DE102016209006A1 - Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs - Google Patents

Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs Download PDF

Info

Publication number
DE102016209006A1
DE102016209006A1 DE102016209006.2A DE102016209006A DE102016209006A1 DE 102016209006 A1 DE102016209006 A1 DE 102016209006A1 DE 102016209006 A DE102016209006 A DE 102016209006A DE 102016209006 A1 DE102016209006 A1 DE 102016209006A1
Authority
DE
Germany
Prior art keywords
combustion engine
internal combustion
electric motor
clutch
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016209006.2A
Other languages
English (en)
Inventor
Timo Kersting
Marco Rohe
Shen Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE102016209006.2A priority Critical patent/DE102016209006A1/de
Priority to CN201780031435.4A priority patent/CN109153383A/zh
Priority to PCT/DE2017/100439 priority patent/WO2017202419A1/de
Publication of DE102016209006A1 publication Critical patent/DE102016209006A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs in P3-Konfiguration mit den Verfahrensschritten: S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor anzuschleppen; S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors wird der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln; S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors wird die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors wird reduziert; S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln; wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs. Ferner betrifft die Erfindung einen Antriebsstrang gemäß dem Oberbegriff des Patentanspruchs 11 und einen Antriebsstrang gemäß dem Oberbegriff des Patentanspruchs 12.
  • Derartige Antriebsstränge von Hybridfahrzeugen werden auch als P3-Antriebsstränge bezeichnet, wobei sich die Typangabe P3 auf die Position des Elektromotors bezieht, welcher durch die Kupplung von dem Verbrennungsmotor trennbar ist und mit einer Eingangswelle oder einer Ausgangswelle oder einer gegebenenfalls vorhandenen Zwischenwelle des Getriebes drehfest verbunden ist.
  • Um den im Elektro-Fahrmodus stillstehenden Verbrennungsmotor zu starten, muss dieser zunächst auf eine Mindeststartdrehzahl beschleunigt werden, um ihn anschließend mittels Kraftstoffzufuhr und -zündung starten zu können. Um den Verbrennungsmotor zu starten, muss die für den Verbrennungsmotorstart vorgesehene elektrische Maschine das notwendige Startmoment aufbringen. Wird der Verbrennungsmotor eines Hybridfahrzeuges während des Elektro-Fahrmodus gestartet, kann der Verbrennungsmotorstart den elektrischen Fahrbetrieb in der Weise beeinträchtigen, dass ein Teil der elektrisch zur Verfügung stehenden Energie für den Verbrennungsmotorstart eingesetzt wird und demzufolge die für den Antrieb einsetzbare Energie Einbußen erleidet.
  • Beim Starten eines Verbrennungsmotors besteht generell eine große Unschärfe in der Bestimmung des Verbrennungsmotormoments, das auf die Räder wirkt. Dies ist dadurch bedingt, dass bei einem Verbrennungsmotor das Ist-Drehmoment dem vorgegebenen Soll-Drehmoment nicht immer mit einer konstanten Verzögerung folgt. Erschwert wird die Bestimmung in dynamischen Zuständen, beispielsweise, wenn das vom Fahrer angeforderte Wunschmoment stark variiert. Bei herkömmlichen Startstrategien besteht der Nachteil, dass der Übergang vom Elektro-Fahrmodus in den Hybrid-Fahrmodus, also der Start des Verbrennungsmotors während der Fahrt, vom Fahrer deutlich wahrnehmbar ist oder dass starke Differenzen zwischen dem Fahrerwunschmoment und dem tatsächlichen Moment an den Antriebsrädern bestehen.
  • Aufgabe der Erfindung ist es, bei einem Wechsel von dem Elektro-Fahrmodus in den Hybrid-Fahrmodus das durch den Fahrer angeforderte Wunschmoment an den Antriebsrädern des Fahrzeugs beizubehalten ohne dass ein vom Fahrer ungewollte Beschleunigung oder Verzögerung spürbar ist.
  • Die Aufgabe wird gelöst durch ein Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs, welcher
    • – einen Verbrennungsmotor,
    • – einen Elektromotor,
    • – eine Kupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors und
    • – ein Getriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der Kupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist,
    wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid-Fahrmodus gewechselt wird, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben,
    mit den Verfahrensschritten:
    S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor anzuschleppen;
    S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors wird der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln;
    S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors wird die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors wird reduziert;
    S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
    wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird.
  • Zur Lösung der Aufgabe wird ferner ein Antriebsstrang für ein Hybridfahrzeug vorgeschlagen, welcher
    • – einen Verbrennungsmotor,
    • – einen Elektromotor,
    • – eine Kupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors und
    • – ein Getriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der Kupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist, umfasst,
    wobei der Antriebsstrang von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid-Fahrmodus verbringbar ist, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben, und wobei der Antriebsstrang eine Steuervorrichtung aufweist, welche zur Durchführung eines zuvor gennannten Verfahrens konfiguriert ist.
  • Gelöst wird die Aufgabe ferner durch ein Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs, welcher
    • – einen Verbrennungsmotor,
    • – einen Elektromotor,
    • – eine erste Teilkupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors sowie eine zu der ersten Teilkupplung parallel geschaltete, zweite Teilkupplung und
