltage value calculated by the power supply voltage calculation unit 325 is smaller than a predetermined value.
  • the predetermined value is a minimum voltage value necessary for driving the motor 21.
  • the motor 21 can be protected by stopping the driving of the motor 21 when the minimum voltage value required for driving the motor 21 cannot be obtained.
  • the control unit 32 may not include the determination unit 327 in some cases. ⁇ 3. Operation of control device>
  • FIG. 4 is a flowchart showing an example of the operation of the control device 30 according to the embodiment of the present invention.
  • FIG. 4 shows an example of a method for controlling the motor 21 driven by the power supplied from the power supply unit 10.
  • the initial value output unit 321 reads the initial value of the duty ratio from the memory 32b and outputs it (step S1).
  • the duty ratio generation unit 322 acquires the target rotation speed of the motor 21 from the memory 32b, and generates a duty ratio by comparing with the rotation speed acquired from the rotation speed calculation section 323 (step S2). If the difference between the rotation speed calculated by the rotation speed calculation unit 323 and the target rotation speed is within a predetermined range, the current duty ratio is generated.
  • the duty ratio generation unit 322 determines that the rotation speed calculated by the rotation speed calculation unit 323 is different from the target rotation speed. to decide.
  • the duty ratio generation unit 322 generates a duty ratio larger than the current duty ratio when the rotation number calculated by the rotation number calculation unit 323 is lower than the target rotation number. Further, the duty ratio generation unit 322 generates a duty ratio smaller than the current duty ratio when the rotation speed calculated by the rotation speed calculation unit 323 is higher than the target rotation speed.
  • duty ratio generation unit 322 generates the same duty ratio as the duty ratio output from the initial value output unit 321 before the rotation number calculation unit 323 calculates the rotation number.
  • the rotation speed calculation unit 323 acquires the current value detected by the current detection unit 33 (step S3). That is, the method for controlling the motor 21 includes a step of detecting a current value of a current that is supplied to the motor 21. The rotation speed calculation unit 323 calculates the rotation speed of the motor 21 based on the acquired current value (step S4). At this time, the duty ratio measuring unit 324 confirms whether or not a predetermined duty ratio fluctuation is detected (step S5). When a predetermined duty ratio variation is not detected in step S5, the process returns to step S2 and the above-described operation is repeated.
  • step S6 the voltage value of the power supply unit 10 is calculated by the power supply voltage calculation unit 325 (step S6). That is, the method for controlling the motor 21 includes a step of calculating the voltage value of the power supply unit 10 based on the detected current value. Note that, as described above, in the present embodiment, the power supply voltage calculation unit 325 calculates the voltage value of the power supply unit 10 using the number of rotations of the motor 21 calculated based on the detected current value.
  • the adjustment unit 326 confirms whether or not the calculated voltage value is a target voltage value (step S7). If the difference between the calculated voltage value and the target voltage value is within a predetermined range, the adjustment unit 326 determines that the calculated voltage value is the target voltage value. On the other hand, the adjustment unit 326 determines that the calculated voltage value is not the target voltage value when the difference between the calculated voltage value and the target voltage value exceeds a predetermined range.
  • step S7 If it is determined in step S7 that the calculated voltage value is the target voltage value, the adjustment unit 326 maintains the duty ratio at the current duty ratio (step S8). With the duty ratio maintained, the process returns to step S6 and the subsequent operations are repeated.
  • step S7 when it is determined in step S7 that the calculated voltage value is not the target voltage value, the determination unit 327 confirms whether or not the calculated voltage value is smaller than a predetermined value (step S9). If the voltage value calculated by the power supply voltage calculation unit 325 is smaller than the predetermined value in step S9, the driving of the motor 21 is stopped (step S10). The drive circuit unit 31 is instructed by the control unit 32 to stop driving the motor 21.
  • the adjustment unit 326 changes the duty ratio (step S11). Specifically, when the calculated voltage value is smaller than the target voltage value, the adjustment unit 326 decreases the current duty ratio. When the calculated voltage value is larger than the target voltage value, the adjustment unit 326 increases the current duty ratio. When the duty ratio decreases, the current value and rotation speed of the motor 21 decrease, and the voltage value of the power supply unit 10 increases. As the duty ratio increases, the current value and rotation speed of the motor 21 increase, and the voltage value of the power supply unit 10 decreases. That is, the method for controlling the motor 21 includes a step of adjusting the rotation speed of the motor 21 based on the calculated voltage value. The adjustment unit 326 adjusts the duty ratio so that the voltage value of the power supply unit 10 approaches the target voltage value. After adjusting the duty ratio, the process returns to step S6 and the subsequent operations are repeated.
  • the adjustment amount of the duty ratio is preferably determined according to the magnitude of the difference between the calculated voltage value and the target voltage value.
  • a table or calculation formula for determining the adjustment amount of the duty ratio is preferably stored in the memory 32b. The table or calculation formula may be created based on information collected through experiments.
  • the motor 21 is controlled to reach the target rotational speed until the control device 30 is turned on and a predetermined duty ratio fluctuation is detected.
  • the motor 21 is controlled so that the voltage value of the power supply unit 10 becomes the target voltage value.
  • the motor 21 is rotated at an appropriate rotation speed according to the output status of the power supply unit 10. Can be made.
  • the pump system 1 having the control device 30 can efficiently pump water.
  • FIG. 5 is a block diagram for explaining a modification of the control device 30 according to the embodiment of the present invention.
  • the control device of the modified example also includes a drive circuit unit 31, a control unit 34, and a current detection unit 33.
  • the drive circuit unit 31 and the current detection unit 33 have the same configuration as that of the above-described embodiment.
  • an initial value setting unit 35 is provided outside the control unit 34 instead of providing the initial value output unit 321 in the control unit 34. This point is different from the configuration of the embodiment described above.
  • the control unit 34 has a duty ratio generation unit 322, a rotation speed calculation unit 323, a duty ratio measurement unit 324, a power supply voltage calculation unit 325, an adjustment unit 326, and a determination unit 327 that are basically the same as those in the above-described embodiment. is there. For this reason, these detailed explanations are omitted unless particularly necessary.
  • the initial value setting unit 35 is a device for inputting an initial value of the duty ratio of the PWM signal from outside and outputting the input initial value to the control unit 34 in detail. That is, the control unit 34 is provided so that the initial value of the duty ratio of the PWM signal can be set from the outside.
  • the duty ratio generation unit 322 generates a duty ratio by comparing the rotation speed assumed when the duty ratio is the initial value with the rotation speed calculated by the rotation speed calculation section 323.
  • the operation of the control unit 34 is the same as that of the control unit 32 of the above-described embodiment except that the data obtained from the initial value setting unit 35 is used instead of the data obtained from the initial value output unit 321. .
  • the initial value setting unit 35 When the initial value setting unit 35 is used, the initial value of the duty ratio can be changed from the outside. For this reason, an initial value can be appropriately set according to, for example, the usage environment of the pump system 1.
  • the initial value setting unit 35 may be configured to communicate with the control unit 34 by wire or may be configured to communicate wirelessly.
  • the input of information in the initial value setting unit 35 may be, for example, a button input method or a touch panel input method.
  • the initial value setting unit 35 may have a function of inputting other information such as a target rotational speed in addition to the initial value of the duty ratio.
  • the initial value setting unit 35 may be, for example, a mobile terminal.
