WO2018084000A1 - Pump device and method for controlling pump device - Google Patents

Pump device and method for controlling pump device Download PDF

Info

Publication number
WO2018084000A1
WO2018084000A1 PCT/JP2017/037947 JP2017037947W WO2018084000A1 WO 2018084000 A1 WO2018084000 A1 WO 2018084000A1 JP 2017037947 W JP2017037947 W JP 2017037947W WO 2018084000 A1 WO2018084000 A1 WO 2018084000A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
motor
control
control mode
pump
Prior art date
Application number
PCT/JP2017/037947
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 富永
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Publication of WO2018084000A1 publication Critical patent/WO2018084000A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems

Definitions

  • the present invention relates to a pump device and a control method of the pump device.
  • Patent Document 1 detects clogging of foreign matter entangled with a pump impeller based on the number of revolutions of the pump.
  • the present invention provides a pump device and a pump device control method capable of preventing erroneous detection of abnormality.
  • the exemplary pump device of the present invention includes a pump unit having a motor and a control device.
  • the control device includes a drive circuit unit that energizes the motor and a control unit that controls the drive circuit unit.
  • At least one of the pump unit and the control device includes a detection unit that detects a physical quantity related to the load of the motor.
  • the control unit determines whether or not there is an abnormality based on the physical quantity detected by the detection unit, and controls the drive circuit unit in a normal time control mode when determining that it is normal, and determines that it is abnormal In this case, the drive circuit unit is controlled in the abnormal time control mode.
  • An exemplary control method of the present invention is a control method for a pump device having a pump unit having a motor and a drive circuit unit for energizing the motor, and detects a physical quantity related to the load of the motor.
  • the exemplary present invention it is possible to provide a pump device and a pump device control method capable of preventing erroneous detection of abnormality.
  • FIG. 1 is a block diagram showing a configuration of a pump device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a pump unit and its surroundings included in the pump device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an example of the operation of the control unit.
  • FIG. 4 is a block diagram for explaining a first modification of the pump device according to the exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an example of the operation of the control unit in the first modification.
  • FIG. 6 is a block diagram for explaining a second modification of the pump device according to the exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a pump device 1 according to an embodiment of the present invention.
  • the power supply unit 10 supplies power to the pump device 1.
  • the pump device 1 includes a pump unit 20 and a control device 30.
  • the power supply unit 10 generates power using natural energy. Since the power supply part 10 supplies electric power to the pump apparatus 1, the pump apparatus 1 of this embodiment can be used also in the area where the power infrastructure is not prepared.
  • the power supply unit 10 may be, for example, any one of a solar power generation device, a wind power generation device, a wave power generation device, and a geothermal power generation device.
  • the wave power generation device is a device that generates power using wave energy such as seawater.
  • the power supply unit 10 may include a plurality of types of power generation devices that use natural energy.
  • the power supply unit 10 is a solar power generation device.
  • the pump unit 20 has a motor 21.
  • the motor 21 is a brushless motor.
  • FIG. 2 is a schematic diagram illustrating the configuration of the pump unit 20 included in the pump device 1 according to the embodiment of the present invention and the periphery thereof. As shown in FIG. 2, the pump unit 20 has an impeller unit 22 connected to a motor 21. The impeller portion 22 has blades (not shown) that rotate when the motor 21 is driven.
  • the pump device 1 has a running water cable 40 connected to the impeller unit 22 and a water storage tank 41.
  • the pump unit 20 is immersed in, for example, an underground water source.
  • the pump device 1 sucks up water by rotation of blades of the impeller portion 22.
  • the sucked-up water is pumped to the ground through the running water cable 40.
  • the pumped water is stored in the water storage tank 41.
  • the control device 30 is connected to the pump unit 20 with an electric cable and arranged on the ground.
  • the control device 30 is driven by a command from an input device (not shown).
  • the input device may be provided in a housing that accommodates the control device 30 or may be a remote controller.
  • the input device may include a power switch that switches the control device 30 on and off, for example.
  • the input device may have a plurality of input keys for operating the control device 30.
  • the input key may be a button or a touch panel, for example.
  • the control device 30 includes a drive circuit unit 31, a control unit 32, a detection unit 33, and a notification unit 34.
  • the drive circuit unit 31, the control unit 32, the detection unit 33, and the notification unit 34 are accommodated in one control box.
  • the notification unit 34 is a display device.
  • the notification unit 34 is a liquid crystal display device
  • the display screen is installed at a position visible from the outside of the control box.
  • the notification unit 34 is an LED (Light Emitting Diode) display device
  • the LED Light Emitting Diode
  • the part is installed at a position where it can be seen from the outside of the control box.
  • the drive circuit unit 31 converts the power supplied from the power supply unit 10 and supplies three-phase AC power to the pump unit 20.
  • the drive circuit unit 31 is a PWM (Pulse Width Modulation) control type inverter.
  • the control unit 32 outputs a control signal for controlling the drive circuit unit 31.
  • the control unit 32 controls the drive circuit unit 31 with a PWM signal.
  • the control unit 32 detects the rotational speed of the motor 21 and controls the drive circuit unit 31 so that the rotational speed of the motor 21 is maximized.
  • the control unit 32 detects the rotation speed of the motor 21 using the motor current signal detected from the detection unit 33.
  • the control unit 32 is a microcomputer having a CPU (Central Processing Unit) 32a and a memory 32b.
  • the memory 32b includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the ROM stores programs and data necessary for controlling the driving of the motor 21.
  • control unit 32 may be configured by a microcomputer and hardware that does not use software, or may be configured only by hardware that does not use software.
  • ASIC Application Specific Integrated Circuit
  • the detection unit 33 detects a physical quantity related to the load of the motor 21 and outputs a detection signal related to the detection result.
  • the physical quantity is an amount that can be expressed as a multiple of a defined physical unit, such as a current value or a voltage value.
  • the detection unit 33 detects a motor current that is a value obtained by adding a drive current energized to the motor 21 as the physical quantity and a back electromotive current generated when the motor 21 rotates. A motor current signal that is a detection signal is output.
  • the detection unit 33 is a current measurement circuit configured using a shunt resistor.
  • the shunt resistor used in the detection unit 33 is installed on the ground connected from the drive circuit unit 31 to the power supply unit 10.
  • the detection unit 33 may be a current sensor instead of the shunt resistor.
  • the notification unit 34 notifies the abnormality when the control unit 32 determines that there is an abnormality. Thereby, the user of the pump device 1 can recognize that an abnormality has occurred in the pump device 1 when an abnormality has occurred in the pump device 1.
  • the notification unit 34 notifies the abnormality when it is determined that there is an abnormality by the control unit for a predetermined time. For example, when the notification unit 34 is a liquid crystal display device, the notification unit 34 notifies the abnormality by displaying an error message on the display screen. For example, when the notification unit 34 is an LED display device, the notification unit 34 is lit. Alternatively, the abnormality is notified by blinking.
  • the control unit 32 determines the presence / absence of abnormality based on the physical quantity related to the load of the motor 21 detected by the detection unit 33, and controls the drive circuit unit 31 in the normal time control mode when it is determined to be normal.
  • the physical quantity related to the load of the motor 21 is, for example, the value of the motor current.
  • the physical quantity related to the load of the motor 21 also varies. Therefore, if a physical quantity related to the load of the motor 21 is detected, an abnormality can be detected without erroneous detection even if the power supplied to the motor 21 fluctuates.
  • FIG. 3 is a flowchart showing an example of the operation of the control unit 32.
  • the operation of the flowchart shown in FIG. 3 is started. Further, when the power supply of the control device 30 is turned on, the operations of the drive circuit unit 31 and the detection unit 33 are also started. The control unit 32, the drive circuit unit 31, and the detection unit 33 continue to operate until the control device 30 is powered off.
  • the control unit 32 controls the drive circuit unit 31 in the normal time control mode while executing the processes of steps S1 to S5 shown in FIG.
  • the control unit 32 controls the drive circuit unit 31 in the intermittent drive mode while executing the processes of steps S11 to S14 shown in FIG.
  • the control unit 32 controls the drive circuit unit 31 in the reverse rotation mode while executing the processing of steps S21 to S23 shown in FIG.
  • the control unit 32 controls the drive circuit unit 31 in the protection mode while executing the processes of steps S31 to S32 shown in FIG.
  • the intermittent drive mode, the reverse rotation mode, and the protection mode belong to the abnormal time control mode. Specific movements in the intermittent drive mode, the reverse rotation mode, and the protection mode will be described later.
  • step S1 When the power of the control device 30 is turned on, the drive circuit unit 31 rotates the motor 21 in the first rotation direction under the control of the control unit 32 (step S1). When the motor 21 rotates in the first rotation direction, water is sucked up by the rotation of the impeller 22 blades.
  • the control unit 32 calculates the rotation speed of the motor 21 from the motor current, and changes the threshold used in step S3 described later according to the rotation speed of the motor 21 (step S2).
  • the threshold value is a reference value for determining whether or not the motor 21 is in an overload state. If the motor current is increased, the number of rotations of the motor 21 is increased. Therefore, in the present embodiment, the control unit 32 increases the threshold value as the number of rotations of the motor 21 increases.
  • step S3 determines whether or not the motor current detected by the detection unit 33 is smaller than a threshold value. That is, in step S3, it is determined whether or not the motor 21 is overloaded. In the present embodiment, the control unit 32 determines whether or not the effective value of the motor current detected by the detection unit 33 is greater than a threshold value.
  • the impeller portion 22 is clogged with foreign matter, the rotational speed of the motor 21 decreases and the motor current increases. Therefore, it is possible to determine whether or not the impeller portion 22 is clogged with foreign matter based on the determination in step S3.
  • step S4 the control unit 32 continues the determination result that the motor current detected by the detection unit 33 is larger than the threshold value for a predetermined time (for example, 1 minute). It is determined whether or not (step S4). When it is determined that the predetermined time has not been continued, the process returns to step S1 and the processes after step S1 are executed. If it is determined that the predetermined time has continued, the process proceeds to step S10 described later.
  • step S5 the control unit 32 resets the duration time determined in step S4 to zero (step S5). After the process of step S5 is executed, the process returns to step S1, and the processes after step S1 are executed.
  • step S4 By executing the process of step S4, when the motor current detected by the detection unit 33 instantaneously becomes larger than the threshold due to noise or the like, the control mode of the control unit 32 is erroneously controlled during normal operation. Transition from the mode to the control mode at the time of abnormality can be prevented.
  • step S10 the controller 32 determines whether or not the motor current detected by the detector 33 is greater than a first predetermined value.
  • the first predetermined value is larger than the threshold used in step S2.
  • the control unit 32 determines whether or not the effective value of the motor current detected by the detection unit 33 is greater than a first predetermined value.
  • step S20 When it is determined that the motor current detected by the detection unit 33 is larger than the first predetermined value, the process proceeds to step S20 described later.
  • the drive circuit unit 31 stops the motor 21 for a predetermined time (for example, 2 seconds) under the control of the control unit 32. (Step S11). Thereby, the control mode of the control unit 32 shifts from the normal time control mode to the intermittent drive mode. After the process of step S11 is completed, the drive circuit unit 31 rotates the motor 21 in the first rotation direction for a predetermined time (for example, 2 seconds) under the control of the control unit 32 (step S12). After the process of step S12 is completed, the control part 32 determines whether the process of step S11 and the process of S12 were each performed predetermined times (for example, 10 times) (step S13).
  • step S11 and the process of S12 have not been executed a predetermined number of times, the process returns to step S11 and the processes after step S11 are executed.
  • step S11 and the process of S12 are each performed a predetermined number of times
  • the drive circuit unit 31 stops the motor 21 under the control of the control unit 32 (step S14).
  • the intermittent drive mode ends.
  • step S20 the controller 32 determines whether or not the motor current detected by the detector 33 is greater than a second predetermined value.
  • the second predetermined value is larger than the first predetermined value used in step S10.
  • the control unit 32 determines whether or not the effective value of the motor current detected by the detection unit 33 is greater than a second predetermined value.
  • step S31 When it is determined that the motor current detected by the detection unit 33 is larger than the second predetermined value, the process proceeds to step S31 described later.
  • the drive circuit unit 31 When it is determined that the motor current detected by the detection unit 33 is greater than the first predetermined value and less than or equal to the second predetermined value, the drive circuit unit 31 is controlled by the control unit 32 for a predetermined time (for example, 30 seconds). Is stopped (step S21). Thereby, the control mode of the control unit 32 shifts from the normal time control mode to the reverse rotation mode.
  • the drive circuit unit 31 rotates the motor 21 in a direction opposite to the first rotation direction for a predetermined time (for example, 30 seconds) under the control of the control unit 32 (step S22).
  • the drive circuit part 31 stops the motor 21 by control of the control part 32 (step S23). Thereby, reverse rotation mode is complete
  • step S31 the drive circuit unit 31 stops the motor 21 under the control of the control unit 32 (step S31).
  • step S31 the control mode of the control unit 32 shifts from the normal time control mode to the protection mode.
  • step S32 the control part 32 determines whether there exists a command instruct
  • a command for instructing to resume operation is output from the input device described above.
  • the process returns to step S32 and the determination in step S32 is repeated.
  • step S1 the processes after step S1 are executed. That is, the control mode of the control unit 32 shifts from the protection mode to the normal time control mode.
  • the notification unit 34 notifies the abnormality.
  • the control unit 32 controls the drive circuit unit 31 in the intermittent drive mode
  • the magnitude of the force applied to the foreign matter varies, so that the foreign matter is encouraged to move in the direction from the suction side to the discharge side of the pump unit 20. it can.
  • the control unit 32 controls the drive circuit unit 31 in the intermittent drive mode
  • the rotation of the motor 21 is intermittently stopped, so that the motor current is intermittently reduced even though the motor 21 is in an overload state. be able to.
  • the pump apparatus 1 can suck up water, reducing the burden on the motor 21.
  • control unit 32 controls the drive circuit unit 31 in the reverse rotation mode, it is possible to urge the foreign matter to move in the direction from the discharge side of the pump unit 20 toward the suction side.
  • the direction from the discharge side of the pump unit 20 toward the suction side and the direction of gravity applied to the foreign matter substantially coincide with each other, so that the force that promotes the movement of the foreign matter can be increased. Therefore, clogging of the impeller portion 22 due to the foreign matter can be more strongly resolved than in the intermittent drive mode.
  • control unit 32 controls the drive circuit unit 31 in the protection mode, the motor is stopped safely when it becomes an overload state.
  • FIG. 4 is a block diagram for explaining a first modification of the pump device 1 according to an exemplary embodiment of the present invention. Hereinafter, a first modification shown in FIG. 4 will be described.
  • a solar power generation device is used as the power supply unit 10.
  • the power supply unit 10 is a solar power generation device
  • the power generation amount varies depending on the amount of solar radiation.
  • the pump unit 20 is used by immersing the pump unit 20 in an underground water source, if the soil collapses after the pump unit 20 is installed in the water source and the water source contains a large amount of foreign matter such as mud and gravel, the impeller Since the part 22 is clogged with foreign matter and the rotational speed of the motor 21 is reduced and the flow rate decreases, it is necessary to automatically remove the foreign matter from the impeller part 22 and return the flow rate to normal.
  • the detection unit 35 is installed inside the control device 30.
  • the detection unit 35 detects a DC voltage (solar voltage) supplied to the pump device 1 by the power supply unit 10 that is a solar power generation device and a DC current (solar current) supplied to the pump device 1.
  • the control unit 32 tracks the maximum power point of DC power (product of solar voltage and solar current) generated by the power supply unit 10. That is, the control unit 32 performs MPPT (Maximum Power Point Tracking) control on the power supply unit 10.
  • MPPT Maximum Power Point Tracking
  • FIG. 5 is a flowchart showing an example of the operation of the control unit 32.
  • the flowchart shown in FIG. 5 differs from the flowchart shown in FIG. 3 only in that steps S2, S3, S10, and S20 of the flowchart shown in FIG. 3 are replaced with steps S2 ', S3', S10 ', and S20', respectively. Accordingly, only steps S2 ', S3', S10 ', and S20' will be described below.
  • the control unit 32 calculates the maximum power point of the DC power supplied from the power supply unit 10 to the pump device 1 from the detection result of the detection unit 35, and sets a threshold value used in step S3 ′ described later from the power supply unit 10 to the pump device. 1 is changed according to the maximum power point of the DC power supplied to 1.
  • the control unit 32 increases the threshold value as the maximum power point of the DC power supplied from the power supply unit 10 to the pump device 1 is larger.
  • step S3 ' the control unit 32 determines whether or not the solar voltage detected by the detection unit 35 is smaller than a threshold value.
  • step S10 ' the control unit 32 determines whether or not the solar voltage detected by the detection unit 35 is smaller than a first predetermined value.
  • the first predetermined value is smaller than the threshold used in step S3 '.
  • step S20 ' the control unit 32 determines whether or not the solar voltage detected by the detection unit 35 is smaller than a second predetermined value.
  • the second predetermined value is smaller than the first predetermined value used in step S10 '.
  • FIG. 6 is a block diagram for explaining a second modification of the pump device 1 according to an exemplary embodiment of the present invention.
  • the detection unit 33 is installed inside the pump unit 20.
  • the configuration shown in FIG. 1 may be modified so that the detection unit 33 is installed inside the drive circuit unit 31.
  • the configuration shown in FIG. 6 may be modified and the detection unit 33 is installed inside the motor 21. You may make it the structure made.
  • the first modification shown in FIG. 4 may be further modified so that the detection unit 33 is installed not inside the control device 30 but inside the pump unit 20.
  • the pump device 1 may have a configuration including a power supply unit 10.
  • the power supply part 10 may be a commercial alternating current power supply.
  • the drive circuit unit 31 may include an AC / DC converter that converts AC power supplied from the power supply unit 10 to the pump device 1 into DC power.
  • the stability of commercial AC power varies by country or region.
  • the pump device 1 according to the exemplary embodiment of the present invention shown in FIG. 1 is particularly useful in a country or region where fluctuations in the AC voltage supplied from the commercial AC power source to the pump device 1 are large.
  • the present invention can be used for a pump device having a pump unit having a motor and a control method for a pump device having a pump unit having a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

This pump device has a pump unit having an electric motor, and a control device. The control device has a drive circuit unit that energizes the electric motor, and a control unit that controls the drive circuit unit. The pump unit and/or the control device has a detection unit that detects a physical quantity pertaining to the load of the electric motor. The control unit determines whether there are any abnormalities on the basis of the physical quantity detected by the detection unit, controls the drive circuit unit in a normal control mode when conditions are determined to be normal, and controls the drive circuit unit in an abnormal control mode when conditions are determined to be abnormal.

Description

ポンプ装置及びポンプ装置の制御方法Pump device and control method of pump device
 本発明は、ポンプ装置及びポンプ装置の制御方法に関する。 The present invention relates to a pump device and a control method of the pump device.
 特許文献1で開示されるポンプの制御方法は、ポンプの回転数に基づいて、ポンプの羽根車に絡みついた異物の詰まりを検出する。 The pump control method disclosed in Patent Document 1 detects clogging of foreign matter entangled with a pump impeller based on the number of revolutions of the pump.
特開2006-29222号公報JP 2006-29222 A
 しかし、ポンプに供給される電力が減少した場合でもポンプの回転数は下がる。特許文献1で開示されるポンプの制御方法は、ポンプの回転数が下がった場合に、異物の詰まりによってポンプの回転数が下がったのか、ポンプに供給される電力の減少によってポンプの回転数が下がったのか、を区別していない。そのため、特許文献1で開示されるポンプの制御方法は、異物の詰まりを誤検出するおそれがある。 However, even if the power supplied to the pump decreases, the pump speed decreases. In the control method of the pump disclosed in Patent Document 1, when the rotation speed of the pump decreases, the rotation speed of the pump decreases due to a decrease in power supplied to the pump, whether the rotation speed of the pump decreases due to clogging of foreign matter. It does not distinguish whether it has fallen. For this reason, the pump control method disclosed in Patent Document 1 may erroneously detect clogging of foreign matter.
 以上の点に鑑みて、本発明は、異常の誤検出を防止することができるポンプ装置及びポンプ装置の制御方法を提供する。 In view of the above, the present invention provides a pump device and a pump device control method capable of preventing erroneous detection of abnormality.
 本発明の例示的なポンプ装置は、モータを有するポンプ部と、制御装置と、を有する。前記制御装置は、前記モータに対して通電を行う駆動回路部と、前記駆動回路部を制御する制御部と、を有する。前記ポンプ部及び前記制御装置の少なくともいずれか一方は、前記モータの負荷に関する物理量を検出する検出部を有する。前記制御部は、前記検出部によって検出された物理量に基づいて異常の有無を判定し、正常であると判定した場合に正常時制御モードで前記駆動回路部を制御し、異常であると判定した場合に異常時制御モードで前記駆動回路部を制御する。 The exemplary pump device of the present invention includes a pump unit having a motor and a control device. The control device includes a drive circuit unit that energizes the motor and a control unit that controls the drive circuit unit. At least one of the pump unit and the control device includes a detection unit that detects a physical quantity related to the load of the motor. The control unit determines whether or not there is an abnormality based on the physical quantity detected by the detection unit, and controls the drive circuit unit in a normal time control mode when determining that it is normal, and determines that it is abnormal In this case, the drive circuit unit is controlled in the abnormal time control mode.
 本発明の例示的な制御方法は、モータを有するポンプ部と、前記モータに対して通電を行う駆動回路部と、を有するポンプ装置の制御方法であって、前記モータの負荷に関する物理量を検出する第1ステップと、検出された物理量に基づいて異常の有無を判定する第2ステップと、前記第2ステップでの判定結果を用い、前記駆動回路部を制御する第3ステップと、を有する。 An exemplary control method of the present invention is a control method for a pump device having a pump unit having a motor and a drive circuit unit for energizing the motor, and detects a physical quantity related to the load of the motor. A first step, a second step for determining the presence or absence of abnormality based on the detected physical quantity, and a third step for controlling the drive circuit unit using the determination result in the second step.
 例示的な本発明によれば、異常の誤検出を防止することができるポンプ装置及びポンプ装置の制御方法を提供することができる。 According to the exemplary present invention, it is possible to provide a pump device and a pump device control method capable of preventing erroneous detection of abnormality.
図1は、本発明の実施形態に係るポンプ装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a pump device according to an embodiment of the present invention. 図2は、本発明の実施形態に係るポンプ装置が有するポンプ部及びその周辺の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a pump unit and its surroundings included in the pump device according to the embodiment of the present invention. 図3は、制御部の動作の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of the operation of the control unit. 図4は、本発明の例示的な実施形態に係るポンプ装置の第1変形例を説明するためのブロック図である。FIG. 4 is a block diagram for explaining a first modification of the pump device according to the exemplary embodiment of the present invention. 図5は、第1変形例における制御部の動作の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of the operation of the control unit in the first modification. 図6は、本発明の例示的な実施形態に係るポンプ装置の第2変形例を説明するためのブロック図である。FIG. 6 is a block diagram for explaining a second modification of the pump device according to the exemplary embodiment of the present invention.
 以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
<1.駆動装置の概略>
 まず、本発明の例示的な実施形態に係るポンプ装置の概略構成について説明する。図1は、本発明の実施形態に係るポンプ装置1の構成を示すブロック図である。電源部10はポンプ装置1に電力を供給する。ポンプ装置1は、ポンプ部20と、制御装置30とを有する。
<1. Outline of drive device>
First, a schematic configuration of a pump device according to an exemplary embodiment of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a pump device 1 according to an embodiment of the present invention. The power supply unit 10 supplies power to the pump device 1. The pump device 1 includes a pump unit 20 and a control device 30.
 本実施形態では、電源部10は、自然エネルギーを利用して発電する。電源部10がポンプ装置1に電力を供給するので、本実施形態のポンプ装置1は、電力インフラが整っていない地域でも利用することができる。 In the present embodiment, the power supply unit 10 generates power using natural energy. Since the power supply part 10 supplies electric power to the pump apparatus 1, the pump apparatus 1 of this embodiment can be used also in the area where the power infrastructure is not prepared.
 電源部10は、例えば、太陽光発電装置、風力発電装置、波力発電装置、及び地熱発電装置のうちのいずれかであってよい。なお、波力発電装置は、海水等の波のエネルギーを利用して発電する装置である。 The power supply unit 10 may be, for example, any one of a solar power generation device, a wind power generation device, a wave power generation device, and a geothermal power generation device. The wave power generation device is a device that generates power using wave energy such as seawater.
 電源部10は、自然エネルギーを利用する発電装置を複数種類含んでもよい。本実施形態では、電源部10は太陽光発電装置である。 The power supply unit 10 may include a plurality of types of power generation devices that use natural energy. In the present embodiment, the power supply unit 10 is a solar power generation device.
 ポンプ部20はモータ21を有する。本実施形態では、モータ21はブラシレスモータである。図2は、本発明の実施形態に係るポンプ装置1が有するポンプ部20及びその周辺の構成を示す模式図である。図2に示すように、ポンプ部20は、モータ21に接続されるインペラ部22を有する。インペラ部22は、モータ21の駆動によって回転する羽根(不図示)を有する。 The pump unit 20 has a motor 21. In the present embodiment, the motor 21 is a brushless motor. FIG. 2 is a schematic diagram illustrating the configuration of the pump unit 20 included in the pump device 1 according to the embodiment of the present invention and the periphery thereof. As shown in FIG. 2, the pump unit 20 has an impeller unit 22 connected to a motor 21. The impeller portion 22 has blades (not shown) that rotate when the motor 21 is driven.
 ポンプ装置1は、インペラ部22に接続される流水ケーブル40と、貯水槽41とを有する。ポンプ部20は、例えば地中の水源に浸される。ポンプ装置1は、インペラ部22が有する羽根の回転によって水を吸い上げる。吸い上げられた水は、流水ケーブル40を通って地上に汲み上げられる。汲み上げられた水は、貯水槽41に貯められる。 The pump device 1 has a running water cable 40 connected to the impeller unit 22 and a water storage tank 41. The pump unit 20 is immersed in, for example, an underground water source. The pump device 1 sucks up water by rotation of blades of the impeller portion 22. The sucked-up water is pumped to the ground through the running water cable 40. The pumped water is stored in the water storage tank 41.
 制御装置30は、ポンプ部20と電気ケーブルで接続され、地上に配置される。制御装置30は、入力装置(不図示)からの指令によって駆動する。入力装置は、例えば、制御装置30を収容する筐体に設けられてもよいし、リモートコントローラであってもよい。入力装置は、例えば、制御装置30のオンとオフとを切り替える電源スイッチを有してよい。また、入力装置は、制御装置30を操作する複数の入力キーを有してよい。入力キーは、例えばボタン或いはタッチパネル等であってよい。 The control device 30 is connected to the pump unit 20 with an electric cable and arranged on the ground. The control device 30 is driven by a command from an input device (not shown). For example, the input device may be provided in a housing that accommodates the control device 30 or may be a remote controller. The input device may include a power switch that switches the control device 30 on and off, for example. The input device may have a plurality of input keys for operating the control device 30. The input key may be a button or a touch panel, for example.
<2.制御装置の詳細>
 制御装置30は、駆動回路部31と、制御部32と、検出部33と、報知部34とを有する。本実施形態では、駆動回路部31、制御部32、検出部33、及び報知部34は1つの制御ボックスの中に収容される。本実施形態では、報知部34は表示装置である。例えば報知部34が液晶表示装置である場合には表示画面が制御ボックスの外部から視認可能な位置に設置され、例えば報知部34がLED(Light Emitting Diode)表示装置である場合にはLEDの発光部が制御ボックスの外部から視認可能な位置に設置される。
<2. Details of control device>
The control device 30 includes a drive circuit unit 31, a control unit 32, a detection unit 33, and a notification unit 34. In the present embodiment, the drive circuit unit 31, the control unit 32, the detection unit 33, and the notification unit 34 are accommodated in one control box. In the present embodiment, the notification unit 34 is a display device. For example, when the notification unit 34 is a liquid crystal display device, the display screen is installed at a position visible from the outside of the control box. For example, when the notification unit 34 is an LED (Light Emitting Diode) display device, the LED emits light. The part is installed at a position where it can be seen from the outside of the control box.
 駆動回路部31は、電源部10から供給される電力を変換してポンプ部20に三相交流電力を供給する。本実施形態では、駆動回路部31は、PWM(Pulse Width Modulation)制御方式のインバータである。 The drive circuit unit 31 converts the power supplied from the power supply unit 10 and supplies three-phase AC power to the pump unit 20. In the present embodiment, the drive circuit unit 31 is a PWM (Pulse Width Modulation) control type inverter.
 制御部32は、駆動回路部31を制御する制御信号を出力する。本実施形態では、制御部32は、駆動回路部31をPWM信号によって制御する。制御部32は、モータ21の回転数を検知してモータ21の回転数が最大になるように駆動回路部31を制御する。本実施形態では、制御部32は、検出部33から検出されるモータ電流信号を用いてモータ21の回転数を検知する。また、本実施形態では、制御部32は、CPU(Central Processing Unit)32a及びメモリ32bを有するマイコンである。メモリ32bは、ROM(Read Only Memory)及びRAM(Random Access Memory)を有する。ROMには、モータ21の駆動を制御するために必要なプログラム及びデータが記憶されている。なお、CPU32aがメモリ32bに記憶されたプログラムを実行することで実現される機能のうち一部又は全部を、ソフトウェアを用いないハードウェアで実現してもよい。すなわち、制御部32は、マイコンとソフトウェアを用いないハードウェアとによって構成されてもよく、ソフトウェアを用いないハードウェアのみによって構成されてもよい。ソフトウェアを用いないハードウェアとしては、例えばASIC(Application Specific Integrated Circuit)等がある。 The control unit 32 outputs a control signal for controlling the drive circuit unit 31. In the present embodiment, the control unit 32 controls the drive circuit unit 31 with a PWM signal. The control unit 32 detects the rotational speed of the motor 21 and controls the drive circuit unit 31 so that the rotational speed of the motor 21 is maximized. In the present embodiment, the control unit 32 detects the rotation speed of the motor 21 using the motor current signal detected from the detection unit 33. In the present embodiment, the control unit 32 is a microcomputer having a CPU (Central Processing Unit) 32a and a memory 32b. The memory 32b includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The ROM stores programs and data necessary for controlling the driving of the motor 21. Note that some or all of the functions realized by the CPU 32a executing the program stored in the memory 32b may be realized by hardware that does not use software. That is, the control unit 32 may be configured by a microcomputer and hardware that does not use software, or may be configured only by hardware that does not use software. As hardware that does not use software, for example, there is ASIC (Application Specific Integrated Circuit).
 検出部33は、モータ21の負荷に関する物理量を検出し、前記検出結果に関する検出信号を出力する。物理量とは、定められた物理単位の倍数として表すことができる量のことであり、例えば電流値、電圧値などである。本実施形態の一例として、検出部33は、前記物理量としてモータ21に対して通電される駆動電流とモータ21が回転した時に発生する逆起電流を合算した値であるモータ電流を検出し、前記検出信号であるモータ電流信号を出力する。また、本実施形態の一例として、検出部33は、シャント抵抗を用いて構成された電流測定回路である。検出部33で用いられるシャント抵抗は、駆動回路部31から電源部10へと繋がるグラウンド上に設置される。検出部33は、シャント抵抗に代えて、電流センサであってもよい。 The detection unit 33 detects a physical quantity related to the load of the motor 21 and outputs a detection signal related to the detection result. The physical quantity is an amount that can be expressed as a multiple of a defined physical unit, such as a current value or a voltage value. As an example of the present embodiment, the detection unit 33 detects a motor current that is a value obtained by adding a drive current energized to the motor 21 as the physical quantity and a back electromotive current generated when the motor 21 rotates. A motor current signal that is a detection signal is output. In addition, as an example of the present embodiment, the detection unit 33 is a current measurement circuit configured using a shunt resistor. The shunt resistor used in the detection unit 33 is installed on the ground connected from the drive circuit unit 31 to the power supply unit 10. The detection unit 33 may be a current sensor instead of the shunt resistor.
 報知部34は、制御部32によって異常があると判定された場合に異常を報知する。これにより、ポンプ装置1の使用者は、ポンプ装置1に異常が発生した場合にポンプ装置1に異常が発生したことを認識することができる。本実施形態では、報知部34は、前記制御部によって異常があると所定時間継続して判定された場合に異常を報知する。例えば報知部34が液晶表示装置である場合には報知部34は表示画面にエラーメッセージを表示することにより異常を報知し、例えば報知部34がLED表示装置である場合には報知部34は点灯又は点滅することにより異常を報知する。 The notification unit 34 notifies the abnormality when the control unit 32 determines that there is an abnormality. Thereby, the user of the pump device 1 can recognize that an abnormality has occurred in the pump device 1 when an abnormality has occurred in the pump device 1. In the present embodiment, the notification unit 34 notifies the abnormality when it is determined that there is an abnormality by the control unit for a predetermined time. For example, when the notification unit 34 is a liquid crystal display device, the notification unit 34 notifies the abnormality by displaying an error message on the display screen. For example, when the notification unit 34 is an LED display device, the notification unit 34 is lit. Alternatively, the abnormality is notified by blinking.
<3.制御モードの詳細>
 制御部32は、検出部33によって検出されたモータ21の負荷に関する物理量に基づいて異常の有無を判定し、正常であると判定した場合に正常時制御モードで駆動回路部31を制御し、異常であると判定した場合に異常時制御モードで駆動回路部31を制御する。モータ21の負荷に関する物理量とは、例えば、モータ電流の値である。ここで、モータ21に供給される電力が変動すれば、モータ21の負荷に関する物理量も変動する。よって、モータ21の負荷に関する物理量を検出すれば、モータ21に供給される電力が変動しても、誤検出せず異常を検出することができる。
<3. Details of control mode>
The control unit 32 determines the presence / absence of abnormality based on the physical quantity related to the load of the motor 21 detected by the detection unit 33, and controls the drive circuit unit 31 in the normal time control mode when it is determined to be normal. When it is determined that the driving circuit unit 31 is controlled in the abnormal time control mode. The physical quantity related to the load of the motor 21 is, for example, the value of the motor current. Here, if the electric power supplied to the motor 21 varies, the physical quantity related to the load of the motor 21 also varies. Therefore, if a physical quantity related to the load of the motor 21 is detected, an abnormality can be detected without erroneous detection even if the power supplied to the motor 21 fluctuates.
 図3は、制御部32の動作の一例を示すフローチャートである。制御装置30の電源がオンされると、図3に示すフローチャートの動作が開始される。また、制御装置30の電源がオンされると、駆動回路部31及び検出部33の動作も開始される。制御部32、駆動回路部31、及び検出部33は制御装置30の電源がオフされるまで動作を継続する。 FIG. 3 is a flowchart showing an example of the operation of the control unit 32. When the power supply of the control device 30 is turned on, the operation of the flowchart shown in FIG. 3 is started. Further, when the power supply of the control device 30 is turned on, the operations of the drive circuit unit 31 and the detection unit 33 are also started. The control unit 32, the drive circuit unit 31, and the detection unit 33 continue to operate until the control device 30 is powered off.
 制御部32は、図3に示すステップS1~S5の処理を実行している間、正常時制御モードで駆動回路部31を制御する。制御部32は、図3に示すステップS11~S14の処理を実行している間、間欠駆動モードで駆動回路部31を制御する。制御部32は、図3に示すステップS21~S23の処理を実行している間、逆回転モードで駆動回路部31を制御する。制御部32は、図3に示すステップS31~S32の処理を実行している間、保護モードで駆動回路部31を制御する。間欠駆動モード、逆回転モード、及び保護モードはそれぞれ異常時制御モードに属する。間欠駆動モード、逆回転モード、及び保護モードの具体的な動きは、後段で説明する。 The control unit 32 controls the drive circuit unit 31 in the normal time control mode while executing the processes of steps S1 to S5 shown in FIG. The control unit 32 controls the drive circuit unit 31 in the intermittent drive mode while executing the processes of steps S11 to S14 shown in FIG. The control unit 32 controls the drive circuit unit 31 in the reverse rotation mode while executing the processing of steps S21 to S23 shown in FIG. The control unit 32 controls the drive circuit unit 31 in the protection mode while executing the processes of steps S31 to S32 shown in FIG. The intermittent drive mode, the reverse rotation mode, and the protection mode belong to the abnormal time control mode. Specific movements in the intermittent drive mode, the reverse rotation mode, and the protection mode will be described later.
 制御装置30の電源がオンされると、制御部32の制御によって、駆動回路部31はモータ21を第1の回転方向で回転させる(ステップS1)。モータ21が第1の回転方向で回転すると、インペラ部22の羽根の回転によって水を吸い上げる。 When the power of the control device 30 is turned on, the drive circuit unit 31 rotates the motor 21 in the first rotation direction under the control of the control unit 32 (step S1). When the motor 21 rotates in the first rotation direction, water is sucked up by the rotation of the impeller 22 blades.
 次に、制御部32は、モータ電流からモータ21の回転数を算出し、後述するステップS3で用いる閾値をモータ21の回転数に応じて変更する(ステップS2)。ここで、閾値とは、モータ21が過負荷状態であるか否かを判定するための基準値である。モータ電流を大きくすればモータ21の回転数が大きくなるので、本実施形態では、制御部32は、モータ21の回転数が大きいほど閾値を大きくする。 Next, the control unit 32 calculates the rotation speed of the motor 21 from the motor current, and changes the threshold used in step S3 described later according to the rotation speed of the motor 21 (step S2). Here, the threshold value is a reference value for determining whether or not the motor 21 is in an overload state. If the motor current is increased, the number of rotations of the motor 21 is increased. Therefore, in the present embodiment, the control unit 32 increases the threshold value as the number of rotations of the motor 21 increases.
 その後、制御部32は、検出部33によって検出されたモータ電流が閾値より小さいか否かを判定する(ステップS3)。つまり、ステップS3では、モータ21が過負荷であるか否かを判定している。本実施形態では、制御部32は、検出部33によって検出されたモータ電流の実効値が閾値より大きいか否かを判定する。インペラ部22が異物によって詰まっている場合、モータ21の回転数が下がり、モータ電流が高くなる。したがって、ステップS3の判定によって、インペラ部22が異物によって詰まっているか否かを判定することができる。 Thereafter, the control unit 32 determines whether or not the motor current detected by the detection unit 33 is smaller than a threshold value (step S3). That is, in step S3, it is determined whether or not the motor 21 is overloaded. In the present embodiment, the control unit 32 determines whether or not the effective value of the motor current detected by the detection unit 33 is greater than a threshold value. When the impeller portion 22 is clogged with foreign matter, the rotational speed of the motor 21 decreases and the motor current increases. Therefore, it is possible to determine whether or not the impeller portion 22 is clogged with foreign matter based on the determination in step S3.
 検出部33によって検出されたモータ電流が閾値より大きいと判定された場合、制御部32は、検出部33によって検出されたモータ電流が閾値より大きいという判定結果が所定時間(例えば1分間)継続しているか否かを判定する(ステップS4)。所定時間継続していないと判定された場合、ステップS1に戻って、ステップS1以降の処理が実行される。所定時間継続していると判定された場合、後述するステップS10に移行する。 When it is determined that the motor current detected by the detection unit 33 is larger than the threshold value, the control unit 32 continues the determination result that the motor current detected by the detection unit 33 is larger than the threshold value for a predetermined time (for example, 1 minute). It is determined whether or not (step S4). When it is determined that the predetermined time has not been continued, the process returns to step S1 and the processes after step S1 are executed. If it is determined that the predetermined time has continued, the process proceeds to step S10 described later.
 検出部33によって検出されたモータ電流が閾値以下であると判定された場合、制御部32は、ステップS4で判定していた継続時間をゼロにリセットする(ステップS5)。ステップS5の処理が実行された後、ステップS1に戻って、ステップS1以降の処理が実行される。 When it is determined that the motor current detected by the detection unit 33 is equal to or less than the threshold value, the control unit 32 resets the duration time determined in step S4 to zero (step S5). After the process of step S5 is executed, the process returns to step S1, and the processes after step S1 are executed.
 ステップS4の処理を実行することで、ノイズ等が原因となって検出部33によって検出されたモータ電流が瞬間的に閾値より大きくなった場合に、制御部32の制御モードが誤って正常時制御モードから異常時制御モードに移行することを防止することができる。 By executing the process of step S4, when the motor current detected by the detection unit 33 instantaneously becomes larger than the threshold due to noise or the like, the control mode of the control unit 32 is erroneously controlled during normal operation. Transition from the mode to the control mode at the time of abnormality can be prevented.
 ステップS10では、制御部32は、検出部33によって検出されたモータ電流が第1所定値より大きいか否かを判定する。第1所定値はステップS2で用いた閾値よりも大きい。本実施形態では、制御部32は、検出部33によって検出されたモータ電流の実効値が第1所定値より大きいか否かを判定する。 In step S10, the controller 32 determines whether or not the motor current detected by the detector 33 is greater than a first predetermined value. The first predetermined value is larger than the threshold used in step S2. In the present embodiment, the control unit 32 determines whether or not the effective value of the motor current detected by the detection unit 33 is greater than a first predetermined value.
 検出部33によって検出されたモータ電流が第1所定値より大きいと判定された場合、後述するステップS20に移行する。 When it is determined that the motor current detected by the detection unit 33 is larger than the first predetermined value, the process proceeds to step S20 described later.
 検出部33によって検出されたモータ電流が閾値より大きく第1所定値以下であると判定された場合、制御部32の制御によって、駆動回路部31は所定時間(例えば2秒間)モータ21を停止させる(ステップS11)。これにより、制御部32の制御モードは、正常時制御モードから間欠駆動モードに移行する。ステップS11の処理が完了した後、制御部32の制御によって、駆動回路部31は所定時間(例えば2秒間)モータ21を第1の回転方向で回転させる(ステップS12)。ステップS12の処理が完了した後、制御部32は、ステップS11の処理及びS12の処理をそれぞれ所定回数(例えば10回)実行したか否かを判定する(ステップS13)。 When it is determined that the motor current detected by the detection unit 33 is greater than the threshold value and equal to or less than the first predetermined value, the drive circuit unit 31 stops the motor 21 for a predetermined time (for example, 2 seconds) under the control of the control unit 32. (Step S11). Thereby, the control mode of the control unit 32 shifts from the normal time control mode to the intermittent drive mode. After the process of step S11 is completed, the drive circuit unit 31 rotates the motor 21 in the first rotation direction for a predetermined time (for example, 2 seconds) under the control of the control unit 32 (step S12). After the process of step S12 is completed, the control part 32 determines whether the process of step S11 and the process of S12 were each performed predetermined times (for example, 10 times) (step S13).
 ステップS11の処理及びS12の処理がそれぞれ所定回数実行されていないと判定された場合、ステップS11に戻って、ステップS11以降の処理が実行される。 If it is determined that the process of step S11 and the process of S12 have not been executed a predetermined number of times, the process returns to step S11 and the processes after step S11 are executed.
 一方、ステップS11の処理及びS12の処理がそれぞれ所定回数実行されたと判定された場合、制御部32の制御によって、駆動回路部31はモータ21を停止させる(ステップS14)。これにより、間欠駆動モードが終了する。そして、ステップS1に戻って、ステップS1以降の処理が実行される。つまり、制御部32の制御モードが正常時制御モードに戻る。 On the other hand, when it is determined that the process of step S11 and the process of S12 are each performed a predetermined number of times, the drive circuit unit 31 stops the motor 21 under the control of the control unit 32 (step S14). Thereby, the intermittent drive mode ends. And it returns to step S1 and the process after step S1 is performed. That is, the control mode of the control unit 32 returns to the normal time control mode.
 ステップS20では、制御部32は、検出部33によって検出されたモータ電流が第2所定値より大きいか否かを判定する。第2所定値はステップS10で用いた第1所定値よりも大きい。本実施形態では、制御部32は、検出部33によって検出されたモータ電流の実効値が第2所定値より大きいか否かを判定する。 In step S20, the controller 32 determines whether or not the motor current detected by the detector 33 is greater than a second predetermined value. The second predetermined value is larger than the first predetermined value used in step S10. In the present embodiment, the control unit 32 determines whether or not the effective value of the motor current detected by the detection unit 33 is greater than a second predetermined value.
 検出部33によって検出されたモータ電流が第2所定値より大きいと判定された場合、後述するステップS31に移行する。 When it is determined that the motor current detected by the detection unit 33 is larger than the second predetermined value, the process proceeds to step S31 described later.
 検出部33によって検出されたモータ電流が第1所定値より大きく第2所定値以下であると判定された場合、制御部32の制御によって、駆動回路部31は所定時間(例えば30秒間)モータ21を停止させる(ステップS21)。これにより、制御部32の制御モードは、正常時制御モードから逆回転モードに移行する。ステップS21の処理が完了した後、制御部32の制御によって、駆動回路部31は所定時間(例えば30秒間)モータ21を第1の回転方向とは逆方向で回転させる(ステップS22)。ステップS22の処理が完了した後、制御部32の制御によって、駆動回路部31はモータ21を停止させる(ステップS23)。これにより、逆回転モードが終了する。そして、ステップS1に戻って、ステップS1以降の処理が実行される。つまり、制御部32の制御モードが正常時制御モードに戻る。 When it is determined that the motor current detected by the detection unit 33 is greater than the first predetermined value and less than or equal to the second predetermined value, the drive circuit unit 31 is controlled by the control unit 32 for a predetermined time (for example, 30 seconds). Is stopped (step S21). Thereby, the control mode of the control unit 32 shifts from the normal time control mode to the reverse rotation mode. After the process of step S21 is completed, the drive circuit unit 31 rotates the motor 21 in a direction opposite to the first rotation direction for a predetermined time (for example, 30 seconds) under the control of the control unit 32 (step S22). After the process of step S22 is completed, the drive circuit part 31 stops the motor 21 by control of the control part 32 (step S23). Thereby, reverse rotation mode is complete | finished. And it returns to step S1 and the process after step S1 is performed. That is, the control mode of the control unit 32 returns to the normal time control mode.
 ステップS31では、制御部32の制御によって、駆動回路部31はモータ21を停止させる(ステップS31)。これにより、制御部32の制御モードは、正常時制御モードから保護モードに移行する。ステップS31の処理が完了した後、制御部32は、運転を再開することを指示する指令が有るか否かを判定する(ステップS32)。運転を再開することを指示する指令は、上述した入力装置から出力される。運転を再開することを指示する指令がないと判定された場合、ステップS32に戻って、ステップS32の判定を繰り返す。一方、運転を再開することを指示する指令が有ると判定された場合、ステップS1に戻って、ステップS1以降の処理が実行される。つまり、制御部32の制御モードが保護モードから正常時制御モードに移行する。 In step S31, the drive circuit unit 31 stops the motor 21 under the control of the control unit 32 (step S31). As a result, the control mode of the control unit 32 shifts from the normal time control mode to the protection mode. After the process of step S31 is completed, the control part 32 determines whether there exists a command instruct | indicating restarting driving | operation (step S32). A command for instructing to resume operation is output from the input device described above. When it is determined that there is no instruction for instructing to resume operation, the process returns to step S32 and the determination in step S32 is repeated. On the other hand, when it is determined that there is a command for instructing to resume the operation, the process returns to step S1 and the processes after step S1 are executed. That is, the control mode of the control unit 32 shifts from the protection mode to the normal time control mode.
 なお、制御部32が間欠駆動モード、逆回転モード、及び保護モードのいずれかで駆動回路部31を制御している間、報知部34は、異常を報知する。 In addition, while the control unit 32 controls the drive circuit unit 31 in any of the intermittent drive mode, the reverse rotation mode, and the protection mode, the notification unit 34 notifies the abnormality.
 制御部32が間欠駆動モードで駆動回路部31を制御した場合、異物に加わる力の大きさが変動するのでポンプ部20の吸入側から排出側に向かう方向に異物が移動することを促すことができる。これにより、一旦ポンプ部20の排出側から吸入側に向かう方向に異物が戻ることを抑えることができ、異物を効率良くポンプ部20の吸入側から排出することができる。また、制御部32が間欠駆動モードで駆動回路部31を制御した場合、モータ21の回転が間欠的に停止するので、モータ21が過負荷状態であるにもかかわらずモータ電流を間欠的に下げることができる。これにより、モータ21への負担を軽減させながら、ポンプ装置1が水を吸い上げることができる。 When the control unit 32 controls the drive circuit unit 31 in the intermittent drive mode, the magnitude of the force applied to the foreign matter varies, so that the foreign matter is encouraged to move in the direction from the suction side to the discharge side of the pump unit 20. it can. Thereby, it is possible to suppress the foreign matter from returning in the direction from the discharge side of the pump unit 20 to the suction side, and the foreign matter can be efficiently discharged from the suction side of the pump unit 20. In addition, when the control unit 32 controls the drive circuit unit 31 in the intermittent drive mode, the rotation of the motor 21 is intermittently stopped, so that the motor current is intermittently reduced even though the motor 21 is in an overload state. be able to. Thereby, the pump apparatus 1 can suck up water, reducing the burden on the motor 21.
 制御部32が逆回転モードで駆動回路部31を制御した場合、ポンプ部20の排出側から吸入側に向かう方向に異物が移動することを促すことができる。例えば図2に示す構成である場合、ポンプ部20の排出側から吸入側に向かう方向と異物に加わる重力の方向とが略一致するので、異物の移動を促す力を大きくすることができる。したがって、インペラ部22の異物による詰まりを間欠駆動モードよりも強力に解消することができる。 When the control unit 32 controls the drive circuit unit 31 in the reverse rotation mode, it is possible to urge the foreign matter to move in the direction from the discharge side of the pump unit 20 toward the suction side. For example, in the case of the configuration shown in FIG. 2, the direction from the discharge side of the pump unit 20 toward the suction side and the direction of gravity applied to the foreign matter substantially coincide with each other, so that the force that promotes the movement of the foreign matter can be increased. Therefore, clogging of the impeller portion 22 due to the foreign matter can be more strongly resolved than in the intermittent drive mode.
 制御部32が保護モードで駆動回路部31を制御した場合、過負荷状態となった時、モータを止めて安全に停止させる。 When the control unit 32 controls the drive circuit unit 31 in the protection mode, the motor is stopped safely when it becomes an overload state.
<4.変形例>
 図4は、本発明の例示的な実施形態に係るポンプ装置1の第1変形例を説明するためのブロック図である。以下、図4に示す第1変形例について説明する。
<4. Modification>
FIG. 4 is a block diagram for explaining a first modification of the pump device 1 according to an exemplary embodiment of the present invention. Hereinafter, a first modification shown in FIG. 4 will be described.
 第1変形例では、電源部10として太陽光発電装置を用いている。電源部10が太陽光発電装置の場合、日射量によって発電量が異なるため、電力低下によりポンプ部20のモータ21の回転数が低下する。しかしながら、ポンプ部20を地中の水源に浸してポンプ装置1を使用する場合、ポンプ部20を水源に設置後、土壌が崩れて水源に例えば泥、砂利などの異物が多く含まれると、インペラ部22に異物が詰まりモータ21の回転数が下がって流量が減少するため、自動的にインペラ部22から異物を取り除き、流量を正常に戻す必要がある。ところが、特許文献1のように、ポンプの回転数を検出する方法では、電力低下による回転数の低下なのか、インペラ部22に異物が詰まったことによる回転数の低下なのか判別できず、自動的にインペラ部22から異物を除去する制御に切り替わることができない。よって、これから説明する第1変形例では、太陽光発電装置を電源部10として用いても、その発電量の変動に応じて、閾値を変化させて、インペラ部22の異物の詰まりを検知し、自動的にインペラ部22から異物を除去することを目的としている。 In the first modification, a solar power generation device is used as the power supply unit 10. When the power supply unit 10 is a solar power generation device, the power generation amount varies depending on the amount of solar radiation. However, when the pump unit 20 is used by immersing the pump unit 20 in an underground water source, if the soil collapses after the pump unit 20 is installed in the water source and the water source contains a large amount of foreign matter such as mud and gravel, the impeller Since the part 22 is clogged with foreign matter and the rotational speed of the motor 21 is reduced and the flow rate decreases, it is necessary to automatically remove the foreign matter from the impeller part 22 and return the flow rate to normal. However, as in Patent Document 1, in the method of detecting the rotational speed of the pump, it is impossible to determine whether the rotational speed is decreased due to power reduction or the rotational speed is decreased due to the impeller unit 22 being clogged with foreign matter. Therefore, it is not possible to switch to the control for removing the foreign matter from the impeller portion 22. Therefore, in the first modification described below, even if the solar power generation device is used as the power supply unit 10, the threshold value is changed according to the fluctuation of the power generation amount to detect clogging of foreign matter in the impeller unit 22, The object is to automatically remove foreign matter from the impeller portion 22.
 制御装置30の内部に検出部35が設置される。検出部35は、太陽光発電装置である電源部10がポンプ装置1に供給する直流電圧(ソーラー電圧)と、ポンプ装置1に供給される直流電流(ソーラー電流)とを検出する。 The detection unit 35 is installed inside the control device 30. The detection unit 35 detects a DC voltage (solar voltage) supplied to the pump device 1 by the power supply unit 10 that is a solar power generation device and a DC current (solar current) supplied to the pump device 1.
制御部32は、電源部10が生成する直流電力(ソーラー電圧とソーラー電流との積)の最大電力点を追尾する。すなわち、制御部32は電源部10に対してMPPT(Maximum Power Point Tracking)制御を行う。そして、制御部32は、モータ21の負荷が定格負荷でなく過負荷状態に近いと判断した場合に、インペラ部22に異物が絡まっていると判断し、異物除去の動作を行う。 The control unit 32 tracks the maximum power point of DC power (product of solar voltage and solar current) generated by the power supply unit 10. That is, the control unit 32 performs MPPT (Maximum Power Point Tracking) control on the power supply unit 10. When the control unit 32 determines that the load of the motor 21 is not a rated load but is close to an overload state, the control unit 32 determines that a foreign object is tangled in the impeller unit 22 and performs a foreign object removal operation.
 図5は、制御部32の動作の一例を示すフローチャートである。図5に示すフローチャートは図3に示すフローチャートのステップS2、S3、S10、及びS20をそれぞれステップS2’、S3’、S10’、及びS20’に置換した点のみが図3に示すフローチャートと異なる。したがって、以下ではステップS2’、S3’、S10’、及びS20’のみを説明する。 FIG. 5 is a flowchart showing an example of the operation of the control unit 32. The flowchart shown in FIG. 5 differs from the flowchart shown in FIG. 3 only in that steps S2, S3, S10, and S20 of the flowchart shown in FIG. 3 are replaced with steps S2 ', S3', S10 ', and S20', respectively. Accordingly, only steps S2 ', S3', S10 ', and S20' will be described below.
 制御部32は、電源部10からポンプ装置1に供給される直流電力の最大電力点を、検出部35の検出結果から算出し、後述するステップS3’で用いる閾値を、電源部10からポンプ装置1に供給される直流電力の最大電力点に応じて変更する。本実施形態では、制御部32は、電源部10からポンプ装置1に供給される直流電力の最大電力点が大きいほど、閾値を大きくする。 The control unit 32 calculates the maximum power point of the DC power supplied from the power supply unit 10 to the pump device 1 from the detection result of the detection unit 35, and sets a threshold value used in step S3 ′ described later from the power supply unit 10 to the pump device. 1 is changed according to the maximum power point of the DC power supplied to 1. In the present embodiment, the control unit 32 increases the threshold value as the maximum power point of the DC power supplied from the power supply unit 10 to the pump device 1 is larger.
 ステップS3’では、制御部32は、検出部35によって検出されたソーラー電圧が閾値より小さいか否かを判定する。 In step S3 ', the control unit 32 determines whether or not the solar voltage detected by the detection unit 35 is smaller than a threshold value.
 ステップS10’では、制御部32は、検出部35によって検出されたソーラー電圧が第1所定値より小さいか否かを判定する。第1所定値はステップS3’で用いた閾値よりも小さい。 In step S10 ', the control unit 32 determines whether or not the solar voltage detected by the detection unit 35 is smaller than a first predetermined value. The first predetermined value is smaller than the threshold used in step S3 '.
 ステップS20’では、制御部32は、検出部35によって検出されたソーラー電圧が第2所定値より小さいか否かを判定する。第2所定値はステップS10’で用いた第1所定値よりも小さい。 In step S20 ', the control unit 32 determines whether or not the solar voltage detected by the detection unit 35 is smaller than a second predetermined value. The second predetermined value is smaller than the first predetermined value used in step S10 '.
 次に、本発明の例示的な実施形態に係るポンプ装置1の第2変形例について説明する。図6は、本発明の例示的な実施形態に係るポンプ装置1の第2変形例を説明するためのブロック図である。図6に示す第2変形例では、ポンプ部20の内部に検出部33が設置される。また、図1に示す構成を変形して検出部33が駆動回路部31の内部に設置される構成にしてもよく、図6に示す構成を変形して検出部33がモータ21の内部に設置される構成にしてもよい。また、図4に示す第1変形例を更に変形して、制御装置30の内部ではなくポンプ部20の内部に検出部33が設置される構成にしてもよい。 Next, a second modification of the pump device 1 according to an exemplary embodiment of the present invention will be described. FIG. 6 is a block diagram for explaining a second modification of the pump device 1 according to an exemplary embodiment of the present invention. In the second modification shown in FIG. 6, the detection unit 33 is installed inside the pump unit 20. Further, the configuration shown in FIG. 1 may be modified so that the detection unit 33 is installed inside the drive circuit unit 31. The configuration shown in FIG. 6 may be modified and the detection unit 33 is installed inside the motor 21. You may make it the structure made. Further, the first modification shown in FIG. 4 may be further modified so that the detection unit 33 is installed not inside the control device 30 but inside the pump unit 20.
 以上においては、ポンプ装置1が電源部10を有さない構成を説明した。しかしながら、この構成は例示である。ポンプ装置1は電源部10を有する構成であってもよい。また、図1に示す本発明の例示的な実施形態に係るポンプ装置1では、電源部10が商用交流電源であってもよい。電源部10が商用交流電源である場合、駆動回路部31は、電源部10からポンプ装置1に供給される交流電力を直流電力に変換するAC/DC変換器を有する構成にするとよい。商用交流電源の安定性は国又は地域によって異なる。図1に示す本発明の例示的な実施形態に係るポンプ装置1は、商用交流電源からポンプ装置1に供給される交流電圧の変動が大きい国又は地域において特に有用である。 In the above, the configuration in which the pump device 1 does not have the power supply unit 10 has been described. However, this configuration is exemplary. The pump device 1 may have a configuration including a power supply unit 10. Moreover, in the pump apparatus 1 which concerns on exemplary embodiment of this invention shown in FIG. 1, the power supply part 10 may be a commercial alternating current power supply. When the power supply unit 10 is a commercial AC power supply, the drive circuit unit 31 may include an AC / DC converter that converts AC power supplied from the power supply unit 10 to the pump device 1 into DC power. The stability of commercial AC power varies by country or region. The pump device 1 according to the exemplary embodiment of the present invention shown in FIG. 1 is particularly useful in a country or region where fluctuations in the AC voltage supplied from the commercial AC power source to the pump device 1 are large.
 その他、以上に示した実施形態及び変形例の構成は、本発明の例示にすぎない。実施形態及び変形例の構成は、本発明の技術的思想を超えない範囲で適宜変更されてもよい。また、複数の実施形態及び変形例は、可能な範囲で組み合わせて実施されてよい。 In addition, the configurations of the above-described embodiments and modifications are merely examples of the present invention. The configuration of the embodiment and the modification may be changed as appropriate without departing from the technical idea of the present invention. In addition, a plurality of embodiments and modifications may be implemented in combination within a possible range.
 本発明は、モータを有するポンプ部を有するポンプ装置及びモータを有するポンプ部を有するポンプ装置の制御方法に利用できる。 The present invention can be used for a pump device having a pump unit having a motor and a control method for a pump device having a pump unit having a motor.
1・・・ポンプ装置、10・・・電源部、20・・・ポンプ部、21・・・モータ、22・・・インペラ部、30・・・制御装置、31・・・駆動回路部、32・・・制御部、33・・・検出部、34・・・報知部、40・・・流水ケーブル、41・・・貯水槽 DESCRIPTION OF SYMBOLS 1 ... Pump apparatus, 10 ... Power supply part, 20 ... Pump part, 21 ... Motor, 22 ... Impeller part, 30 ... Control apparatus, 31 ... Drive circuit part, 32 ... Control part, 33 ... Detection part, 34 ... Notification part, 40 ... Running water cable, 41 ... Water tank

Claims (11)

  1.  モータを有するポンプ部と、
     制御装置と、
    を有し、
     前記制御装置は、
      前記モータに対して通電を行う駆動回路部と、
      前記駆動回路部を制御する制御部と、
     を有し、
     前記ポンプ部及び前記制御装置の少なくともいずれか一方は、前記モータの負荷に関する物理量を検出する検出部を有し、
     前記制御部は、
     前記検出部によって検出された物理量に基づいて異常の有無を判定し、
     正常であると判定した場合に正常時制御モードで前記駆動回路部を制御し、異常であると判定した場合に異常時制御モードで前記駆動回路部を制御する、ポンプ装置。
    A pump unit having a motor;
    A control device;
    Have
    The control device includes:
    A drive circuit unit for energizing the motor;
    A control unit for controlling the drive circuit unit;
    Have
    At least one of the pump unit and the control device has a detection unit that detects a physical quantity related to the load of the motor,
    The controller is
    Determine the presence or absence of abnormality based on the physical quantity detected by the detection unit,
    A pump device that controls the drive circuit unit in a normal time control mode when it is determined to be normal, and controls the drive circuit unit in an abnormal time control mode when it is determined to be abnormal.
  2.  前記検出部は、前記モータに通電される駆動電流を含むモータ電流を検出し、
     前記制御部は、前記検出部によって検出されたモータ電流が閾値より大きい場合に異常であると判定し、前記閾値を前記モータの回転数に応じて変更する、請求項1に記載のポンプ装置。
    The detection unit detects a motor current including a drive current passed through the motor,
    The pump device according to claim 1, wherein the control unit determines that the motor current detected by the detection unit is abnormal when the motor current is larger than a threshold value, and changes the threshold value according to the number of rotations of the motor.
  3.  前記ポンプ装置は、太陽光発電装置から直流電力が供給され、
     前記検出部は、前記太陽光発電装置の出力電圧を検出し、
     前記制御部は、前記検出部によって検出された前記太陽光発電装置の出力電圧が閾値より小さい場合に異常であると判定し、前記閾値を前記直流電力の最大電力点に応じて変更する、請求項1に記載のポンプ装置。
    The pump device is supplied with DC power from a solar power generation device,
    The detection unit detects an output voltage of the solar power generation device,
    The said control part determines with it being abnormal when the output voltage of the said photovoltaic power generation apparatus detected by the said detection part is smaller than a threshold value, The said threshold value is changed according to the maximum electric power point of the said DC power, Item 2. The pump device according to Item 1.
  4.  前記正常時制御モードは、前記モータを第1の回転方向で回転させ続ける制御モードであり、
     前記異常時制御モードは、前記モータを前記第1の回転方向で回転させる制御と前記モータを停止させる制御とを交互に繰り返す制御モードを有する、請求項1から3のいずれか一項に記載のポンプ装置。
    The normal time control mode is a control mode in which the motor continues to rotate in the first rotation direction,
    4. The control mode according to claim 1, wherein the abnormal-time control mode includes a control mode in which control for rotating the motor in the first rotation direction and control for stopping the motor are alternately repeated. Pump device.
  5.  前記正常時制御モードは、前記モータを第1の回転方向で回転させ続ける制御モードであり、
     前記異常時制御モードは、前記モータを前記第1の回転方向とは逆方向に回転させる制御モードを有する、請求項1から4のいずれか一項に記載のポンプ装置。
    The normal time control mode is a control mode in which the motor continues to rotate in the first rotation direction,
    5. The pump device according to claim 1, wherein the abnormal time control mode includes a control mode in which the motor is rotated in a direction opposite to the first rotation direction. 6.
  6.  前記異常時制御モードは、前記モータの駆動を停止する制御モードを有する、請求項4又は5に記載のポンプ装置。 The pump device according to claim 4 or 5, wherein the abnormal time control mode has a control mode for stopping driving of the motor.
  7.  前記制御部は、
     異常であると判定した場合に、前記異常時制御モードに該当する複数の制御モードの中から前記検出部によって検出された物理量に基づいて一つの制御モードを選択し、選択した制御モードで前記駆動回路部を制御する、請求項6に記載のポンプ装置。
    The controller is
    When it is determined that there is an abnormality, one control mode is selected from a plurality of control modes corresponding to the abnormal time control mode based on the physical quantity detected by the detection unit, and the drive is performed in the selected control mode. The pump device according to claim 6 which controls a circuit part.
  8.  前記制御部は、
     異常であるとの判定が所定時間継続した場合、異常時制御モードで前記駆動回路部を制御し、
     異常であるとの判定が前記所定時間継続しなかった場合、再度、前記検出部によって検出された物理量に基づいて異常の有無を判定する、請求項1から7のいずれか一項に記載のポンプ装置。
    The controller is
    When the determination that it is abnormal continues for a predetermined time, the drive circuit unit is controlled in an abnormal time control mode,
    The pump according to any one of claims 1 to 7, wherein when the determination that the abnormality is not continued for the predetermined time, the presence or absence of an abnormality is determined again based on the physical quantity detected by the detection unit. apparatus.
  9.  前記制御部によって異常があると判定された場合に異常を報知する報知部を有する、請求項1から7のいずれか一項に記載のポンプ装置。 The pump device according to any one of claims 1 to 7, further comprising a notification unit that notifies the abnormality when the control unit determines that there is an abnormality.
  10.  前記制御部によって異常があると所定時間継続して判定された場合に異常を報知する報知部を有する、請求項8に記載のポンプ装置。 The pump device according to claim 8, further comprising a notifying unit for notifying the abnormality when it is determined that the abnormality is continuously performed by the control unit for a predetermined time.
  11.  モータを有するポンプ部と、前記モータに対して通電を行う駆動回路部と、を有するポンプ装置の制御方法であって、
     前記モータの負荷に関する物理量を検出する第1ステップと、
     検出された物理量に基づいて異常の有無を判定する第2ステップと、
     前記第2ステップでの判定結果を用い、前記駆動回路部を制御する第3ステップと、
    を有する、制御方法。
    A control method for a pump device having a pump unit having a motor and a drive circuit unit for energizing the motor,
    A first step of detecting a physical quantity relating to the load of the motor;
    A second step of determining the presence or absence of an abnormality based on the detected physical quantity;
    A third step for controlling the drive circuit unit using the determination result in the second step;
    A control method.
PCT/JP2017/037947 2016-11-01 2017-10-20 Pump device and method for controlling pump device WO2018084000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-214037 2016-11-01
JP2016214037A JP2020007909A (en) 2016-11-01 2016-11-01 Pump device and control method of pump device

Publications (1)

Publication Number Publication Date
WO2018084000A1 true WO2018084000A1 (en) 2018-05-11

Family

ID=62075562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037947 WO2018084000A1 (en) 2016-11-01 2017-10-20 Pump device and method for controlling pump device

Country Status (2)

Country Link
JP (1) JP2020007909A (en)
WO (1) WO2018084000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023888A4 (en) * 2019-08-29 2024-01-24 Ebara Corporation Pump device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124474A (en) * 1990-09-14 1992-04-24 Hitachi Ltd Feed water device
JP2003114052A (en) * 2001-10-03 2003-04-18 Nidec Shibaura Corp Hot-water supply device and self-priming pump to be used for the same
JP2009002162A (en) * 2007-06-19 2009-01-08 Kubota Corp Drainage pump device and operating method of drainage pump
JP2013256926A (en) * 2012-06-14 2013-12-26 Saginomiya Seisakusho Inc Drainage pump
JP2014075854A (en) * 2012-10-02 2014-04-24 Panasonic Corp Output control system and photovoltaic power generation system
JP2014166009A (en) * 2013-02-22 2014-09-08 Toshiba Corp Photovoltaic power generation system, and control method and control program for photovoltaic power generation system
JP2015198485A (en) * 2014-03-31 2015-11-09 パナソニックIpマネジメント株式会社 Abnormality detection device, abnormality detection system, and abnormality detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124474A (en) * 1990-09-14 1992-04-24 Hitachi Ltd Feed water device
JP2003114052A (en) * 2001-10-03 2003-04-18 Nidec Shibaura Corp Hot-water supply device and self-priming pump to be used for the same
JP2009002162A (en) * 2007-06-19 2009-01-08 Kubota Corp Drainage pump device and operating method of drainage pump
JP2013256926A (en) * 2012-06-14 2013-12-26 Saginomiya Seisakusho Inc Drainage pump
JP2014075854A (en) * 2012-10-02 2014-04-24 Panasonic Corp Output control system and photovoltaic power generation system
JP2014166009A (en) * 2013-02-22 2014-09-08 Toshiba Corp Photovoltaic power generation system, and control method and control program for photovoltaic power generation system
JP2015198485A (en) * 2014-03-31 2015-11-09 パナソニックIpマネジメント株式会社 Abnormality detection device, abnormality detection system, and abnormality detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4023888A4 (en) * 2019-08-29 2024-01-24 Ebara Corporation Pump device

Also Published As

Publication number Publication date
JP2020007909A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US8766580B2 (en) Method for controlling the discharge pump of a household appliance and processing unit for implementing said method
EP2237410A2 (en) Brushless DC motor with soft-starting of PWM signals
WO2006136202A1 (en) Control system for a pump
JP2015188996A5 (en)
JP2018182777A (en) Motor drive controller, motor drive control method and tube pump
WO2018084000A1 (en) Pump device and method for controlling pump device
JP2010259131A (en) Motor drive device and air conditioner equipped with the same
EP2778416A2 (en) User-interface for pump system
US20120027621A1 (en) Electric motor system
JP6075901B2 (en) Thyristor starter and control method thereof
JP2008264375A (en) Laundry machine
WO2017203879A1 (en) Motor control device and control method, and pump system
JP6195522B2 (en) Outdoor unit
WO2018128004A1 (en) Pump device and pump-device control method
US20220316481A1 (en) Pump apparatus
JP6787939B2 (en) Encoder and backup current abnormality judgment method
JP5406485B2 (en) Motor drive device
WO2018084001A1 (en) Control device, drive device, and control method
JP2016046874A (en) Dc motor driving device and ceiling embedded ventilation device comprising the same
JP2005253196A (en) Motor control unit and air conditioner using the same
JP2007124839A (en) Abnormality detector and motor controller therewith
JP2010236498A (en) Control device and control method for manhole pump device
JP4650590B2 (en) Air compressor
KR20180109389A (en) Method for controlling inverter for vacuum pump
JP2009148065A (en) Motor control unit and air conditioner with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP