JP2011234466A - Motor control device and equipment provided with the same - Google Patents

Motor control device and equipment provided with the same Download PDF

Info

Publication number
JP2011234466A
JP2011234466A JP2010101595A JP2010101595A JP2011234466A JP 2011234466 A JP2011234466 A JP 2011234466A JP 2010101595 A JP2010101595 A JP 2010101595A JP 2010101595 A JP2010101595 A JP 2010101595A JP 2011234466 A JP2011234466 A JP 2011234466A
Authority
JP
Japan
Prior art keywords
voltage
rectification
switching
control device
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010101595A
Other languages
Japanese (ja)
Inventor
Takayuki Hikiti
孝行 曵地
Hironao Kamatani
弘直 釜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010101595A priority Critical patent/JP2011234466A/en
Publication of JP2011234466A publication Critical patent/JP2011234466A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor control device capable of operating stably without complicating a circuit thereof even under conditions where operating load is high or the amount of load variation is increased; and further to provide an equipment having the motor control device.SOLUTION: A motor control device includes conversion means for converting AC voltage into DC voltage, determination means for determining a switching over between full-wave rectification and voltage doubling rectification, and switching over means for switching over between full-wave rectification and voltage doubling rectification. The motor control device performs a field-weakening control when motor voltage exceeds a predetermined value under full-wave rectification, and switches over to voltage doubling rectification based on a current value of the field-weakening control. In a case where there is a region in which an operation becomes unstable, the motor control device determines voltage doubling rectification switch-over by using a modulation rate.

Description

本発明は、モータ制御装置及びこれを備えた機器に関する。   The present invention relates to a motor control device and a device including the same.

従来、モータ制御装置を備える冷蔵庫やルームエアコンにおいて、モータ制御の電源は、交流電源から全波整流又は倍電圧整流して電源供給する構成が知られている。全波整流と倍電圧整流に関しては、特許文献1及び2に記載された構成が知られている。   2. Description of the Related Art Conventionally, in a refrigerator or a room air conditioner equipped with a motor control device, a configuration is known in which motor-controlled power is supplied by full-wave rectification or double voltage rectification from an AC power supply. Regarding full-wave rectification and voltage doubler rectification, configurations described in Patent Documents 1 and 2 are known.

特許文献1には、全波整流と倍電圧整流を切り替える双方向性スイッチを備え、この双方向性スイッチの通電率を変化させる構成が記載されている。   Patent Document 1 describes a configuration in which a bidirectional switch that switches between full-wave rectification and voltage doubler rectification is provided, and the energization rate of the bidirectional switch is changed.

特許文献2には、倍電圧整流回路に切り替える前に、必要最低電圧値まで直流電圧を昇圧して、全波整流回路から倍電圧整流回路に切り替える際の直流電圧の急変動と電源電流のピーク値を下げる構成が記載されている。   In Patent Document 2, before switching to the voltage doubler rectifier circuit, the DC voltage is boosted to the necessary minimum voltage value, and the DC voltage sudden fluctuation and the peak of the power supply current when switching from the full wave rectifier circuit to the voltage doubler rectifier circuit are disclosed. A configuration for lowering the value is described.

特開2003−18877号公報JP 2003-18877 A 特開2004−72958号公報JP 2004-72958 A

特許文献1記載の構成では、通電率を変えるための双方向性スイッチが必要となり、回路が複雑化して、さらにコストアップを招く、という問題があった。   The configuration described in Patent Document 1 requires a bidirectional switch for changing the energization rate, which complicates the circuit and further increases the cost.

特許文献2記載の構成では、昇圧回路が必要となり、回路が複雑化して、さらにコストアップを招く、という問題があった。   The configuration described in Patent Document 2 requires a booster circuit, which complicates the circuit and further increases costs.

そこで、上記課題に鑑みて本発明の目的は、回路を複雑化させることなく、高負荷条件や負荷変動が大きくなる条件においても安定した動作が可能なモータ制御装置及びこれを備えた機器を提供することである。   Accordingly, in view of the above problems, an object of the present invention is to provide a motor control device capable of stable operation even under conditions of high load conditions and large load fluctuations without complicating the circuit, and a device including the same. It is to be.

上記目的を達成するために、本発明のモータ制御装置は、交流電圧を直流電圧に変換する手段と、全波整流及び倍電圧整流の切り替えを判定する手段と、全波整流及び倍電圧整流を切り替える手段と、を有し、全波整流の場合にモータ電圧が所定値を上回ると弱め界磁制御を行い、前記弱め界磁制御の電流値に基づいて倍電圧整流に切り替え、動作が不安定となる領域の場合、変調率を用いて倍電圧整流切り替え判定を行うことを特徴とする。   In order to achieve the above object, a motor control device according to the present invention comprises means for converting an AC voltage to a DC voltage, means for determining switching between full-wave rectification and voltage doubler rectification, full-wave rectification and voltage doubler rectification. In the case of full-wave rectification, field-weakening control is performed when the motor voltage exceeds a predetermined value, switching to voltage doubler rectification based on the current value of the field-weakening control, and the operation becomes unstable. In this case, the voltage doubler rectification switching determination is performed using the modulation rate.

また、本発明の機器(冷蔵庫,空気調和機及び給湯器)は、上記モータ制御装置を有することを特徴とする。   Moreover, the apparatus (refrigerator, air conditioner, and water heater) of this invention has the said motor control apparatus, It is characterized by the above-mentioned.

本発明によれば、回路を複雑化させることなく、高負荷条件や負荷変動が大きくなる条件においても安定した動作が可能なモータ制御装置及びこれを備えた機器を提供することができる。   According to the present invention, it is possible to provide a motor control device capable of stable operation even under high load conditions or conditions in which load fluctuations are large and a device including the same without complicating the circuit.

本発明の実施例に係る制御回路構成を示す図。The figure which shows the control circuit structure which concerns on the Example of this invention. 本発明の実施例に係る弱め界磁制御を行わない時の回転数と変調率の関係を示す図。The figure which shows the relationship between the rotation speed when not performing field-weakening control based on the Example of this invention, and a modulation factor. 本発明の実施例に係る弱め界磁制御を行った時の回転数と変調率の関係を示す図。The figure which shows the relationship between the rotation speed when performing field-weakening control which concerns on the Example of this invention, and a modulation factor. 本発明の実施例に係る弱め界磁制御を行った時の回転数と弱め界磁電流の関係を示す図。The figure which shows the relationship between the rotation speed when the field weakening control which concerns on the Example of this invention is performed, and a field weakening current. 本発明の実施例に係る弱め界磁制御を行わない時の回転数と効率の関係を示す図。The figure which shows the relationship between the rotation speed when not performing the field-weakening control based on the Example of this invention, and efficiency. 本発明の実施例に係る弱め界磁制御を行った時の回転数と効率の関係を示す図。The figure which shows the relationship between the rotation speed when performing field-weakening control which concerns on the Example of this invention, and efficiency. 本発明の実施例に係る安定状態と不安定状態時の回転数と効率の関係を示す図。The figure which shows the relationship between the rotation speed and efficiency at the time of the stable state which concerns on the Example of this invention, and an unstable state. 本発明の実施例に係る倍電圧整流に切り替える場合のアルゴリズムを示す流れ図。The flowchart which shows the algorithm in the case of switching to voltage doubler rectification based on the Example of this invention. 本発明の実施例に係る全波整流に切り替える場合のアルゴリズムを示す流れ図。The flowchart which shows the algorithm in the case of switching to full wave rectification based on the Example of this invention.

全波整流と倍電圧整流を切り替えて使用することで、幅広い回転数領域での運転が可能となる。尚、全波整流と倍電圧整流の切り替えを行う場合、効率的な運転を行うために、全波整流で制御可能な最高回転数までは全波整流で駆動し、制御可能な最高回転数を超えた時に倍電圧整流に切り替える。また、回転数で切り替えを行う場合、全波整流で制御可能な最高回転数は印加電圧や負荷によって異なるため、モータ入力に必要な電圧と平滑コンデンサの電圧(又は電源電圧)を比較して、その値(以下「変調率」という)が必要なモータ電圧が平滑コンデンサの電圧(又は電源電圧)を超えた時に、倍電圧整流切り替えを行う。これにより、印加電圧や負荷に関わらず、全波整流の限界点で自動的に倍電圧整流に切り替える。   By switching between full-wave rectification and voltage doubler rectification, operation in a wide range of rotation speeds becomes possible. When switching between full-wave rectification and voltage doubler rectification, in order to perform efficient operation, the maximum rotation speed that can be controlled by full-wave rectification is driven by full-wave rectification and the maximum controllable rotation speed is set. When exceeded, switch to voltage doubler rectification. Also, when switching at the number of revolutions, the maximum number of revolutions that can be controlled by full-wave rectification varies depending on the applied voltage and load, so compare the voltage required for motor input with the voltage of the smoothing capacitor (or power supply voltage) When the motor voltage that requires that value (hereinafter referred to as “modulation rate”) exceeds the voltage (or power supply voltage) of the smoothing capacitor, voltage doubler rectification switching is performed. This automatically switches to voltage doubler rectification at the limit of full wave rectification regardless of the applied voltage or load.

また、倍電圧整流に切り替える前に、全波整流で弱め界磁制御を行うことにより、全波整流の限界点の回転数をより高回転数側にすることができ、かつ高効率で運転することができる。しかし、弱め界磁制御を行うと回転数と変調率が比例関係ではなくなり、変調率を全波整流と倍電圧整流の切り替えに使用できなくなる。そこで、回転数に比例して上昇する弱め界磁電流値を用いることにより、倍電圧整流への切り替えが可能となる。   In addition, by performing field-weakening control with full-wave rectification before switching to voltage doubler rectification, the rotation speed at the limit point of full-wave rectification can be made higher and the operation can be performed with high efficiency. it can. However, if field-weakening control is performed, the rotational speed and the modulation rate are not proportional to each other, and the modulation rate cannot be used for switching between full-wave rectification and voltage doubler rectification. Therefore, by using a field weakening current value that increases in proportion to the rotational speed, switching to voltage doubler rectification becomes possible.

なお、弱め界磁制御で高回転域まで回すと制御が不安定となるため、周囲温度が高い時等の高負荷条件や負荷変動が大きくなる条件下においては、異常停止する可能性がある。そこで、全波整流時であって、且つ必要なモータ電圧が平滑コンデンサの電圧(又は電源電圧)を上回る場合に弱め界磁制御を行い、弱め界磁電流を倍電圧整流切り替えに用いて、制御が不安定となる条件下では、変調率で倍電圧整流切り替えを行う。   In addition, since the control becomes unstable when turned to the high rotation range by the field weakening control, there is a possibility of abnormal stop under a high load condition such as when the ambient temperature is high or a condition in which the load fluctuation becomes large. Therefore, when full-wave rectification is performed and the required motor voltage exceeds the voltage (or power supply voltage) of the smoothing capacitor, field-weakening control is performed, and field-weakening current is used for voltage doubler rectification switching. Under stable conditions, voltage doubler rectification switching is performed at the modulation rate.

以下、本発明の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施例の制御回路構成を例示する図である。AC電源1は、ダイオードスタック2及び平滑コンデンサ3と接続して、交流電圧を直流電圧に変換する。すなわち、交流電圧を直流電圧に変換する手段を構成する。また、マイコン4内のドライブ信号出力部5で生成されたドライブ信号に基づき、三相AC信号出力部6にて、直流電圧を三相AC信号に変換して出力することで、モータ7を駆動する。   FIG. 1 is a diagram illustrating a control circuit configuration of the present embodiment. The AC power source 1 is connected to the diode stack 2 and the smoothing capacitor 3 to convert an AC voltage into a DC voltage. That is, a means for converting an AC voltage into a DC voltage is configured. Further, based on the drive signal generated by the drive signal output unit 5 in the microcomputer 4, the three-phase AC signal output unit 6 converts the DC voltage into a three-phase AC signal and outputs it, thereby driving the motor 7. To do.

マイコン4内には、安定領域判定部8,倍電圧整流切替判定部9及び倍電圧整流切替信号生成部10を備えている。安定領域判定部8では、安定領域か不安定領域かを判定する。そして、倍電圧整流切替判定部9では安定領域の場合は弱め界磁電流値、不安定領域の場合は変調率値に基づき倍電圧整流切り替えを判定する。この判定結果により、倍電圧整流切替信号生成部10では倍電圧整流切り替え信号を出力し、倍電圧整流切り替え装置11により倍電圧整流に切り替える構成である。   The microcomputer 4 includes a stable region determination unit 8, a double voltage rectification switching determination unit 9, and a double voltage rectification switching signal generation unit 10. The stable region determination unit 8 determines whether the region is a stable region or an unstable region. The voltage doubler rectification switching determination unit 9 determines the voltage doubler rectification switching based on the field weakening current value in the stable region and the modulation factor value in the unstable region. Based on the determination result, the voltage doubler rectification switching signal generator 10 outputs a voltage doubler rectification switching signal, and the voltage doubler rectification switching device 11 switches to voltage doubler rectification.

次に図2は、本実施例の弱め界磁制御を行わない時の回転数と変調率の関係を例示する図である。図2において、弱め界磁無し12の時には、変調率は回転数の上昇に比例して上昇する。尚、全波整流時に必要なモータ電圧が平滑コンデンサ3の電圧を上回る変調率になると、倍電圧整流に切り替わり、変調率が低下する(変調率切替位置13参照)。   Next, FIG. 2 is a diagram illustrating the relationship between the rotation speed and the modulation rate when the field weakening control of this embodiment is not performed. In FIG. 2, when there is no field weakening 12, the modulation rate increases in proportion to the increase in the rotational speed. When the motor voltage required for full-wave rectification reaches a modulation rate that exceeds the voltage of the smoothing capacitor 3, switching to voltage doubler rectification is performed and the modulation rate is lowered (see modulation rate switching position 13).

図3は、本実施例の弱め界磁制御を行った場合の回転数と変調率の関係を例示する図である。弱め界磁制御を動作すると、回転数の上昇に伴い変調率が比例して上昇しなくなる(弱め界磁制御位置14参照)。その後、倍電圧整流に切り替えて弱め界磁制御を停止させると、回転数の上昇に伴い変調率が比例して上昇する。   FIG. 3 is a diagram illustrating the relationship between the rotation speed and the modulation rate when the field weakening control of this embodiment is performed. When the field weakening control is operated, the modulation rate does not increase in proportion to the increase in the rotational speed (see field weakening control position 14). Thereafter, when the field weakening control is stopped by switching to voltage doubler rectification, the modulation rate increases in proportion to the increase in the rotational speed.

図4は、本実施例の弱め界磁制御を行った時の回転数と弱め界磁電流の関係を例示する図である。弱め界磁制御が動作すると、回転数の上昇に伴い弱め界磁電流が増加する(弱め界磁制御位置15参照)。弱め界磁電流が、設定した倍電圧整流切替閾値16に達すると、倍電圧整流に切り替えて弱め界磁を停止させる。そのため、弱め界磁電流は零になる(倍電圧整流切替位置17参照)。   FIG. 4 is a diagram illustrating the relationship between the rotational speed and field weakening current when field weakening control is performed according to the present embodiment. When the field weakening control is activated, the field weakening current increases as the rotational speed increases (see field weakening control position 15). When the field weakening current reaches the set double voltage rectification switching threshold 16, the field weakening is stopped by switching to double voltage rectification. Therefore, the field weakening current becomes zero (see voltage doubler rectification switching position 17).

図5は、本実施例の弱め界磁制御を行わない時の回転数と効率の関係を例示する図である。回転数の上昇に伴い効率が上昇するが、倍電圧整流に切り替えると効率が低下する(効率切替位置18参照)。   FIG. 5 is a diagram illustrating the relationship between the rotational speed and the efficiency when the field weakening control of this embodiment is not performed. The efficiency increases as the rotational speed increases, but the efficiency decreases when switching to voltage doubler rectification (see efficiency switching position 18).

図6は、本実施例の弱め界磁制御を行った時の回転数と効率の関係を例示する図である。弱め界磁制御領域になると、効率が低下するものの、図5と比較して効率が高い状態で遷移する(弱め界磁制御位置19参照)。そして、回転数がさらに上昇して、倍電圧整流よりも効率が低下する回転数で倍電圧整流に切り替える(倍電圧整流切替位置20参照)。その後、回転数の上昇に伴い効率は上昇する。   FIG. 6 is a diagram illustrating the relationship between the rotational speed and efficiency when the field weakening control of this embodiment is performed. In the field weakening control region, although the efficiency is lowered, the transition is made in a state where the efficiency is higher than that in FIG. 5 (see field weakening control position 19). Then, the rotation speed is further increased, and switching to voltage doubler rectification is performed at a rotation speed at which the efficiency is lower than that of voltage doubler rectification (see voltage doubler rectification switching position 20). Thereafter, the efficiency increases as the rotational speed increases.

図7は、本実施例の安定領域と不安定領域での倍電圧整流切り替え判定方法の変更及び効率の変化について例示する図である。安定領域時21では、弱め界磁制御を行う。倍電圧整流切り替え判定は弱め界磁電流で行うことで高効率の運転をする。   FIG. 7 is a diagram illustrating a change in the double voltage rectification switching determination method and a change in efficiency in the stable region and the unstable region of the present embodiment. In the stable region 21, field weakening control is performed. The double voltage rectification switching determination is performed with a field weakening current to perform highly efficient operation.

また、不安定領域時22では、弱め界磁制御を行わない。倍電圧整流切り替え判定は変調率で行う。これにより、中速域の効率は低いが脱調等の異常停止を避けることができる。   In the unstable region 22, field weakening control is not performed. The voltage doubler rectification switching determination is performed based on the modulation rate. Thereby, although the efficiency in the medium speed range is low, it is possible to avoid an abnormal stop such as a step-out.

図8は、本実施例の倍電圧整流に切り替える場合のアルゴリズムを例示する流れ図である。S101では、全波整流領域判定、すなわち全波整流領域であるか否かを判定する。S101で全波整流領域である場合は、S102にて安定領域判定を行う。一方、S101にて全波整流領域で無い場合は、S106に進んで終了する。   FIG. 8 is a flowchart illustrating an algorithm when switching to voltage doubler rectification according to this embodiment. In S101, it is determined whether or not it is a full-wave rectification region, that is, a full-wave rectification region. If it is the full-wave rectification region in S101, the stable region determination is performed in S102. On the other hand, if it is not the full-wave rectification region in S101, the process proceeds to S106 and ends.

S102の安定領域判定では、安定領域であるか否かを判定し、安定領域であればS103へ進み、倍電圧整流切り替え電流閾値超え判定を行う。一方、安定領域で無い場合は、S105へ進み、倍電圧整流切り替え変調率閾値超え判定を行う。   In the stable region determination of S102, it is determined whether or not it is a stable region, and if it is the stable region, the process proceeds to S103 to determine whether the voltage doubler rectification switching current threshold is exceeded. On the other hand, if it is not in the stable region, the process proceeds to S105, and determination is made whether the voltage doubler rectification switching modulation rate threshold value is exceeded.

S103の倍電圧整流切り替え電流閾値超え判定では、弱め界磁電流が倍電圧整流切り替え電流閾値を超えているかを判定する。閾値を超えていればS104にて倍電圧整流切り替えを行い、超えていなければS106へ進み終了する。   In the determination of exceeding the double voltage rectification switching current threshold in S103, it is determined whether the field weakening current exceeds the double voltage rectification switching current threshold. If the threshold value is exceeded, voltage doubler rectification switching is performed in S104, and if not, processing proceeds to S106 and ends.

S105の倍電圧整流切り替え変調率閾値超え判定では、変調率が倍電圧整流切り替え変調率閾値を超えているかを判定する。閾値を超えていればS104にて倍電圧整流切り替えを行い、超えていなければS106へ進み終了する。   In the determination of exceeding the double voltage rectification switching modulation factor threshold in S105, it is determined whether the modulation factor exceeds the double voltage rectification switching modulation factor threshold. If the threshold value is exceeded, voltage doubler rectification switching is performed in S104, and if not, processing proceeds to S106 and ends.

次に、図9は本実施例の全波整流に切り替える場合のアルゴリズムを例示する流れ図である。S201では、倍電圧整流領域判定を行う。倍電圧整流領域であるか判定した結果、倍電圧整流領域である場合はS202にて全波整流切り替え変調率閾値超え判定を行う。一方、倍電圧整流領域で無い場合はS204へ進み終了する。   Next, FIG. 9 is a flowchart illustrating an algorithm when switching to full-wave rectification according to this embodiment. In S201, a voltage doubler rectification region determination is performed. As a result of determining whether or not it is a voltage doubler rectification region, if it is a voltage doubler rectification region, a full wave rectification switching modulation factor threshold value determination is performed in S202. On the other hand, if it is not in the voltage doubler rectification region, the process proceeds to S204 and ends.

S202の全波整流切り替え変調率閾値超え判定では、変調率が全波整流切り替え変調率閾値を超えていないかを判定する。超えていればS204へ進み終了し、超えていなければS203にて全波整流切り替えを行いS204へ進んで終了する。   In the determination of exceeding the full-wave rectification switching modulation factor threshold in S202, it is determined whether the modulation factor exceeds the full-wave rectification switching modulation factor threshold. If it exceeds, the process proceeds to S204 and ends. If it does not exceed, full-wave rectification switching is performed in S203, and the process proceeds to S204 and ends.

以上より、本発明によれば、コストアップする昇圧回路を設けず、安価なリレーで全波整流と倍電圧整流の切り替えを行うことができる。また、弱め界磁制御を用いることで、全波整流では制御できず且つ倍電圧整流では効率の悪い回転数領域を高効率で運転し、高負荷条件や負荷変動が大きくなる条件においても安定した動作をするモータ制御装置を得ることができる。   As described above, according to the present invention, it is possible to perform switching between full-wave rectification and voltage doubler rectification with an inexpensive relay without providing a booster circuit that increases costs. In addition, by using field-weakening control, the full-wave rectification cannot be controlled, and the double-voltage rectification is inefficiently operated in a rotational speed region with high efficiency, and stable operation is possible even under conditions of high load conditions and large load fluctuations. A motor control device can be obtained.

また、平滑コンデンサの電圧(又は電源電圧)を上回る回転数領域を高効率で運転し、かつ制御が不安定となる条件下でも、安定した動作が実現できる。   In addition, a stable operation can be realized even under conditions where the rotational speed region exceeding the voltage (or power supply voltage) of the smoothing capacitor is operated with high efficiency and the control becomes unstable.

また、このモータ制御装置を備えた機器(冷蔵庫,空気調和機及び給湯器等)によれば、高負荷条件や負荷変動が大きくなる条件においても安定した動作を得ることができる。   Moreover, according to the apparatus (Refrigerator, an air conditioner, a water heater, etc.) provided with this motor control apparatus, the stable operation | movement can be obtained also on the conditions where high load conditions and load fluctuations become large.

1 AC電源
2 ダイオードスタック
3 平滑コンデンサ
4 マイコン
5 ドライブ信号出力部
6 三相AC信号出力部
7 モータ
8 安定領域判定部
9 倍電圧整流切替判定部
10 倍電圧整流切替信号生成部
11 倍電圧整流切り替え装置
16 倍電圧整流切替閾値(弱め界磁電流)
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Diode stack 3 Smoothing capacitor 4 Microcomputer 5 Drive signal output part 6 Three-phase AC signal output part 7 Motor 8 Stable area determination part 9 Double voltage rectification switching determination part 10 Double voltage rectification switching signal generation part 11 Double voltage rectification switching Device 16 double voltage rectification switching threshold (field weakening current)

Claims (4)

交流電圧を直流電圧に変換する手段と、
全波整流及び倍電圧整流の切り替えを判定する手段と、
全波整流及び倍電圧整流を切り替える手段と、を有し、
全波整流の場合にモータ電圧が所定値を上回ると弱め界磁制御を行い、
前記弱め界磁制御の電流値に基づいて倍電圧整流に切り替え、
動作が不安定となる領域の場合、変調率を用いて倍電圧整流切り替え判定を行うことを特徴とするモータ制御装置。
Means for converting alternating voltage to direct voltage;
Means for determining switching between full-wave rectification and voltage doubler rectification;
Means for switching between full-wave rectification and voltage doubler rectification,
In the case of full-wave rectification, if the motor voltage exceeds a predetermined value, field weakening control is performed,
Switching to voltage doubler rectification based on the current value of the field weakening control,
A motor control device that performs double voltage rectification switching determination using a modulation factor in a region where the operation becomes unstable.
請求項1記載のモータ制御装置を有することを特徴とする冷蔵庫。   A refrigerator comprising the motor control device according to claim 1. 請求項1記載のモータ制御装置を有することを特徴とする空気調和機。   An air conditioner comprising the motor control device according to claim 1. 請求項1記載のモータ制御装置を有することを特徴とする給湯器。   A water heater having the motor control device according to claim 1.
JP2010101595A 2010-04-27 2010-04-27 Motor control device and equipment provided with the same Withdrawn JP2011234466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101595A JP2011234466A (en) 2010-04-27 2010-04-27 Motor control device and equipment provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101595A JP2011234466A (en) 2010-04-27 2010-04-27 Motor control device and equipment provided with the same

Publications (1)

Publication Number Publication Date
JP2011234466A true JP2011234466A (en) 2011-11-17

Family

ID=45323207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101595A Withdrawn JP2011234466A (en) 2010-04-27 2010-04-27 Motor control device and equipment provided with the same

Country Status (1)

Country Link
JP (1) JP2011234466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187905A (en) * 2011-12-28 2013-07-03 日立空调·家用电器株式会社 Motor control device and air conditioner
JP2014088969A (en) * 2012-10-29 2014-05-15 Mitsubishi Heavy Ind Ltd Control device and method, and program, air conditioner with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187905A (en) * 2011-12-28 2013-07-03 日立空调·家用电器株式会社 Motor control device and air conditioner
JP2013141336A (en) * 2011-12-28 2013-07-18 Hitachi Appliances Inc Motor control device and air conditioner
JP2014088969A (en) * 2012-10-29 2014-05-15 Mitsubishi Heavy Ind Ltd Control device and method, and program, air conditioner with the same

Similar Documents

Publication Publication Date Title
JP5355570B2 (en) AC / DC converter
KR101445023B1 (en) Power conversion device
JP3955285B2 (en) Inverter control device for motor drive and air conditioner
JP3740946B2 (en) Power supply device, electric motor drive device and air conditioner
JP2006050835A (en) Wind power generating system
JP2009232591A (en) Motor driving device and air conditioner
JP2007195315A (en) Method and apparatus for controlling operation of wind turbine generator system
JPWO2008152761A1 (en) Motor drive device, motor device, and integrated circuit device
JP6184885B2 (en) Inverter device and air conditioner
JP6559563B2 (en) Output control device for wind power generation
JP2011234466A (en) Motor control device and equipment provided with the same
JP3585728B2 (en) Compressor control device
JP2008099505A (en) Inverter for air conditioner
JP2018130025A (en) Power conversion device, facility equipment, and facility equipment system
JP5272484B2 (en) Three-phase brushless DC motor controller
JP6537594B2 (en) Air conditioner
JP2008099507A (en) Inverter for air conditioner
JP2007244199A (en) Wind-power generation apparatus
JP2007089308A (en) Converter circuit and freezing/air-conditioning machine
Xu et al. High performance DC chopper speed and current control of universal motors using a microcontroller
US20200212829A1 (en) Control device and control method for synchronous electric motor
JP2013135516A (en) Electric power conversion system and air conditioner
JP2009148065A (en) Motor control unit and air conditioner with the same
JP2007104756A (en) Inverter controller
JP2008099510A (en) Dc power supply and equipment using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702