  • control device of the present invention is applied to the pump system.
  • this is exemplary.
  • the control device of the present invention may be applied to other systems such as a system for driving a fan.
  • the present invention can be suitably used for a system in which a motor is driven by a power source using natural energy such as solar power generation or wind power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A control device that is supplied with power from a power generation unit and controls the driving of a motor, said control device having: a drive circuit unit that supplies current to the motor; a control unit that controls the drive circuit unit; and a current detection unit that detects the current value of the current transmitted to the motor. The control unit has: a power supply voltage calculation unit that calculates the voltage value of the power supply unit on the basis of the current value detected by the current detection unit; and an adjustment unit that adjusts the rotational frequency of the motor on the basis of the voltage value calculated by the power supply voltage calculation unit.

Description

モータの制御装置及び制御方法、並びにポンプシステムMotor control device, control method, and pump system
 本発明は、モータの制御装置及び制御方法、並びにポンプシステムに関する。 The present invention relates to a motor control device, a control method, and a pump system.
 国際公開第2003/065564号には、太陽電池を電源として電動機を可変速駆動する太陽光インバータの制御装置が開示される。当該制御装置は、いわゆる最大電力点追尾(Maximum Power Point Tracking:MPPT)制御法を用いて太陽光インバータを制御する。MPPT制御法では、日射量が変動しても、太陽電池の動作点がその都度の最大電力点に追従する。 International Publication No. 2003/066554 discloses a solar inverter control device that uses a solar cell as a power source and drives an electric motor at a variable speed. The said control apparatus controls a solar inverter using what is called a maximum electric power point tracking (Maximum | power * Point | Tracking: MPPT) control method. In the MPPT control method, even if the amount of solar radiation varies, the operating point of the solar cell follows the maximum power point in each case.
国際公開第2003/065564号International Publication No. 2003/066554
 特許文献1の方法では、太陽光インバータに電圧を検出する装置等が設けられ、太陽電池の電力が監視される。この監視装置からモータの駆動を制御する制御部に情報を出力する際に、タイムラグが生じる可能性がある。タイムラグが生じると、常に適切な回転数でモータの駆動を制御できなくなってしまう。 In the method of Patent Document 1, a solar inverter is provided with a device for detecting voltage, and the power of the solar cell is monitored. When information is output from the monitoring device to the control unit that controls the driving of the motor, there is a possibility that a time lag occurs. When a time lag occurs, it becomes impossible to control the drive of the motor at an appropriate rotational speed.
 以上の点に鑑みて、本発明は、電源部の出力状況に合わせて応答性良く適切な回転数でモータを駆動させることができるモータの制御装置及び制御方法を提供する。また、本発明をポンプシステムで用いることで、電力インフラが整っていない環境でも効率良く水を汲み上げることを可能にする。 In view of the above, the present invention provides a motor control device and a control method capable of driving a motor at an appropriate rotational speed with good responsiveness in accordance with the output status of a power supply unit. Further, by using the present invention in a pump system, it is possible to efficiently pump water even in an environment where electric power infrastructure is not established.
 本発明の例示的なモータの制御装置は、電源部から電力が供給され、モータの駆動を制御する制御装置であって、前記モータに対して通電を行う駆動回路部と、前記駆動回路部を制御する制御部と、前記モータに対して通電される電流の電流値を検出する電流検出部と、を有する。前記制御部は、前記電流検出部で検出される電流値に基づいて前記電源部の電圧値を算出する電源電圧算出部と、前記電源電圧算出部で算出される電圧値に基づいて前記モータの回転数を調整する調整部と、を有する An exemplary motor control device of the present invention is a control device that controls driving of a motor that is supplied with electric power from a power supply unit, and includes a drive circuit unit that energizes the motor, and the drive circuit unit. A control unit for controlling, and a current detection unit for detecting a current value of a current supplied to the motor. The control unit includes a power supply voltage calculation unit that calculates a voltage value of the power supply unit based on a current value detected by the current detection unit, and a motor voltage based on the voltage value calculated by the power supply voltage calculation unit. An adjustment unit for adjusting the rotational speed.
 本発明の例示的なポンプシステムは、前記電源部と、前記モータを有するポンプ部と、上述した本発明の例示的な制御装置と、を有する。 The exemplary pump system of the present invention includes the power supply unit, the pump unit including the motor, and the exemplary control device of the present invention described above.
 本発明の例示的なモータの制御方法は、電源部から供給される電力によって駆動するモータの制御方法であって、前記モータに対して通電される電流の電流値を検出する第1ステップと、検出された電流値に基づいて前記電源部の電圧値を算出する第2ステップと、算出された電圧値に基づいて前記モータの回転数を調整する第3ステップと、を有する。 An exemplary motor control method of the present invention is a motor control method driven by electric power supplied from a power supply unit, and includes a first step of detecting a current value of a current supplied to the motor; A second step of calculating a voltage value of the power supply unit based on the detected current value; and a third step of adjusting the rotational speed of the motor based on the calculated voltage value.
 例示的な本発明によれば、電源部の出力状況に合わせて応答性良く適切な回転数でモータを駆動させることができるモータの制御装置及び制御方法を提供するができる。また、例示的な本発明によれば、電力インフラが整っていない環境でも効率良く水を汲み上げることができるポンプシステムを提供することができる。 According to the exemplary present invention, it is possible to provide a motor control device and a control method capable of driving a motor at an appropriate rotational speed with good responsiveness in accordance with the output state of the power supply unit. Further, according to the present invention, it is possible to provide a pump system that can efficiently pump water even in an environment where electric power infrastructure is not prepared.
図1は、本発明の実施形態に係るポンプシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a pump system according to an embodiment of the present invention. 図2は、本発明の実施形態に係るポンプシステムが有するポンプ部及びその周辺の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a pump unit and its surroundings included in the pump system according to the embodiment of the present invention. 図3は、本発明の実施形態に係る制御装置が有する制御部のブロック図である。FIG. 3 is a block diagram of a control unit included in the control device according to the embodiment of the present invention. 図4は、本発明の実施形態に係る制御装置の動作の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the operation of the control device according to the embodiment of the present invention. 図5は、本発明の実施形態に係る制御装置の変形例を説明するためのブロック図である。FIG. 5 is a block diagram for explaining a modification of the control device according to the embodiment of the present invention.
 以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。
<1.ポンプシステムの概略>
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
<1. Outline of pump system>
 まず、本発明の例示的な実施形態に係るポンプシステムの概略構成について説明する。図1は、本発明の実施形態に係るポンプシステム1の構成を示すブロック図である。図1に示すように、ポンプシステム1は、電源部10と、ポンプ部20と、制御装置30とを有する。 First, a schematic configuration of a pump system according to an exemplary embodiment of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a pump system 1 according to an embodiment of the present invention. As shown in FIG. 1, the pump system 1 includes a power supply unit 10, a pump unit 20, and a control device 30.
 電源部10は、発電部11とパワーコンディショナー(Power Conditioning System :PCS)12とを有する。本実施形態では、発電部11は、自然エネルギーを利用して発電する。このために、本実施形態のポンプシステム1は、電力インフラが整っていない地域でも利用することができる。 The power supply unit 10 includes a power generation unit 11 and a power conditioner (Power Conditioning System: PCS) 12. In the present embodiment, the power generation unit 11 generates power using natural energy. For this reason, the pump system 1 of this embodiment can be used even in an area where electric power infrastructure is not established.