    • – ein erstes Teilgetriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist,
    wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid-Fahrmodus gewechselt wird, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben,
    mit den folgenden Verfahrensschritten, in welchen als Kupplung entweder ausschließlich die erste Teilkupplung oder ausschließlich die zweite Teilkupplung verwendet wird:
    S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor anzuschleppen;
    S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors wird der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln;
    S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors wird die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors wird reduziert;
    S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
    wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird
  • Zur Lösung der Aufgabe wird ferner ein Antriebsstrang für ein Hybridfahrzeug vorgeschlagen, welcher
    • – einen Verbrennungsmotor,
    • – einen Elektromotor,
    • – eine erste Teilkupplung zum wahlweisen Verbinden des Verbrennungsmotors und des Elektromotors sowie eine zu der ersten Teilkupplung parallel geschaltete, zweite Teilkupplung und
    • – ein erstes Teilgetriebe mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung verbundene Eingangswelle und eine Ausgangswelle und optional eine Zwischenwelle aufweist, wobei die Eingangswelle oder die Ausgangswelle oder die Zwischenwelle drehfest mit dem Elektromotor gekoppelt ist,
    wobei der Antriebsstrang von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor die Ausgangswelle antreibt und der Verbrennungsmotor stillsteht, in einen Hybrid-Fahrmodus verbringbar ist, in welchem der Elektromotor und der Verbrennungsmotor die Ausgangswelle gemeinsam antreiben, und wobei der Antriebsstrang eine Steuervorrichtung aufweist, welche zur Durchführung des zuvor genannten Verfahrens konfiguriert ist.
  • Bei den erfindungsgemäßen Verfahren wird ausgehend von dem Elektro-Fahrmodus in Verfahrensschritt S2a das Drehmoment des Elektromotors erhöht und die Kupplung zumindest teilweise geschlossen, um den Verbrennungsmotor anzuschleppen. Durch diese Maßnahmen kann erreicht werden, dass zusätzliches Drehmoment zum Anschleppen des Verbrennungsmotors bereitgestellt wird, ohne das Drehmoment an der Ausgangswelle und damit auch das Drehmoment an den Antriebsrädern zu verändern. Das Anschleppen des Verbrennungsmotors kann somit erfolgen ohne vom Fahrer eine ungewollte Beschleunigung oder Verzögerung spürbar ist.
  • Infolge des Anschleppens steigt die Drehzahl des Verbrennungsmotors. Gemäß Verfahrensschritt S2b wird bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors der Verbrennungsmotor gestartet und die Kupplung wird vollständig geöffnet, um den Verbrennungsmotor von dem Elektromotor zu entkoppeln. Sowohl in Verfahrensschritt S2a als auch in Verfahrensschritt S2b wird dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben. Bevorzugt wird ein Soll-Drehmoment vorgegeben, welches der Verbrennungsmotor zuverlässig und schnell erreichen kann, so dass das Verhalten des Antriebsstrangs allein durch die Einstellung des Drehmoments des Elektromotors und/oder des Kupplungsmoments beeinflussbar ist. Diese Drehmomente lassen sich typischerweise mit höherer Genauigkeit einstellen als das Drehmoment des Verbrennungsmotors. Gemäß Verfahrensschritt S3 wird bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors die Kupplung teilweise geschlossen und das Drehmoment des Elektromotors reduziert. Die Zieldrehzahl des Verbrennungsmotors ist bevorzugt größer als die Drehzahl an der Eingangswelle des Getriebes. Vorteilhaft ist es, wenn die Zieldrehzahl in Abhängigkeit von der tatsächlichen Drehzahl des Elektromotors vorgegeben wird, beispielsweise als Summe der Drehzahl des Elektromotors und eines vorgegebenen Offsets. In dem Verfahrensschritt S3 wird das Kupplungsmoment erhöht und das Drehmoment des Elektromotors entsprechend reduziert. Insofern erfolgt eine Synchronisierung von Verbrennungsmotor und Elektromotor. Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors und des Elektromotors wird die Kupplung gemäß Verfahrensschritt S5 zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln.
  • Ein konventioneller Anlasser zum Starten des Verbrennungsmotors ist gemäß der Erfindung nicht erforderlich, so dass die Bauteilkosten im Vergleich zu einem Antriebsstrang mit Anlasser gesenkt werden können. Ferner kann das Starten des Verbrennungsmotors mit verkürzter Startdauer ermöglicht werden.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche und sollen nachfolgend im Einzelnen erläutert werden.
  • Bevorzugt erfolgt im Verfahrensschritt S2a das Erhöhen des Drehmoments des Elektromotors und das zumindest teilweise Schließen der Kupplung synchron, d.h. dass die Drehmomenterhöhung am Elektromotor im Wesentlichen der Erhöhung des Kupplungsmoments beim teilweisen Schließen der Kupplung entspricht.
  • Gemäß einer vorteilhaften Ausgestaltung weist der Verbrennungsmotor einen Saugbetrieb und einen Ladebetrieb auf, wobei ein Turbolader des Verbrennungsmotors im Saugbetrieb nicht aktiv ist und im Ladebetrieb aktiv ist und wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird, bei welchem der Verbrennungsmotor in dem Saugbetrieb arbeitet. Im Saugbetrieb kann das Drehmoment von dem Verbrennungsmotor relativ schnell zur Verfügung gestellt werden und ist deutlich zuverlässiger bestimmbar als das Drehmoment im Ladebetrieb. Bevorzugt wird das Soll-Drehmoment derart gewählt, dass es dem maximalen Drehmoment des Verbrennungsmotors im Saugbetrieb entspricht, also dem maximalen Drehmoment, bei dem der Turbolader nicht aktiv ist. Die vorliegende Erfindung ist jedoch nicht beschränkt auf einen Antriebsstrang, dessen Verbrennungsmotor einen Turbolader aufweist, sondern umfasst Ausgestaltungen von Antriebssträngen mit einem Saugermotor. Insbesondere sind auch Anordnungen mit Dieselmotor oder Gasmotor zur Umsetzung des erfindungsgemäßen Verfahrens denkbar.
  • Als vorteilhaft hat es sich herausgestellt, wenn in den Verfahrensschritten S2a, S2b und S3 dem Verbrennungsmotor ein konstantes Soll-Drehmoment vorgegeben wird. Somit wird dem Verbrennungsmotor auch beim Schließen der Kupplung ein konstantes Soll-Drehmoment vorgegeben. Das Verhalten des Antriebsstrangs kann auch in Verfahrensschritt S3 allein durch die Einstellung des Drehmoments des Elektromotors und/oder des Kupplungsmoments beeinflusst werden. Diese Momente lassen sich typischerweise mit höherer Genauigkeit einstellen als das Drehmoment des Verbrennungsmotors, wodurch der technische Aufwand zum Beibehalten des durch den Fahrer angeforderten Wunschmoments an den Antriebsrädern verringert wird.
  • Gemäß einer alternativ bevorzugten Ausgestaltung kann dem Verbrennungsmotor in Verfahrensschritt S3 ein Soll-Drehmoment vorgegeben werden, welches kleiner ist als das in den Verfahrensschritten S2a und S2b vorgegebene konstante Soll-Drehmoment. Beispielsweise kann im Verfahrensschritt S3 bei Erreichen der vorgegebenen Zieldrehzahl des Verbrennungsmotors das Soll-Drehmoment des Verbrennungsmotors, insbesondere sprunghaft, reduziert werden. Besonders bevorzugt wird das Soll-Drehmoment des Verbrennungsmotors im weiteren Verlauf, insbesondere linear, erhöht.
  • Als vorteilhaft hat es sich herausgestellt, wenn zum Anschleppen des Verbrennungsmotors, also in Verfahrensschritt S2a, eine geringe Übersetzung des Getriebes oder des ersten Teilgetriebes oder des zweiten Teilgetriebes eingestellt ist. Bei Wahl einer geringen Übersetzung, d.h. eines hohen Gangs, werden über das jeweilige Getriebe oder Teilgetriebe Schwingungen in geringerem Maße übertragen als dies bei einer höheren Übersetzung der Fall wäre. Daher kann durch die Wahl einer geringen Übersetzung beim Anschleppen des Verbrennungsmotors unerwünschtes Ruckeln des Fahrzeugs reduziert werden.
  • In diesem Zusammenhang ist es besonders vorteilhaft, wenn beim teilweisen Schließen der Kupplung in Verfahrensschritt S3 eine höhere Übersetzung des Getriebes oder des ersten Teilgetriebes oder des zweiten Teilgetriebes eingestellt ist als zum Anschleppen des Verbrennungsmotors. Das dem Anschleppen nachfolgende Synchronisieren von Verbrennungsmotor und Elektromotor kann auf diese Weise in einem niedrigen Gang mit höherer Übersetzung erfolgen. Gleichfalls wird eine störende Schwingungsübertragung beim Anschleppen des Verbrennungsmotors reduziert.
  • Gemäß einer vorteilhaften Ausgestaltung sind die erste Teilkupplung, die zweite Teilkupplung und das erste Teilgetriebe Teil eines Doppelkupplungsgetriebes, welches ein zweites Teilgetriebe mit wahlweise einstellbarer Übersetzung aufweist, das eine mit der zweiten Teilkupplung verbundene zweite Eingangswelle und eine mit der ersten Ausgangswelle drehfest verbundene, zweite Ausgangswelle aufweist. In einem Verbrennungsmotor-Fahrmodus, in welchem ausschließlich der Verbrennungsmotor aktiv ist, kann über das Doppelkupplungsgetriebe ein Gangwechsel ohne Zugkraftunterbrechung erfolgen. Bevorzugt ist der Elektromotor an der ersten Eingangswelle des ersten Teilgetriebes vorgesehen. Eine derartige Ausgestaltung bringt den Vorteil mit sich, dass bei dem Wechsel von dem Elektro-Fahrmodus in den Hybrid-Fahrmodus der Verbrennungsmotor in Verfahrensschritt S2a wahlweise über die erste Teilkupplung oder die zweite Teilkupplung angeschleppt werden kann. Es ist daher möglich, zwischen einem Schnellstart über die erste Teilkupplung und den derzeit eingelegten Gang des erstes Teilgetriebes und einem Komfortstart über die zweite Teilkupplung und einen auf den Motorstart des abgestimmten Gang des zweiten Teilgetriebes zu wählen. Der Schnellstart kann in solchen Situationen gewählt werden, in denen es, beispielsweise aufgrund einer Beschleunigungsanforderung des Fahrers („kickdown“), erforderlich ist, möglichst schnell den Verbrennungsmotor zu starten. Der Komfortstart kann beispielsweise dann gewählt werden, wenn ein Verbrennungsmotorstart aufgrund niedriger Batteriekapazität zu Versorgung des Elektromotors erforderlich wird.
  • Eine vorteilhafte Ausgestaltung sieht vor, dass die Kupplung und das Getriebe Teil eines automatischen Schaltgetriebes sind. Das automatisierte Schaltgetriebe weist bevorzugt genau eine Kupplung und genau ein Getriebe mit wahlweise einstellbarer Übersetzung auf, so dass der Antriebsstrang mit einer möglichst geringen Anzahl an Komponenten verwirklicht werden kann.
  • Bei den oben beschriebenen Antriebssträngen können auch die im Zusammenhang mit dem Verfahren beschriebenen, vorteilhaften Merkmale allein oder in Kombination Verwendung finden.
  • Weitere Einzelheiten und Vorteile der Erfindung sollen nachfolgend anhand der in den Zeichnungen dargestellten Ausführungsbeispiele erläutert werden. Hierin zeigt:
  • 1 einen Antriebsstrang gemäß einem ersten Ausführungsbeispiel der Erfindung.
  • 2 einen Antriebsstrang gemäß einem zweiten Ausführungsbeispiel der Erfindung.
  • 3 einen Antriebsstrang gemäß einem dritten Ausführungsbeispiel der Erfindung.
  • 4 einen Antriebsstrang gemäß einem vierten Ausführungsbeispiel der Erfindung.
  • 5 ein Drehzahl/Drehmoment-Diagramm zur Veranschaulichung eines ersten Ausführungsbeispiels eines erfindungsgemäßen Verfahrens.
  • 6 ein Drehzahl/Drehmoment-Diagramm zur Veranschaulichung eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Verfahrens.
  • In 1 bis 4 sind vier schematische Blockdiagramme von Ausführungsbeispielen verschiedener Antriebsstränge dargestellt, bei welchen das erfindungsgemäße Verfahren Anwendung finden kann.
  • Die Antriebsstränge 1 weisen jeweils einen Verbrennungsmotor 1, einen Elektromotor 5, eine Kupplung 3, 3.1 zum wahlweisen Verbinden des Verbrennungsmotors 1 und des Elektromotors 5 und ein Getriebe 4, 4.1 mit wahlweise einstellbarer Übersetzung auf. Das Getriebe 4, 4.1 weist eine mit der Kupplung 5 verbundene Eingangswelle 7 und eine Ausgangswelle 8 auf, wobei die Eingangswelle 7 oder die Ausgangswelle 8 drehfest mit dem Elektromotor 5 gekoppelt ist. Ferner umfassen die Antriebsstränge 1 jeweils eine Steuervorrichtung 6, welche derart konfiguriert ist, dass der Verbrennungsmotor 1, der Elektromotor 5, die Kupplung 3, 3.1 und das Getriebe 4, 4.1 zur Durchführung des erfindungsgemäßen Verfahrens angesteuert werden können.
  • Das Verfahren umfasst zumindest die nachfolgend aufgeführten Verfahrensschritte:
    • S2a: Im Elektro-Fahrmodus wird das Drehmoment des Elektromotors 5 erhöht und die Kupplung 3 zumindest teilweise geschlossen, um den Verbrennungsmotor 2 anzuschleppen;
    • S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl des Verbrennungsmotors 2 wird der Verbrennungsmotor 2 gestartet und die Kupplung 3 wird vollständig geöffnet, um den Verbrennungsmotor 2 von dem Elektromotor 5 zu entkoppeln;
    • S3: Bei Erreichen einer vorgegebenen Zieldrehzahl des Verbrennungsmotors 2 wird die Kupplung 3 teilweise geschlossen und das Drehmoment des Elektromotors 5 wird reduziert;
    • S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen des Verbrennungsmotors 2 und des Elektromotors 5 wird die Kupplung 3 zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln;
    wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor 2 ein konstantes Soll-Drehmoment vorgegeben wird.
  • Beim dem Antriebsstrang gemäß der Darstellung in 1 sind die Kupplung 3 und das Getriebe 4 als Teil eines automatischen Schaltgetriebes ausgebildet. Der Elektromotor 5 ist mit der Ausgangswelle 8 des Getriebes 4 drehfest gekoppelt.
  • Beim dem Antriebsstrang gemäß der Darstellung in 2 sind die Kupplung 3 und das Getriebe 4 ebenfalls als Teil eines automatischen Schaltgetriebes ausgebildet. Der Elektromotor 5 ist hingegen mit der Eingangswelle 7 des Getriebes 4 drehfest gekoppelt.
  • Der Antriebsstrang 1 nach 3 weist ein Doppelkupplungsgetriebe 9 auf, welches eine als erste Teilkupplung 3.1 ausgebildete Kupplung umfasst. Ferner umfasst das Doppelkupplungsgetriebe 9 eine zweite Teilkupplung 3.2, die parallel zu der ersten Teilkupplung 3.1 geschaltet ist. Das Getriebe ist als erstes Teilgetriebe 4.1 des Doppelkupplungsgetriebes 9 ausgestaltet. Das Doppelkupplungsgetriebe 9 weist ein zweites Teilgetriebe 4.2 mit wahlweise einstellbarer Übersetzung auf, das eine mit der zweiten Teilkupplung 3.2 verbundene zweite Eingangswelle 10 und eine mit der ersten Ausgangswelle 8 drehfest verbundene, zweite Ausgangswelle 11 umfasst. Der Elektromotor ist bei diesem Antriebsstrang 1 mit der ersten Eingangswelle 8 des ersten Teilgetriebes 4.1 verbunden. Insofern ist der Elektromotor „im Doppelkupplungsgetriebe 9“ angeordnet.
  • Schließlich zeigt 4 einen Antriebsstrang 1 mit einem Doppelkupplungsgetriebe 9, welches denselben Aufbau aufweist, wie das im Zusammenhang mit 3 beschriebene Doppelkupplungsgetriebe 9. Der Elektromotor 5 ist bei diesem Antriebsstrang 1 drehfest mit der Ausgangswelle 8 des ersten Teilgetriebes 4.1 und mit der Ausgangswelle 11 des zweiten Teilgetriebes verbunden.
  • Nachfolgend soll anhand der Darstellungen in 5 und 6 näher das erfindungsgemäße Verfahren erläutert werden. Hierbei wird davon ausgegangen, dass der Antriebsstrang 1 derart ausgebildet ist, wie es in 3 dargestellt ist.
  • Die 5 zeigt ein Drehzahl/Drehmoment-Diagramm des Antriebsstrangs 1 beim Wechseln von dem Elektro-Fahrmodus in den Hybrid-Fahrmodus, wobei ein Schnellstartbetrieb gewählt ist. Bei dieser Ausgestaltung des Verfahrens wird der Verbrennungsmotor 2 mit der der Teilkupplung 3.1 und dem Teilgetriebe 4.1 gestartet, welche während des Elektro-Fahrmodus aktiv sind. Im oberen Diagramm dargestellt ist die Drehzahl nV des Verbrennungsmotors 2, die Drehzahl nE des Elektromotors 5 und die Drehzahl nO der zweiten Eingangswelle 11 des zweiten Teilgetriebes 4.2. Das untere Diagramm zeigt das Drehmoment MV des Verbrennungsmotors 2, das Drehmoment ME des Elektromotors 5 und das Kupplungsmoment MK1 der ersten Teilkupplung 3.1.
  • Das Verfahren gliedert sich in die folgenden Verfahrensschritte:
  • S1: Elektro-Fahrmodus; Im Elektro-Fahrmodus treibt ausschließlich der Elektromotor 5 die Ausgangswelle 8 an und der Verbrennungsmotor 2 steht still (nV = 0). Ausgehend von einem Fahrzustand gemäß Verfahrensschritt S1 wird der Wechsel in den Hybrid-Fahrmodus ausgelöst, beispielsweise, weil aufgrund einer Beschleunigungsanforderung des Fahrers („kickdown“) eine erhöhte Leistung erforderlich wird.
  • S2a: Anschleppen des Verbrennungsmotors 2 im Elektro-Fahrmodus; In Verfahrensschritt S2a wird das Drehmoment ME des Elektromotors 5, bevorzugt sprunghaft, erhöht und die Kupplung 3.1 zumindest teilweise geschlossen, um den Verbrennungsmotor 2 anzuschleppen. Es wird also Drehmoment von dem Elektromotor 5 zum Verbrennungsmotor 2 übertragen. Das Kupplungsmoment MK1 steigt dementsprechend, bevorzugt sprunghaft, an, während die Drehzahl nV des Verbrennungsmotors 2 kleiner ist als die Drehzahl des Elektromotors nE bzw. der ersten Eingangswelle 7. Zum Anschleppen wird derselbe Gang und damit dieselbe Übersetzung verwendet wir im Elektro-Fahrmodus. Der Anstieg des Drehmoments ME des Elektromotors 5 kann einen rampenartigen Verlauf haben. Alternativ kann der Anstieg einen exponentiellen Verlauf haben oder der Anstieg erfolgt nach Art der Sprungantwort eines PT1-Glieds. Das teilweise Schließen der Kupplung 3.1 erfolgt möglichst synchron zu der Erhöhung des Drehmoments ME des Elektromotors 5, so dass das Drehmoment an den Antriebsrädern möglichst wenig verändert wird. Dem Verbrennungsmotor 2 wird ein konstantes Soll-Drehmoment MVsoll vorgegeben. Falls der Verbrennungsmotor 2 als Turbomotor mit einem Turbolader ausgebildet ist, wird das Soll-Drehmoment MVsoll derart gewählt, dass der Verbrennungsmotor 2 im Saugbetrieb betrieben wird. Beispielsweise kann das Soll-Drehmoment MVsoll dem maximal im Saugbetrieb erreichbaren Drehmoment MV entsprechen.
  • S2b: Erhöhung der Drehzahl nV des Verbrennungsmotors 2; Bei Erreichen einer vorgegebenen Mindestdrehzahl nVmin des Verbrennungsmotors 2 wird der Verbrennungsmotor 2 gestartet und die Kupplung 3.1 wird vollständig geöffnet, um den Verbrennungsmotor 2 von dem Elektromotor 5 zu entkoppeln. Synchron mit dem Öffnen der Kupplung, also dem Reduzieren des Kupplungsmoments MK wird das Drehmoment ME des Elektromotors 5 reduziert. Das Starten des Verbrennungsmotors 2 erfolgt durch Freigabe der Kraftstoffeinspritzung. In Verfahrensschritt S2b wird dem Verbrennungsmotor 2 dasselbe Soll-Drehmoment MVsoll wie in Verfahrensschritt S2a vorgegeben. Die Einstellung des Drehmoments MV des Verbrennungsmotors 2 kann beispielsweise über eine Regelung des Zündwinkels erfolgen. Der der regelungstechnisch eher träge Verbrennungsmotor 2 wird somit in mit konstanten Drehmoment MV betrieben und die mit geringerer Verzögerung und höherer Genauigkeit einstellbaren Drehmomente nK1 und NE der Teilkupplung 3.1 und des Elektromotors 5 werden durch die Steuervorrichtung 6 eingestellt. Die Drehzahl nV des Verbrennungsmotors 2 steigt und überschreitet schließlich die Drehzahl nE des Elektromotors 5.
  • S3: Einkuppeln des Verbrennungsmotors 2; Bei Erreichen einer vorgegebenen Zieldrehzahl nVziel des Verbrennungsmotors wird die Teilkupplung 3.1 teilweise geschlossen und das Drehmoment des Elektromotors 5 wird reduziert, um den gestarteten Verbrennungsmotor 2 mit dem Elektromotor 5 zu koppeln. Gemäß einer ersten Variante – welche in 5 gestrichelt dargestellt ist – wird dem Verbrennungsmotor 2 auch in Verfahrensschritt S3 ein Soll-Drehmoment MVsoll vorgegeben, welches identisch mit dem Soll-Drehmoment MVsoll in den Verfahrensschritten S2a und S2b ist. Insofern übernehmen auch in Verfahrensschritt 3 der Elektromotor 5 und die Teilkupplung 3.1 die Aufgabe, das Drehmoment der Antriebsräder möglichst konstant zu halten. Gemäß einer zweiten Variante – welche in 5 mit durchgezogener Linie dargestellt ist – wird das Drehmoment MV des Verbrennungsmotors 2 sprunghaft auf einen Wert reduziert, welcher kleiner ist als das in den Verfahrensschritten S2a und S2b vorgegebene konstante Soll-Drehmoment MVsoll.
  • S4: Synchronisieren der Drehzahlen von Verbrennungsmotor 2 und Elektromotor 5; In Verfahrensschritt S4 wird die Drehzahl nV des Verbrennungsmotors 2 schließlich reduziert und damit der Drehzahl nE des Elektromotors 5 immer weiter angenähert.
  • S5: Schließen der Kupplung; Sobald der Verbrennungsmotor 2 und der Elektromotor 5 im Wesentlichen synchrone Drehzahlen nV, nE erreicht haben, wird die Kupplung 3.1 weiter geschlossen, um in den Hybrid-Fahrmodus zu wechseln. Ferner wird im zweiten Teilgetriebe 3.2 der nächsthöhere Gang vorgewählt. Die Drehzahl nO der zweiten Eingangswelle 11 erhöht sich entsprechend.
  • S6: Hybrid Fahrmodus; In Verfahrensschritt S6 treiben der Elektromotor 5 und der Verbrennungsmotor 2 die Ausgangswelle 8 gemeinsam an. Die Drehzahl nE des Elektromotors 5 und die Drehzahl nV des Verbrennungsmotors 2 sind synchronisiert.
  • Die 6 zeigt ein Drehzahl/Drehmoment-Diagramm des Antriebsstrangs 1 beim Wechseln von dem Elektro-Fahrmodus in den Hybrid-Fahrmodus, wobei ein Komfortstartbetrieb gewählt ist. Bei dieser Ausgestaltung des Verfahrens wird der Verbrennungsmotor 2 nicht mit der der ersten Teilkupplung 3.1 und dem ersten Teilgetriebe 4.1 gestartet, welche während des Elektro-Fahrmodus aktiv sind, sondern mit der parallelen, zweiten Teilkupplung 3.2 und dem zweiten Teilgetriebe 4.2. Im oberen Diagramm dargestellt ist die Drehzahl nV des Verbrennungsmotors 2, die Drehzahl nE des Elektromotors 5 und die Drehzahl nO der zweiten Eingangswelle 11 des zweiten Teilgetriebes. Das untere Diagramm zeigt das Drehmoment MV des Verbrennungsmotors 2, das Drehmoment ME des Elektromotors 5 und das Kupplungsmoment MK2 der zweiten Teilkupplung 3.2.
  • Die Verfahrensschritte entsprechend im Wesentlichen den zuvor im Zusammenhang mit 5 beschriebenen Verfahrensschritten, wobei die Funktion der Kupplung von der zweiten Teilkupplung 3.2 übernommen wird. Das Verfahren gemäß 6 unterscheidet sich jedoch von dem zuvor anhand der 5 beschriebenen Verfahren wie folgt:
  • S1: Im Elektro-Fahrmodus wird im zweiten Teilgetriebe 4.2 ein Gang vorgewählt, welcher eine möglichst geringe Übersetzung aufweist, so dass beim nachfolgenden Anschleppen die Übertragung von Schwingungen reduziert werden kann.
  • S2a: Anschleppen des Verbrennungsmotors 1 im Elektro-Fahrmodus; Zum Anschleppen ist in dem zweiten Teilgetriebe 4.2 eine möglichst geringe Übersetzung eingestellt, insbesondere eine Übersetzung die geringer ist als die Übersetzung des ersten Teilgetriebes 4.1 in dem vorhergehenden Elektro-Fahrmodus. Die Übertragung des Drehmoments von dem Elektromotor 5 erfolgt über das erste Teilgetriebe 4.1, das zweite Teilgetriebe 4.2 und die zweite Teilkupplung 3.2. Das Kupplungsmoment MK2 steigt dementsprechend sprunghaft an, während die Drehzahl nV des Verbrennungsmotors 2 kleiner ist als die Drehzahl des Elektromotors nE bzw. der ersten Eingangswelle 7.
  • S2b: Erhöhung der Drehzahl nV des Verbrennungsmotors 2; Im Verfahrensschritt S2b wird im zweiten Teilgetriebe 4.2 ein Gang vorgewählt, welcher eine höhere Übersetzung aufweist als zum Anschleppen des Verbrennungsmotors in Verfahrensschritt S2a eingestellt war.
  • S3: Einkuppeln des Verbrennungsmotors 2; Im Verfahrensschritt S3 wird die zweite Teilkupplung 3.2 teilweise geschlossen, das Kupplungsmoment MK2 der zweiten zweite Teilkupplung 3.2 also erhöht, wobei im zweiten Teilgetriebe ein Gang mit höherer Übersetzung eingelegt ist.

Claims (12)

  1. Verfahren zum Betrieb eines Antriebsstrangs (1) eines Hybridfahrzeugs, welcher – einen Verbrennungsmotor (2), – einen Elektromotor (5), – eine Kupplung (3) zum wahlweisen Verbinden des Verbrennungsmotors (2) und des Elektromotors (5) und – ein Getriebe (4) mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der Kupplung (3) verbundene Eingangswelle (7) und eine Ausgangswelle (8) und optional eine Zwischenwelle aufweist, wobei die Eingangswelle (7) oder die Ausgangswelle (8) oder die Zwischenwelle drehfest mit dem Elektromotor (5) gekoppelt ist, wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor (5) die Ausgangswelle (8) antreibt und der Verbrennungsmotor (2) stillsteht, in einen Hybrid-Fahrmodus gewechselt wird, in welchem der Elektromotor (5) und der Verbrennungsmotor (2) die Ausgangswelle (8) gemeinsam antreiben, mit den Verfahrensschritten: S2a: Im Elektro-Fahrmodus wird das Drehmoment (ME) des Elektromotors (5) erhöht und die Kupplung (3) zumindest teilweise geschlossen, um den Verbrennungsmotor (2) anzuschleppen; S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl (nVmin) des Verbrennungsmotors (2) wird der Verbrennungsmotor (2) gestartet und die Kupplung (3) wird vollständig geöffnet, um den Verbrennungsmotor (2) von dem Elektromotor (5) zu entkoppeln; S3: Bei Erreichen einer vorgegebenen Zieldrehzahl (nVziel) des Verbrennungsmotors (2) wird die Kupplung (3) teilweise geschlossen und das Drehmoment (ME) des Elektromotors (5) wird reduziert; S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen (nV, nE) des Verbrennungsmotors (2) und des Elektromotors (5) wird die Kupplung (3) zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln; wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor (2) ein konstantes Soll-Drehmoment (MVsoll) vorgegeben wird.
  2. Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs, welcher – einen Verbrennungsmotor (2), – einen Elektromotor (5), – eine erste Teilkupplung (3.1) zum wahlweisen Verbinden des Verbrennungsmotors (2) und des Elektromotors (5) sowie eine zu der ersten Teilkupplung (3.1) parallel geschaltete, zweite Teilkupplung (3.2) und – ein erstes Teilgetriebe (4.1) mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung (3.1) verbundene Eingangswelle (7) und eine Ausgangswelle (8) und optional eine Zwischenwelle aufweist, wobei die Eingangswelle (7) oder die Ausgangswelle (8) oder die Zwischenwelle drehfest mit dem Elektromotor (5) gekoppelt ist, wobei von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor (5) die Ausgangswelle (8) antreibt und der Verbrennungsmotor (2) stillsteht, in einen Hybrid-Fahrmodus gewechselt wird, in welchem der Elektromotor (5) und der Verbrennungsmotor (2) die Ausgangswelle (8) gemeinsam antreiben, mit den folgenden Verfahrensschritten, in welchen als Kupplung entweder ausschließlich die erste Teilkupplung (3.1) oder ausschließlich die zweite Teilkupplung (3.2) verwendet wird: S2a: Im Elektro-Fahrmodus wird das Drehmoment (ME) des Elektromotors (5) erhöht und die Kupplung (3.1, 3.2) zumindest teilweise geschlossen, um den Verbrennungsmotor 2 anzuschleppen; S2b: Bei Erreichen einer vorgegebenen Mindestdrehzahl (nVmin) des Verbrennungsmotors (2) wird der Verbrennungsmotor (2) gestartet und die Kupplung (3.1, 3.2) wird vollständig geöffnet, um den Verbrennungsmotor (2) von dem Elektromotor (5) zu entkoppeln; S3: Bei Erreichen einer vorgegebenen Zieldrehzahl (nVziel) des Verbrennungsmotors 82) wird die Kupplung (3.1, 3.2) teilweise geschlossen und das Drehmoment (ME) des Elektromotors (5) wird reduziert; S5: Bei Erreichen im Wesentlichen synchroner Drehzahlen (nV, nE) des Verbrennungsmotors (2) und des Elektromotors (5) wird die Kupplung (3.1, 3.2) zumindest teilweise geschlossen, um in den Hybrid-Fahrmodus zu wechseln; wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor (2) ein konstantes Soll-Drehmoment (MVsoll) vorgegeben wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei im Verfahrensschritt S2a das Erhöhen des Drehmoments (ME) des Elektromotors (5) und das zumindest teilweise Schließen der Kupplung (3, 3.1, 3.2) synchron erfolgt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Verbrennungsmotor (2) einen Saugbetrieb und einen Ladebetrieb aufweist, wobei ein Turbolader des Verbrennungsmotors (2) im Saugbetrieb nicht aktiv ist und im Ladebetrieb aktiv ist und wobei in den Verfahrensschritten S2a und S2b dem Verbrennungsmotor (2) ein konstantes Soll-Drehmoment (MVsoll) vorgegeben wird, bei welchem der Verbrennungsmotor (2) in dem Saugbetrieb arbeitet.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei dem Verbrennungsmotor (2) in den Verfahrensschritten S2a, S2b und S3 ein konstantes Soll-Drehmoment (MVsoll) vorgegeben wird.
  6. Verfahren nach einem der Ansprüche 1 bis 4, wobei dem Verbrennungsmotor in Verfahrensschritt S3 ein Soll-Drehmoment vorgegeben wird, welches kleiner ist als das in den Verfahrensschritten S2a und S2b vorgegebene konstante Soll-Drehmoment (MVsoll).
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei zum Anschleppen des Verbrennungsmotors (2) eine geringe Übersetzung des Getriebes (4) oder des ersten Teilgetriebes (4.1) oder des zweiten Teilgetriebes (4.2) eingestellt ist.
  8. Verfahren nach Anspruch 7, wobei beim teilweisen Schließen der Kupplung (3, 3.1, 3.2) in Verfahrensschritt S3 eine höhere Übersetzung des Getriebes (4) oder des ersten Teilgetriebes (4.1) oder des zweiten Teilgetriebes (4.2) eingestellt ist als zum Anschleppen des Verbrennungsmotors (2).
  9. Verfahren nach einem der Ansprüche 2 bis 8, wobei die erste Teilkupplung (3.1), die zweite Teilkupplung (3.2) und das erste Teilgetriebe (4.1) Teil eines Doppelkupplungsgetriebes (9) sind, welches ein zweites Teilgetriebe (4.2) mit wahlweise einstellbarer Übersetzung aufweist, das eine mit der zweiten Teilkupplung (4.2) verbundene zweite Eingangswelle (10) und eine mit der ersten Ausgangswelle (8) drehfest verbundene, zweite Ausgangswelle (11) aufweist.
  10. Verfahren nach einem der Ansprüche 1 oder 3 bis 8, wobei die Kupplung (3) und das Getriebe (4) Teil eines automatischen Schaltgetriebes sind.
  11. Antriebsstrang für ein Hybridfahrzeug, welcher – einen Verbrennungsmotor (2), – einen Elektromotor (5), – eine Kupplung (3) zum wahlweisen Verbinden des Verbrennungsmotors (2) und des Elektromotors (5) und – ein Getriebe (4) mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der Kupplung (3) verbundene Eingangswelle (7) und eine Ausgangswelle (8) und optional eine Zwischenwelle aufweist, wobei die Eingangswelle (7) oder die Ausgangswelle (8) oder die Zwischenwelle drehfest mit dem Elektromotor (5) gekoppelt ist, wobei der Antriebsstrang (1) von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor (5) die Ausgangswelle antreibt und der Verbrennungsmotor (2) stillsteht, in einen Hybrid-Fahrmodus verbringbar ist, in welchem der Elektromotor (5) und der Verbrennungsmotor (2) die Ausgangswelle (8) gemeinsam antreiben, gekennzeichnet durch eine Steuervorrichtung (6), welche zur Durchführung eines Verfahrens nach einem der Ansprüche 1, 3 bis 8 oder 10 konfiguriert ist.
  12. Antriebsstrang für ein Hybridfahrzeug, welcher – einen Verbrennungsmotor (2), – einen Elektromotor (5), – eine erste Teilkupplung (3.1) zum wahlweisen Verbinden des Verbrennungsmotors (2) und des Elektromotors (5) sowie eine zu der ersten Teilkupplung (3.1) parallel geschaltete, zweite Teilkupplung (3.2) und – ein erstes Teilgetriebe (4.1) mit wahlweise einstellbarer Übersetzung umfasst, das eine mit der ersten Teilkupplung (3.1) verbundene Eingangswelle (7) und eine Ausgangswelle (8) und optional eine Zwischenwelle aufweist, wobei die Eingangswelle (7) oder die Ausgangswelle (8) oder die Zwischenwelle drehfest mit dem Elektromotor (5) gekoppelt ist, wobei der Antriebsstrang (1) von einem Elektro-Fahrmodus, in welchem ausschließlich der Elektromotor (5) die Ausgangswelle (8) antreibt und der Verbrennungsmotor (2) stillsteht, in einen Hybrid-Fahrmodus verbringbar ist, in welchem der Elektromotor (5) und der Verbrennungsmotor (2) die Ausgangswelle (8) gemeinsam antreiben, gekennzeichnet durch eine Steuervorrichtung (6), welche zur Durchführung eines Verfahrens nach einem der Ansprüche 2 bis 9 konfiguriert ist.
DE102016209006.2A 2016-05-24 2016-05-24 Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs Pending DE102016209006A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102016209006.2A DE102016209006A1 (de) 2016-05-24 2016-05-24 Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs
CN201780031435.4A CN109153383A (zh) 2016-05-24 2017-05-23 用于运行混动车辆的驱动系的方法以及混动车辆的驱动系
PCT/DE2017/100439 WO2017202419A1 (de) 2016-05-24 2017-05-23 Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016209006.2A DE102016209006A1 (de) 2016-05-24 2016-05-24 Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs

Publications (1)

Publication Number Publication Date
DE102016209006A1 true DE102016209006A1 (de) 2017-11-30

Family

ID=59325105

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016209006.2A Pending DE102016209006A1 (de) 2016-05-24 2016-05-24 Verfahren zum Betrieb eines Antriebsstrangs eines Hybridfahrzeugs und Antriebsstrang eines Hybridfahrzeugs

Country Status (3)

Country Link
CN (1) CN109153383A (de)
DE (1) DE102016209006A1 (de)
WO (1) WO2017202419A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100503A1 (de) * 2019-01-10 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb eines Hybridantriebs mit einem Doppelkupplungsgetriebe
EP4037944A4 (de) * 2019-10-02 2023-10-11 Scania CV AB Steuervorrichtung und verfahren zum starten eines verbrennungsmotors während des freilaufs eines fahrzeugs mit einer solchen vorrichtung, computerprogramm zur ausführung des verfahrens sowie computerlesbares medium mit dem programm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210728B3 (de) * 2019-10-14 2021-02-18 Magna Pt B.V. & Co. Kg Verfahren zum Steuern eines Hybridantriebsstrangs eines Hybridkraftfahrzeugs
CN111976696B (zh) * 2020-01-19 2021-11-16 蜂巢传动科技河北有限公司 混合动力车辆的发动机控制方法及装置
FR3139678B1 (fr) * 2022-09-13 2024-09-27 Psa Automobiles Sa Vehicule automobile hybride comprenant un controleur de couple appliquant un couple sur la base d’une vitesse cible, procede et programme sur la base d’un tel vehicule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901470B4 (de) * 1998-01-16 2005-03-17 Toyota Jidosha K.K., Toyota Antriebssteuerungssystem für ein Hybridfahrzeug
DE102010043355A1 (de) * 2010-11-04 2012-05-10 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
DE102012009481A1 (de) * 2012-05-12 2013-11-14 Volkswagen Aktiengesellschaft Verfahren sowie Hybridantriebseinheit zur Steuerung einer Zuschaltung eines Verbrennungsmotors
DE102013225547A1 (de) * 2013-12-11 2015-06-11 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeugantriebsstranges mit einer Brennkraftmaschine, einer elektrischen Maschine, einer Getriebeeinrichtung und mit einem Abtrieb

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007045366A1 (de) * 2007-09-22 2009-04-02 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102007050659B4 (de) * 2007-10-24 2023-08-03 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102008051295A1 (de) * 2008-10-10 2010-04-15 Daimler Ag Verfahren zur Steuerung eines Hybridantriebsstranges und paralleler Hybridantriebsstrang
DE102011002742A1 (de) * 2011-01-17 2012-07-19 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Antriebsstrang eines Hybridfahrzeugs
AT515103B1 (de) * 2014-05-23 2015-06-15 Avl List Gmbh Verfahren zum starten einer brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901470B4 (de) * 1998-01-16 2005-03-17 Toyota Jidosha K.K., Toyota Antriebssteuerungssystem für ein Hybridfahrzeug
DE102010043355A1 (de) * 2010-11-04 2012-05-10 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
DE102012009481A1 (de) * 2012-05-12 2013-11-14 Volkswagen Aktiengesellschaft Verfahren sowie Hybridantriebseinheit zur Steuerung einer Zuschaltung eines Verbrennungsmotors
DE102013225547A1 (de) * 2013-12-11 2015-06-11 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Fahrzeugantriebsstranges mit einer Brennkraftmaschine, einer elektrischen Maschine, einer Getriebeeinrichtung und mit einem Abtrieb

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100503A1 (de) * 2019-01-10 2020-07-16 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb eines Hybridantriebs mit einem Doppelkupplungsgetriebe
US11642957B2 (en) 2019-01-10 2023-05-09 Bayerische Motoren Werke Aktiengesellschaft Control unit and method for operating a hybrid drive with a dual clutch transmission
EP4037944A4 (de) * 2019-10-02 2023-10-11 Scania CV AB Steuervorrichtung und verfahren zum starten eines verbrennungsmotors während des freilaufs eines fahrzeugs mit einer solchen vorrichtung, computerprogramm zur ausführung des verfahrens sowie computerlesbares medium mit dem programm

Also Published As

Publication number Publication date
WO2017202419A1 (de) 2017-11-30
CN109153383A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
DE102007001424B4 (de) Verfahren zum Starten eines Kolbenmotors, Hybrid-Antrieb für ein Kraftfahrzeug sowie Kraftfahrzeug mit Hybridantrieb
DE10025586C2 (de) Antriebsstrang für ein Kraftfahrzeug
WO2017202419A1 (de) Verfahren zum betrieb eines antriebsstrangs eines hybridfahrzeugs und antriebsstrang eines hybridfahrzeugs
DE102006034937A1 (de) Betriebsverfahren für einen Hybridantrieb
WO2012097905A2 (de) Verfahren und vorrichtung zum betreiben einer antriebsvorrichtung
DE102009045485A1 (de) Verfahren zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung
WO2017148474A1 (de) Verfahren zum starten eines verbrennungsmotors eines hybridfahrzeugs und steuereinheit zum betreiben des verfahrens
EP3351787B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
EP2718593B1 (de) Verfahren zum betreiben einer antriebsvorrichtung sowie vorrichtung zum betreiben der antriebsvorrichtung
WO2016156245A1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
EP3351449B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
DE102006034934A1 (de) Betriebsverfahren für einen Hybridantrieb
EP3075620B1 (de) Verfahren zur durchführung einer gangschaltung bei parallel-hybrid-fahrzeugen
EP3351446B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
DE102019218740A1 (de) Kraftfahrzeug
DE102016203434A1 (de) Verfahren zur Adaption eines Greifpunkts einer Trennkupplung für ein Fahrzeug
EP3263382B1 (de) Verfahren zum betreiben einer antriebseinrichtung sowie entsprechende antriebseinrichtung
DE102016206093B4 (de) Verfahren zum Mindern von Störungen in einem Kraftfahrzeug-Antriebsstrang bei einem Gangwechsel
DE10249952B4 (de) Verfahren zum Betrieb eines Antriebsstrangs eines Kraftfahrzeugs
DE102016203574A1 (de) Verfahren und Steuerungssystem zum Betreiben eines Antriebsstrangs
DE102013109664B4 (de) Antriebsstrang-Ansteuerverfahren und -vorrichtung
DE102017214787A1 (de) Impulsstart in einem Hybrid-Antriebsstrang
DE102004057122A1 (de) Verfahren zum Erkennen der Drehrichtung der Sekundärseite einer Anfahrkupplung
DE102020201374A1 (de) Verfahren zum Betreiben eines Hybridfahrzeugs
WO2018069213A1 (de) Verfahren zum durchführen eines kriechladebetriebes und hybrid-antriebsstrang hierfür

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication