WO2017202419A1 - Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs - Google Patents

Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs Download PDF

Info

Publication number
WO2017202419A1
WO2017202419A1 PCT/DE2017/100439 DE2017100439W WO2017202419A1 WO 2017202419 A1 WO2017202419 A1 WO 2017202419A1 DE 2017100439 W DE2017100439 W DE 2017100439W WO 2017202419 A1 WO2017202419 A1 WO 2017202419A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
internal combustion
clutch
electric motor
torque
Prior art date
Application number
PCT/DE2017/100439
Other languages
English (en)
French (fr)
Inventor
Marco Rohe
Shen Wang
Timo Kersting
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201780031435.4A priority Critical patent/CN109153383A/zh
Publication of WO2017202419A1 publication Critical patent/WO2017202419A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method for operating a drive train of a hybrid vehicle. Furthermore, the invention relates to a drive train according to the preamble of patent claim 1 1 and a drive train according to the preamble of claim 12.
  • Such drive trains of hybrid vehicles are also referred to as P3 drive trains, wherein the type indication P3 refers to the position of the electric motor which is separable by the clutch of the internal combustion engine and is rotatably connected to an input shaft or an output shaft or an optional intermediate shaft of the transmission ,
  • the internal combustion engine which is stationary in the electric drive mode, it first has to be accelerated to a minimum start speed in order to then be able to start it by means of fuel supply and ignition.
  • the intended for the engine start electric machine must apply the necessary starting torque. If the internal combustion engine of a hybrid vehicle is started during the electric driving mode, the engine start may affect the electric driving operation in such a way that a part of the electrically available energy is used for the engine start and consequently the energy that can be used for the drive suffers losses.
  • the object of the invention is, in a change from the electric driving mode in the hybrid driving mode requested by the driver request torque to the drive wheels of the Vehicle without any noticeable acceleration or deceleration by the driver.
  • the object is achieved by a method for operating a drive train of a hybrid vehicle, which
  • variable ratio transmission comprising an input shaft connected to the clutch and an output shaft and optionally an intermediate shaft, wherein the input shaft or the output shaft or the intermediate shaft is non-rotatably coupled to the electric motor, wherein of an electric driving mode, in which only the electric motor drives the output shaft and the internal combustion engine is stationary, is changed into a hybrid driving mode, in which the electric motor and the internal combustion engine drive the output shaft together,
  • the object is further achieved by a method for operating a drive train of a hybrid vehicle, which
  • first partial clutch for selectively connecting the internal combustion engine and the electric motor and a second partial clutch connected in parallel with the first partial clutch
  • a first partial transmission with an optionally adjustable transmission comprising an input shaft connected to the first partial clutch and an output shaft and optionally an intermediate shaft, wherein the input shaft or the output shaft or the intermediate shaft is non-rotatably coupled to the electric motor,
  • S2a In the electric drive mode, the torque of the electric motor is increased and the clutch is at least partially closed in order to start the engine;
  • S2b Upon reaching a predetermined minimum speed of the internal combustion engine, the internal combustion engine is started and the clutch is fully opened to decouple the internal combustion engine from the electric motor;
  • a first part clutch for selectively connecting the internal combustion engine and the electric motor and a parallel to the first part clutch, the second part clutch and
  • a first partial transmission with an optionally adjustable transmission comprising an input shaft connected to the first partial clutch and an output shaft and optionally an intermediate shaft, wherein the input shaft or the output shaft or the intermediate shaft is non-rotatably coupled to the electric motor,
  • the powertrain of an electric driving mode in which only the electric motor drives the output shaft and the internal combustion engine is stationary, in a hybrid driving mode is brought, in which the electric motor and the internal combustion engine driving the output shaft together, and wherein the drive train comprises a control device, which is configured to carry out the aforementioned method.
  • the torque of the electric motor is increased and the clutch is at least partially closed in order to tow the internal combustion engine.
  • the speed of the internal combustion engine increases.
  • the internal combustion engine is started and the clutch is fully opened in order to decouple the internal combustion engine from the electric motor.
  • the internal combustion engine is given a constant desired torque.
  • a desired torque is predetermined, which the combustion engine can reliably and quickly reach, so that the behavior of the drive train can be influenced solely by adjusting the torque of the electric motor and / or the clutch torque. These torques can typically be set with higher accuracy than the torque of the internal combustion engine.
  • step S3 upon reaching a predetermined target rotational speed of the internal combustion engine, the clutch is partially closed and the torque of the electric motor is reduced.
  • the target rotational speed of the internal combustion engine is preferably greater than the rotational speed at the input shaft of the transmission. It is advantageous if the target rotational speed is predetermined as a function of the actual rotational speed of the electric motor, for example as the sum of the rotational speed of the electric motor and a predetermined offset.
  • the clutch torque is increased and the torque of the electric motor is reduced accordingly. In this respect, there is a synchronization of internal combustion engine and electric motor.
  • the clutch Upon reaching substantially synchronous rotational speeds of the internal combustion engine and the electric motor, the clutch is at least partially closed in accordance with method step S5 in order to change to the hybrid driving mode.
  • a conventional starter for starting the internal combustion engine is not required according to the invention, so that the component costs can be reduced compared to a powertrain with starter. Furthermore, the starting of the internal combustion engine can be made possible with a shortened starting time.
  • step S2a increasing the torque of the electric motor and at least partially closing the clutch preferably takes place synchronously, ie, the torque increase in the electric motor essentially corresponds to the increase in the clutch torque when partially closing the clutch.
  • the internal combustion engine has a suction operation and a charging operation, wherein a turbocharger of the internal combustion engine is not active in the suction mode and is active in the loading mode and wherein in the process steps S2a and S2b the internal combustion engine, a constant target torque is specified, in which the Internal combustion engine operates in the suction mode.
  • the torque can be made available relatively quickly by the internal combustion engine and can be determined much more reliably than the torque during the charging operation.
  • the desired torque is selected such that it corresponds to the maximum torque of the internal combustion engine in the suction mode, ie the maximum torque at which the turbocharger is not active.
  • the present invention is not limited to a powertrain whose internal combustion engine has a turbocharger, but includes embodiments of powertrains with a suction motor.
  • arrangements with a diesel engine or gas engine for implementing the method according to the invention are conceivable.
  • the internal combustion engine is given a constant nominal torque.
  • the engine is given a constant target torque even when closing the clutch.
  • the behavior of the drive train can also be influenced in method step S3 solely by adjusting the torque of the electric motor and / or the clutch torque. These moments can typically be set with higher accuracy than the torque of the internal combustion engine, whereby the technical effort to maintain the required torque requested by the driver on the drive wheels is reduced.
  • a target torque can be specified, which is smaller than the predetermined in the process steps S2a and S2b constant target torque.
  • the setpoint torque of the internal combustion engine in particular abruptly, can be reduced.
  • the desired torque of the internal combustion engine is increased in the further course, in particular linearly. It has proved to be advantageous if, for towing the internal combustion engine, that is to say in method step S2a, a low gear ratio of the transmission or of the first subtransmission or of the second subtransmission is set.
  • a higher gear ratio of the transmission or of the first partial transmission or of the second partial transmission is set than for towing the internal combustion engine.
  • the towing following synchronization of engine and electric motor can be done in this way in a low gear with higher translation. Likewise, a disturbing vibration transmission when the combustion engine is being towed is reduced.
  • the first partial clutch, the second partial clutch and the first partial transmission are part of a dual-clutch transmission which has a second partial transmission with an optionally adjustable transmission, the second input shaft connected to the second Operakupp- second input shaft and a rotatably connected to the first output shaft, having second output shaft.
  • a gear change can take place via the dual clutch transmission without interruption of traction.
  • the electric motor is provided on the first input shaft of the first partial transmission.
  • the quick start can be selected in situations where it is necessary to start the engine as fast as possible, for example due to a driver's acceleration request ("kickdown.")
  • Comfort start can be selected, for example, when an engine start due to low battery capacity Supply of the electric motor is required.
  • the clutch and the transmission are part of an automatic transmission.
  • the automated manual transmission preferably has exactly one clutch and exactly one transmission with an optionally adjustable ratio, so that the drive train can be implemented with as few components as possible.
  • FIG. 1 shows a drive train according to a first embodiment of the invention.
  • FIG. 2 shows a drive train according to a second embodiment of the invention.
  • Fig. 3 shows a drive train according to a third embodiment of the invention.
  • 4 shows a drive train according to a fourth exemplary embodiment of the invention.
  • Fig. 5 is a speed / torque diagram for illustrating a first embodiment of a method according to the invention.
  • Fig. 6 is a speed / torque diagram for illustrating a second embodiment of a method according to the invention.
  • FIG. 1 to 4 four schematic block diagrams of embodiments of various drive trains are shown, in which the inventive method can be applied.
  • the drive trains 1 each have an internal combustion engine 1, an electric motor 5, a clutch 3, 3.1 for selectively connecting the internal combustion engine 1 and the electric motor 5 and a transmission 4, 4.1 with a selectively adjustable ratio.
  • the transmission 4, 4.1 has an input shaft 7 connected to the clutch 5 and an output shaft 8, wherein the input shaft 7 or the output shaft 8 is non-rotatably connected to the electric motor 5 is coupled.
  • the drive trains 1 each comprise a control device 6, which is configured such that the internal combustion engine 1, the electric motor 5, the clutch 3, 3.1 and the transmission 4, 4.1 can be controlled to carry out the method according to the invention.
  • the process comprises at least the following process steps:
  • the clutch 3 and the transmission 4 are formed as part of an automatic transmission.
  • the electric motor 5 is rotatably coupled to the output shaft 8 of the transmission 4.
  • the clutch 3 and the transmission 4 are also formed as part of an automatic transmission.
  • the electric motor 5, however, is non-rotatably coupled to the input shaft 7 of the transmission 4.
  • the drive train 1 according to FIG. 3 has a dual-clutch transmission 9, which comprises a clutch designed as a first partial clutch 3.1.
  • the dual-clutch transmission 9 comprises a second partial clutch 3.2, which is connected in parallel with the first partial clutch 3.1.
  • the transmission is designed as a first partial transmission 4.1 of the dual-clutch transmission 9.
  • the dual-clutch transmission 9 has a second partial transmission 4.2 with an optionally adjustable ratio, which has a second input shaft 10 connected to the second partial clutch 3.2 and a second output shaft connected in a rotationally fixed manner to the first output shaft 8.
  • gear shaft 11 includes.
  • the electric motor is connected in this drive train 1 with the first input shaft 8 of the first partial transmission 4.1.
  • Fig. 4 shows a drive train 1 with a dual-clutch transmission 9, which has the same structure as the dual-clutch transmission 9 described in connection with Fig. 3.
  • the electric motor 5 is rotationally fixed in this drive train 1 connected to the output shaft 8 of the first sub-transmission 4.1 and to the output shaft 1 1 of the second sub-transmission.
  • FIG. 5 shows a speed / torque diagram of the powertrain 1 when changing from the electric drive mode to the hybrid drive mode with a quick start mode selected.
  • the internal combustion engine 2 is started with the partial clutch 3.1 and the partial transmission 4.1, which are active during the electric driving mode.
  • the upper diagram shows the rotational speed nv of the internal combustion engine 2, the rotational speed ⁇ of the electric motor 5 and the rotational speed no of the second input shaft 1 1 of the second partial transmission 4.2.
  • the lower diagram shows the torque Mv of the internal combustion engine 2, the torque ME of the electric motor 5 and the clutch torque ⁇ the first part of the clutch 3.1.
  • the process is divided into the following process steps:
  • step S2a Towing the engine 2 in the electric drive mode;
  • the torque ME of the electric motor 5 is increased, preferably by leaps and bounds, and the clutch 3.1 is at least partially closed in order to tow the internal combustion engine 2.
  • torque is transmitted from the electric motor 5 to the internal combustion engine 2.
  • the clutch torque ⁇ increases accordingly, preferably abruptly, while the speed nv of the internal combustion engine 2 is smaller than the rotational speed of the electric motor ⁇ or the first input shaft 7.
  • the increase in the torque ME of the electric motor 5 may have a ramp-like course.
  • the increase may have an exponential profile or the increase takes place in the manner of the step response of a PH element.
  • the partial closing of the clutch 3.1 takes place as synchronously as possible to the increase in the torque ME of the electric motor 5, so that the torque is changed as little as possible on the drive wheels.
  • the internal combustion engine 2 is given a constant desired torque Mvsoii. If the engine 2 as a turbo engine with a
  • the target torque Mvsoii is selected such that the internal combustion engine 2 is operated in the suction mode.
  • the setpoint torque Mvsoii can correspond to the maximum torque Mv that can be achieved in the suction mode.
  • S2b increasing the speed nv of the internal combustion engine 2; Upon reaching a predetermined minimum speed nvmin of the internal combustion engine 2, the internal combustion engine 2 is started and the clutch 3.1 is fully opened in order to decouple the internal combustion engine 2 from the electric motor 5. Synchronously with the opening of the clutch, thus reducing the clutch torque ⁇ , the torque ME of the electric motor 5 is reduced. The starting of the internal combustion engine 2 takes place by releasing the fuel injection.
  • the engine 2 is given the same setpoint torque Mvsoii as in method step S2a.
  • the adjustment of the torque Mv of the internal combustion engine 2 can be done for example via a control of the ignition angle.
  • the control technology rather sluggish combustion engine 2 is thus operated in constant torque Mv and adjustable with less delay and higher accuracy torques ⁇ and NE the part clutch 3.1 and the electric motor 5 are set by the control device 6.
  • the rotational speed nv of the internal combustion engine 2 increases and finally exceeds the rotational speed ⁇ of the electric motor 5.
  • step S4 synchronizing the rotational speeds of internal combustion engine 2 and electric motor 5; In step S4, the speed nv of the internal combustion engine 2 is finally reduced and thus the speed ⁇ of the electric motor 5 is approached ever further.
  • step S6 hybrid driving mode; In step S6, the electric motor 5 and the internal combustion engine 2 drive the output shaft 8 in common. The rotational speed ⁇ of the electric motor 5 and the rotational speed nv of the internal combustion engine 2 are synchronized.
  • FIG. 6 shows a speed / torque diagram of the powertrain 1 when changing from the electric drive mode to the hybrid drive mode, with a comfort start mode selected.
  • the internal combustion engine 2 is not started with the first partial clutch 3.1 and the first partial transmission 4.1, which are active during the electric drive mode, but with the parallel, second partial clutch 3.2 and the second partial transmission 4.2.
  • the upper diagram shows the rotational speed nv of the internal combustion engine 2, the rotational speed ⁇ of the electric motor 5 and the rotational speed no of the second input shaft 1 1 of the second partial transmission.
  • the lower diagram shows the torque Mv of the internal combustion engine 2, the torque ME of the electric motor 5 and the clutch torque MK2 of the second partial clutch 3.2.
  • the method steps correspond essentially to the method steps described above in connection with FIG. 5, wherein the function of the coupling is taken over by the second partial coupling 3.2.
  • the method according to FIG. 6 differs from the method previously described with reference to FIG. 5 as follows: S1: In the electric drive mode, a gear is selected in the second partial transmission 4.2, which has the lowest possible translation, so that the transmission of vibrations can be reduced during the subsequent towing. S2a: towing the internal combustion engine 1 in the electric drive mode; For towing a minimal translation is set in the second partial transmission 4.2, in particular a translation which is less than the ratio of the first partial transmission 4.1 in the previous electric driving mode.
  • the transmission of the torque from the electric motor 5 takes place via the first partial transmission 4.1, the second partial transmission 4.2 and the second partial clutch 3.2.
  • the clutch torque ⁇ 2 accordingly increases abruptly, while the rotational speed nv of the internal combustion engine 2 is smaller than the rotational speed of the electric motor ⁇ or the first input shaft 7.
  • step S3 Engage the internal combustion engine 2;
  • step S3 the second partial clutch 3.2 is partially closed, the clutch torque ⁇ 2 of the second second partial clutch 3.2 thus increased, wherein in the second partial transmission, a gear is engaged with higher ratio.

Abstract

Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs in P3-Konfiguration mit den Verfahrensschritten: • S2a: Im Elektro-Fahrmodus wird das Drehmoment (ME) des Elektromotors (5) erhöht und die Kupplung (3, 3.1, 3.2) zumindest teilweise geschlossen, um den Verbrennungsmotor (2) anzuschleppen; • S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl (nVmin) des Verbrennungsmotors (2) wird der Verbrennungsmotor gestartet und die Kupplung (3, 3.1, 3.2) wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor (5) zu entkoppeln; • S3: Bei Erreichen einer vorgegebenen Zieldrehzahl (nVziel) des Verbrennungsmotors (2) wird die Kupplung (3, 3.1, 3.2) teilweise geschlossen und das Drehmoment (ME) des Elektromotors wird reduziert; • S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen (nV, nE) des Verbrennungsmotors (2) und des Elektromotors (5) wird die Kupplung (3, 3.1, 3.2) zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln; wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment (MVsoll) vorgegeben wird.

Description

Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und
Antriebsstrang eines Hybridfahrzeugs
Die Erfindung betrifft ein Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs. Ferner betrifft die Erfindung einen Antriebsstrang gemäß dem Oberbegriff des Patentanspruchs 1 1 und einen Antriebsstrang gemäß dem Oberbegriff des Patentanspruchs 12.
Derartige Antriebsstränge von Hybridfahrzeugen werden auch als P3-Antriebsstränge bezeichnet, wobei sich die Typangabe P3 auf die Position des Elektromotors bezieht, welcher durch die Kupplung von dem Verbrennungsmotor trennbar ist und mit einer Eingangswelle oder einer Ausgangswelle oder einer gegebenenfalls vorhandenen Zwischenwelle des Getriebes drehfest verbunden ist.
Um den im Elektro-Fahrmodus stillstehenden Verbrennungsmotor zu starten, muss dieser zu- nächst auf eine Mindeststartdrehzahl beschleunigt werden, um ihn anschließend mittels Kraftstoffzufuhr und -zündung starten zu können. Um den Verbrennungsmotor zu starten, muss die für den Verbrennungsmotorstart vorgesehene elektrische Maschine das notwendige Startmoment aufbringen. Wird der Verbrennungsmotor eines Hybridfahrzeuges während des Elektro- Fahrmodus gestartet, kann der Verbrennungsmotorstart den elektrischen Fahrbetrieb in der Weise beeinträchtigen, dass ein Teil der elektrisch zur Verfügung stehenden Energie für den Verbrennungsmotorstart eingesetzt wird und demzufolge die für den Antrieb einsetzbare Energie Einbußen erleidet.
Beim Starten eines Verbrennungsmotors besteht generell eine große Unschärfe in der Be- Stimmung des Verbrennungsmotormoments, das auf die Räder wirkt. Dies ist dadurch bedingt, dass bei einem Verbrennungsmotor das Ist-Drehmoment dem vorgegebenen Soll- Drehmoment nicht immer mit einer konstanten Verzögerung folgt. Erschwert wird die Bestimmung in dynamischen Zuständen, beispielsweise, wenn das vom Fahrer angeforderte Wunschmoment stark variiert. Bei herkömmlichen Startstrategien besteht der Nachteil, dass der Übergang vom Elektro-Fahrmodus in den Hybrid-Fahrmodus, also der Start des Verbrennungsmotors während der Fahrt, vom Fahrer deutlich wahrnehmbar ist oder dass starke Differenzen zwischen dem Fahrerwunschmoment und dem tatsächlichen Moment an den Antriebsrädern bestehen.
Aufgabe der Erfindung ist es, bei einem Wechsel von dem Elektro-Fahrmodus in den Hybrid- Fahrmodus das durch den Fahrer angeforderte Wunschmoment an den Antriebsrädern des Fahrzeugs beizubehalten ohne dass ein vom Fahrer ungewollte Beschleunigung oder Verzögerung spürbar ist.
Die Aufgabe wird gelöst durch ein Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs, welcher
- einen Verbrennungsmotor,
- einen Elektromotor,
- eine Kupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors und
- ein Getriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der Kupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist, wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid- Fahrmodus gewechselt wird, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben,
mit den Verfahrensschritten:
S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor anzuschleppen;
S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors wird der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln;
S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors wird die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors wird reduziert;
S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird.
Zur Lösung der Aufgabe wird ferner ein Antriebsstrang für ein Hybridfahrzeug vorgeschlagen, welcher
- einen Verbrennungsmotor, - einen Elektromotor,
- eine Kupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors und
- ein Getriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der Kupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist, umfasst, wobei der Antriebsstrang von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid- Fahrmodus verbringbar ist, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben, und wobei der Antriebsstrang eine Steuervorrichtung aufweist, welche zur Durchführung eines zuvor gennannten Verfahrens konfiguriert ist.
Gelöst wird die Aufgabe ferner durch ein Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs, welcher
- einen Verbrennungsmotor,
- einen Elektromotor,
- eine erste Teilkupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors sowie eine zu der ersten Teilkupplung parallel geschal- tete, zweite Teilkupplung und
- ein erstes Teilgetriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist,
wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid- Fahrmodus gewechselt wird, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben,
mit den folgenden Verfahrensschritten, in welchen als Kupplung entweder ausschließlich die erste Teilkupplung oder ausschließlich die zweite Teilkupplung verwendet wird:
S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor an- zuschleppen; S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors wird der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln;
S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors wird die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors wird reduziert;
S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll- Drehmoment vorgegeben wird
Zur Lösung der Aufgabe wird ferner ein Antriebsstrang für ein Hybridfahrzeug vorgeschlagen, welcher
- einen Verbrennungsmotor,
- einen Elektromotor,
- eine erste Teilkupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors sowie eine zu der ersten Teilkupplung parallel geschaltete, zweite Teilkupplung und
- ein erstes Teilgetriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist,
wobei der Antriebsstrang von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid- Fahrmodus verbringbar ist, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben, und wobei der Antriebsstrang eine Steuervorrichtung aufweist, welche zur Durchführung des zuvor genannten Verfahrens konfiguriert ist.
Bei den erfindungsgemäßen Verfahren wird ausgehend von dem Elektro-Fahrmodus in Verfahrensschritt S2a das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor anzuschleppen. Durch diese Maßnahmen kann erreicht werden, dass zusätzliches Drehmoment zum Anschleppen des Verbrennungs- motors bereitgestellt wird, ohne das Drehmoment an der Ausgangswelle und damit auch das Drehmoment an den Antriebsrädern zu verändern. Das Anschleppen des Verbrennungsmo- tors kann somit erfolgen ohne vom Fahrer eine ungewollte Beschleunigung oder Verzögerung spürbar ist.
Infolge des Anschleppens steigt die Drehzahl des Verbrennungsmotors. Gemäß Verfahrens- schritt S2b wird bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln. Sowohl in Verfahrensschritt S2a als auch in Verfahrensschritt S2b wird dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben. Bevorzugt wird ein Soll-Drehmoment vorgegeben, welches der Verbrennungs- motor zuverlässig und schnell erreichen kann, so dass das Verhalten des Antriebsstrangs allein durch die Einstellung des Drehmoments des Elektromotors und/oder des Kupplungsmoments beeinflussbar ist. Diese Drehmomente lassen sich typischerweise mit höherer Genauigkeit einstellen als das Drehmoment des Verbrennungsmotors. Gemäß Verfahrensschritt S3 wird bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors reduziert. Die Zieldrehzahl des Verbrennungsmotors ist bevorzugt größer als die Drehzahl an der Eingangswelle des Getriebes. Vorteilhaft ist es, wenn die Zieldrehzahl in Abhängigkeit von der tatsächlichen Drehzahl des Elektromotors vorgegeben wird, beispielsweise als Summe der Drehzahl des Elektromotors und eines vorgegebenen Offsets. In dem Verfahrensschritt S3 wird das Kupplungsmo- ment erhöht und das Drehmoment des Elektromotors entsprechend reduziert. Insofern erfolgt eine Synchronisierung von Verbrennungsmotor und Elektromotor. Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung gemäß Verfahrensschritt S5 zumindest teilweise geschlossen, um in den Hybrid- Fahrmodus zu wechseln.
Ein konventioneller Anlasser zum Starten des Verbrennungsmotors ist gemäß der Erfindung nicht erforderlich, so dass die Bauteilkosten im Vergleich zu einem Antriebsstrang mit Anlasser gesenkt werden können. Ferner kann das Starten des Verbrennungsmotors mit verkürzter Startdauer ermöglicht werden.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche und sollen nachfolgend im Einzelnen erläutert werden.
Bevorzugt erfolgt im Verfahrensschritt S2a das Erhöhen des Drehmoments des Elektromotors und das zumindest teilweise Schließen der Kupplung synchron, d.h. dass die Drehmomenter- höhung am Elektromotor im Wesentlichen der Erhöhung des Kupplungsmoments beim teilweisen Schließen der Kupplung entspricht.
Gemäß einer vorteilhaften Ausgestaltung weist der Verbrennungsmotor einen Saugbetrieb und einen Ladebetrieb auf, wobei ein Turbolader des Verbrennungsmotors im Saugbetrieb nicht aktiv ist und im Ladebetrieb aktiv ist und wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird, bei welchem der Verbrennungsmotor in dem Saugbetrieb arbeitet. Im Saugbetrieb kann das Drehmoment von dem Verbrennungsmotor relativ schnell zur Verfügung gestellt werden und ist deutlich zuver- lässiger bestimmbar als das Drehmoment im Ladebetrieb. Bevorzugt wird das Soll- Drehmoment derart gewählt, dass es dem maximalen Drehmoment des Verbrennungsmotors im Saugbetrieb entspricht, also dem maximalen Drehmoment, bei dem der Turbolader nicht aktiv ist. Die vorliegende Erfindung ist jedoch nicht beschränkt auf einen Antriebsstrang, dessen Verbrennungsmotor einen Turbolader aufweist, sondern umfasst Ausgestaltungen von Antriebssträngen mit einem Saugermotor. Insbesondere sind auch Anordnungen mit Dieselmotor oder Gasmotor zur Umsetzung des erfindungsgemäßen Verfahrens denkbar.
Als vorteilhaft hat es sich herausgestellt, wenn in den Verfahrensschritten S2a, S2b und S3 dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird. Somit wird dem Verbrennungsmotor auch beim Schließen der Kupplung ein konstantes Soll-Drehmoment vorgegeben. Das Verhalten des Antriebsstrangs kann auch in Verfahrensschritt S3 allein durch die Einstellung des Drehmoments des Elektromotors und/oder des Kupplungsmoments beein- flusst werden. Diese Momente lassen sich typischerweise mit höherer Genauigkeit einstellen als das Drehmoment des Verbrennungsmotors, wodurch der technische Aufwand zum Beibe- halten des durch den Fahrer angeforderten Wunschmoments an den Antriebsrädern verringert wird.
Gemäß einer alternativ bevorzugten Ausgestaltung kann dem Verbrennungsmotor in Verfahrensschritt S3 ein Soll-Drehmoment vorgegeben werden, welches kleiner ist als das in den Verfahrensschritten S2a und S2b vorgegebene konstante Soll-Drehmoment. Beispielsweise kann im Verfahrensschritt S3 bei Erreichen der vorgegebenen Zieldrehzahl des Verbrennungsmotors das Soll-Drehmoment des Verbrennungsmotors, insbesondere sprunghaft, reduziert werden. Besonders bevorzugt wird das Soll-Drehmoment des Verbrennungsmotors im weiteren Verlauf, insbesondere linear, erhöht. Als vorteilhaft hat es sich herausgestellt, wenn zum Anschleppen des Verbrennungsmotors, also in Verfahrensschritt S2a, eine geringe Übersetzung des Getriebes oder des ersten Teilgetriebes oder des zweiten Teilgetriebes eingestellt ist. Bei Wahl einer geringen Übersetzung, d.h. eines hohen Gangs, werden über das jeweilige Getriebe oder Teilgetriebe Schwingungen in geringerem Maße übertragen als dies bei einer höheren Übersetzung der Fall wäre. Daher kann durch die Wahl einer geringen Übersetzung beim Anschleppen des Verbrennungsmotors unerwünschtes Ruckeln des Fahrzeugs reduziert werden.
In diesem Zusammenhang ist es besonders vorteilhaft, wenn beim teilweisen Schließen der Kupplung in Verfahrensschritt S3 eine höhere Übersetzung des Getriebes oder des ersten Teilgetriebes oder des zweiten Teilgetriebes eingestellt ist als zum Anschleppen des Verbrennungsmotors. Das dem Anschleppen nachfolgende Synchronisieren von Verbrennungsmotor und Elektromotor kann auf diese Weise in einem niedrigen Gang mit höherer Übersetzung erfolgen. Gleichfalls wird eine störende Schwingungsübertragung beim Anschleppen des Ver- brennungsmotors reduziert.
Gemäß einer vorteilhaften Ausgestaltung sind die erste Teilkupplung, die zweite Teilkupplung und das erste Teilgetriebe Teil eines Doppelkupplungsgetriebes, welches ein zweites Teilgetriebe mit wahlweise einstellbarer Übersetzung aufweist, das eine mit der zweiten Teilkupp- lung verbundene zweite Eingangswelle und eine mit der ersten Ausgangswelle drehfest verbundene, zweite Ausgangswelle aufweist. In einem Verbrennungsmotor-Fahrmodus, in welchem ausschließlich der Verbrennungsmotor aktiv ist, kann über das Doppelkupplungsgetriebe ein Gangwechsel ohne Zugkraftunterbrechung erfolgen. Bevorzugt ist der Elektromotor an der ersten Eingangswelle des ersten Teilgetriebes vorgesehen. Eine derartige Ausgestaltung bringt den Vorteil mit sich, dass bei dem Wechsel von dem Elektro-Fahrmodus in den Hybrid- Fahrmodus der Verbrennungsmotor in Verfahrensschritt S2a wahlweise über die erste Teilkupplung oder die zweite Teilkupplung angeschleppt werden kann. Es ist daher möglich, zwischen einem Schnellstart über die erste Teilkupplung und den derzeit eingelegten Gang des erstes Teilgetriebes und einem Komfortstart über die zweite Teilkupplung und einen auf den Motorstart des abgestimmten Gang des zweiten Teilgetriebes zu wählen. Der Schnellstart kann in solchen Situationen gewählt werden, in denen es, beispielsweise aufgrund einer Beschleunigungsanforderung des Fahrers („kickdown"), erforderlich ist, möglichst schnell den Verbrennungsmotor zu starten. Der Komfortstart kann beispielsweise dann gewählt werden, wenn ein Verbrennungsmotorstart aufgrund niedriger Batteriekapazität zu Versorgung des Elektromotors erforderlich wird. Eine vorteilhafte Ausgestaltung sieht vor, dass die Kupplung und das Getriebe Teil eines automatischen Schaltgetriebes sind. Das automatisierte Schaltgetriebe weist bevorzugt genau eine Kupplung und genau ein Getriebe mit wahlweise einstellbarer Übersetzung auf, so dass der Antriebsstrang mit einer möglichst geringen Anzahl an Komponenten verwirklicht werden kann.
Bei den oben beschriebenen Antriebssträngen können auch die im Zusammenhang mit dem Verfahren beschriebenen, vorteilhaften Merkmale allein oder in Kombination Verwendung finden.
Weitere Einzelheiten und Vorteile der Erfindung sollen nachfolgend anhand der in den Zeichnungen dargestellten Ausführungsbeispiele erläutert werden. Hierin zeigt:
Fig. 1 einen Antriebsstrang gemäß einem ersten Ausführungsbeispiel der Erfindung.
Fig. 2 einen Antriebsstrang gemäß einem zweiten Ausführungsbeispiel der Erfindung.
Fig. 3 einen Antriebsstrang gemäß einem dritten Ausführungsbeispiel der Erfindung. Fig. 4 einen Antriebsstrang gemäß einem vierten Ausführungsbeispiel der Erfindung.
Fig. 5 ein Drehzahl/Drehmoment-Diagramm zur Veranschaulichung eines ersten Ausführungsbeispiels eines erfindungsgemäßen Verfahrens. Fig. 6 ein Drehzahl/Drehmoment-Diagramm zur Veranschaulichung eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Verfahrens.
In Fig. 1 bis 4 sind vier schematische Blockdiagramme von Ausführungsbeispielen verschiedener Antriebsstränge dargestellt, bei welchen das erfindungsgemäße Verfahren Anwendung finden kann.
Die Antriebsstränge 1 weisen jeweils einen Verbrennungsmotor 1 , einen Elektromotor 5, eine Kupplung 3, 3.1 zum wahlweisen Verbinden des Verbrennungsmotors 1 und des Elektromotors 5 und ein Getriebe 4, 4.1 mit wahlweise einstellbarer Übersetzung auf. Das Getriebe 4, 4.1 weist eine mit der Kupplung 5 verbundene Eingangswelle 7 und eine Ausgangswelle 8 auf, wobei die Eingangswelle 7 oder die Ausgangswelle 8 drehfest mit dem Elektromotor 5 gekoppelt ist. Ferner umfassen die Antriebsstränge 1 jeweils eine Steuervorrichtung 6, welche derart konfiguriert ist, dass der Verbrennungsmotor 1 , der Elektromotor 5, die Kupplung 3, 3.1 und das Getriebe 4, 4.1 zur Durchführung des erfindungsgemäßen Verfahrens angesteuert werden können.
Das Verfahren umfasst zumindest die nachfolgend aufgeführten Verfahrensschritte:
S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors 5 erhöht und die Kupplung 3 zumindest teilweise geschlossen, um den Verbrennungsmotor 2 anzuschleppen;
S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors 2 wird der Verbrennungsmotor 2 gestartet und die Kupplung 3 wird vollständig geöffnet, um den Verbrennungsmotor 2 von dem Elektromotor 5 zu entkoppeln;
S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors 2 wird die Kupplung 3 teilweise geschlossen und das Drehmoment des Elektromotors 5 wird reduziert;
S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors 2 und des Elektromotors 5 wird die Kupplung 3 zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor 2 ein konstantes Soll-Drehmoment vorgegeben wird.
Beim dem Antriebsstrang gemäß der Darstellung in Fig. 1 sind die Kupplung 3 und das Getriebe 4 als Teil eines automatischen Schaltgetriebes ausgebildet. Der Elektromotor 5 ist mit der Ausgangswelle 8 des Getriebes 4 drehfest gekoppelt.
Beim dem Antriebsstrang gemäß der Darstellung in Fig. 2 sind die Kupplung 3 und das Getriebe 4 ebenfalls als Teil eines automatischen Schaltgetriebes ausgebildet. Der Elektromotor 5 ist hingegen mit der Eingangswelle 7 des Getriebes 4 drehfest gekoppelt. Der Antriebsstrang 1 nach Fig. 3 weist ein Doppelkupplungsgetriebe 9 auf, welches eine als erste Teilkupplung 3.1 ausgebildete Kupplung umfasst. Ferner umfasst das Doppelkupplungsgetriebe 9 eine zweite Teilkupplung 3.2, die parallel zu der ersten Teilkupplung 3.1 geschaltet ist. Das Getriebe ist als erstes Teilgetriebe 4.1 des Doppelkupplungsgetriebes 9 ausgestaltet. Das Doppelkupplungsgetriebe 9 weist ein zweites Teilgetriebe 4.2 mit wahlweise einstellbarer Übersetzung auf, das eine mit der zweiten Teilkupplung 3.2 verbundene zweite Eingangswelle 10 und eine mit der ersten Ausgangswelle 8 drehfest verbundene, zweite Aus- gangswelle 11 umfasst. Der Elektromotor ist bei diesem Antriebsstrang 1 mit der ersten Eingangswelle 8 des ersten Teilgetriebes 4.1 verbunden. Insofern ist der Elektromotor„im Doppelkupplungsgetriebe 9" angeordnet. Schließlich zeigt Fig. 4 einen Antriebsstrang 1 mit einem Doppelkupplungsgetriebe 9, welches denselben Aufbau aufweist, wie das im Zusammenhang mit Fig. 3 beschriebene Doppelkupplungsgetriebe 9. Der Elektromotor 5 ist bei diesem Antriebsstrang 1 drehfest mit der Ausgangswelle 8 des ersten Teilgetriebes 4.1 und mit der Ausgangswelle 1 1 des zweiten Teilgetriebes verbunden.
Nachfolgend soll anhand der Darstellungen in Fig. 5 und 6 näher das erfindungsgemäße Verfahren erläutert werden. Hierbei wird davon ausgegangen, dass der Antriebsstrang 1 derart ausgebildet ist, wie es in Fig. 3 dargestellt ist. Die Fig. 5 zeigt ein Drehzahl/Drehmoment-Diagramm des Antriebsstrangs 1 beim Wechseln von dem Elektro-Fahrmodus in den Hybrid-Fahrmodus, wobei ein Schnellstartbetrieb gewählt ist. Bei dieser Ausgestaltung des Verfahrens wird der Verbrennungsmotor 2 mit der der Teilkupplung 3.1 und dem Teilgetriebe 4.1 gestartet, welche während des Elektro-Fahrmodus aktiv sind. Im oberen Diagramm dargestellt ist die Drehzahl nv des Verbrennungsmotors 2, die Drehzahl ΠΕ des Elektromotors 5 und die Drehzahl no der zweiten Eingangswelle 1 1 des zweiten Teilgetriebes 4.2. Das untere Diagramm zeigt das Drehmoment Mv des Verbrennungsmotors 2, das Drehmoment ME des Elektromotors 5 und das Kupplungsmoment Μκι der ersten Teilkupplung 3.1. Das Verfahren gliedert sich in die folgenden Verfahrensschritte:
S1 : Elektro-Fahrmodus; Im Elektro-Fahrmodus treibt ausschließlich der Elektromotor 5 die Ausgangswelle 8 an und der Verbrennungsmotor 2 steht still (nv = 0). Ausgehend von einem Fahrzustand gemäß Verfahrensschritt S1 wird der Wechsel in den Hybrid-Fahrmodus ausge- löst, beispielsweise, weil aufgrund einer Beschleunigungsanforderung des Fahrers („kick- down") eine erhöhte Leistung erforderlich wird.
S2a: Anschleppen des Verbrennungsmotors 2 im Elektro-Fahrmodus; In Verfahrensschritt S2a wird das Drehmoment ME des Elektromotors 5, bevorzugt sprunghaft, erhöht und die Kupplung 3.1 zumindest teilweise geschlossen, um den Verbrennungsmotor 2 anzuschleppen. Es wird also Drehmoment von dem Elektromotor 5 zum Verbrennungsmotor 2 übertra- gen. Das Kupplungsmoment Μκι steigt dementsprechend, bevorzugt sprunghaft, an, während die Drehzahl nv des Verbrennungsmotors 2 kleiner ist als die Drehzahl des Elektromotors ΠΕ bzw. der ersten Eingangswelle 7. Zum Anschleppen wird derselbe Gang und damit dieselbe Übersetzung verwendet wir im Elektro-Fahrmodus. Der Anstieg des Drehmoments ME des Elektromotors 5 kann einen rampenartigen Verlauf haben. Alternativ kann der Anstieg einen exponentiellen Verlauf haben oder der Anstieg erfolgt nach Art der Sprungantwort eines PH- Glieds. Das teilweise Schließen der Kupplung 3.1 erfolgt möglichst synchron zu der Erhöhung des Drehmoments ME des Elektromotors 5, so dass das Drehmoment an den Antriebsrädern möglichst wenig verändert wird. Dem Verbrennungsmotor 2 wird ein konstantes Soll- Drehmoment Mvsoii vorgegeben. Falls der Verbrennungsmotor 2 als Turbomotor mit einem
Turbolader ausgebildet ist, wird das Soll-Drehmoment Mvsoii derart gewählt, dass der Verbrennungsmotor 2 im Saugbetrieb betrieben wird. Beispielsweise kann das Soll-Drehmoment Mvsoii dem maximal im Saugbetrieb erreichbaren Drehmoment Mv entsprechen. S2b: Erhöhung der Drehzahl nv des Verbrennungsmotors 2; Bei Erreichen einer vorgegebenen Mindestdrehzahl nvmin des Verbrennungsmotors 2 wird der Verbrennungsmotor 2 gestartet und die Kupplung 3.1 wird vollständig geöffnet, um den Verbrennungsmotor 2 von dem Elektromotor 5 zu entkoppeln. Synchron mit dem Öffnen der Kupplung, also dem Reduzieren des Kupplungsmoments Μκ wird das Drehmoment ME des Elektromotors 5 reduziert. Das Starten des Verbrennungsmotors 2 erfolgt durch Freigabe der Kraftstoffeinspritzung. In Verfahrensschritt S2b wird dem Verbrennungsmotor 2 dasselbe Soll-Drehmoment Mvsoii wie in Verfahrensschritt S2a vorgegeben. Die Einstellung des Drehmoments Mv des Verbrennungsmotors 2 kann beispielsweise über eine Regelung des Zündwinkels erfolgen. Der der regelungstechnisch eher träge Verbrennungsmotor 2 wird somit in mit konstanten Drehmoment Mv betrieben und die mit geringerer Verzögerung und höherer Genauigkeit einstellbaren Drehmomente πκι und NE der Teilkupplung 3.1 und des Elektromotors 5 werden durch die Steuervorrichtung 6 eingestellt. Die Drehzahl nv des Verbrennungsmotors 2 steigt und überschreitet schließlich die Drehzahl ΠΕ des Elektromotors 5. S3: Einkuppeln des Verbrennungsmotors 2; Bei Erreichen einer vorgegebenen Zieldrehzahl nvziei des Verbrennungsmotors wird die Teilkupplung 3.1 teilweise geschlossen und das Drehmoment des Elektromotors 5 wird reduziert, um den gestarteten Verbrennungsmotor 2 mit dem Elektromotor 5 zu koppeln. Gemäß einer ersten Variante - welche in Fig. 5 gestrichelt dargestellt ist - wird dem Verbrennungsmotor 2 auch in Verfahrensschritt S3 ein Soll- Drehmoment Mvsoii vorgegeben, welches identisch mit dem Soll-Drehmoment Mvsoii in den Verfahrensschritten S2a und S2b ist. Insofern übernehmen auch in Verfahrensschritt 3 der Elekt- romotor 5 und die Teilkupplung 3.1 die Aufgabe, das Drehmoment der Antriebsräder möglichst konstant zu halten. Gemäß einer zweiten Variante - welche in Fig. 5 mit durchgezogener Linie dargestellt ist - wird das Drehmoment Mv des Verbrennungsmotors 2 sprunghaft auf einen Wert reduziert, welcher kleiner ist als das in den Verfahrensschritten S2a und S2b vor- gegebene konstante Soll-Drehmoment Mvsoii.
S4: Synchronisieren der Drehzahlen von Verbrennungsmotor 2 und Elektromotor 5; In Verfahrensschritt S4 wird die Drehzahl nv des Verbrennungsmotors 2 schließlich reduziert und damit der Drehzahl ΠΕ des Elektromotors 5 immer weiter angenähert.
S5: Schließen der Kupplung; Sobald der Verbrennungsmotor 2 und der Elektromotor 5 im Wesentlichen synchrone Drehzahlen nv, ΠΕ erreicht haben, wird die Kupplung 3.1 weiter geschlossen, um in den Hybrid-Fahrmodus zu wechseln. Ferner wird im zweiten Teilgetriebe 3.2 der nächsthöhere Gang vorgewählt. Die Drehzahl no der zweiten Eingangswelle 1 1 erhöht sich entsprechend.
S6: Hybrid Fahrmodus; In Verfahrensschritt S6 treiben der Elektromotor 5 und der Verbrennungsmotor 2 die Ausgangswelle 8 gemeinsam an. Die Drehzahl ΠΕ des Elektromotors 5 und die Drehzahl nv des Verbrennungsmotors 2 sind synchronisiert.
Die Fig. 6 zeigt ein Drehzahl/Drehmoment-Diagramm des Antriebsstrangs 1 beim Wechseln von dem Elektro-Fahrmodus in den Hybrid-Fahrmodus, wobei ein Komfortstartbetrieb gewählt ist. Bei dieser Ausgestaltung des Verfahrens wird der Verbrennungsmotor 2 nicht mit der der ersten Teilkupplung 3.1 und dem ersten Teilgetriebe 4.1 gestartet, welche während des Elekt- ro-Fahrmodus aktiv sind, sondern mit der parallelen, zweiten Teilkupplung 3.2 und dem zweiten Teilgetriebe 4.2. Im oberen Diagramm dargestellt ist die Drehzahl nv des Verbrennungsmotors 2, die Drehzahl ΠΕ des Elektromotors 5 und die Drehzahl no der zweiten Eingangswelle 1 1 des zweiten Teilgetriebes. Das untere Diagramm zeigt das Drehmoment Mv des Verbrennungsmotors 2, das Drehmoment ME des Elektromotors 5 und das Kupplungsmoment MK2 der zweiten Teilkupplung 3.2.
Die Verfahrensschritte entsprechend im Wesentlichen den zuvor im Zusammenhang mit Fig. 5 beschriebenen Verfahrensschritten, wobei die Funktion der Kupplung von der zweiten Teilkupplung 3.2 übernommen wird. Das Verfahren gemäß Fig. 6 unterscheidet sich jedoch von dem zuvor anhand der Fig. 5 beschriebenen Verfahren wie folgt: S1 : Im Elektro-Fahrmodus wird im zweiten Teilgetriebe 4.2 ein Gang vorgewählt, welcher eine möglichst geringe Übersetzung aufweist, so dass beim nachfolgenden Anschleppen die Übertragung von Schwingungen reduziert werden kann. S2a: Anschleppen des Verbrennungsmotors 1 im Elektro-Fahrmodus; Zum Anschleppen ist in dem zweiten Teilgetriebe 4.2 eine möglichst geringe Übersetzung eingestellt, insbesondere eine Übersetzung die geringer ist als die Übersetzung des ersten Teilgetriebes 4.1 in dem vorhergehenden Elektro-Fahrmodus. Die Übertragung des Drehmoments von dem Elektromotor 5 erfolgt über das erste Teilgetriebe 4.1 , das zweite Teilgetriebe 4.2 und die zweite Teil- kupplung 3.2. Das Kupplungsmoment Μκ2 steigt dementsprechend sprunghaft an, während die Drehzahl nv des Verbrennungsmotors 2 kleiner ist als die Drehzahl des Elektromotors ΠΕ bzw. der ersten Eingangswelle 7.
S2b: Erhöhung der Drehzahl nv des Verbrennungsmotors 2; Im Verfahrensschritt S2b wird im zweiten Teilgetriebe 4.2 ein Gang vorgewählt, welcher eine höhere Übersetzung aufweist als zum Anschleppen des Verbrennungsmotors in Verfahrensschritt S2a eingestellt war.
S3: Einkuppeln des Verbrennungsmotors 2; Im Verfahrensschritt S3 wird die zweite Teilkupplung 3.2 teilweise geschlossen, das Kupplungsmoment Μκ2 der zweiten zweite Teilkupplung 3.2 also erhöht, wobei im zweiten Teilgetriebe ein Gang mit höherer Übersetzung eingelegt ist.

Claims

Patentansprüche
Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs, welcher
- einen Verbrennungsmotor (2),
- einen Elektromotor (5),
- eine erste Teilkupplung (3.1) zum wahlweisen Verbinden des Verbrennungsmotors (2) und des Elektromotors (5) sowie eine zu der ersten Teilkupplung (3.1) parallel geschaltete, zweite Teilkupplung (3.2) und
- ein erstes Teilgetriebe (4.1) mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung (3.1) verbundene Eingangswelle (7) und eine Ausgangswelle (8) und optional eine Zwischenwelle aufweist, wobei die Eingangswelle (7) oder die Ausgangswelle (8) oder die Zwischenwelle drehfest mit dem Elektromotor (5) gekoppelt ist,
wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor (5) die Ausgangswelle (8) antreibt und der Verbrennungsmotor (2) stillsteht, in einen Hybrid-Fahrmodus gewechselt wird, in welchem der Elektromotor (5) und der Verbrennungsmotor (2) die Ausgangswelle (8) gemeinsam antreiben,
mit den folgenden Verfahrensschritten, in welchen als Kupplung entweder ausschließlich die erste Teilkupplung (3.1) oder ausschließlich die zweite Teilkupplung (3.2) verwendet wird:
S2a: Im Elektro-Fahrmodus wird das Drehmoment (ME) des Elektromotors (5) erhöht und die Kupplung (3.1 , 3.2) zumindest teilweise geschlossen, um den Verbrennungsmotor 2 anzuschleppen;
S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl (nvmin) des Verbrennungsmotors (2) wird der Verbrennungsmotor (2) gestartet und die Kupplung (3.1 , 3.2) wird vollständig geöffnet, um den Verbrennungsmotor (2) von dem Elektromotor (5) zu entkoppeln;
S3: Bei Erreichen einer vorgegebenen Zieldrehzahl (nvziei) des Verbrennungsmotors (2) wird die Kupplung (3.1 , 3.2) teilweise geschlossen und das Drehmoment (ME) des Elektromotors (5) wird reduziert;
S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen (nv, ΠΕ) des Verbrennungsmotors (2) und des Elektromotors (5) wird die Kupplung (3.1 , 3.2) zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor (2) ein konstantes Soll-Drehmoment (Mvsoii) vorgegeben wird. Verfahren nach Anspruch 1 , wobei im Verfahrensschritt S2a das Erhöhen des Drehmoments (ME) des Elektromotors (5) und das zumindest teilweise Schließen der Kupplung (3.1 , 3.2) synchron erfolgt.
Verfahren nach einem der vorhergehenden Ansprüche, wobei der Verbrennungsmotor (2) einen Saugbetrieb und einen Ladebetrieb aufweist, wobei ein Turbolader des Verbrennungsmotors (2) im Saugbetrieb nicht aktiv ist und im Ladebetrieb aktiv ist und wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor (2) ein konstantes Soll-Drehmoment (Mvsoii) vorgegeben wird, bei welchem der Verbrennungsmotor (2) in dem Saugbetrieb arbeitet.
Verfahren nach einem der vorhergehenden Ansprüche, wobei dem Verbrennungsmotor (2) in den Verfahrensschritten S2a, S2b und S3 ein konstantes Soll-Drehmoment (Mvsoii) vorgegeben wird.
Verfahren nach einem der Ansprüche 1 bis 3, wobei dem Verbrennungsmotor in Verfahrensschritt S3 ein Soll-Drehmoment vorgegeben wird, welches kleiner ist als das in den Verfahrensschritten S2a und S2b vorgegebene konstante Soll- Drehmoment (Mvsoii).
Verfahren nach einem der vorhergehenden Ansprüche, wobei zum Anschleppen des Verbrennungsmotors (2) eine geringe Übersetzung des ersten Teilgetriebes (4.1) oder des zweiten Teilgetriebes (4.2) eingestellt ist.
Verfahren nach Anspruch 6, wobei beim teilweisen Schließen der Kupplung (3.1 , 3.2) in Verfahrensschritt S3 eine höhere Übersetzung des ersten Teilgetriebes (4.1) oder des zweiten Teilgetriebes (4.2) eingestellt ist als zum Anschleppen des Verbrennungsmotors (2).
Verfahren nach einem der Ansprüche 1 bis 7, wobei die erste Teilkupplung (3.1), die zweite Teilkupplung (3.2) und das erste Teilgetriebe (4.1) Teil eines Doppelkupplungsgetriebes (9) sind, welches ein zweites Teilgetriebe (4.2) mit wahlweise einstellbarer Übersetzung aufweist, das eine mit der zweiten Teilkupplung (4.2) verbundene zweite Eingangswelle (10) und eine mit der ersten Ausgangswelle (8) drehfest verbundene, zweite Ausgangswelle (1 1) aufweist.
9. Antriebsstrang für ein Hybridfahrzeug, welcher
- einen Verbrennungsmotor (2),
- einen Elektromotor (5),
- eine erste Teilkupplung (3.1) zum wahlweisen Verbinden des Verbrennungsmotors (2) und des Elektromotors (5) sowie eine zu der ersten Teilkupplung (3.1) parallel geschaltete, zweite Teilkupplung (3.2) und
- ein erstes Teilgetriebe (4.1) mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung (3.1) verbundene Eingangswelle (7) und eine Ausgangswelle (8) und optional eine Zwischenwelle aufweist, wobei die Eingangswelle (7) drehfest mit dem Elektromotor (5) gekoppelt ist, wobei der Antriebsstrang (1) von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor (5) die Ausgangswelle (8) antreibt und der Verbrennungsmotor (2) stillsteht, in einen Hybrid-Fahrmodus verbringbar ist, in welchem der Elektromotor (5) und der Verbrennungsmotor (2) die Ausgangswelle (8) gemeinsam antreiben, gekennzeichnet durch
eine Steuervorrichtung (6), welche zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 8 konfiguriert ist.
PCT/DE2017/100439 2016-05-24 2017-05-23 Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs WO2017202419A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780031435.4A CN109153383A (zh) 2016-05-24 2017-05-23 用于运行混动车辆的驱动系的方法以及混动车辆的驱动系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016209006.2A DE102016209006A1 (de) 2016-05-24 2016-05-24 Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs
DE102016209006.2 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017202419A1 true WO2017202419A1 (de) 2017-11-30

Family

ID=59325105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100439 WO2017202419A1 (de) 2016-05-24 2017-05-23 Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs

Country Status (3)

Country Link
CN (1) CN109153383A (de)
DE (1) DE102016209006A1 (de)
WO (1) WO2017202419A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073825A1 (de) * 2019-10-14 2021-04-22 Magna Pt B.V. & Co. Kg Verfahren zum steuern eines hybridantriebsstrangs eines hybridkraftfahrzeugs
US11773799B2 (en) 2019-10-02 2023-10-03 Scania Cv Ab Control device and method for starting a combustion engine during free-wheeling a vehicle with such device, computer program for executing the method and computer readable medium containing the program
FR3139678A1 (fr) * 2022-09-13 2024-03-15 Psa Automobiles Sa Vehicule automobile hybride comprenant un controleur de couple appliquant un couple sur la base d’une vitesse cible, procede et programme sur la base d’un tel vehicule

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100503A1 (de) * 2019-01-10 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb eines Hybridantriebs mit einem Doppelkupplungsgetriebe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037237A2 (de) * 2007-09-22 2009-03-26 Zf Friedrichshafen Ag Verfahren zum betreiben eines antriebsstrangs
DE102007050659A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102008051295A1 (de) * 2008-10-10 2010-04-15 Daimler Ag Verfahren zur Steuerung eines Hybridantriebsstranges und paralleler Hybridantriebsstrang
DE102011002742A1 (de) * 2011-01-17 2012-07-19 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Antriebsstrang eines Hybridfahrzeugs
DE102015108067A1 (de) * 2014-05-23 2015-11-26 Avl List Gmbh Verfahren zum Starten einer Brennkraftmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454133B2 (ja) * 1998-01-16 2003-10-06 トヨタ自動車株式会社 ハイブリッド車の駆動制御装置
DE102010043355B4 (de) * 2010-11-04 2018-04-05 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
DE102012009481A1 (de) * 2012-05-12 2013-11-14 Volkswagen Aktiengesellschaft Verfahren sowie Hybridantriebseinheit zur Steuerung einer Zuschaltung eines Verbrennungsmotors
DE102013225547A1 (de) * 2013-12-11 2015-06-11 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeugantriebsstranges mit einer Brennkraftmaschine, einer elektrischen Maschine, einer Getriebeeinrichtung und mit einem Abtrieb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037237A2 (de) * 2007-09-22 2009-03-26 Zf Friedrichshafen Ag Verfahren zum betreiben eines antriebsstrangs
DE102007050659A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102008051295A1 (de) * 2008-10-10 2010-04-15 Daimler Ag Verfahren zur Steuerung eines Hybridantriebsstranges und paralleler Hybridantriebsstrang
DE102011002742A1 (de) * 2011-01-17 2012-07-19 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Antriebsstrang eines Hybridfahrzeugs
DE102015108067A1 (de) * 2014-05-23 2015-11-26 Avl List Gmbh Verfahren zum Starten einer Brennkraftmaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773799B2 (en) 2019-10-02 2023-10-03 Scania Cv Ab Control device and method for starting a combustion engine during free-wheeling a vehicle with such device, computer program for executing the method and computer readable medium containing the program
WO2021073825A1 (de) * 2019-10-14 2021-04-22 Magna Pt B.V. & Co. Kg Verfahren zum steuern eines hybridantriebsstrangs eines hybridkraftfahrzeugs
FR3139678A1 (fr) * 2022-09-13 2024-03-15 Psa Automobiles Sa Vehicule automobile hybride comprenant un controleur de couple appliquant un couple sur la base d’une vitesse cible, procede et programme sur la base d’un tel vehicule
WO2024056953A1 (fr) * 2022-09-13 2024-03-21 Stellantis Auto Sas Vehicule automobile hybride comprenant un controleur de couple appliquant un couple sur la base d'une vitesse e rotation cible, procede et programme sur la base d'un tel vehicule

Also Published As

Publication number Publication date
CN109153383A (zh) 2019-01-04
DE102016209006A1 (de) 2017-11-30

Similar Documents

Publication Publication Date Title
DE102007001424B4 (de) Verfahren zum Starten eines Kolbenmotors, Hybrid-Antrieb für ein Kraftfahrzeug sowie Kraftfahrzeug mit Hybridantrieb
DE10025586C2 (de) Antriebsstrang für ein Kraftfahrzeug
DE102011079079A1 (de) Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
WO2017202419A1 (de) Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs
WO2017148474A1 (de) Verfahren zum starten eines verbrennungsmotors eines hybridfahrzeugs und steuereinheit zum betreiben des verfahrens
DE102009045485A1 (de) Verfahren zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung
EP3351787B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
EP2718593B1 (de) Verfahren zum betreiben einer antriebsvorrichtung sowie vorrichtung zum betreiben der antriebsvorrichtung
WO2016156245A1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
EP3351449B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
WO2021110708A1 (de) Kraftfahrzeug
EP3075620B1 (de) Verfahren zur durchführung einer gangschaltung bei parallel-hybrid-fahrzeugen
EP3351446B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
EP2813734B1 (de) Verfahren und Vorrichtung zur Steuerung eines Schaltgetriebes
EP3263382B1 (de) Verfahren zum betreiben einer antriebseinrichtung sowie entsprechende antriebseinrichtung
DE102016206093B4 (de) Verfahren zum Mindern von Störungen in einem Kraftfahrzeug-Antriebsstrang bei einem Gangwechsel
DE10249952B4 (de) Verfahren zum Betrieb eines Antriebsstrangs eines Kraftfahrzeugs
EP3063032B1 (de) Verfahren zum betreiben einer hybridantriebseinrichtung sowie entsprechende hybridantriebseinrichtung
DE102016203434A1 (de) Verfahren zur Adaption eines Greifpunkts einer Trennkupplung für ein Fahrzeug
DE102013207856B4 (de) System und Vorrichtung zum Steuern von Überschwingern des Verbrennungsmotors während eines Getriebeschaltvorgangs
DE102023207175B3 (de) Verfahren zur Bestimmung eines Synchronisierungspunktes eines Koppelvorgangs einer Klauenkupplung
DE102018205710A1 (de) Verfahren und Steuerungseinrichtung zum Betreiben eines Antriebsstrangs
DE102017214787A1 (de) Impulsstart in einem Hybrid-Antriebsstrang
DE102014208781A1 (de) Verfahren und Steuerungseinrichtung zur Bestimmung eines Referenzpunkts für einen Anlegepunkt einer Kupplung
WO2018069213A1 (de) Verfahren zum durchführen eines kriechladebetriebes und hybrid-antriebsstrang hierfür

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17739187

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17739187

Country of ref document: EP

Kind code of ref document: A1