 発電部11は、例えば、太陽光発電装置、風力発電装置、波力発電装置、及び、地熱発電装置のうちのいずれかであってよい。なお、波力発電装置は、海水等の波のエネルギーを利用して発電する装置である。また、発電部11は、これらの自然エネルギーを利用する発電装置を複数種類含んでもよい。本実施形態では、発電部11は太陽光発電装置である。PCS12は、発電部11で発電される電力の電力変換を適宜行う。発電部11が太陽光発電装置である場合、PCS12は直流電力を交流電力に変換する。 The power generation unit 11 may be, for example, any one of a solar power generation device, a wind power generation device, a wave power generation device, and a geothermal power generation device. The wave power generation device is a device that generates power using wave energy such as seawater. Further, the power generation unit 11 may include a plurality of types of power generation devices that use these natural energies. In the present embodiment, the power generation unit 11 is a solar power generation device. The PCS 12 appropriately converts power generated by the power generation unit 11. When the power generation unit 11 is a solar power generation device, the PCS 12 converts DC power into AC power.
 ポンプ部20はモータ21を有する。本実施形態では、モータ21はブラシレスモータである。図2は、本発明の実施形態に係るポンプシステム1が有するポンプ部20及びその周辺の構成を示す模式図である。図2に示すように、ポンプ部20は、モータ21に接続されるインペラ部22を有する。インペラ部22は、モータ21の駆動によって回転する羽根(不図示)を有する。 The pump unit 20 has a motor 21. In the present embodiment, the motor 21 is a brushless motor. FIG. 2 is a schematic diagram illustrating a configuration of the pump unit 20 and the periphery thereof included in the pump system 1 according to the embodiment of the present invention. As shown in FIG. 2, the pump unit 20 has an impeller unit 22 connected to a motor 21. The impeller portion 22 has blades (not shown) that rotate when the motor 21 is driven.
 ポンプシステム1は、インペラ部22に接続される流水ケーブル40と、貯水槽41とを有する。ポンプ部20は、例えば地中の水源に浸される。モータ21の駆動によってインペラ部22の羽根が回転して水を吸い上げる。インペラ部22によって吸い上げられた水は、流水ケーブル40を通って地上に汲み上げられる。汲み上げられた水は貯水槽41に貯められる。 The pump system 1 has a running water cable 40 connected to the impeller unit 22 and a water storage tank 41. The pump unit 20 is immersed in, for example, an underground water source. By driving the motor 21, the blades of the impeller portion 22 rotate to suck up water. The water sucked up by the impeller unit 22 is pumped to the ground through the running water cable 40. The pumped water is stored in the water storage tank 41.
 制御装置30は、電源部10から電力を供給され、モータ21の駆動を制御する。制御装置30は、モータ21とケーブルで接続され、地上に配置される。本実施形態では、制御装置30は、PCS12と共に1つの制御ボックスの中に収容される。制御装置30は、不図示の入力装置からの指令によって駆動する。入力装置は、例えば、制御装置30を収容する筐体に設けられてもよいし、リモートコントローラであってもよい。入力装置は、例えば、制御装置30をオンオフする電源スイッチを有してよい。また、入力装置は、制御装置30を操作する複数の入力キーを有してよい。入力キーは、例えばボタン或いはタッチパネル等であってよい。
<2.制御装置の詳細>
The control device 30 is supplied with electric power from the power supply unit 10 and controls driving of the motor 21. The control device 30 is connected to the motor 21 with a cable and is disposed on the ground. In this embodiment, the control apparatus 30 is accommodated in one control box with PCS12. The control device 30 is driven by a command from an input device (not shown). For example, the input device may be provided in a housing that accommodates the control device 30 or may be a remote controller. The input device may include, for example, a power switch that turns on and off the control device 30. The input device may have a plurality of input keys for operating the control device 30. The input key may be a button or a touch panel, for example.
<2. Details of control device>
 制御装置30は、駆動回路部31と、制御部32と、電流検出部33とを有する。駆動回路部31は、モータ21に対して通電を行う。駆動回路部31は、詳細にはインバータである。本実施形態では、駆動回路部31は、PWM(Pulse Width Modulation)制御方式のインバータである。 The control device 30 includes a drive circuit unit 31, a control unit 32, and a current detection unit 33. The drive circuit unit 31 energizes the motor 21. The drive circuit unit 31 is an inverter in detail. In the present embodiment, the drive circuit unit 31 is a PWM (Pulse Width Modulation) control type inverter.
 制御部32は駆動回路部31を制御する。本実施形態では、制御部32は、駆動回路部31をPWM信号によって制御する。制御部32は、CPU(Central Processing Unit)32a及びメモリ32bを有するマイコンである。メモリ32bは、ROM(Read Only Memory)及びRAM(Random Access Memory)を有する。ROMには、モータ21の駆動を制御するために必要なプログラム及びデータが記憶されている。 The control unit 32 controls the drive circuit unit 31. In the present embodiment, the control unit 32 controls the drive circuit unit 31 with a PWM signal. The control unit 32 is a microcomputer having a CPU (Central Processing Unit) 32a and a memory 32b. The memory 32b includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The ROM stores programs and data necessary for controlling the driving of the motor 21.
 電流検出部33は、モータ21に対して通電される電流の電流値を検出する。具体的には、電流検出部33は、駆動回路部31がモータ21に対して通電する際、駆動回路部31を流れる電流の電流値を検出する。電流検出部33は、検出した電流値を制御部32に出力する。本実施形態では、電流検出部33は、シャント抵抗を用いて構成された電流測定回路である。電流検出部33は、ホール素子等を用いて構成された電流測定回路であってもよい。 The current detection unit 33 detects the current value of the current supplied to the motor 21. Specifically, the current detection unit 33 detects the current value of the current flowing through the drive circuit unit 31 when the drive circuit unit 31 energizes the motor 21. The current detection unit 33 outputs the detected current value to the control unit 32. In the present embodiment, the current detection unit 33 is a current measurement circuit configured using a shunt resistor. The current detection unit 33 may be a current measurement circuit configured using a Hall element or the like.
 図3は、本発明の実施形態に係る制御装置30が有する制御部32のブロック図である。図3には、理解を容易とするために、駆動回路部31及び電流検出部33も示されている。制御部32は、初期値出力部321と、デューティ比生成部322と、回転数算出部323と、デューティ比計測部324と、電源電圧算出部325と、調整部326と、判断部327とを有する。これらの機能部のうち一部或いは全部は、例えば、CPU32aがメモリ32bに記憶された各種プログラムを実行することで実現される。また、これらの機能部のうち一部或いは全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。 FIG. 3 is a block diagram of the control unit 32 included in the control device 30 according to the embodiment of the present invention. FIG. 3 also shows a drive circuit unit 31 and a current detection unit 33 for easy understanding. The control unit 32 includes an initial value output unit 321, a duty ratio generation unit 322, a rotation speed calculation unit 323, a duty ratio measurement unit 324, a power supply voltage calculation unit 325, an adjustment unit 326, and a determination unit 327. Have. Some or all of these functional units are realized, for example, by the CPU 32a executing various programs stored in the memory 32b. Also, some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
 初期値出力部321は、PWM信号のデューティ比の初期値を出力する。本実施形態では、初期値はメモリ32bに記憶される。初期値をいかなる値とするかは、特に限定されない。本実施形態では、初期値は、モータ21の回転数を最適な回転数(定格値)とするデューティ比である。このデューティ比のことを、以下、定格PWMデューティ比と記載する。例えば、メモリ32bには、デューティ比80%等が初期値として記憶される。また、最適な回転数とは、例えば、上記のポンプシステムで用いた場合、予め定めた流量で水を流すための回転数である。PWM信号のデューティ比の初期値が予め準備されているために、モータ21の制御を素早く適切に開始することができる。 The initial value output unit 321 outputs the initial value of the duty ratio of the PWM signal. In the present embodiment, the initial value is stored in the memory 32b. There is no particular limitation on what value the initial value is. In the present embodiment, the initial value is a duty ratio that sets the rotational speed of the motor 21 to an optimal rotational speed (rated value). This duty ratio is hereinafter referred to as a rated PWM duty ratio. For example, a duty ratio of 80% or the like is stored as an initial value in the memory 32b. Further, the optimum rotational speed is, for example, the rotational speed for flowing water at a predetermined flow rate when used in the above pump system. Since the initial value of the duty ratio of the PWM signal is prepared in advance, the control of the motor 21 can be started quickly and appropriately.
 デューティ比生成部322は、回転数算出部323で算出される回転数に基づいてPWM信号のデューティ比を生成する。本実施形態では、デューティ比生成部322は、デューティ比を初期値とした場合に想定されるモータ21の回転数と、回転数算出部323で算出される回転数とを比較してデューティ比を生成する。 The duty ratio generation unit 322 generates a duty ratio of the PWM signal based on the rotation number calculated by the rotation number calculation unit 323. In the present embodiment, the duty ratio generation unit 322 compares the rotation speed of the motor 21 assumed when the duty ratio is set to the initial value with the rotation speed calculated by the rotation speed calculation section 323 to determine the duty ratio. Generate.
 メモリ32bには、デューティ比を初期値とした場合に想定されるモータ21の回転数が記憶されている。この予め記憶されている回転数のことを、以下、目標回転数と記載する。本実施形態では、デューティ比が定格PWMデューティ比とされた場合のモータ21の回転数(例えば5000rpm)が目標回転数として予め記憶されている。デューティ比生成部322は、回転数算出部323から取得される現在のモータ21の回転数と目標回転数とを比較してデューティ比を生成する。 The memory 32b stores the number of rotations of the motor 21 that is assumed when the duty ratio is an initial value. This pre-stored rotational speed is hereinafter referred to as a target rotational speed. In the present embodiment, the rotational speed (for example, 5000 rpm) of the motor 21 when the duty ratio is the rated PWM duty ratio is stored in advance as the target rotational speed. The duty ratio generation unit 322 generates a duty ratio by comparing the current rotation speed of the motor 21 acquired from the rotation speed calculation section 323 with the target rotation speed.
 回転数算出部323は、電流検出部33で検出される電流値に基づいてモータ21の回転数を算出する。モータ21の回転数と、モータ21の使用電流とは比例関係にある。このために、使用するモータ21の回転数と電流値の関係を予め計測しておけば、モータ21の電流値の検出によって、モータ21の回転数を算出できる。 The rotation speed calculation unit 323 calculates the rotation speed of the motor 21 based on the current value detected by the current detection unit 33. The rotational speed of the motor 21 and the current used by the motor 21 are in a proportional relationship. For this reason, if the relationship between the rotational speed of the motor 21 to be used and the current value is measured in advance, the rotational speed of the motor 21 can be calculated by detecting the current value of the motor 21.
 デューティ比計測部324は、デューティ比生成部322で生成されるデューティ比の変動を検出する。本実施形態では、デューティ比計測部324は、予め設定した時間におけるデューティ比の変化量を計測する。デューティ比計測部324は、計測される変化量が所定の閾値を超えた場合に、所定のデューティ比の変動があったことを検出する。 The duty ratio measurement unit 324 detects a change in the duty ratio generated by the duty ratio generation unit 322. In the present embodiment, the duty ratio measurement unit 324 measures a change amount of the duty ratio in a preset time. The duty ratio measuring unit 324 detects that the predetermined duty ratio has changed when the measured change amount exceeds a predetermined threshold.
 電源電圧算出部325は、電流検出部33で検出される電流値に基づいて電源部10の電圧値を算出する。本実施形態では、電源電圧算出部325は、回転数算出部323で算出される回転数に基づいて電源部10の電圧値を算出する。本願の発明者は、電源部10の電圧値は、経験的に以下に示す式(1)で算出されることを見出している。
 Sv=a×Mr÷(D÷100)+b  (1)
  Sv:電源部の電圧値[V]
  Mr:モータの回転数[rpm]
  D :デューティ比[%]
  a,b:定数
 定数a及びbは、モータ21の特性によって決まる。
The power supply voltage calculation unit 325 calculates the voltage value of the power supply unit 10 based on the current value detected by the current detection unit 33. In the present embodiment, the power supply voltage calculation unit 325 calculates the voltage value of the power supply unit 10 based on the rotation number calculated by the rotation number calculation unit 323. The inventor of the present application has found that the voltage value of the power supply unit 10 is empirically calculated by the following expression (1).
Sv = a × Mr ÷ (D ÷ 100) + b (1)
Sv: Voltage value of power supply unit [V]
Mr: Motor rotation speed [rpm]
D: Duty ratio [%]
a, b: Constants The constants a and b are determined by the characteristics of the motor 21.
 調整部326は、電源電圧算出部325で算出される電圧値に基づいてモータ21の回転数を調整する。本実施形態では、調整部326は、PWM信号のデューティ比を調整する。デューティ比の調整により、モータ21の回転数が変動する。調整部326は、デューティ比計測部324によって所定のデューティ比変動が検出された場合に、電源電圧算出部325によって算出される電圧値に基づいてデューティ比を調整する。 The adjustment unit 326 adjusts the rotation speed of the motor 21 based on the voltage value calculated by the power supply voltage calculation unit 325. In the present embodiment, the adjustment unit 326 adjusts the duty ratio of the PWM signal. The number of rotations of the motor 21 varies by adjusting the duty ratio. The adjustment unit 326 adjusts the duty ratio based on the voltage value calculated by the power supply voltage calculation unit 325 when a predetermined duty ratio variation is detected by the duty ratio measurement unit 324.
 詳細には、調整部326は、電源部10の電圧値を目標電圧値に近づけるように、デューティ比の調整を行う。本実施形態では、目標電圧値は、電源部10の出力が100%(定格値)となる場合の電源部10の電圧値である。目標電圧値は、予め実験等によって取得され、メモリ32bに記憶されている。 Specifically, the adjustment unit 326 adjusts the duty ratio so that the voltage value of the power supply unit 10 approaches the target voltage value. In the present embodiment, the target voltage value is the voltage value of the power supply unit 10 when the output of the power supply unit 10 is 100% (rated value). The target voltage value is acquired in advance by experiments or the like and stored in the memory 32b.
