WO2016042729A1 - Ceiling fan - Google Patents

Ceiling fan Download PDF

Info

Publication number
WO2016042729A1
WO2016042729A1 PCT/JP2015/004511 JP2015004511W WO2016042729A1 WO 2016042729 A1 WO2016042729 A1 WO 2016042729A1 JP 2015004511 W JP2015004511 W JP 2015004511W WO 2016042729 A1 WO2016042729 A1 WO 2016042729A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
unit
motor
duty
current
Prior art date
Application number
PCT/JP2015/004511
Other languages
French (fr)
Japanese (ja)
Inventor
松本 敏宏
聡 村尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016548549A priority Critical patent/JPWO2016042729A1/en
Priority to SG11201701743SA priority patent/SG11201701743SA/en
Publication of WO2016042729A1 publication Critical patent/WO2016042729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present invention relates to a ceiling fan equipped with a brushless DC motor for driving a fan.
  • a ceiling fan is required to be equipped with a DC motor in order to reduce power consumption.
  • a ceiling fan that reduces power consumption while maintaining the maximum blowing performance without being affected by the installation state.
  • this type of ceiling fan has a configuration disclosed in Patent Document 1.
  • the brushless DC motor 100 includes a stator winding 114 (U, V, W), and a rotor 107 having N pole and S pole permanent magnets alternately applied to eight poles on the surface. It consists of three position detection elements 102a, 102b, 102c. These position detection elements 102 a, 102 b, 102 c are, for example, hall sensors, and are mounted on the electric circuit board 101.
  • the position detection elements 102a, 102b, and 102c convert the change of the magnetic pole when the permanent magnet of the rotor 107 changes from the N pole to the S pole, and from the S pole to the N pole into H and L electrical signals, and position detection signals Is input to the rotation speed detector 109.
  • the rotation speed detection unit 109 detects the rotation speed of the brushless DC motor 100 from the input position detection signal.
  • the position detection signal is input to the time interval measurement unit 103 of the rotation speed detection unit 109.
  • the time interval measuring unit 103 measures the time interval from when one signal of the position detection signal changes to when the other signal changes, so that one rotation of the mechanical angle of the rotor 107, that is, 12 Saving time intervals.
  • the time interval average unit 104 of the rotation speed detection unit 109 obtains an average value of 12 time intervals stored by the time interval measurement unit 103.
  • the rotational speed feedback unit 110 compares a predetermined target rotational speed with the rotational speed detected by the rotational speed detection unit 109, and changes the DC voltage applied to the stator winding according to the rotational speed difference.
  • the signal is output to the DC voltage changing unit 112.
  • the DC voltage changing unit 112 performs PWM modulation based on a signal for changing the DC voltage applied to the stator winding output from the rotation speed feedback unit 110, and outputs it to the drive signal generating unit 105.
  • the drive signal generator 105 captures changes in the position detection signals of the three position detection elements 102a, 102b, and 102c, and each of the stator windings U, V, and W has a predetermined direction according to the state of the position detection signal at that time. Energize sequentially in the order. At the same time, a signal for changing the DC voltage applied to the stator windings U, V, and W is output to the drive unit 106 based on the PWM modulated signal output from the DC voltage changing unit 112.
  • the rotation speed detection unit 109, the rotation speed feedback unit 110, the DC voltage change unit 112, and the drive signal generation unit 105 are incorporated in the microcomputer 108.
  • the drive unit 106 converts the switching element of the switching unit 113 into a signal for turning on and off based on the signal output from the drive signal generation unit 105 built in the microcomputer 108.
  • the switching unit 113 is connected to the DC power supply 111 and includes six switching elements Q1, Q2, Q3, Q4, Q5, and Q6 and six free-wheeling diodes D1, D2, D3, D4, D5, and D6. Then, the switching unit 113 sequentially energizes the stator windings U, V, and W at a predetermined timing, changes the DC voltage of the DC power source 111 to apply to the stator windings U, V, and W, and brushlessly. The DC motor 100 is rotated.
  • the rotational speed NT When the rotational speed NT is decreased with respect to the target rotational speed Nm and the rotational speed difference Nd is increased, the voltage is increased by a voltage Vd to be changed with respect to the DC voltage applied to the stator windings U, V, and W. . Thereby, the rotational speed is controlled so as to approach the target rotational speed Nm. Further, when the rotational speed NT is increased with respect to the target rotational speed Nm and the rotational speed difference Nd is increased, the voltage is changed by the voltage Vd to be changed with respect to the DC voltage applied to the stator windings U, V, and W. Decrease. Thereby, the rotational speed is controlled so as to approach the target rotational speed Nm. As described above, control is performed so that the rotation speed is constant at the target rotation speed.
  • the ceiling fan includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, and a motor current detection unit.
  • the brushless DC motor includes a drive coil.
  • the inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements.
  • the drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil.
  • the motor current detection unit detects a current flowing through the drive coil. And a duty instruction
  • the motor torque can be made constant, it is possible to obtain the effect that the ceiling fan can exhibit its maximum capacity without being affected by the distance between the blade and the ceiling in the installed state. .
  • FIG. 1 is an external view showing a ceiling fan according to the present invention.
  • FIG. 2 is a perspective view showing a ceiling fan configuration according to the present invention.
  • FIG. 3 is a block diagram showing the configuration of the ceiling fan according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a ceiling fan according to Embodiment 2 of the present invention.
  • FIG. 6 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a ceiling fan according to Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a ceiling fan according to Embodiment 4 of the present invention.
  • FIG. 9 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 4 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a ceiling fan according to the fifth embodiment of the present invention.
  • FIG. 11 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 5 of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a conventional ceiling fan.
  • FIG. 13 is a graph showing the rotational speed-torque characteristics of a brushless DC motor mounted on a conventional ceiling fan.
  • the ceiling fan 1 As shown in FIG. 1, the ceiling fan 1 according to the present embodiment is attached to a ceiling (not shown) and has a plurality of blades 3 around the main body. As shown in FIG. 2, the ceiling fan 1 has a brushless DC motor 10 mounted inside the main body, and the blades 3 are rotated by the brushless DC motor 10 to blow air downward in the drawing, that is, vertically downward.
  • the ceiling fan 1 includes a blade 3, a brushless DC motor 10, a rectifier diode 12, a smoothing capacitor 13, an inverter circuit 4, a Hall IC 9 (9u, 9v, 9w), a drive logic control unit 5, and a duty instruction. Part 6 is provided.
  • the brushless DC motor 10 includes a drive coil 2 (2u, 2v, 2w).
  • the drive of the brushless DC motor 10 is controlled by the drive logic control unit 5 by sequentially energizing the drive coil 2 via the three-phase inverter circuit 4.
  • the AC voltage supplied from the AC power supply 11 is rectified by the rectifier diode 12, smoothed to a DC voltage by the smoothing capacitor 13, and applied to the inverter circuit 4.
  • the inverter circuit 4 includes three switching elements 7 (7u, 7v, 7w) constituting the upper stage and three switching elements 8 (8u, 8v, 8w) constituting the lower stage, and the switching elements 7, 8 are bridged. It is connected.
  • the drive logic control unit 5 sequentially applies all the waves in a predetermined direction and order to the drive coils 2u, 2v, and 2w based on signals from the three Hall ICs 9u, 9v, and 9w that detect the rotational position of the brushless DC motor 10. Energize. At this time, the drive logic control unit 5 controls the supply current to the brushless DC motor 10 by PWM-controlling the DC voltage applied to the inverter circuit 4 by the upper switching element 7 or the lower switching element 8. . A series of control procedures for rotationally driving the brushless DC motor 10 by the drive logic control unit 5 is defined as drive logic.
  • the duty instruction unit 6 instructs an ON / OFF duty when the drive logic control unit 5 performs PWM control of the switching elements 7 and 8.
  • the brushless DC motor 10 further includes a motor current detection unit 14, and the duty instruction unit 6 controls the motor torque to be constant by performing the following control.
  • the motor current detection unit 14 detects the current values of the three phases flowing through the drive coils 2u, 2v, and 2w and transmits them to the duty instruction unit 6.
  • the duty instruction unit 6 changes the duty ratio based on the motor current value detected by the motor current detection unit 14 and the predetermined current value stored in the memory. Specifically, when the motor current value is lower than a predetermined current value, the duty ratio is increased. Further, when the motor current value is higher than the predetermined current value, the duty ratio is decreased. Thereby, the motor current can be maintained at a predetermined current value. Since the motor torque is proportional to the value of the current flowing through the motor, the motor torque can be controlled to be constant as a result.
  • the curve in FIG. 4 shows the load characteristics of the blade 3 due to the difference in the distance between the blade and the ceiling.
  • a thick line 41 indicates the relationship between the torque and the rotational speed when the distance between the ceiling and the blades is long.
  • the thin line 42 has shown the relationship between the torque and rotation speed in the state where the distance of a ceiling and a blade
  • the number of rotations of the motor is constant at a predetermined number of revolutions, that is, the control state is controlled to coincide with the rotation number constant axis 43.
  • the rotation is performed at point a on the rotation speed constant axis 43.
  • the rotation is performed at the point b on the rotation speed constant axis 43. From the viewpoint of blade strength and motor temperature rise, if the load torque at point a is the maximum rated output of the ceiling fan, the maximum output cannot be achieved at point b operated at the same rotational speed.
  • the motor current can be made constant, that is, the motor torque can be controlled to be constant. That is, the control state is controlled so as to coincide with the constant current axis 44. For this reason, in the installation state where the wind does not flow easily, that is, in the state where the distance between the blade 3 and the ceiling is short, it rotates at point a on the current constant axis 44. On the other hand, in the installation state where the wind easily flows, that is, in the state where the distance between the blade 3 and the ceiling is long, the rotation is performed at the point c on the constant current axis 44.
  • the fan can be rotated by rotating the blade with a constant torque without being affected by the change in the distance between the blade 3 and the ceiling depending on the installation state of the ceiling fan 1. it can. Then, by setting the maximum capacity based on the current value, it is possible to operate up to the upper limit of the limit due to the blade strength and the motor temperature rise, and the capacity of the ceiling fan 1 can be sufficiently extracted.
  • the current flowing through the inverter circuit 4 is detected by the power supply current detector 15 as shown in FIG.
  • the duty instruction unit 6 Based on the power supply current value from the power supply current detection unit 15, the duty instruction unit 6 increases the duty when the power supply current value is lower than the predetermined current value stored in the memory in advance, and the power supply current value is set to the predetermined current value. If higher, reduce the duty. Thereby, the duty instruction
  • the current supplied to the inverter circuit 4 can be detected at one place.
  • the relationship between the torque and the rotational speed changes as indicated by the five thin lines 45 shown in FIG. 6 according to the ON / OFF duty output from the duty instruction unit 6.
  • the motor torque can be controlled to be substantially constant.
  • the motor current detection unit 14 for detecting the three-phase motor current is not required, so that the motor torque can be controlled almost constant with a simple configuration.
  • the current flowing through the inverter circuit 4 is detected by the power supply current detector 15. Further, the rotation speed detector 19 detects the rotation speed of the brushless DC motor 10 from the period of the square wave signals HU, HV, and HW that are output signals of the Hall ICs 9u, 9v, and 9w.
  • the duty instruction unit 6 determines the duty instruction value based on the rotation speed Ns detected by the rotation speed detection unit 19. That is, the duty instruction value is increased or decreased so that the rotation speed Ns detected by the rotation speed detector 19 approaches the predetermined rotation speed Ns stored in the memory in advance.
  • Nd Nt ⁇ Ns
  • the rotational speed difference Nd is a positive value, and the duty increase / decrease value Dd proportional to the rotational speed difference Nd is also a positive value. Then, the next duty instruction value D n + 1 becomes larger than the current duty instruction value D n .
  • the duty instruction value gradually increases, the rotational speed of the brushless DC motor 10 increases, and the predetermined rotational speed Nt matches the detected rotational speed Ns.
  • the rotational speed difference Nd is a negative value
  • the duty increase / decrease value Dd proportional to the rotational speed difference Nd is also a negative value.
  • the next duty instruction value D n + 1 is smaller than the current duty instruction value D n .
  • the duty instruction value gradually decreases, the rotational speed of the brushless DC motor 10 decreases, and the predetermined rotational speed Nt matches the detected rotational speed Ns.
  • the rotational speed of the brushless DC motor 10 can be controlled to a predetermined rotational speed Nt.
  • the power supply current is controlled to be constant and the motor torque is controlled to be substantially constant.
  • control is switched depending on the magnitude of the current Is detected by the power source current detector 15 and the predetermined value Ip.
  • the rotation speed of the brushless DC motor 10 can be controlled to be constant and the blades 3 can be rotated to generate a constant air volume.
  • the motor output has no margin. For this reason, the motor torque is controlled to be substantially constant, and the motor output is controlled to be substantially constant at the maximum.
  • the current flowing through the inverter circuit 4 is detected by the power supply current detector 15.
  • the motor current calculation unit 16 calculates the motor current from the duty instruction value output from the duty instruction unit 6 and the power supply current detection value detected by the power supply current detection unit 15.
  • the duty instruction unit 6 performs control to increase the duty when the motor current value is lower than the predetermined current value based on the motor current value from the motor current calculation unit 16. On the other hand, when the motor current value is higher than the predetermined current value, control is performed to reduce the duty. In this way, the duty instruction unit 6 controls the duty, thereby controlling the motor current to a predetermined current. Since the motor torque is proportional to the motor current, the motor torque can be controlled to be constant.
  • the motor current detection unit 14 that detects the three-phase motor current is unnecessary, the motor current can be calculated, so that the motor torque can be accurately and uniformly controlled with a simple configuration.
  • the motor torque can be controlled to be substantially constant, but when the power supply voltage changes, the constant value of the torque also changes.
  • the motor characteristic with a power supply voltage of 240V and a duty of 100% is a thin solid line 47, but the motor characteristic with a power supply voltage of 200V and a duty of 100% is a thin dotted line. 48.
  • the torque constant kt is set to 10 N ⁇ m / A and the power supply current Is is controlled to 0.1 A
  • Im 0.10 A
  • T 1 in the characteristics of the power supply voltage 240 V in FIG.
  • a thick dotted line 50 in FIG. 9 is obtained. That is, the torque varies depending on the power supply voltage.
  • the current flowing through the inverter circuit 4 is detected by the power supply current detection unit 15, and the voltage applied to the inverter circuit 4 is detected by the power supply voltage detection unit 17. Detect with. Then, the power calculator 18 calculates the product of the power supply current value and the power supply voltage value.
  • the duty instruction unit 6 Based on the power value from the power calculation unit 18, the duty instruction unit 6 increases the duty when the power value is lower than the predetermined power value, and decreases the duty when the power value is higher than the predetermined power value.
  • the power is controlled to a predetermined power.
  • the state in which the power supply voltage is 240 V and the power supply current Is is controlled to 0.1 A is the thick solid line 51, and the power is controlled to 24 W.
  • the power supply voltage is 200 V
  • controlling the power to 24 W is the same as the state in which the power supply current Is is controlled to 0.12 A.
  • Im 0.12 A
  • T 1.2 N ⁇ m
  • N 213 min ⁇ 1 in the characteristics of the power supply voltage 200 V in FIG.
  • the motor current detection unit 14 for detecting the three-phase motor current since the motor current detection unit 14 for detecting the three-phase motor current is not required, the motor torque can be controlled to be almost constant without being influenced by the power supply voltage with a simple configuration.
  • the Hall ICs 9u, 9v, and 9w are provided as a method for detecting the rotational position of the brushless DC motor 10.
  • a sensorless driving method that does not include a position sensor may be used.
  • a ceiling fan includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, and a motor current detection unit.
  • the brushless DC motor includes a drive coil.
  • the inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements.
  • the drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil.
  • the motor current detection unit detects a current flowing through the drive coil.
  • indication part has a structure which determines a duty instruction
  • the ceiling fan has an effect that the maximum capacity can be exhibited without being affected by the distance between the blade and the ceiling depending on the installation state.
  • the ceiling fan includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, and a power supply current detection unit.
  • the brushless DC motor includes a drive coil.
  • the inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements.
  • the drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil.
  • the power supply current detection unit detects a current supplied to the inverter circuit. And a duty instruction
  • a rotation speed detection unit that detects the rotation speed of the brushless DC motor is further provided. Then, when the detected current value by the power source current detecting unit is smaller than the predetermined value, the duty indicating unit determines the duty indicating value based on the detected rotational speed value by the rotational speed detecting unit. Further, the duty instruction unit determines the duty instruction value based on the detected current value by the power source current detector when the detected current value by the power source current detector is larger than a predetermined value.
  • a ceiling fan includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, a power supply current detection unit, a duty detection unit, and a motor current calculation.
  • the brushless DC motor includes a drive coil.
  • the inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements.
  • the drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil.
  • the power supply current detection unit detects a current supplied to the inverter circuit.
  • the duty detection unit detects a duty instruction value output from the duty instruction unit.
  • the motor current calculation unit calculates the motor current from the detection value of the power source current detection unit and the detection value of the duty detection unit.
  • indication part determines a duty instruction
  • a ceiling fan includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, a power supply current detection unit, a power supply voltage detection unit, and power supply power. And an arithmetic unit.
  • the brushless DC motor includes a drive coil.
  • the inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements.
  • the drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil.
  • the power supply current detection unit detects a current supplied to the inverter circuit.
  • the power supply voltage detection unit detects a voltage supplied to the inverter circuit.
  • the power supply power calculation unit calculates power supply power from the detection value of the power supply current detection unit and the detection value of the power supply voltage detection unit.
  • indication part determines a duty instruction
  • the ceiling fan according to the present invention is useful as a ceiling fan for driving a fan because it can blow the fan with a constant torque with the maximum performance without being affected by the change in the distance between the blade and the ceiling. It is.

Abstract

The present invention is a ceiling fan (1) equipped with a brushless DC motor (10). The ceiling fan (1) has a duty instruction unit (6) that instructs an ON/OFF duty of PWM control of a switching element, and a motor current detection unit (14) that detects a current flowing to a drive coil (2) of the brushless DC motor. In the ceiling fan (1), a duty instruction value of the duty instruction unit (6) is determined according to a value detected by the motor current detection unit (14). Due to this configuration, obtained is the ceiling fan (1) that can blow air by rotating the blades at a performance maximum fixed torque without being impacted by changes in the distance between the blades and the ceiling due to an installation state of the ceiling fan (1).

Description

天井扇Ceiling fan
 本発明は、ファン駆動用のブラシレスDCモータを搭載した天井扇に関するものである。 The present invention relates to a ceiling fan equipped with a brushless DC motor for driving a fan.
 近年、天井扇においては、消費電力の低減のためDCモータの搭載が求められている。その中でも、設置状態に影響されることなく、最大限の送風性能を維持しながら消費電力を低減する天井扇が求められている。 In recent years, a ceiling fan is required to be equipped with a DC motor in order to reduce power consumption. Among them, there is a demand for a ceiling fan that reduces power consumption while maintaining the maximum blowing performance without being affected by the installation state.
 従来、この種の天井扇は、特許文献1に開示された構成のものが知られている。 Conventionally, this type of ceiling fan has a configuration disclosed in Patent Document 1.
 以下、その天井扇について図12を参照しながら説明する。 Hereinafter, the ceiling fan will be described with reference to FIG.
 図12に示すように、ブラシレスDCモータ100は、固定子巻線114(U、V、W)と、表面にN極とS極の永久磁石が交互に8極に施された回転子107と、3つの位置検出素子102a、102b、102cとから構成さている。それら位置検出素子102a、102b、102cは、例えばホールセンサであって、電気回路基板101に実装されている。 As shown in FIG. 12, the brushless DC motor 100 includes a stator winding 114 (U, V, W), and a rotor 107 having N pole and S pole permanent magnets alternately applied to eight poles on the surface. It consists of three position detection elements 102a, 102b, 102c. These position detection elements 102 a, 102 b, 102 c are, for example, hall sensors, and are mounted on the electric circuit board 101.
 位置検出素子102a、102b、102cは、回転子107の永久磁石のN極からS極、S極からN極へ変化する時の磁極の変化をH,Lの電気信号に変換し、位置検出信号として回転数検出部109に入力している。 The position detection elements 102a, 102b, and 102c convert the change of the magnetic pole when the permanent magnet of the rotor 107 changes from the N pole to the S pole, and from the S pole to the N pole into H and L electrical signals, and position detection signals Is input to the rotation speed detector 109.
 回転数検出部109は、入力された位置検出信号からブラシレスDCモータ100の回転数を検出している。位置検出信号は、回転数検出部109の時間間隔測定部103に入力される。時間間隔測定部103は、位置検出信号の1つの信号が変化してから他の1つの信号が変化するまでの時間間隔を測定して、回転子107の機械角の1回転分すなわち12個の時間間隔を保存している。 The rotation speed detection unit 109 detects the rotation speed of the brushless DC motor 100 from the input position detection signal. The position detection signal is input to the time interval measurement unit 103 of the rotation speed detection unit 109. The time interval measuring unit 103 measures the time interval from when one signal of the position detection signal changes to when the other signal changes, so that one rotation of the mechanical angle of the rotor 107, that is, 12 Saving time intervals.
 回転数検出部109の時間間隔平均部104は、時間間隔測定部103が保存した12個の時間間隔の平均値を求める。 The time interval average unit 104 of the rotation speed detection unit 109 obtains an average value of 12 time intervals stored by the time interval measurement unit 103.
 回転数フィードバック部110は、予め定められた目標回転数と回転数検出部109より検出される回転数とを比較し、回転数の差に応じて、固定子巻線に加わる直流電圧を変更させる信号を直流電圧変更部112に出力する。 The rotational speed feedback unit 110 compares a predetermined target rotational speed with the rotational speed detected by the rotational speed detection unit 109, and changes the DC voltage applied to the stator winding according to the rotational speed difference. The signal is output to the DC voltage changing unit 112.
 直流電圧変更部112は、回転数フィードバック部110より出力された固定子巻線に加わる直流電圧を変更させる信号に基づいてPWM変調し、駆動信号発生部105に出力する。 The DC voltage changing unit 112 performs PWM modulation based on a signal for changing the DC voltage applied to the stator winding output from the rotation speed feedback unit 110, and outputs it to the drive signal generating unit 105.
 駆動信号発生部105は、3つの位置検出素子102a、102b、102cの位置検出信号の変化を捕らえ、その時の位置検出信号の状態に応じて固定子巻線U、V、Wにそれぞれ所定の方向と順序で順次通電する。それと共に、直流電圧変更部112から出力されたPWM変調された信号に基づいて、固定子巻線U、V、Wに加わる直流電圧を変更する信号をドライブ部106に出力する。 The drive signal generator 105 captures changes in the position detection signals of the three position detection elements 102a, 102b, and 102c, and each of the stator windings U, V, and W has a predetermined direction according to the state of the position detection signal at that time. Energize sequentially in the order. At the same time, a signal for changing the DC voltage applied to the stator windings U, V, and W is output to the drive unit 106 based on the PWM modulated signal output from the DC voltage changing unit 112.
 回転数検出部109と回転数フィードバック部110と直流電圧変更部112と駆動信号発生部105は、マイクロコンピュータ108に内蔵されている。 The rotation speed detection unit 109, the rotation speed feedback unit 110, the DC voltage change unit 112, and the drive signal generation unit 105 are incorporated in the microcomputer 108.
 ドライブ部106は、マイクロコンピュータ108に内蔵されている駆動信号発生部105より出力された信号に基づき、スイッチング部113のスイッチング素子をON、OFFする信号に変換する。 The drive unit 106 converts the switching element of the switching unit 113 into a signal for turning on and off based on the signal output from the drive signal generation unit 105 built in the microcomputer 108.
 スイッチング部113は、直流電源111に接続され、6個のスイッチング素子Q1、Q2、Q3、Q4、Q5、Q6と、6つの還流ダイオードD1、D2、D3、D4、D5、D6からなる。そして、スイッチング部113は、固定子巻線U、V、Wに所定のタイミングで順次通電を行うとともに、直流電源111の直流電圧を変更して固定子巻線U、V、Wに加え、ブラシレスDCモータ100を回転させる。 The switching unit 113 is connected to the DC power supply 111 and includes six switching elements Q1, Q2, Q3, Q4, Q5, and Q6 and six free-wheeling diodes D1, D2, D3, D4, D5, and D6. Then, the switching unit 113 sequentially energizes the stator windings U, V, and W at a predetermined timing, changes the DC voltage of the DC power source 111 to apply to the stator windings U, V, and W, and brushlessly. The DC motor 100 is rotated.
 回転数フィードバック部110は、予め定められた目標回転数Nmと回転数検出部109の時間間隔平均部104より検出される回転数NTとを比較し、
  Nd=NT-Nm
より回転数の差Ndを求める。
The rotation speed feedback unit 110 compares the predetermined target rotation speed Nm with the rotation speed NT detected by the time interval averaging unit 104 of the rotation speed detection unit 109,
Nd = NT-Nm
Thus, the rotational speed difference Nd is obtained.
 予め定められた回転数の差Ndに対応する電圧の変更する割合をゲインA、固定子巻線に加わっている直流電圧をVとすると、回転数の差Ndに対する直流電圧を変更する電圧Vdを、
  Vd=Nd×A
により求める。
Assuming that the change rate of the voltage corresponding to a predetermined rotation speed difference Nd is gain A and the DC voltage applied to the stator winding is V, the voltage Vd for changing the DC voltage with respect to the rotation speed difference Nd is ,
Vd = Nd × A
Ask for.
 目標回転数Nmに対して回転数NTが低くなり回転数の差Ndが大きくなると、固定子巻線U、V、Wに加わっている直流電圧に対して変更する電圧Vd分だけ電圧を増加させる。これにより、目標回転数Nmに近づけるように回転数の制御を行う。また、目標回転数Nmに対して回転数NTが高くなり回転数の差Ndが大きくなると、固定子巻線U、V、Wに加わっている直流電圧に対して変更する電圧Vd分だけ電圧を減少させる。これにより、目標回転数Nmに近づけるように回転数の制御を行う。以上のようにして、目標回転数で一定回転になるように制御を行う。 When the rotational speed NT is decreased with respect to the target rotational speed Nm and the rotational speed difference Nd is increased, the voltage is increased by a voltage Vd to be changed with respect to the DC voltage applied to the stator windings U, V, and W. . Thereby, the rotational speed is controlled so as to approach the target rotational speed Nm. Further, when the rotational speed NT is increased with respect to the target rotational speed Nm and the rotational speed difference Nd is increased, the voltage is changed by the voltage Vd to be changed with respect to the DC voltage applied to the stator windings U, V, and W. Decrease. Thereby, the rotational speed is controlled so as to approach the target rotational speed Nm. As described above, control is performed so that the rotation speed is constant at the target rotation speed.
特許第4649934号公報Japanese Patent No. 4649934
 本発明の一態様に係る天井扇は、ブラシレスDCモータと、インバータ回路と、駆動ロジック制御部と、デューティ指示部と、モータ電流検出部を備える。ブラシレスDCモータは、駆動コイルを備える。インバータ回路は、上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されている。駆動ロジック制御部は、インバータ回路に印加される直流電圧をPWM制御するとともに、駆動コイルに順次通電するための駆動ロジックを制御する。デューティ指示部は、PWM制御ON/OFFデューティを指示する。モータ電流検出部は、駆動コイルに流れる電流を検出する。そして、デューティ指示部が、モータ電流検出部の検出値に基づいてデューティ指示値を決定する。これにより所期の目的を達成するものである。 The ceiling fan according to one aspect of the present invention includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, and a motor current detection unit. The brushless DC motor includes a drive coil. The inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements. The drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil. A duty instruction | indication part instruct | indicates PWM control ON / OFF duty. The motor current detection unit detects a current flowing through the drive coil. And a duty instruction | indication part determines a duty instruction | indication value based on the detected value of a motor current detection part. This achieves the intended purpose.
 本発明の一態様に係る天井扇によれば、モータトルクを一定にできるので、設置状態における羽根と天井との距離に影響されず、天井扇は最大能力を発揮できるという効果を得ることができる。 According to the ceiling fan according to one aspect of the present invention, since the motor torque can be made constant, it is possible to obtain the effect that the ceiling fan can exhibit its maximum capacity without being affected by the distance between the blade and the ceiling in the installed state. .
図1は、本発明に係る天井扇を示す外観図である。FIG. 1 is an external view showing a ceiling fan according to the present invention. 図2は、本発明に係る天井扇構成を示す透視図である。FIG. 2 is a perspective view showing a ceiling fan configuration according to the present invention. 図3は、本発明の実施の形態1に係る天井扇の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the ceiling fan according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係るブラシレスDCモータの回転数―トルク特性を示すグラフである。FIG. 4 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態2に係る天井扇の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of a ceiling fan according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態2に係るブラシレスDCモータの回転数―トルク特性を示すグラフである。FIG. 6 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 2 of the present invention. 図7は、本発明の実施の形態3に係る天井扇の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of a ceiling fan according to Embodiment 3 of the present invention. 図8は、本発明の実施の形態4に係る天井扇の構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a ceiling fan according to Embodiment 4 of the present invention. 図9は、本発明の実施の形態4に係るブラシレスDCモータの回転数―トルク特性を示すグラフである。FIG. 9 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 4 of the present invention. 図10は、本発明の実施の形態5に係る天井扇の構成を示すブロック図である。FIG. 10 is a block diagram showing a configuration of a ceiling fan according to the fifth embodiment of the present invention. 図11は、本発明の実施の形態5に係るブラシレスDCモータの回転数―トルク特性を示すグラフである。FIG. 11 is a graph showing the rotational speed-torque characteristics of the brushless DC motor according to Embodiment 5 of the present invention. 図12は、従来の天井扇の構成を示すブロック図である。FIG. 12 is a block diagram showing a configuration of a conventional ceiling fan. 図13は、従来の天井扇に搭載するブラシレスDCモータの回転数―トルク特性を示すグラフである。FIG. 13 is a graph showing the rotational speed-torque characteristics of a brushless DC motor mounted on a conventional ceiling fan.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、各図面において、本発明に直接には関係しない各部の詳細については説明を省略している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. Moreover, the same code | symbol is attached | subjected about the same site | part through all drawings, and description is abbreviate | omitted. Furthermore, in each drawing, the description of the details of each part not directly related to the present invention is omitted.
 (実施の形態1)
 図1に示すように、本実施の形態に係る天井扇1は、図示しない天井に取り付けられ、本体の周囲に複数の羽根3を供えている。そして、図2に示すように、天井扇1は、本体内部にブラシレスDCモータ10を搭載し、羽根3をブラシレスDCモータ10で回転させて図面下方、即ち鉛直下向きに送風を行うものである。
(Embodiment 1)
As shown in FIG. 1, the ceiling fan 1 according to the present embodiment is attached to a ceiling (not shown) and has a plurality of blades 3 around the main body. As shown in FIG. 2, the ceiling fan 1 has a brushless DC motor 10 mounted inside the main body, and the blades 3 are rotated by the brushless DC motor 10 to blow air downward in the drawing, that is, vertically downward.
 以下に、天井扇1の駆動制御について詳しく説明する。 Hereinafter, the drive control of the ceiling fan 1 will be described in detail.
 図3に示すように、天井扇1は、羽根3、ブラシレスDCモータ10、整流ダイオード12、平滑コンデンサ13、インバータ回路4、ホールIC9(9u、9v、9w)、駆動ロジック制御部5、デューティ指示部6を備える。 As shown in FIG. 3, the ceiling fan 1 includes a blade 3, a brushless DC motor 10, a rectifier diode 12, a smoothing capacitor 13, an inverter circuit 4, a Hall IC 9 (9u, 9v, 9w), a drive logic control unit 5, and a duty instruction. Part 6 is provided.
 ブラシレスDCモータ10は、駆動コイル2(2u、2v、2w)を備える。ブラシレスDCモータ10は、駆動ロジック制御部5によって、3相のインバータ回路4を介して駆動コイル2に順次通電されることにより、駆動を制御される。 The brushless DC motor 10 includes a drive coil 2 (2u, 2v, 2w). The drive of the brushless DC motor 10 is controlled by the drive logic control unit 5 by sequentially energizing the drive coil 2 via the three-phase inverter circuit 4.
 即ち、交流電源11から供給された交流電圧は、整流ダイオード12で整流され、平滑コンデンサ13で直流電圧に平滑されて、インバータ回路4に印加される。 That is, the AC voltage supplied from the AC power supply 11 is rectified by the rectifier diode 12, smoothed to a DC voltage by the smoothing capacitor 13, and applied to the inverter circuit 4.
 インバータ回路4は、上段を構成する3つのスイッチング素子7(7u、7v、7w)と下段を構成する3つのスイッチング素子8(8u、8v、8w)からなり、それぞれのスイッチング素子7、8がブリッジ接続されている。 The inverter circuit 4 includes three switching elements 7 (7u, 7v, 7w) constituting the upper stage and three switching elements 8 (8u, 8v, 8w) constituting the lower stage, and the switching elements 7, 8 are bridged. It is connected.
 駆動ロジック制御部5は、ブラシレスDCモータ10の回転位置を検出する3つのホールIC9u、9v、9wからの信号を基に、駆動コイル2u、2v、2wそれぞれに所定の方向と順序で順次全波通電する。この際、駆動ロジック制御部5は、インバータ回路4に印加される直流電圧を、上段のスイッチング素子7または下段のスイッチング素子8でPWM制御することで、ブラシレスDCモータ10への供給電流を制御する。駆動ロジック制御部5によるブラシレスDCモータ10を回転駆動させるための一連の制御手順を、駆動ロジックと定義する。 The drive logic control unit 5 sequentially applies all the waves in a predetermined direction and order to the drive coils 2u, 2v, and 2w based on signals from the three Hall ICs 9u, 9v, and 9w that detect the rotational position of the brushless DC motor 10. Energize. At this time, the drive logic control unit 5 controls the supply current to the brushless DC motor 10 by PWM-controlling the DC voltage applied to the inverter circuit 4 by the upper switching element 7 or the lower switching element 8. . A series of control procedures for rotationally driving the brushless DC motor 10 by the drive logic control unit 5 is defined as drive logic.
 デューティ指示部6は、駆動ロジック制御部5がスイッチング素子7,8をPWM制御する際のON/OFFデューティを指示する。 The duty instruction unit 6 instructs an ON / OFF duty when the drive logic control unit 5 performs PWM control of the switching elements 7 and 8.
 ところで、本実施の形態に係るブラシレスDCモータ10では、モータ電流検出部14をさらに備え、デューティ指示部6は、以下の制御を行うことで、モータトルクを一定に制御する。 Incidentally, the brushless DC motor 10 according to the present embodiment further includes a motor current detection unit 14, and the duty instruction unit 6 controls the motor torque to be constant by performing the following control.
 即ち、モータ電流検出部14は、それぞれの駆動コイル2u、2v、2wに流れる3相分の電流の値を検出し、デューティ指示部6に送信する。 That is, the motor current detection unit 14 detects the current values of the three phases flowing through the drive coils 2u, 2v, and 2w and transmits them to the duty instruction unit 6.
 デューティ指示部6では、モータ電流検出部14にて検出したモータ電流値と、メモリに記憶された所定の電流値とに基づいて、デューティ比を変更する。具体的には、モータ電流値が所定の電流値より低い場合には、デューティ比を増加させる。また、モータ電流値が所定の電流値より高い場合には、デューティ比を減少させる。これにより、モータ電流を所定電流値に保つことができる。モータトルクはモータを流れる電流の値に比例するため、結果としてモータトルクを一定に制御することができる。 The duty instruction unit 6 changes the duty ratio based on the motor current value detected by the motor current detection unit 14 and the predetermined current value stored in the memory. Specifically, when the motor current value is lower than a predetermined current value, the duty ratio is increased. Further, when the motor current value is higher than the predetermined current value, the duty ratio is decreased. Thereby, the motor current can be maintained at a predetermined current value. Since the motor torque is proportional to the value of the current flowing through the motor, the motor torque can be controlled to be constant as a result.
 このような天井扇1を天井に設置した場合、羽根3と天井の距離によって風の流れ易さは異なり、羽根3にかかる負荷が異なる。 When such a ceiling fan 1 is installed on the ceiling, the ease of wind flow differs depending on the distance between the blade 3 and the ceiling, and the load applied to the blade 3 is different.
 図4の曲線は、羽根と天井の距離の違いによる羽根3の負荷特性である。図4において、太い線41は、天井と羽根の距離が長い状態におけるトルクと回転数との関係を示している。そして、細い線42は、天井と羽根の距離が短い状態におけるトルクと回転数との関係を示している。 The curve in FIG. 4 shows the load characteristics of the blade 3 due to the difference in the distance between the blade and the ceiling. In FIG. 4, a thick line 41 indicates the relationship between the torque and the rotational speed when the distance between the ceiling and the blades is long. And the thin line 42 has shown the relationship between the torque and rotation speed in the state where the distance of a ceiling and a blade | wing is short.
 図12に示す従来の天井扇では、図13に示すように、モータの回転数が所定の回転数で一定となる、つまり、制御状態が、回転数一定軸43上に合致するように制御されている。このため、風が流れ難い設置状態、すなわち、羽根103と天井との距離が短い状態では、回転数一定軸43上のa点で回転する。一方、風が流れ易い設置状態、すなわち、羽根103と天井との距離が長い状態では、回転数一定軸43上のb点で回転する。羽根の強度やモータ温度上昇の観点から、a点での負荷トルクが天井扇の定格の最大出力とした場合、同じ回転数で運転したb点では最大出力が出せていないことになる。 In the conventional ceiling fan shown in FIG. 12, as shown in FIG. 13, the number of rotations of the motor is constant at a predetermined number of revolutions, that is, the control state is controlled to coincide with the rotation number constant axis 43. Has been. For this reason, in the installation state where the wind does not flow easily, that is, in the state where the distance between the blade 103 and the ceiling is short, the rotation is performed at point a on the rotation speed constant axis 43. On the other hand, in the installation state where the wind easily flows, that is, in the state where the distance between the blade 103 and the ceiling is long, the rotation is performed at the point b on the rotation speed constant axis 43. From the viewpoint of blade strength and motor temperature rise, if the load torque at point a is the maximum rated output of the ceiling fan, the maximum output cannot be achieved at point b operated at the same rotational speed.
 それに対し、本発明によれば、モータ電流を一定にする、すなわち、モータトルクを一定に制御することができる。つまり、制御状態が、電流一定軸44上に合致するように制御されている。このため、風が流れ難い設置状態、すなわち、羽根3と天井との距離が短い状態では、電流一定軸44上のa点で回転する。一方、風が流れ易い設置状態、すなわち、羽根3と天井との距離が長い状態では、電流一定軸44上のc点で回転することになる。 On the other hand, according to the present invention, the motor current can be made constant, that is, the motor torque can be controlled to be constant. That is, the control state is controlled so as to coincide with the constant current axis 44. For this reason, in the installation state where the wind does not flow easily, that is, in the state where the distance between the blade 3 and the ceiling is short, it rotates at point a on the current constant axis 44. On the other hand, in the installation state where the wind easily flows, that is, in the state where the distance between the blade 3 and the ceiling is long, the rotation is performed at the point c on the constant current axis 44.
 このような本実施の形態に係る天井扇1によれば、天井扇1の設置状態による羽根3と天井の距離の変化の影響を受けることなく、一定トルクで羽根を回転させて送風することができる。そして、電流値に基づき最大能力を設定することによって、羽根の強度やモータ温度上昇による制限の上限までの運転ができ、天井扇1の能力を十分に引き出せることになる。 According to the ceiling fan 1 according to the present embodiment, the fan can be rotated by rotating the blade with a constant torque without being affected by the change in the distance between the blade 3 and the ceiling depending on the installation state of the ceiling fan 1. it can. Then, by setting the maximum capacity based on the current value, it is possible to operate up to the upper limit of the limit due to the blade strength and the motor temperature rise, and the capacity of the ceiling fan 1 can be sufficiently extracted.
 (実施の形態2)
 図5、図6を用いて、第2の実施の形態について説明する。
(Embodiment 2)
The second embodiment will be described with reference to FIGS.
 第2の実施の形態に係る天井扇1bでは、図5に示すように、インバータ回路4に流れる電流を電源電流検出部15で検出している。 In the ceiling fan 1b according to the second embodiment, the current flowing through the inverter circuit 4 is detected by the power supply current detector 15 as shown in FIG.
 デューティ指示部6では、電源電流検出部15からの電源電流値を基に、電源電流値が予めメモリに記憶された所定の電流値より低い場合はデューティを増加させ、電源電流値が所定電流値より高い場合はデューティを減少させる。これにより、デューティ指示部6は、電源電流を所定電流に制御する。 Based on the power supply current value from the power supply current detection unit 15, the duty instruction unit 6 increases the duty when the power supply current value is lower than the predetermined current value stored in the memory in advance, and the power supply current value is set to the predetermined current value. If higher, reduce the duty. Thereby, the duty instruction | indication part 6 controls a power supply current to predetermined current.
 このような構成によれば、インバータ回路4に供給する電流を1箇所で検出することができる。 According to such a configuration, the current supplied to the inverter circuit 4 can be detected at one place.
 なお、ブラシレスDCモータ10は、デューティ指示部6が出力するON/OFFデューティにより、トルクと回転数との関係が、図6に示す5本の細線45のように変化する。 In the brushless DC motor 10, the relationship between the torque and the rotational speed changes as indicated by the five thin lines 45 shown in FIG. 6 according to the ON / OFF duty output from the duty instruction unit 6.
 つまり、ディーティが100%の場合は、回転数が0min―1でトルクが4.0N・mの点と、トルクが0N・mで回転数が400min―1の点を結んだ直線が、トルクと回転数の関係になる。 In other words, when the duty is 100%, the straight line connecting the point where the rotational speed is 0 min −1 and the torque is 4.0 N · m and the point where the torque is 0 N · m and the rotational speed is 400 min −1 is the torque. It becomes relation of number of rotations.
 ディーティが80%の場合は、回転数が0min―1でトルクが4.0N・mの80%である3.2N・mの点と、トルクが0N・mで回転数が400min―1の80%である320min―1の点を結んだ直線が、トルクと回転数の関係になる。 If duty of 80% and a point of 3.2 N · m which is 80% of the speed torque at 0min -1 4.0 N · m, torque rotation speed at 0N · m for 400 min -1 80 A straight line connecting the points of 320 min− 1 , which is%, represents the relationship between torque and rotational speed.
 ディーティが60%の場合は、回転数が0min―1でトルクが4.0N・mの60%である2.4N・mの点と、トルクが0N・mで回転数が400min―1の60%である240min―1の点を結んだ直線が、トルクと回転数の関係になる。 When the duty is 60%, the rotation speed is 0 min −1 and the torque is 4.0 N · m, which is 60% of 2.4 N · m, and the torque is 0 N · m and the rotation speed is 400 min −1 . A straight line connecting the points of 240 min −1 , which is a percentage, shows the relationship between torque and rotational speed.
 ディーティが40%、20%の場合も、トルクと回転数は同様の計算に従う直線になる。 When the duty is 40% or 20%, the torque and the number of revolutions are straight lines according to the same calculation.
 また、デューティDとモータ電流Imと電源電流Isとには、
  Is=D×Im
の関係があり、トルク定数ktとモータ電流ImとトルクTとには、
  T=kt×Im
の関係がある。
The duty D, motor current Im, and power supply current Is include
Is = D × Im
The torque constant kt, the motor current Im, and the torque T are
T = kt × Im
There is a relationship.
 トルク定数ktを10N・m/Aとし、電源電流Isを0.1Aに制御した場合、図6の特性では回転数Nは
  D=100%、Im=0.10A、T=1.0N・m、N=300min―1
  D= 80%、Im=0.13A、T=1.3N・m、N=195min―1
  D= 60%、Im=0.17A、T=1.7N・m、N= 73min―1
となり、これらの回転数NとトルクTの点を結ぶと図6の太線46になる。
When the torque constant kt is set to 10 N · m / A and the power supply current Is is controlled to 0.1 A, the rotation speed N is D = 100%, Im = 0.10 A, T = 1.0 N · m in the characteristics shown in FIG. , N = 300min -1
D = 80%, Im = 0.13A, T = 1.3 N · m, N = 195 min −1
D = 60%, Im = 0.17A, T = 1.7 N · m, N = 73 min −1
Then, when these rotational speed N and torque T are connected, a thick line 46 in FIG. 6 is obtained.
 このように、電源電流を一定に制御しても、モータトルクをほぼ一定に制御することができる。 Thus, even if the power supply current is controlled to be constant, the motor torque can be controlled to be substantially constant.
 また、この制御では、実施の形態1と異なり、3相のモータ電流を検出するモータ電流検出部14が不要となるので、簡単な構成でモータトルクをほぼ一定に制御できる。 In addition, in this control, unlike the first embodiment, the motor current detection unit 14 for detecting the three-phase motor current is not required, so that the motor torque can be controlled almost constant with a simple configuration.
 (実施の形態3)
 図7を用いて、第3の実施の形態について説明する。
(Embodiment 3)
A third embodiment will be described with reference to FIG.
 第3の実施の形態に係る天井扇1cでは、図7に示すように、インバータ回路4に流れる電流を電源電流検出部15で検出する。また、ホールIC9u、9v、9wの出力信号である方形波信号HU、HV、HWの周期から、回転数検出部19で、ブラシレスDCモータ10の回転数を検出する。 In the ceiling fan 1c according to the third embodiment, as shown in FIG. 7, the current flowing through the inverter circuit 4 is detected by the power supply current detector 15. Further, the rotation speed detector 19 detects the rotation speed of the brushless DC motor 10 from the period of the square wave signals HU, HV, and HW that are output signals of the Hall ICs 9u, 9v, and 9w.
 電源電流検出部15で検出した電流Isが、例えば予めメモリに記憶した所定値Ipより小さい場合、デューティ指示部6は回転数検出部19で検出した回転数Nsによりデューティ指示値を決定する。つまり、回転数検出部19で検出した回転数Nsが予めメモリに記憶した所定回転数Nsに近づくように、デューティ指示値を増減させる。 When the current Is detected by the power source current detection unit 15 is smaller than a predetermined value Ip stored in advance in the memory, for example, the duty instruction unit 6 determines the duty instruction value based on the rotation speed Ns detected by the rotation speed detection unit 19. That is, the duty instruction value is increased or decreased so that the rotation speed Ns detected by the rotation speed detector 19 approaches the predetermined rotation speed Ns stored in the memory in advance.
 具体的には、所定回転数Ntと検出した回転数Nsとの回転数差をNdとすると、
  Nd=Nt-Ns
であり、回転数差Ndに比例したディーティ増減値Ddは、比例定数をαとすると
  Dd=α×Nd
となる。
Specifically, when the rotational speed difference between the predetermined rotational speed Nt and the detected rotational speed Ns is Nd,
Nd = Nt−Ns
The duty increase / decrease value Dd proportional to the rotational speed difference Nd is Dd = α × Nd where the proportionality constant is α.
It becomes.
 今現在のデューティ指示値をDとし、次のデューティ指示値をDn+1とすると
  Dn+1=D+Dd
となる。
If the current duty instruction value is D n and the next duty instruction value is D n + 1 , D n + 1 = D n + Dd
It becomes.
 所定回転数Ntよりも検出した回転数Nsが小さい場合、回転数差Ndは正の値となり、回転数差Ndに比例したディーティ増減値Ddも正の値となる。そして、次のデューティ指示値Dn+1は今のデューティ指示値Dより大きくなる。 When the detected rotational speed Ns is smaller than the predetermined rotational speed Nt, the rotational speed difference Nd is a positive value, and the duty increase / decrease value Dd proportional to the rotational speed difference Nd is also a positive value. Then, the next duty instruction value D n + 1 becomes larger than the current duty instruction value D n .
 上述の処理を繰返すことで、ディーティ指示値は徐々に大きくなり、ブラシレスDCモータ10の回転数が上昇して、所定回転数Ntと検出する回転数Nsとが一致する。 By repeating the above-described processing, the duty instruction value gradually increases, the rotational speed of the brushless DC motor 10 increases, and the predetermined rotational speed Nt matches the detected rotational speed Ns.
 また逆に、所定回転数Ntよりも検出した回転数Nsが大きい場合、回転数差Ndは負の値となり、回転数差Ndに比例したディーティ増減値Ddも負の値となる。そして、次のデューティ指示値Dn+1は、今のデューティ指示値Dより小さくなる。 Conversely, when the detected rotational speed Ns is greater than the predetermined rotational speed Nt, the rotational speed difference Nd is a negative value, and the duty increase / decrease value Dd proportional to the rotational speed difference Nd is also a negative value. The next duty instruction value D n + 1 is smaller than the current duty instruction value D n .
 上述の処理を繰返すことで、ディーティ指示値は徐々に小さくなり、ブラシレスDCモータ10の回転数が低下して、所定回転数Ntと検出する回転数Nsとが一致する。 By repeating the above-described processing, the duty instruction value gradually decreases, the rotational speed of the brushless DC motor 10 decreases, and the predetermined rotational speed Nt matches the detected rotational speed Ns.
 つまり、ブラシレスDCモータ10の回転数を、所定回転数Ntに、一定に制御できる。 That is, the rotational speed of the brushless DC motor 10 can be controlled to a predetermined rotational speed Nt.
 一方、電源電流検出部15で検出した電流Isが所定値Ipより大きい場合、実施の形態2で示したように、電源電流を一定に制御して、モータトルクをほぼ一定に制御する。 On the other hand, when the current Is detected by the power supply current detector 15 is larger than the predetermined value Ip, as shown in the second embodiment, the power supply current is controlled to be constant and the motor torque is controlled to be substantially constant.
 このように、電源電流検出部15で検出した電流Isと所定値Ipの大小により制御を切替える。 As described above, the control is switched depending on the magnitude of the current Is detected by the power source current detector 15 and the predetermined value Ip.
 つまり、
  Is<Ipの場合は、回転数を一定に制御
  Is≧Ipの場合は、モータトルクをほぼ一定に制御
する。
That means
When Is <Ip, the rotational speed is controlled to be constant. When Is ≧ Ip, the motor torque is controlled to be substantially constant.
 羽根3と天井との距離が長く、風が流れ易い設置状態で、電源電流Isが所定値Ipより小さくブラシレスDCモータ10の負荷が小さい場合には、モータ出力には余裕が有る。このため、この制御ではブラシレスDCモータ10の回転数を一定に制御して羽根3を一定に回転させ、一定の風量を発生させることができる。 When the power source current Is is smaller than the predetermined value Ip and the load of the brushless DC motor 10 is small in an installation state in which the distance between the blade 3 and the ceiling is long and the wind easily flows, there is a margin in the motor output. For this reason, in this control, the rotation speed of the brushless DC motor 10 can be controlled to be constant and the blades 3 can be rotated to generate a constant air volume.
 また、羽根3と天井との距離が短く、風が流れ難い設置状態で、電源電流Isが所定値Ipより大きくブラシレスDCモータ10の負荷が大きい場合には、モータ出力には余裕が無い。このため、モータトルクをほぼ一定に制御してモータ出力を最大限でほぼ一定に制御する。 Further, when the distance between the blade 3 and the ceiling is short and the wind is difficult to flow and the power source current Is is larger than the predetermined value Ip and the load of the brushless DC motor 10 is large, the motor output has no margin. For this reason, the motor torque is controlled to be substantially constant, and the motor output is controlled to be substantially constant at the maximum.
 このように、回転数を一定に制御して一定の風量を発生させることを基本動作としながらも、設置状態が悪くモータ負荷が大きい場合にはモータ出力を最大限の一定に制御する。そのため、モータへの過負荷状態を防止でき、安全に使用することができる。 In this way, while the basic operation is to generate a constant air volume by controlling the rotation speed to be constant, the motor output is controlled to the maximum constant when the installation condition is poor and the motor load is large. Therefore, the overload state to the motor can be prevented and it can be used safely.
 また、設置状態に合せて個別の製品を製造する必要がなく、製造コストダウンにつながる。 Also, it is not necessary to manufacture individual products according to the installation conditions, leading to a reduction in manufacturing costs.
 (実施の形態4)
 図8、図9を用いて、第4の実施の形態について説明する。
(Embodiment 4)
The fourth embodiment will be described with reference to FIGS.
 第4の実施の形態に係る天井扇1dでは、図8に示すように、インバータ回路4に流れる電流を電源電流検出部15で検出する。そして、デューティ指示部6から出力されるデューティ指示値と電源電流検出部15が検出した電源電流検出値とから、モータ電流演算部16にてモータ電流を演算するという構成である。 In the ceiling fan 1d according to the fourth embodiment, as shown in FIG. 8, the current flowing through the inverter circuit 4 is detected by the power supply current detector 15. The motor current calculation unit 16 calculates the motor current from the duty instruction value output from the duty instruction unit 6 and the power supply current detection value detected by the power supply current detection unit 15.
 第3の実施の形態でも説明したように、デューティDとモータ電流Imと電源電流Isとには、
  Is=D×Im
の関係がある。
As described in the third embodiment, the duty D, the motor current Im, and the power supply current Is include
Is = D × Im
There is a relationship.
 デューティ指示部6では、モータ電流演算部16からのモータ電流値を基に、モータ電流値が所定電流値より低い場合はデューティを増加させる制御を行う。一方、モータ電流値が所定電流値より高い場合はデューティを減少させる制御を行う。このようにして、デューティ指示部6がデューティを制御することによって、モータ電流を所定電流に制御する。モータトルクはモータ電流に比例するため、モータトルクを一定に制御することができる。 The duty instruction unit 6 performs control to increase the duty when the motor current value is lower than the predetermined current value based on the motor current value from the motor current calculation unit 16. On the other hand, when the motor current value is higher than the predetermined current value, control is performed to reduce the duty. In this way, the duty instruction unit 6 controls the duty, thereby controlling the motor current to a predetermined current. Since the motor torque is proportional to the motor current, the motor torque can be controlled to be constant.
 この構成では、3相のモータ電流を検出するモータ電流検出部14は不要にも係わらず、モータ電流を演算することが可能となるので、簡単な構成でモータトルクを正確に一定に制御できる。 In this configuration, although the motor current detection unit 14 that detects the three-phase motor current is unnecessary, the motor current can be calculated, so that the motor torque can be accurately and uniformly controlled with a simple configuration.
 しかし、第4の実施の形態によると、モータトルクをほぼ一定に制御することができたが、電源電圧が変化するとトルクの一定値も変化してしまう。 However, according to the fourth embodiment, the motor torque can be controlled to be substantially constant, but when the power supply voltage changes, the constant value of the torque also changes.
 つまり、第4の実施の形態では、図9に示すように、電源電圧が240Vでデューティ100%のモータ特性は細実線47であるが、電源電圧が200Vでデューティ100%のモータ特性は細点線48になる。トルク定数ktを10N・m/Aとし、電源電流Isを0.1Aに制御した場合、図9の電源電圧240Vの特性では回転数Nは
  D=100%、Im=0.10A、T=1.0N・m、N=300min―1
  D= 80%、Im=0.13A、T=1.3N・m、N=195min―1
  D= 60%、Im=0.17A、T=1.7N・m、N= 73min―1
となる。
That is, in the fourth embodiment, as shown in FIG. 9, the motor characteristic with a power supply voltage of 240V and a duty of 100% is a thin solid line 47, but the motor characteristic with a power supply voltage of 200V and a duty of 100% is a thin dotted line. 48. When the torque constant kt is set to 10 N · m / A and the power supply current Is is controlled to 0.1 A, the rotation speed N is D = 100%, Im = 0.10 A, T = 1 in the characteristics of the power supply voltage 240 V in FIG. 0.0 N · m, N = 300 min −1
D = 80%, Im = 0.13A, T = 1.3 N · m, N = 195 min −1
D = 60%, Im = 0.17A, T = 1.7 N · m, N = 73 min −1
It becomes.
 これらの回転数NとトルクTの点を結ぶと図9の太実線49になる。 When these rotational speed N and torque T are connected, a thick solid line 49 in FIG. 9 is obtained.
 図9の電源電圧200Vの特性では回転数Nは
  D=100%、Im=0.10A、T=1.0N・m、N=233min―1
  D= 80%、Im=0.13A、T=1.3N・m、N=142min―1
  D= 60%、Im=0.17A、T=1.7N・m、N= 33min―1
となり、これらの回転数NとトルクTの点を結ぶと図9の太点線50になる。つまり、電源電圧によってトルクが異なる。
In the characteristics of the power supply voltage 200V in FIG. 9, the rotation speed N is D = 100%, Im = 0.10 A, T = 1.0 N · m, N = 233 min −1
D = 80%, Im = 0.13A, T = 1.3 N · m, N = 142 min −1
D = 60%, Im = 0.17A, T = 1.7 N · m, N = 33 min −1
Then, when these rotational speed N and torque T are connected, a thick dotted line 50 in FIG. 9 is obtained. That is, the torque varies depending on the power supply voltage.
 (実施の形態5)
 そこで、図10、図11を用いて、第5の実施の形態について説明する。
(Embodiment 5)
Therefore, the fifth embodiment will be described with reference to FIGS.
 第5の実施の形態に係る天井扇1eでは、図10に示すように、インバータ回路4に流れる電流を電源電流検出部15で検出し、インバータ回路4に印加される電圧を電源電圧検出部17で検出する。そして、電源電流値と電源電圧値の積を電力演算部18で演算する。 In the ceiling fan 1e according to the fifth embodiment, as shown in FIG. 10, the current flowing through the inverter circuit 4 is detected by the power supply current detection unit 15, and the voltage applied to the inverter circuit 4 is detected by the power supply voltage detection unit 17. Detect with. Then, the power calculator 18 calculates the product of the power supply current value and the power supply voltage value.
 デューティ指示部6では、電力演算部18からの電力値を基に、電力値が所定電力値より低い場合はデューティを増加させ、電力値が所定電力値より高い場合はデューティを減少させることで、電力を所定電力に制御する。 Based on the power value from the power calculation unit 18, the duty instruction unit 6 increases the duty when the power value is lower than the predetermined power value, and decreases the duty when the power value is higher than the predetermined power value. The power is controlled to a predetermined power.
 図11に示すように、電源電圧が240Vで電源電流Isを0.1Aに制御している状態は太実線51であり、電力を24Wに制御していることになる。電源電圧が200Vの場合、電力を24Wに制御にすることは、電源電流Isを0.12Aに制御している状態と同じである。電源電流Isを0.12Aに制御した場合、図11の電源電圧200Vの特性では回転数Nは
  D=100%、Im=0.12A、T=1.2N・m、N=213min―1
  D= 80%、Im=0.15A、T=1.5N・m、N=117min―1
  D= 60%、Im=0.20A、T=2.0N・m、N=  0min―1
となり、これらの回転数NとトルクTの点を結ぶと図11の太点線52になる。つまり、電源電圧240Vの太実線51と同じになり、電源電圧が変化しても同じトルクに制御することができる。
As shown in FIG. 11, the state in which the power supply voltage is 240 V and the power supply current Is is controlled to 0.1 A is the thick solid line 51, and the power is controlled to 24 W. When the power supply voltage is 200 V, controlling the power to 24 W is the same as the state in which the power supply current Is is controlled to 0.12 A. When the power supply current Is is controlled to 0.12 A, the rotational speed N is D = 100%, Im = 0.12 A, T = 1.2 N · m, N = 213 min −1 in the characteristics of the power supply voltage 200 V in FIG.
D = 80%, Im = 0.15A, T = 1.5 N · m, N = 117 min −1
D = 60%, Im = 0.20A, T = 2.0 N · m, N = 0 min− 1
Then, when these rotational speed N and torque T are connected, a thick dotted line 52 in FIG. 11 is obtained. That is, it becomes the same as the thick solid line 51 of the power supply voltage 240V and can be controlled to the same torque even if the power supply voltage changes.
 本実施の形態では、3相のモータ電流を検出するモータ電流検出部14は不要となるので、簡単な構成で電源電圧に影響されずモータトルクをほぼ一定に制御できる。 In the present embodiment, since the motor current detection unit 14 for detecting the three-phase motor current is not required, the motor torque can be controlled to be almost constant without being influenced by the power supply voltage with a simple configuration.
 なお、各実施の形態において、ブラシレスDCモータ10の回転位置の検出方法としてホールIC9u、9v、9wを設けたが、位置センサを設けないセンサレス駆動方式としても良い。 In each embodiment, the Hall ICs 9u, 9v, and 9w are provided as a method for detecting the rotational position of the brushless DC motor 10. However, a sensorless driving method that does not include a position sensor may be used.
 (実施の形態の概要)
 本発明の一態様に係る天井扇は、ブラシレスDCモータと、インバータ回路と、駆動ロジック制御部と、デューティ指示部と、モータ電流検出部を備える。ブラシレスDCモータは、駆動コイルを備える。インバータ回路は、上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されている。駆動ロジック制御部は、インバータ回路に印加される直流電圧をPWM制御するとともに、駆動コイルに順次通電するための駆動ロジックを制御する。デューティ指示部は、PWM制御におけるON/OFFデューティを指示する。モータ電流検出部は、駆動コイルに流れる電流を検出する。そして、デューティ指示部は、モータ電流検出部の検出値に基づいてデューティ指示値を決定するという構成を有する。
(Outline of the embodiment)
A ceiling fan according to one aspect of the present invention includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, and a motor current detection unit. The brushless DC motor includes a drive coil. The inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements. The drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil. A duty instruction | indication part instruct | indicates the ON / OFF duty in PWM control. The motor current detection unit detects a current flowing through the drive coil. And a duty instruction | indication part has a structure which determines a duty instruction | indication value based on the detected value of a motor current detection part.
 これにより、モータ電流を一定に制御することが可能となり、モータ電流に比例するモータトルクも一定になり、天井扇にかかる負荷トルクが一定となる。したがって、設置状態による羽根と天井の距離に影響されず、天井扇は最大能力を発揮できるという効果を奏する。 This makes it possible to control the motor current to be constant, the motor torque proportional to the motor current to be constant, and the load torque applied to the ceiling fan to be constant. Therefore, the ceiling fan has an effect that the maximum capacity can be exhibited without being affected by the distance between the blade and the ceiling depending on the installation state.
 また、本発明の別の一態様に係る天井扇は、ブラシレスDCモータと、インバータ回路と、駆動ロジック制御部と、デューティ指示部と、電源電流検出部を備える。ブラシレスDCモータは、駆動コイルを備える。インバータ回路は、上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されている。駆動ロジック制御部は、インバータ回路に印加される直流電圧をPWM制御するとともに、駆動コイルに順次通電するための駆動ロジックを制御する。デューティ指示部は、PWM制御におけるON/OFFデューティを指示する。電源電流検出部は、インバータ回路に供給される電流を検出する。そして、デューティ指示部は、電源電流検出部の検出値に基づいてデューティ指示値を決定する。 The ceiling fan according to another aspect of the present invention includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, and a power supply current detection unit. The brushless DC motor includes a drive coil. The inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements. The drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil. A duty instruction | indication part instruct | indicates the ON / OFF duty in PWM control. The power supply current detection unit detects a current supplied to the inverter circuit. And a duty instruction | indication part determines a duty instruction | indication value based on the detected value of a power supply current detection part.
 これにより、3相のモータ電流を検出するモータ電流検出部が不要となるので、簡単な構成でモータトルクをほぼ一定に制御できるという効果を奏する。 This eliminates the need for a motor current detection unit that detects a three-phase motor current, and thus has an effect that the motor torque can be controlled almost constant with a simple configuration.
 また、上記構成の天井扇の特定の局面では、さらに、ブラシレスDCモータの回転数を検出する回転数検出部を備える。そして、デューティ指示部は、電源電流検出部による電流の検出値が所定値より小さいときは、回転数検出部による回転数の検出値に基づいてデューティ指示値を決定する。また、デューティ指示部は、電源電流検出部による電流の検出値が所定値より大きいときは、電源電流検出部による電流の検出値に基づいてデューティ指示値を決定する。 Further, in a specific aspect of the ceiling fan configured as described above, a rotation speed detection unit that detects the rotation speed of the brushless DC motor is further provided. Then, when the detected current value by the power source current detecting unit is smaller than the predetermined value, the duty indicating unit determines the duty indicating value based on the detected rotational speed value by the rotational speed detecting unit. Further, the duty instruction unit determines the duty instruction value based on the detected current value by the power source current detector when the detected current value by the power source current detector is larger than a predetermined value.
 また、本発明のさらに別の一態様に係る天井扇は、ブラシレスDCモータと、インバータ回路と、駆動ロジック制御部と、デューティ指示部と、電源電流検出部と、デューティ検出部と、モータ電流演算部とを備える。ブラシレスDCモータは、駆動コイルを備える。インバータ回路は、上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されている。駆動ロジック制御部は、インバータ回路に印加される直流電圧をPWM制御するとともに、駆動コイルに順次通電するための駆動ロジックを制御する。デューティ指示部は、PWM制御におけるON/OFFデューティを指示する。電源電流検出部は、インバータ回路に供給される電流を検出する。デューティ検出部は、デューティ指示部から出力されるデューティ指示値を検出する。モータ電流演算部は、電源電流検出部の検出値とデューティ検出部の検出値からモータ電流を演算する。そして、デューティ指示部は、モータ電流演算部の演算値に基づいてデューティ指示値を決定する。 A ceiling fan according to another aspect of the present invention includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, a power supply current detection unit, a duty detection unit, and a motor current calculation. A part. The brushless DC motor includes a drive coil. The inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements. The drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil. A duty instruction | indication part instruct | indicates the ON / OFF duty in PWM control. The power supply current detection unit detects a current supplied to the inverter circuit. The duty detection unit detects a duty instruction value output from the duty instruction unit. The motor current calculation unit calculates the motor current from the detection value of the power source current detection unit and the detection value of the duty detection unit. And a duty instruction | indication part determines a duty instruction | indication value based on the calculated value of a motor current calculating part.
 これにより、3相のモータ電流を検出するモータ電流検出部は不要で、且つモータ電流を演算することが可能となるので、簡単な構成でモータトルクを正確に一定に制御できるという効果を奏する。 This eliminates the need for a motor current detection unit for detecting a three-phase motor current, and allows the motor current to be calculated. Thus, the motor torque can be accurately and uniformly controlled with a simple configuration.
 また、本発明のさらに別の一態様に係る天井扇は、ブラシレスDCモータと、インバータ回路と、駆動ロジック制御部と、デューティ指示部と、電源電流検出部と、電源電圧検出部と、電源電力演算部とを備える。ブラシレスDCモータは、駆動コイルを備える。インバータ回路は、上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されている。駆動ロジック制御部は、インバータ回路に印加される直流電圧をPWM制御するとともに、駆動コイルに順次通電するための駆動ロジックを制御する。デューティ指示部は、PWM制御におけるON/OFFデューティを指示する。電源電流検出部は、インバータ回路に供給される電流を検出する。電源電圧検出部は、インバータ回路に供給される電圧を検出する。電源電力演算部は、電源電流検出部の検出値と電源電圧検出部の検出値から電源電力を演算する。そして、デューティ指示部は、電源電力演算部の演算値に基づいてデューティ指示値を決定する。 A ceiling fan according to another aspect of the present invention includes a brushless DC motor, an inverter circuit, a drive logic control unit, a duty instruction unit, a power supply current detection unit, a power supply voltage detection unit, and power supply power. And an arithmetic unit. The brushless DC motor includes a drive coil. The inverter circuit includes an upper stage and a lower stage, and is bridge-connected by a plurality of switching elements. The drive logic control unit performs PWM control on the DC voltage applied to the inverter circuit and also controls drive logic for sequentially energizing the drive coil. A duty instruction | indication part instruct | indicates the ON / OFF duty in PWM control. The power supply current detection unit detects a current supplied to the inverter circuit. The power supply voltage detection unit detects a voltage supplied to the inverter circuit. The power supply power calculation unit calculates power supply power from the detection value of the power supply current detection unit and the detection value of the power supply voltage detection unit. And a duty instruction | indication part determines a duty instruction | indication value based on the calculated value of a power supply electric power calculating part.
 これにより、3相のモータ電流を検出するモータ電流検出部は不要となるので、簡単な構成で電源電圧に影響されずモータトルクをほぼ一定に制御できるという効果を奏する。 This eliminates the need for a motor current detection unit that detects a three-phase motor current, so that the motor torque can be controlled almost uniformly without being affected by the power supply voltage with a simple configuration.
 本発明に係る天井扇は、羽根と天井の距離の変化の影響を受けることなく、性能最大の一定トルクで羽根を回転させて送風することを可能とするので、ファン駆動用の天井扇として有用である。 The ceiling fan according to the present invention is useful as a ceiling fan for driving a fan because it can blow the fan with a constant torque with the maximum performance without being affected by the change in the distance between the blade and the ceiling. It is.
1,1b,1c,1d,1e 天井扇
2,2u,2v,2w 駆動コイル
3 羽根
4 インバータ回路
5 駆動ロジック制御部
6 デューティ指示部
7,7u,7v,7w 上段側スイッチング素子
8,8u,8v,8w 下段側スイッチング素子
9,9u,9v,9w ホールIC
10 ブラシレスDCモータ
11 交流電源
12 整流ダイオード
13 平滑コンデンサ
14 モータ電流検出部
15 電源電流検出部
16 モータ電流演算部
17 電源電圧検出部
18 電力演算部
1, 1b, 1c, 1d, 1e Ceiling fan 2, 2u, 2v, 2w Drive coil 3 Blade 4 Inverter circuit 5 Drive logic control unit 6 Duty instruction unit 7, 7u, 7v, 7w Upper stage switching elements 8, 8u, 8v , 8w Lower stage switching element 9, 9u, 9v, 9w Hall IC
DESCRIPTION OF SYMBOLS 10 Brushless DC motor 11 AC power supply 12 Rectifier diode 13 Smoothing capacitor 14 Motor current detection part 15 Power supply current detection part 16 Motor current calculation part 17 Power supply voltage detection part 18 Power calculation part

Claims (5)

  1. 駆動コイルを備えたブラシレスDCモータと、
    上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されたインバータ回路と、
    前記インバータ回路に印加される直流電圧をPWM制御するとともに、前記駆動コイルに順次通電するための駆動ロジックを制御する駆動ロジック制御部と、
    前記PWM制御におけるON/OFFデューティを指示するデューティ指示部と、
    前記駆動コイルに流れる電流を検出するモータ電流検出部を備え、
    前記デューティ指示部は、前記モータ電流検出部の検出値に基づいてデューティ指示値を決定する天井扇。
    A brushless DC motor with a drive coil;
    An inverter circuit composed of an upper stage and a lower stage and bridge-connected by a plurality of switching elements,
    A PWM control of the DC voltage applied to the inverter circuit, and a drive logic control unit for controlling a drive logic for sequentially energizing the drive coil,
    A duty instruction unit for instructing an ON / OFF duty in the PWM control;
    A motor current detector for detecting a current flowing in the drive coil;
    The said duty instruction | indication part is a ceiling fan which determines a duty instruction | indication value based on the detected value of the said motor current detection part.
  2. 駆動コイルを備えたブラシレスDCモータと、
    上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されたインバータ回路と、
    前記インバータ回路に印加される直流電圧をPWM制御するとともに、前記駆動コイルに順次通電するための駆動ロジックを制御する駆動ロジック制御部と、
    前記PWM制御におけるON/OFFデューティを指示するデューティ指示部と、
    前記インバータ回路に供給される電流を検出する電源電流検出部を備え、
    前記デューティ指示部は、前記電源電流検出部の検出値に基づいてデューティ指示値を決定する天井扇。
    A brushless DC motor with a drive coil;
    An inverter circuit composed of an upper stage and a lower stage and bridge-connected by a plurality of switching elements,
    A PWM control of the DC voltage applied to the inverter circuit, and a drive logic control unit for controlling a drive logic for sequentially energizing the drive coil,
    A duty instruction unit for instructing an ON / OFF duty in the PWM control;
    A power supply current detector for detecting a current supplied to the inverter circuit;
    The said duty instruction | indication part is a ceiling fan which determines a duty instruction | indication value based on the detection value of the said power supply current detection part.
  3. さらに、前記ブラシレスDCモータの回転数を検出する回転数検出部を備え、
    前記デューティ指示部は、
     前記電源電流検出部による電流の検出値が所定値より小さいときは、前記回転数検出部による回転数の検出値に基づいて前記デューティ指示値を決定し、
     前記電源電流検出部による電流の検出値が所定値より大きいときは、前記電源電流検出部による電流の検出値に基づいて前記デューティ指示値を決定する請求項2に記載の天井扇。
    Furthermore, a rotation speed detection unit that detects the rotation speed of the brushless DC motor is provided,
    The duty instruction unit
    When the detected current value by the power source current detection unit is smaller than a predetermined value, the duty instruction value is determined based on the rotation number detection value by the rotation number detection unit,
    The ceiling fan according to claim 2, wherein when the detected current value by the power source current detecting unit is larger than a predetermined value, the duty instruction value is determined based on the detected current value by the power source current detecting unit.
  4. 駆動コイルを備えたブラシレスDCモータと、
    上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されたインバータ回路と、
    前記インバータ回路に印加される直流電圧をPWM制御するとともに、前記駆動コイルに順次通電するための駆動ロジックを制御する駆動ロジック制御部と、
    前記PWM制御におけるON/OFFデューティを指示するデューティ指示部と、
    前記インバータ回路に供給される電流を検出する電源電流検出部と、
    前記デューティ指示部から出力されるデューティ指示値を検出するデューティ検出部と、
    前記電源電流検出部の検出値と前記デューティ検出部の検出値からモータ電流を演算するモータ電流演算部とを備え、
    前記デューティ指示部は、
    前記モータ電流演算部の演算値に基づいて前記デューティ指示値を決定する天井扇。
    A brushless DC motor with a drive coil;
    An inverter circuit composed of an upper stage and a lower stage and bridge-connected by a plurality of switching elements,
    A PWM control of the DC voltage applied to the inverter circuit, and a drive logic control unit for controlling a drive logic for sequentially energizing the drive coil,
    A duty instruction unit for instructing an ON / OFF duty in the PWM control;
    A power supply current detector for detecting a current supplied to the inverter circuit;
    A duty detection unit for detecting a duty instruction value output from the duty instruction unit;
    A motor current calculation unit that calculates a motor current from the detection value of the power supply current detection unit and the detection value of the duty detection unit;
    The duty instruction unit
    A ceiling fan that determines the duty instruction value based on a calculation value of the motor current calculation unit.
  5. 駆動コイルを備えたブラシレスDCモータと、
    上段と下段からなりそれぞれ複数のスイッチング素子でブリッジ接続されたインバータ回路と、
    前記インバータ回路に印加される直流電圧をPWM制御するとともに、前記駆動コイルに順次通電するための駆動ロジックを制御する駆動ロジック制御部と、
    前記PWM制御におけるON/OFFデューティを指示するデューティ指示部と、
    前記インバータ回路に供給される電流を検出する電源電流検出部と、
    前記インバータ回路に供給される電圧を検出する電源電圧検出部と、
    前記電源電流検出部の検出値と前記電源電圧検出部の検出値から電源電力を演算する電源電力演算部とを備え、
    前記デューティ指示部は、
    前記電源電力演算部の演算値に基づいて前記デューティ指示値を決定する天井扇。
    A brushless DC motor with a drive coil;
    An inverter circuit composed of an upper stage and a lower stage and bridge-connected by a plurality of switching elements,
    A PWM control of the DC voltage applied to the inverter circuit, and a drive logic control unit for controlling a drive logic for sequentially energizing the drive coil,
    A duty instruction unit for instructing an ON / OFF duty in the PWM control;
    A power supply current detector for detecting a current supplied to the inverter circuit;
    A power supply voltage detector for detecting a voltage supplied to the inverter circuit;
    A power supply power calculation unit for calculating power supply power from the detection value of the power supply current detection unit and the detection value of the power supply voltage detection unit;
    The duty instruction unit
    A ceiling fan that determines the duty instruction value based on a calculation value of the power supply power calculation unit.
PCT/JP2015/004511 2014-09-16 2015-09-07 Ceiling fan WO2016042729A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016548549A JPWO2016042729A1 (en) 2014-09-16 2015-09-07 Ceiling fan
SG11201701743SA SG11201701743SA (en) 2014-09-16 2015-09-07 Ceiling fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014187372 2014-09-16
JP2014-187372 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016042729A1 true WO2016042729A1 (en) 2016-03-24

Family

ID=55532787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004511 WO2016042729A1 (en) 2014-09-16 2015-09-07 Ceiling fan

Country Status (4)

Country Link
JP (1) JPWO2016042729A1 (en)
MY (2) MY185536A (en)
SG (2) SG10201805397XA (en)
WO (1) WO2016042729A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100216A1 (en) * 2002-11-27 2004-05-27 Siemens Vdo Automative Inc. Current limitation process of brush and brushless DC motors during severe voltage changes
JP2007151347A (en) * 2005-11-29 2007-06-14 Toto Ltd Motor controller and blower mounting the same
WO2009107638A1 (en) * 2008-02-29 2009-09-03 株式会社ジェイテクト Auxiliary power supply device and electric power steering device
JP2009281538A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Control device of automatic transmission
JP2012200115A (en) * 2011-03-23 2012-10-18 Panasonic Corp Electric motor and electrical apparatus including the same
WO2014017049A1 (en) * 2012-07-27 2014-01-30 パナソニック株式会社 Air blower equipped with brushless dc motor
JP2014064430A (en) * 2012-09-24 2014-04-10 Hitachi Automotive Systems Steering Ltd Electric power steering device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100216A1 (en) * 2002-11-27 2004-05-27 Siemens Vdo Automative Inc. Current limitation process of brush and brushless DC motors during severe voltage changes
JP2007151347A (en) * 2005-11-29 2007-06-14 Toto Ltd Motor controller and blower mounting the same
WO2009107638A1 (en) * 2008-02-29 2009-09-03 株式会社ジェイテクト Auxiliary power supply device and electric power steering device
JP2009281538A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Control device of automatic transmission
JP2012200115A (en) * 2011-03-23 2012-10-18 Panasonic Corp Electric motor and electrical apparatus including the same
WO2014017049A1 (en) * 2012-07-27 2014-01-30 パナソニック株式会社 Air blower equipped with brushless dc motor
JP2014064430A (en) * 2012-09-24 2014-04-10 Hitachi Automotive Systems Steering Ltd Electric power steering device

Also Published As

Publication number Publication date
SG11201701743SA (en) 2017-04-27
SG10201805397XA (en) 2018-07-30
MY185536A (en) 2021-05-19
MY180799A (en) 2020-12-09
JPWO2016042729A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
KR100911071B1 (en) Blower and electric device with such blower mounted thereon
US9214884B2 (en) Motor driving device and brushless motor
JP4100442B2 (en) Motor drive control device and motor drive control system
JP6462241B2 (en) Fan motor driving device and blower
JP6029708B2 (en) PWM inverter driven permanent magnet type synchronous motor and control method for ventilation fan
JP6609796B2 (en) Ventilation equipment
JP2006129632A (en) Motor drive unit
JP6374662B2 (en) Motor equipment
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
JP2009225596A (en) Driving unit of motor, air conditioner, washing machine, washing dryer, refrigerator, ventilation fan, and heat pump water heater
JP5188734B2 (en) DC brushless motor controller
JP6569089B2 (en) Ceiling fan
JP6929460B2 (en) Permanent magnet synchronous motor and ventilation blower
JP2008099467A (en) Inverter device, compressor drive device, and freezing/air-conditioning apparatus
WO2016042729A1 (en) Ceiling fan
US20150357947A1 (en) Motor drive device and brushless motor equipped with same, and air conditioner
WO2015109863A1 (en) Control method for expanding rotating speed range of ecm motor
JP2018023182A (en) Numerical constant identification device and numerical constant identification method for permanent magnet synchronous motor
TWI474607B (en) Synchronous motor control method and control device and synchronous motor using same
JP5791746B2 (en) Brushless DC motor and ventilation blower
WO2022137406A1 (en) Ventilation blower
JP2007151215A (en) Inverter apparatus, compressor driver and refrigerator/air conditioner
JP6182736B2 (en) Ventilation equipment
JP2022098287A (en) Air conditioner
KR100984251B1 (en) Blcd motor controller based on maximum power algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842663

Country of ref document: EP

Kind code of ref document: A1