 本実施形態では、発電部11は、日射量によって、その時点で出力することができる最大電力が変動する。また、日射量の変動によって、発電部11の電力を最大とする電圧値と電流値の関係は変動する。ただし、本願の発明者は、最大電力を得るための電圧値が日射量の変動に応じて変動する割合は経験的に小さいことを見出している。このために、調整部326は、電源部10の電圧値が目標電圧値に近づくように、デューティ比の調整を行う。これにより、日射量変動にかかわらず、電源部10が、その時点で出力することができる最大電力に近い値を出力した状態で、モータ21を駆動させることができる。 In the present embodiment, the maximum power that can be output from the power generation unit 11 at that time varies depending on the amount of solar radiation. Moreover, the relationship between the voltage value and the current value that maximizes the power of the power generation unit 11 varies depending on the variation in the amount of solar radiation. However, the inventor of the present application has found that the rate at which the voltage value for obtaining the maximum power fluctuates according to the variation in the amount of solar radiation is empirically small. For this purpose, the adjustment unit 326 adjusts the duty ratio so that the voltage value of the power supply unit 10 approaches the target voltage value. Thereby, the motor 21 can be driven in a state in which the power supply unit 10 outputs a value close to the maximum power that can be output at that time, regardless of variations in the amount of solar radiation.
 判断部327は、電源電圧算出部325で算出される電圧値に基づいてモータ21の駆動を停止するか否かを判断する。本実施形態では、判断部327は、電源電圧算出部325で算出される電圧値が所定の値より小さい場合に、モータ21の駆動を停止すると判断する。所定の値は、モータ21の駆動に最低限必要な電圧値である。モータ21の駆動に最低限必要な電圧値が得られない場合にモータ21の駆動を停止することで、モータ21を保護することができる。制御部32は、場合によっては判断部327を有しなくてもよい。
<3.制御装置の動作>
The determination unit 327 determines whether to stop driving the motor 21 based on the voltage value calculated by the power supply voltage calculation unit 325. In the present embodiment, the determination unit 327 determines to stop driving the motor 21 when the voltage value calculated by the power supply voltage calculation unit 325 is smaller than a predetermined value. The predetermined value is a minimum voltage value necessary for driving the motor 21. The motor 21 can be protected by stopping the driving of the motor 21 when the minimum voltage value required for driving the motor 21 cannot be obtained. The control unit 32 may not include the determination unit 327 in some cases.
<3. Operation of control device>
 図4は、本発明の実施形態に係る制御装置30の動作の一例を示すフローチャートである。換言すると、図4は、電源部10から供給される電力によって駆動するモータ21の制御方法の一例を示す。 FIG. 4 is a flowchart showing an example of the operation of the control device 30 according to the embodiment of the present invention. In other words, FIG. 4 shows an example of a method for controlling the motor 21 driven by the power supplied from the power supply unit 10.
 制御装置30の電源がオンされると、オン信号が制御部32に入力される。オン信号の入力により、初期値出力部321は、デューティ比の初期値をメモリ32bから読み出して出力する(ステップS1)。 When the power of the control device 30 is turned on, an on signal is input to the control unit 32. In response to the input of the ON signal, the initial value output unit 321 reads the initial value of the duty ratio from the memory 32b and outputs it (step S1).
 デューティ比生成部322は、モータ21の目標回転数をメモリ32bから取得し、回転数算出部323から取得した回転数と比較してデューティ比を生成する(ステップS2)。回転数算出部323が算出した回転数と目標回転数との差が所定の範囲内であれば、現在のデューティ比が生成される。 The duty ratio generation unit 322 acquires the target rotation speed of the motor 21 from the memory 32b, and generates a duty ratio by comparing with the rotation speed acquired from the rotation speed calculation section 323 (step S2). If the difference between the rotation speed calculated by the rotation speed calculation unit 323 and the target rotation speed is within a predetermined range, the current duty ratio is generated.
 回転数算出部323が算出した回転数と目標回転数との差が所定の範囲を超えた時、デューティ比生成部322は、回転数算出部323が算出した回転数が目標回転数と異なると判断する。デューティ比生成部322は、回転数算出部323が算出した回転数が目標回転数より低い場合には、現在のデューティ比より大きなデューティ比を生成する。また、デューティ比生成部322は、回転数算出部323が算出した回転数が目標回転数より高い場合には、現在のデューティ比より小さなデューティ比を生成する。 When the difference between the rotation speed calculated by the rotation speed calculation unit 323 and the target rotation speed exceeds a predetermined range, the duty ratio generation unit 322 determines that the rotation speed calculated by the rotation speed calculation unit 323 is different from the target rotation speed. to decide. The duty ratio generation unit 322 generates a duty ratio larger than the current duty ratio when the rotation number calculated by the rotation number calculation unit 323 is lower than the target rotation number. Further, the duty ratio generation unit 322 generates a duty ratio smaller than the current duty ratio when the rotation speed calculated by the rotation speed calculation unit 323 is higher than the target rotation speed.
 デューティ比をどの程度大きくするか、或いは、小さくするかは、算出された回転数と目標回転数との差の大きさに応じて決定されるのが好ましい。デューティ比を決定するためのテーブル或いは計算式がメモリ32bに記憶されるのが好ましい。なお、デューティ比生成部322は、回転数算出部323が回転数を算出する前においては、初期値出力部321から出力されたデューティ比と同じデューティ比を生成する。 It is preferable that how much the duty ratio is increased or decreased is determined according to the magnitude of the difference between the calculated rotation speed and the target rotation speed. A table or calculation formula for determining the duty ratio is preferably stored in the memory 32b. Note that the duty ratio generation unit 322 generates the same duty ratio as the duty ratio output from the initial value output unit 321 before the rotation number calculation unit 323 calculates the rotation number.
 デューティ比生成部322によって生成されたデューティ比でモータ21が駆動されると、回転数算出部323は、電流検出部33で検出された電流値を取得する(ステップS3)。すなわち、モータ21の制御方法は、モータ21に対して通電される電流の電流値を検出するステップを有する。回転数算出部323は、取得した電流値に基づきモータ21の回転数を算出する(ステップS4)。この時点で、デューティ比計測部324によって、所定のデューティ比変動が検出されたか否かが確認される(ステップS5)。ステップS5で所定のデューティ比変動が検出されない場合、ステップS2に戻って、上述の動作が繰り返される。 When the motor 21 is driven with the duty ratio generated by the duty ratio generation unit 322, the rotation speed calculation unit 323 acquires the current value detected by the current detection unit 33 (step S3). That is, the method for controlling the motor 21 includes a step of detecting a current value of a current that is supplied to the motor 21. The rotation speed calculation unit 323 calculates the rotation speed of the motor 21 based on the acquired current value (step S4). At this time, the duty ratio measuring unit 324 confirms whether or not a predetermined duty ratio fluctuation is detected (step S5). When a predetermined duty ratio variation is not detected in step S5, the process returns to step S2 and the above-described operation is repeated.
 ステップS5で所定のデューティ比変動が検出された場合、電源電圧算出部325によって電源部10の電圧値が算出される(ステップS6)。すなわち、モータ21の制御方法は、検出された電流値に基づいて電源部10の電圧値を算出するステップを有する。なお、上述のように、本実施形態では、電源電圧算出部325は、検出された電流値に基づいて算出されたモータ21の回転数を利用して電源部10の電圧値を算出する。 When a predetermined duty ratio variation is detected in step S5, the voltage value of the power supply unit 10 is calculated by the power supply voltage calculation unit 325 (step S6). That is, the method for controlling the motor 21 includes a step of calculating the voltage value of the power supply unit 10 based on the detected current value. Note that, as described above, in the present embodiment, the power supply voltage calculation unit 325 calculates the voltage value of the power supply unit 10 using the number of rotations of the motor 21 calculated based on the detected current value.
 調整部326は、算出された電圧値が目標電圧値であるか否かを確認する(ステップS7)。調整部326は、算出された電圧値と目標電圧値との差が所定の範囲内であれば、算出された電圧値が目標電圧値であると判断する。一方、調整部326は、算出された電圧値と目標電圧値との差が所定の範囲を超えた場合に、算出された電圧値が目標電圧値でないと判断する。 The adjustment unit 326 confirms whether or not the calculated voltage value is a target voltage value (step S7). If the difference between the calculated voltage value and the target voltage value is within a predetermined range, the adjustment unit 326 determines that the calculated voltage value is the target voltage value. On the other hand, the adjustment unit 326 determines that the calculated voltage value is not the target voltage value when the difference between the calculated voltage value and the target voltage value exceeds a predetermined range.
 ステップS7で、算出された電圧値が目標電圧値であると判断されると、調整部326は、デューティ比を現在のデューティ比に維持する(ステップS8)。デューティ比が維持された状態で、ステップS6に戻って、それ以降の動作が繰り返される。 If it is determined in step S7 that the calculated voltage value is the target voltage value, the adjustment unit 326 maintains the duty ratio at the current duty ratio (step S8). With the duty ratio maintained, the process returns to step S6 and the subsequent operations are repeated.
 一方、ステップS7で、算出された電圧値が目標電圧値でないと判断されると、判断部327が、算出された電圧値が所定の値より小さいか否かを確認する(ステップS9)。ステップS9で、電源電圧算出部325で算出された電圧値が所定の値より小さい場合、モータ21の駆動を停止する(ステップS10)。モータ21の駆動停止は、制御部32から駆動回路部31に指示される。 On the other hand, when it is determined in step S7 that the calculated voltage value is not the target voltage value, the determination unit 327 confirms whether or not the calculated voltage value is smaller than a predetermined value (step S9). If the voltage value calculated by the power supply voltage calculation unit 325 is smaller than the predetermined value in step S9, the driving of the motor 21 is stopped (step S10). The drive circuit unit 31 is instructed by the control unit 32 to stop driving the motor 21.
 一方、ステップS9で、算出された電圧値が所定の値以上である場合、調整部326はデューティ比の変更を行う(ステップS11)。詳細には、算出された電圧値が目標電圧値より小さい場合、調整部326は現在のデューティ比を下げる。算出された電圧値が目標電圧値より大きい場合、調整部326は現在のデューティ比を上げる。デューティ比が下がると、モータ21の電流値及び回転数が下がり、電源部10の電圧値は上がる。デューティ比が上がると、モータ21の電流値及び回転数が上がり、電源部10の電圧値は下がる。すなわち、モータ21の制御方法は、算出された電圧値に基づいてモータ21の回転数を調整するステップを有する。調整部326は、電源部10の電圧値が目標電圧値に近づくように、デューティ比の調整を行う。デューティ比の調整後、ステップS6に戻って、それ以降の動作が繰り返される。 On the other hand, if the calculated voltage value is greater than or equal to the predetermined value in step S9, the adjustment unit 326 changes the duty ratio (step S11). Specifically, when the calculated voltage value is smaller than the target voltage value, the adjustment unit 326 decreases the current duty ratio. When the calculated voltage value is larger than the target voltage value, the adjustment unit 326 increases the current duty ratio. When the duty ratio decreases, the current value and rotation speed of the motor 21 decrease, and the voltage value of the power supply unit 10 increases. As the duty ratio increases, the current value and rotation speed of the motor 21 increase, and the voltage value of the power supply unit 10 decreases. That is, the method for controlling the motor 21 includes a step of adjusting the rotation speed of the motor 21 based on the calculated voltage value. The adjustment unit 326 adjusts the duty ratio so that the voltage value of the power supply unit 10 approaches the target voltage value. After adjusting the duty ratio, the process returns to step S6 and the subsequent operations are repeated.
 なお、デューティ比の調整量は、算出された電圧値と目標電圧値との差の大きさに応じて決定されるのが好ましい。デューティ比の調整量を決定するためのテーブル或いは計算式がメモリ32bに記憶されるのが好ましい。テーブル或いは計算式は、実験によって集めた情報に基づいて作成すればよい。 It should be noted that the adjustment amount of the duty ratio is preferably determined according to the magnitude of the difference between the calculated voltage value and the target voltage value. A table or calculation formula for determining the adjustment amount of the duty ratio is preferably stored in the memory 32b. The table or calculation formula may be created based on information collected through experiments.
 本実施形態では、制御装置30の電源がオンされて所定のデューティ比変動が検出されるまでは、モータ21は目標回転数になるように制御される。一方、所定のデューティ比変動が検出された後は、モータ21は、電源部10の電圧値が目標電圧値になるように制御される。本実施形態によれば、モータ21に対して通電される電流の電流値から電源部10の電圧値を算出することによって、電源部10の出力状況に合わせてモータ21を適切な回転数で回転させることができる。また、制御装置30を有するポンプシステム1は、効率良く水の汲み上げを行うことができる。 In the present embodiment, the motor 21 is controlled to reach the target rotational speed until the control device 30 is turned on and a predetermined duty ratio fluctuation is detected. On the other hand, after the predetermined duty ratio fluctuation is detected, the motor 21 is controlled so that the voltage value of the power supply unit 10 becomes the target voltage value. According to the present embodiment, by calculating the voltage value of the power supply unit 10 from the current value of the current supplied to the motor 21, the motor 21 is rotated at an appropriate rotation speed according to the output status of the power supply unit 10. Can be made. Moreover, the pump system 1 having the control device 30 can efficiently pump water.
 また、電源部10の出力状況に合わせてモータ21の回転数を適切に制御するにあたって、モータ21に対して通電される電流の電流値が利用される。このために、電源部10の電力を監視する監視装置から情報を得てモータ21の駆動を制御する場合に比べて、応答性良くモータの駆動を制御することができる。
<4.変形例>
Further, when appropriately controlling the rotation speed of the motor 21 in accordance with the output state of the power supply unit 10, the current value of the current supplied to the motor 21 is used. For this reason, it is possible to control the driving of the motor with higher responsiveness than in the case of controlling the driving of the motor 21 by obtaining information from the monitoring device that monitors the power of the power supply unit 10.
<4. Modification>
 図5は、本発明の実施形態に係る制御装置30の変形例を説明するためのブロック図である。図5に示すように、変形例の制御装置も、駆動回路部31と、制御部34と、電流検出部33とを有する。駆動回路部31及び電流検出部33は、上述した実施形態の構成と同じである。変形例の制御装置においては、制御部34に初期値出力部321を設ける代わりに、制御部34外に、初期値設定部35が設けられる。この点が、上述した実施形態の構成とは異なる。制御部34が有するデューティ比生成部322、回転数算出部323、デューティ比計測部324、電源電圧算出部325、調整部326、及び、判断部327は、上述した実施形態と基本的に同じである。このために、これらの詳細な説明は、特に必要な場合を除き説明を省略する。 FIG. 5 is a block diagram for explaining a modification of the control device 30 according to the embodiment of the present invention. As shown in FIG. 5, the control device of the modified example also includes a drive circuit unit 31, a control unit 34, and a current detection unit 33. The drive circuit unit 31 and the current detection unit 33 have the same configuration as that of the above-described embodiment. In the control device of the modified example, an initial value setting unit 35 is provided outside the control unit 34 instead of providing the initial value output unit 321 in the control unit 34. This point is different from the configuration of the embodiment described above. The control unit 34 has a duty ratio generation unit 322, a rotation speed calculation unit 323, a duty ratio measurement unit 324, a power supply voltage calculation unit 325, an adjustment unit 326, and a determination unit 327 that are basically the same as those in the above-described embodiment. is there. For this reason, these detailed explanations are omitted unless particularly necessary.
 初期値設定部35は、詳細には、外部からPWM信号のデューティ比の初期値を入力し、入力された初期値を制御部34に出力するための装置である。すなわち、制御部34は、外部からPWM信号のデューティ比の初期値を設定可能に設けられている。デューティ比生成部322は、デューティ比を前記初期値とした場合に想定される回転数と、回転数算出部323で算出される回転数とを比較してデューティ比を生成する。初期値出力部321から得られるデータの代わりに、初期値設定部35から得られるデータが利用される点を除いて、制御部34の動作は、上述した実施形態の制御部32と同じである。初期値設定部35が用いられる場合、デューティ比の初期値を外部から変更することができる。このために、例えばポンプシステム1の使用環境等に応じて初期値を適切に設定することができる。 The initial value setting unit 35 is a device for inputting an initial value of the duty ratio of the PWM signal from outside and outputting the input initial value to the control unit 34 in detail. That is, the control unit 34 is provided so that the initial value of the duty ratio of the PWM signal can be set from the outside. The duty ratio generation unit 322 generates a duty ratio by comparing the rotation speed assumed when the duty ratio is the initial value with the rotation speed calculated by the rotation speed calculation section 323. The operation of the control unit 34 is the same as that of the control unit 32 of the above-described embodiment except that the data obtained from the initial value setting unit 35 is used instead of the data obtained from the initial value output unit 321. . When the initial value setting unit 35 is used, the initial value of the duty ratio can be changed from the outside. For this reason, an initial value can be appropriately set according to, for example, the usage environment of the pump system 1.
 初期値設定部35は、制御部34と有線にて通信する構成でもよいし、無線にて通信する構成でもよい。初期値設定部35の情報の入力は、例えばボタン入力方式或いはタッチパネル入力方式等であってよい。初期値設定部35は、デューティ比の初期値以外に目標回転数等の他の情報を入力する機能を有してもよい。初期値設定部35は、例えば携帯端末等であってもよい。 The initial value setting unit 35 may be configured to communicate with the control unit 34 by wire or may be configured to communicate wirelessly. The input of information in the initial value setting unit 35 may be, for example, a button input method or a touch panel input method. The initial value setting unit 35 may have a function of inputting other information such as a target rotational speed in addition to the initial value of the duty ratio. The initial value setting unit 35 may be, for example, a mobile terminal.
 以上においては、本発明の制御装置がポンプシステムに適用される構成を説明した。しかし、これは例示である。本発明の制御装置は、例えばファンを駆動するシステム等、他のシステムに適用されてもよい。 In the above, the configuration in which the control device of the present invention is applied to the pump system has been described. However, this is exemplary. The control device of the present invention may be applied to other systems such as a system for driving a fan.
 その他、以上に示した実施形態や変形例の構成は、本発明の例示にすぎない。実施形態や変形例の構成は、本発明の技術的思想を超えない範囲で適宜変更されてもよい。また、複数の実施形態及び変形例は、可能な範囲で組み合わせて実施されてよい。 In addition, the configurations of the above-described embodiments and modifications are merely examples of the present invention. The configuration of the embodiment and the modification may be changed as appropriate without departing from the technical idea of the present invention. In addition, a plurality of embodiments and modifications may be implemented in combination within a possible range.
 本発明は、例えば太陽光発電或いは風力発電等の自然エネルギーを利用した電源部によってモータを駆動するシステムに好適に利用できる。 The present invention can be suitably used for a system in which a motor is driven by a power source using natural energy such as solar power generation or wind power generation.
1・・・ポンプシステム、10・・・電源部、11・・・発電部、20・・・ポンプ部、21・・・モータ、30・・・制御装置、31・・・駆動回路部、32,34・・・制御部、33・・・電流検出部、321・・・初期値出力部、322・・・デューティ比生成部、323・・・回転数算出部、324・・・デューティ比計測部、325・・・電源電圧算出部、326・・・調整部 DESCRIPTION OF SYMBOLS 1 ... Pump system, 10 ... Power supply part, 11 ... Electric power generation part, 20 ... Pump part, 21 ... Motor, 30 ... Control apparatus, 31 ... Drive circuit part, 32 , 34 ... Control part, 33 ... Current detection part, 321 ... Initial value output part, 322 ... Duty ratio generation part, 323 ... Rotational speed calculation part, 324 ... Duty ratio measurement , 325... Power supply voltage calculator, 326.

Claims (12)

  1. 電源部から電力が供給され、モータの駆動を制御する制御装置であって、
     前記モータに対して通電を行う駆動回路部と、
     前記駆動回路部を制御する制御部と、
     前記モータに対して通電される電流の電流値を検出する電流検出部と、
    を有し、
     前記制御部は、
      前記電流検出部で検出される電流値に基づいて前記電源部の電圧値を算出する電源電圧算出部と、
      前記電源電圧算出部で算出される電圧値に基づいて前記モータの回転数を調整する調整部と、
     を有する、制御装置。
    A control device that is supplied with power from a power supply unit and controls driving of the motor,
    A drive circuit unit for energizing the motor;
    A control unit for controlling the drive circuit unit;
    A current detection unit for detecting a current value of a current supplied to the motor;
    Have
    The controller is
    A power supply voltage calculation unit that calculates a voltage value of the power supply unit based on a current value detected by the current detection unit;
    An adjustment unit that adjusts the rotation speed of the motor based on the voltage value calculated by the power supply voltage calculation unit;
    A control device.
  2.  前記制御部は、前記電流検出部で検出される電流値に基づいてモータの回転数を算出する回転数算出部を有する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the control unit includes a rotation number calculation unit that calculates a rotation number of a motor based on a current value detected by the current detection unit.
  3.  前記電源電圧算出部は、前記回転数算出部で算出される回転数に基づいて前記電源部の電圧値を算出する、請求項2に記載の制御装置。 The control device according to claim 2, wherein the power supply voltage calculation unit calculates a voltage value of the power supply unit based on a rotation speed calculated by the rotation speed calculation unit.
  4.  前記制御部は、前記駆動回路部をPWM信号によって制御し、
     前記調整部は、前記PWM信号のデューティ比を調整する、請求項2又は3に記載の制御装置。    
    The control unit controls the drive circuit unit by a PWM signal,
    The control device according to claim 2, wherein the adjustment unit adjusts a duty ratio of the PWM signal.
  5.  前記制御部は、前記回転数算出部で算出される回転数に基づいて前記PWM信号のデューティ比を生成するデューティ比生成部を有する、請求項4に記載の制御装置。 The control device according to claim 4, wherein the control unit includes a duty ratio generation unit configured to generate a duty ratio of the PWM signal based on the rotation number calculated by the rotation number calculation unit.
  6.  前記制御部は、前記PWM信号のデューティ比の初期値を出力する初期値出力部を有し、
     前記デューティ比生成部は、デューティ比を前記初期値とした場合に想定される前記モータの回転数と、前記回転数算出部で算出される回転数とを比較してデューティ比を生成する、請求項5に記載の制御装置。
    The control unit includes an initial value output unit that outputs an initial value of a duty ratio of the PWM signal,
    The duty ratio generation unit generates a duty ratio by comparing the rotation speed of the motor assumed when the duty ratio is the initial value with the rotation speed calculated by the rotation speed calculation section. Item 6. The control device according to Item 5.
  7.  前記制御部は、外部から前記PWM信号のデューティ比の初期値を設定可能に設けられ、
     前記デューティ比生成部は、デューティ比を前記初期値とした場合に想定される前記モータの回転数と、前記回転数算出部で算出される回転数とを比較してデューティ比を生成する、請求項5に記載の制御装置。
    The control unit is provided so that an initial value of the duty ratio of the PWM signal can be set from the outside,
    The duty ratio generation unit generates a duty ratio by comparing the rotation speed of the motor assumed when the duty ratio is the initial value with the rotation speed calculated by the rotation speed calculation section. Item 6. The control device according to Item 5.
  8.  前記制御部は、前記デューティ比生成部で生成されるデューティ比の変動を検出するデューティ比計測部を有し、
     前記デューティ比計測部によって所定のデューティ比変動が検出された場合に、前記電源電圧算出部によって算出される電圧値に基づいてデューティ比が調整される、請求項5から7のいずれか1項に記載の制御装置。
    The control unit includes a duty ratio measurement unit that detects a variation in the duty ratio generated by the duty ratio generation unit,
    The duty ratio is adjusted according to any one of claims 5 to 7, wherein when a predetermined duty ratio variation is detected by the duty ratio measurement unit, the duty ratio is adjusted based on a voltage value calculated by the power supply voltage calculation unit. The control device described.
  9.  前記電源電圧算出部で算出される電圧値が所定の値より小さい場合に、前記モータの駆動を停止する、請求項1から8のいずれか1項に記載の制御装置。 The control device according to any one of claims 1 to 8, wherein when the voltage value calculated by the power supply voltage calculation unit is smaller than a predetermined value, the driving of the motor is stopped.
  10.  前記電源部と、
     前記モータを有するポンプ部と、
     請求項1から9のいずれか1項に記載の制御装置と、
     を有する、ポンプシステム。
    The power supply unit;
    A pump unit having the motor;
    The control device according to any one of claims 1 to 9,
    Having a pump system.
  11.  前記電源部は、自然エネルギーを利用して発電する発電部を有する、請求項10に記載のポンプシステム。 The pump system according to claim 10, wherein the power supply unit includes a power generation unit that generates power using natural energy.
  12. 電源部から供給される電力によって駆動するモータの制御方法であって、
     前記モータに対して通電される電流の電流値を検出する第1ステップと、
     検出された電流値に基づいて前記電源部の電圧値を算出する第2ステップと、
     算出された電圧値に基づいて前記モータの回転数を調整する第3ステップと、
    を有する、制御方法。
    A method for controlling a motor driven by electric power supplied from a power supply unit,
    A first step of detecting a current value of a current supplied to the motor;
    A second step of calculating a voltage value of the power supply unit based on the detected current value;
    A third step of adjusting the rotational speed of the motor based on the calculated voltage value;
    A control method.
PCT/JP2017/015080 2016-05-26 2017-04-13 Motor control device and control method, and pump system WO2017203879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016105395A JP2019134498A (en) 2016-05-26 2016-05-26 Controller for motor, control method and pump system
JP2016-105395 2016-05-26

Publications (1)

Publication Number Publication Date
WO2017203879A1 true WO2017203879A1 (en) 2017-11-30

Family

ID=60411335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015080 WO2017203879A1 (en) 2016-05-26 2017-04-13 Motor control device and control method, and pump system

Country Status (2)

Country Link
JP (1) JP2019134498A (en)
WO (1) WO2017203879A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894781A (en) * 2017-12-24 2018-04-10 苏州佳亿达电器有限公司 High-efficiency solar TRT
CN108153335A (en) * 2017-12-24 2018-06-12 苏州佳亿达电器有限公司 High-efficiency solar plate method of controlling rotation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191767A (en) * 1993-11-16 1995-07-28 Canon Inc Device and method for controlling power of battery power source
JP2002247896A (en) * 2001-02-22 2002-08-30 Ebara Corp Solar pump system
US20060290317A1 (en) * 2005-06-22 2006-12-28 Worldwater & Power Corp. Maximum power point motor control
CN104079232A (en) * 2014-07-14 2014-10-01 哈尔滨工业大学 Single-stage type photovoltaic water pump control system and method
WO2015025557A1 (en) * 2013-08-22 2015-02-26 シャープ株式会社 Solar energy use system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191767A (en) * 1993-11-16 1995-07-28 Canon Inc Device and method for controlling power of battery power source
JP2002247896A (en) * 2001-02-22 2002-08-30 Ebara Corp Solar pump system
US20060290317A1 (en) * 2005-06-22 2006-12-28 Worldwater & Power Corp. Maximum power point motor control
WO2015025557A1 (en) * 2013-08-22 2015-02-26 シャープ株式会社 Solar energy use system
CN104079232A (en) * 2014-07-14 2014-10-01 哈尔滨工业大学 Single-stage type photovoltaic water pump control system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894781A (en) * 2017-12-24 2018-04-10 苏州佳亿达电器有限公司 High-efficiency solar TRT
CN108153335A (en) * 2017-12-24 2018-06-12 苏州佳亿达电器有限公司 High-efficiency solar plate method of controlling rotation
CN108153335B (en) * 2017-12-24 2021-02-12 苏州佳亿达电器有限公司 High-efficiency solar panel rotation control method

Also Published As

Publication number Publication date
JP2019134498A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US20100039055A1 (en) Temperature control of motor
US9673743B1 (en) Efficient motor control
US10263560B2 (en) Motor drive controller and motor drive control method
WO2017203879A1 (en) Motor control device and control method, and pump system
JP6560185B2 (en) Motor drive control device and control method of motor drive control device
JP6255576B2 (en) Ventilation equipment
EP2958221A1 (en) System for fire-mode control of an inverter in emergency situations
WO2014208095A1 (en) Ventilation device
US10465677B2 (en) Control method for compressor system
JP6229167B2 (en) Blower equipped with brushless DC motor
JP6569089B2 (en) Ceiling fan
US11286917B2 (en) Motor drive system and method
JP6040066B2 (en) Fan motor drive control device
US11473584B2 (en) Method of starting a fan using an open loop starting stage with a decreasing drive signal value
WO2020188960A1 (en) Motor drive control device and motor drive control method
WO2018084000A1 (en) Pump device and method for controlling pump device
JP2016046874A (en) Dc motor driving device and ceiling embedded ventilation device comprising the same
WO2018128004A1 (en) Pump device and pump-device control method
WO2018084001A1 (en) Control device, drive device, and control method
TW201826685A (en) Efficient motor control method and system thereof
WO2023100580A1 (en) Motor driving control device, motor unit, and motor driving control method
JP2011234466A (en) Motor control device and equipment provided with the same
WO2016042729A1 (en) Ceiling fan
JP2016046875A (en) Dc motor driving device and ceiling embedded ventilation device comprising the same
JP6182736B2 (en) Ventilation equipment

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802478

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP