WO2017202339A1 - 一种无线链路质量的测量方法及终端 - Google Patents

一种无线链路质量的测量方法及终端 Download PDF

Info

Publication number
WO2017202339A1
WO2017202339A1 PCT/CN2017/085719 CN2017085719W WO2017202339A1 WO 2017202339 A1 WO2017202339 A1 WO 2017202339A1 CN 2017085719 W CN2017085719 W CN 2017085719W WO 2017202339 A1 WO2017202339 A1 WO 2017202339A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
subframe
drs
detected
rsrq
Prior art date
Application number
PCT/CN2017/085719
Other languages
English (en)
French (fr)
Inventor
路杨
孙立新
丁颖哲
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Priority to EP17802185.3A priority Critical patent/EP3468246B1/en
Priority to US16/304,974 priority patent/US10764820B2/en
Priority to JP2018562197A priority patent/JP6732955B2/ja
Publication of WO2017202339A1 publication Critical patent/WO2017202339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and a terminal for measuring radio link quality.
  • MulteFire is a new LTE (Long Term Evolution) based radio access technology that can operate independently in unlicensed spectrum without the aid of licensed band carriers. MulteFire extends LTE to the unlicensed spectrum.
  • the MulteFire physical layer introduces a Listening Before Talk (LBT) mechanism similar to WiFi carrier sensing technology.
  • LBT Listening Before Talk
  • each downlink subframe transmits a Cell Specific Reference Signal (CRS).
  • CRS Cell Specific Reference Signal
  • the user terminal judges that the channel quality of the Sample is poor.
  • the DRS Discovery Reference Signal
  • the base station does not send the DRS after the LBT failure in the DRS Transmission Window (DTXW, DRS Transmission Window), or may not be due to the failure of the base station LBT.
  • DTXW DRS Transmission Window
  • the reason is that the downlink channel quality is poor, so that the UE does not detect the DRS.
  • the base station does not transmit the DRS due to the LBT failure in the DTxW, it cannot be determined that the channel quality of the subframe in which the DRS is not detected must be poor.
  • Samples that do not detect DRS are factors that need to be considered in wireless link synchronization or wireless link out-of-synchronization detection.
  • the reference signal reception quality (RSRQ) of the Sample which does not detect the DRS is considered to be low.
  • the received signal quality that would result in the UE being evaluated at out-of-synchronization or synchronous detection is lower than the actual received signal quality.
  • the base station transmits the CRS only in the subframe in which the DRS is located or in other subframes in which the physical downlink shared channel (PDSCH) is transmitted, but in other subframes.
  • the CRS is not transmitted, so the UE cannot use any subframe as the Sample of the radio link detection.
  • PDSCH physical downlink shared channel
  • the technical problem to be solved by the present disclosure is to provide a method and a terminal for measuring radio link quality, so as to solve the problem that the received signal quality evaluated in the Multefire system is lower than the actual reception if the out-of-step or synchronous detection in the relevant LTE system is adopted. Signal quality, resulting in inaccurate or inaccurate detection results.
  • an embodiment of the present disclosure provides a method for measuring radio link quality.
  • the method includes: acquiring a probability that the base station successfully sends the discovery reference signal DRS; detecting, in a preset evaluation period, a cell reference signal CRS of each subframe, and obtaining a subframe state of each subframe, where the subframe state includes detecting a state of the CRS and a state in which no DRS is detected in the radio link measurement window; determining, according to a probability that the base station successfully transmits the DRS, the sub-frame state is a sub-state in which no DRS is detected in the radio link measurement window
  • the state of the frame is generated; according to the state generation cause and the subframe state, preset detection is performed on the quality of the radio link in the preset evaluation period, and the state in which the wireless link is located is determined.
  • An embodiment of the present disclosure provides a terminal, including: a first acquiring module, configured to acquire a probability that a base station successfully sends a discovery reference signal DRS; and a state detecting module, configured to:, in a preset evaluation period, a cell reference signal CRS for each subframe Performing detection to obtain a subframe state of each subframe, where the subframe state includes a state in which the CRS is detected and a state in which no DRS is detected in the radio link measurement window; and a determining module, configured to successfully send the DRS according to the base station a probability of determining that the subframe state is a state of a subframe in which a state of DRS is not detected within a radio link measurement window; and a link state determining module configured to generate a cause and a subframe according to the state Status, preset detection of the quality of the radio link in the preset evaluation period, and determining the state of the radio link.
  • a first acquiring module configured to acquire a probability that a base station successfully sends
  • the embodiment of the present disclosure further provides a terminal, including: a receiver, configured to receive a probability that a base station successfully sends a discovery reference signal DRS, and a processor that is connected to the receiver, and is used to implement the method according to the embodiment of the present disclosure. .
  • the wireless chain of the embodiment of the present disclosure In the method and the terminal for measuring the quality of the road, the cause of the state of the subframe in which the state of transmitting the DRS is not detected in the radio link measurement window is first determined, and then the radio link detection is performed, so that the estimated RSRQ is closer.
  • the actual channel quality makes the out-of-synchronization or synchronous detection results more accurate.
  • Figure 1 is a schematic diagram of synchronous detection of the MulteFire system
  • FIG. 2 is a schematic diagram of out-of-step detection of the MulteFire system
  • FIG. 3 is a flow chart showing a method for measuring radio link quality according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart showing a method of measuring radio link quality according to an embodiment of the present disclosure
  • Figure 5 is a diagram showing the transmission state of a radio frame
  • 6A is a flow chart showing a method of measuring radio link quality according to an embodiment of the present disclosure
  • 6B-6C are diagrams showing a detailed flow chart of one of the steps of a method for measuring radio link quality according to an embodiment of the present disclosure
  • FIG. 7A is a flow chart showing a method of measuring radio link quality according to an embodiment of the present disclosure.
  • FIGS. 7B-7C are diagrams showing detailed flowcharts of one of the steps of a method for measuring radio link quality according to an embodiment of the present disclosure
  • FIG. 8A is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • 8B-8C are structural diagrams showing a module in a terminal provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the present disclosure provides A method and terminal for measuring wireless link quality.
  • the DRS contains the main downstream common control signals, including System broadcast, primary synchronization signal (PSS, Primary Sync Signal), secondary synchronization signal (SSS, Secondary Sync Signal), enhanced primary synchronization signal (ePSS), enhanced secondary synchronization signal (eSSS, enhanced secondary Sync Signal) And CRS.
  • the DRS occupies 12 or 14 symbols (Symbols) in one downlink subframe.
  • DRS is transmitted in DTxW.
  • DTxW has a length of 1 to 10 ms
  • DTxW has a minimum period of 40 ms, and must be an integer multiple of 40 ms.
  • Multefire introduces a DRS Timing Configuration (DMTC) window, and the user terminal (UE) measures the CRS of the serving cell and the neighboring cell in the DMTC window in which the period occurs for radio link quality monitoring, cell selection, and cell. Reselect or switch.
  • the base station may configure a separate DMTC for the Multefire serving cell, the Multefire neighbor cell with the same frequency as the serving cell, and the Multefire neighbor cell with the serving cell. Since the Multefire system can only guarantee that the CRS is transmitted in the DRS subframe in the DTxW, the DMTC window of each frequency point and the cell must include the corresponding frequency point and the DTxW of the cell to ensure the DRS subframe in the frequency point and the cell. Measurement of CRS.
  • the DMTC window has a length of 1ms-10ms.
  • the UE performs radio link quality measurement only in the DMTC of the serving cell, the DMTC of the same-frequency neighboring cell, and the DMTC of the inter-frequency neighboring cell.
  • the base station transmits CRS in each downlink subframe, and each subframe can be used as a sample.
  • the terminal evaluates the downlink channel quality by measuring the reference signal received quality (RSRQ, Reference Signal Receive Quality) of the CRS signal.
  • RSRQ Reference Signal Receive Quality
  • the UE measures the RSRQ of the CRS within the Out-of-Sync evaluation period (eg, 200 ms) and evaluates the average RSRQ of the CRS, if the evaluation result is lower than the preset downlink channel Out
  • the -Of-Sync threshold (Qout) determines that the downlink channel is out of synchronization, and the UE (terminal) physical layer sends an Out-Of-Sync indication to the upper layer.
  • the UE In the synchronous detection, when the UE measures the RSRP of the CRS and evaluates the average RSRQ of the CRS in an in-Sync evaluation period (eg, 100 ms), if the evaluation result is higher than the preset downlink channel in-Sync threshold ( Qin), the downlink channel synchronization is judged, and the UE physical layer sends an In-Sync indication to the upper layer.
  • an in-Sync evaluation period eg, 100 ms
  • the UE's radio link measurement window is typically a DTxW or DMTC window, or a window containing a DTxW or DMTC window.
  • the base station sends only the subframe in which the DRS is located or in other subframes that are transmitted by the Physical Downlink Shared Channel (PDSCH). Send CRS, other subframes do not send CRS.
  • PDSCH Physical Downlink Shared Channel
  • Figure 1 is a schematic diagram of synchronous detection of the MulteFire system.
  • the UE In the synchronous detection, the UE only considers the Sample of the CRS detected during the In-Sync evaluation period and the Sample of the DRS not detected.
  • Figure 2 is a schematic diagram of the out-of-step detection of the MulteFire system. In the out-of-synchronization detection, only the Sample of the CRS and the Sample of the DRS not detected in the radio link measurement window (DTxW or DMTC) are considered in the Out-of-Synce period.
  • DTxW or DMTC radio link measurement window
  • the Sample of the CRS is detected that the RSR of the CRS is higher than the Sample of the specified detection threshold and the Sample of the DRS is detected within the radio link measurement window, and the DRS detected in the radio link measurement window refers to one of the DTxW.
  • the sub-frame detects the PSS/SSS and ePSS/eSSS of the DRS, and the DRS is not detected in the radio link measurement window, which means that the PSS/SSS and ePSS of the DRS are not detected in every subframe in the radio link measurement window. /eSSS.
  • the base station transmits CRS in each downlink subframe, and each subframe can be used as a detection sample.
  • the terminal evaluates the downlink channel quality by measuring the RSRQ of the CRS signal.
  • the downlink channel quality is also evaluated in the above manner.
  • an embodiment of the present disclosure provides a method for measuring radio link quality of a terminal, including steps 31 to 34.
  • Step 31 Acquire a probability that the base station successfully transmits the discovery reference signal DRS.
  • the base station may perform short-term LBT (Cat. 2 LBT) in each subframe in the DTxW to try to transmit the DRS, and the 25 microsecond detection channel of the first two symbols of the subframe in the DTxW .
  • the base station may also transmit the burst LOST of the PDSCH (the downlink data subframe continuously transmitted by the base station) or the PDSCH after the normal LBT (Cat. 4 LBT) performed when the downlink PDSCH is transmitted.
  • the DRS is transmitted in subsequent subframes of Burst.
  • the base station performs a Cat.
  • the base station when detecting that the channel is not occupied, the base station transmits the PDSCH and the CRS. If the downlink Burst transmission time after the LBT includes the subframe 0 and the subframe 5 of the DTxW, the base station may not perform the Cat. 2 LBT and may directly send the DRS once in the subframe 0 and the subframe 5, and the DRS occupies 14 Symbols. When the base station does not contend for the channel in the DTxW, the base station does not transmit the DRS. Therefore, the probability that the base station transmits the DRS is the probability that the base station contends to the channel in the DTxW, and the range is 0 to 100%.
  • Step 32 Detecting a cell reference signal CRS of each subframe in a preset evaluation period, The subframe state of each subframe is obtained, and the subframe state includes a state in which the CRS is detected and a state in which no DRS is detected in the radio link measurement window.
  • Step 32 is mainly implemented to determine the state of each subframe in the preset evaluation period. It should be noted that the subframe in which the state of transmitting the DRS is not detected in the radio link measurement window refers to the PSS/SSS and the ePSS/eSSS in which the DRS is not detected in every subframe in the radio link measurement window.
  • the preset evaluation period may be a synchronous evaluation period or an out-of-step evaluation period.
  • Step 33 Determine, according to the probability that the base station successfully transmits the DRS, the state of the subframe to be the state of the subframe in which the state of the DRS is not detected in the radio link measurement window.
  • the reason for the state mainly refers to: failure of the base station LBT and failure of the base station LBT.
  • Step 34 Perform preset detection on the quality of the radio link in the preset evaluation period according to the status generation cause and the subframe status, and determine the status of the radio link.
  • synchronization detection or out-of-synchronization detection is performed on the radio link to determine the state of the radio link.
  • the measured RSRQ in this way is closer to the actual channel quality, and the measured RSRQ can more accurately determine the state of the wireless link, thereby ensuring that the synchronization or out-of-synchronization detection result is more accurate.
  • an embodiment of the present disclosure provides a method for measuring radio link quality, including steps 41 to 45.
  • Step 41 Acquire a probability that the base station successfully transmits the discovery reference signal DRS.
  • Manner 1 Obtain the probability that the base station successfully transmits the DRS through the system broadcast in the preset period.
  • the base station may send the probability of successfully transmitting the DRS in the preset period to the terminal in the system broadcast (for example, in the eSIB), and the terminal acquires the probability that the base station successfully transmits the DRS by receiving the system broadcast of the base station.
  • Manner 2 Obtain the average channel occupancy counted by the base station in the preset period sent by the system broadcast. Rate, and determine the probability that the base station successfully transmits DRS according to the average channel occupancy rate.
  • the base station may also send the average channel occupancy rate in the preset period to the terminal in the system broadcast, and the terminal obtains the average channel occupancy rate sent by the base station by receiving the system broadcast of the base station, and uses the average channel occupancy rate as the base station success.
  • the probability of transmitting the DRS, or the terminal calculates the probability that the base station successfully transmits the DRS according to the average channel occupancy rate.
  • Step 42 Detecting a cell reference signal CRS of each subframe in a preset evaluation period, and obtaining a subframe state of each subframe, where the subframe state includes detecting a state of the CRS and not detecting in the radio link measurement window. The status of the DRS.
  • the specific implementation manner of this step is: in the preset evaluation period, if the reference signal received quality RSRQ of the CRS is greater than or equal to the CRS detection threshold, the subframe status of the detected subframe is detected. Marked as the state of detecting the CRS; if the DRS is detected in the radio link measurement window within the preset evaluation period, the subframe status of the subframe in which the DRS is detected is marked as the state in which the CRS is detected; In the radio link measurement window within the evaluation period, if the DRS subframe is not detected, the subframe status of the DRS subframe is marked as a state in which no DRS is detected in the radio link measurement window.
  • detecting DRS in the radio link measurement window refers to detecting PSS/SSS and ePSS/eSSS of DRS in one subframe in the radio link measurement window, and not detecting in the radio link measurement window.
  • the DRS refers to the PSS/SSS and ePSS/eSSS for which DRS is not detected in every subframe within the radio link measurement window.
  • the wireless link measurement window is a DTxW or DMTC window, or a window containing a DTxW or DMTC window.
  • Step 43 Determine, if the subframe status is a subframe in which the DRS is not detected in the radio link measurement window, if the subframe in the DTxW is partially or completely located in the downlink continuous data corresponding to the subframe in which the CRS is detected. In the subframe, it is determined that the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is caused by the fact that the LBT fails after the base station first listens; otherwise, step 44 is performed.
  • step 43 if part or all of the subframes in the DTxW are located in the downlink continuous data subframe corresponding to the subframe in which the state of the CRS is detected, it is determined that the subframe in which the state of transmitting the DRS is not detected in the radio link measurement window is determined.
  • the reason for the state is not that the base station listens first and then the LBT failure can be implemented as follows:
  • the base station may send the normal LBT (Cat. 4 LBT) when transmitting the downlink data, or may be sent in the burst of the PDSCH or in the continuous subframe after the burst of the PDSCH.
  • DRS the base station performs the Cat.4 LBT before transmitting the PDSCH.
  • the base station transmits the PDSCH and the CRS. If the downlink Burst transmission time after the LBT includes the subframe 0 or the subframe 5 of the DTxW, The base station may not perform the Cat. 2 LBT and directly send the DRS once in the subframe 0 or the subframe 5, and the DRS occupies 14 Symbols.
  • the terminal detects the subframe of the CRS state, and some or all of the DTxW subframes are located in the downlink Burst corresponding to the subframe of the CRS state, it may be determined that the base station directly sends the DRS in the Burst, in the wireless chain.
  • the subframe in which the DRS is transmitted is not detected in the path measurement window is not caused by the LBT failure.
  • the terminal can learn the starting subframe and the length of the downlink Burst by using the PDCCH signal or the C-PDCCH signal or other physical layer channel sent by the base station. For example, as shown in FIG.
  • the terminal detects the state of the CRS in the subframe 5 of the radio frame N, and does not detect the subframe of the DRS in the DTxW of the next radio frame N+1. If the terminal learns that the starting subframe of the Burst corresponding to the subframe 5 of the radio frame N is the subframe 5, and the length is 8 ms, it is determined that the partial subframe of the DTxW is located in the Burst corresponding to the subframe 5, and the terminal may determine that The CRS that does not detect the transmission of the DRS subframe within the radio link measurement window is not caused by the LBT failure.
  • the terminal may determine that the base station transmits the DRS in the subframe 0 of the DTxW, that is, The transmission of the DRS subframe is not detected in the radio link measurement window due to the LBT failure; or the subframe is detected when the terminal detects the state of the continuous CRS before the subframe 5 of the DTxW or the CRS is detected in the subframe 0 of the DTxW. Then, the terminal can determine that the base station sends the DRS in the subframe 0 of the DTxW, that is, the CRS that does not detect the transmission of the DRS subframe in the radio link measurement window is not caused by the LBT failure.
  • the terminal may determine part or all of the DTxW.
  • the frame and the subframe in which the CRS is detected are located in the Burst corresponding to the same LBT success process, and the transmission of the DRS subframe is not detected in the radio link measurement window due to the LBT failure.
  • Step 44 Determine, according to the probability that the base station successfully transmits the DRS, the state of the subframe to be the state of the subframe in which the state of the DRS is not detected in the radio link measurement window.
  • the reason for the state mainly refers to: failure of the base station LBT and failure of the base station LBT.
  • This step 44 can be implemented as follows:
  • Manner 1 When the probability that the base station successfully transmits the DRS is greater than or equal to the preset probability threshold, determining the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is caused by the failure of the base station LBT, otherwise, the radio link measurement The state of the subframe in which the state of the DRS is not detected in the window is caused by the failure of the base station LBT.
  • Manner 2 The reference value generated according to the preset rule is obtained, and the reference value is greater than or equal to 0, and is less than or equal to 1.
  • the reference value is a random number generated by the terminal according to the uniform distribution rule in the range of 0 to 100%.
  • the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is not caused by the failure of the base station LBT, otherwise, the radio link measurement window is not obtained.
  • the state of the subframe in which the state of the DRS is detected is caused by the failure of the base station LBT.
  • Step 45 Perform preset detection on the quality of the radio link in the preset evaluation period according to the status generation cause and the subframe status, and determine the status of the radio link.
  • the synchronization detection or out-of-synchronization detection is performed on the radio link to determine the state of the radio link.
  • the measured RSRQ in this way is closer to the actually transmitted RSRQ, and the measured RSRQ can obtain the wireless link state more accurately, thereby ensuring the synchronization or out-of-synchronization detection result is more accurate.
  • the method for measuring the quality of the wireless link of the embodiment of the present disclosure includes steps 61 to 64.
  • Step 61 Acquire a probability that the base station successfully transmits the discovery reference signal DRS.
  • Step 62 Detect the cell reference signal CRS of each subframe in the synchronization evaluation period.
  • the subframe state of each subframe is obtained, and the subframe state includes a state in which the CRS is detected and a state in which no DRS is detected in the radio link measurement window.
  • Step 63 Determine, according to the probability that the base station successfully transmits the DRS, the state of the subframe to be the state of the subframe in which the state of the DRS is not detected in the radio link measurement window.
  • Step 64 Synchronously detect the quality of the radio link in the synchronization evaluation period according to the status generation cause and the subframe status, and determine the status of the radio link.
  • step 64 in a specific implementation includes:
  • Step 641 The first RSRQ of the subframe in which the state of detecting the CRS is detected in the synchronization evaluation period and the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is generated, and the cause is not the subframe in which the base station LBT fails.
  • First reference RSRQ
  • Step 642 Determine a first average RSRQ according to the first RSRQ and the first reference RSRQ;
  • Step 643 If the first average RSRQ is greater than or equal to a preset synchronization threshold, determine that the state of the wireless link is wireless link synchronization.
  • the first RSRQ is the actually measured RSRQ, and the first reference RSRQ cannot be measured, which is a virtual value set by the terminal that is smaller than the CRS detection threshold.
  • the average RSRQ of the first RSRQ and the first reference RSRQ is compared with the preset synchronization threshold to obtain whether the wireless link belongs to a synchronized state.
  • step 64 in a specific implementation includes:
  • Step 644 The second RSRQ of the subframe in which the state of the CRS is detected in the synchronization evaluation period, and the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is generated, and the cause is not the subframe in which the base station LBT fails. No reference to RSR in the second reference RSRQ and radio link measurement window The state of the subframe of the state is caused by the third reference RSRQ of the subframe in which the base station LBT fails;
  • Step 645 determining a second average RSRQ according to the second RSRQ, the second reference RSRQ, and the third reference RSRQ;
  • Step 646 If the second average RSRQ is greater than or equal to the preset synchronization threshold, determine that the state of the wireless link is wireless link synchronization.
  • the second RSRQ is the actually measured RSRQ; the second reference RSRQ is unmeasurable, which is a virtual value set by the terminal that is smaller than the CRS detection threshold; the third reference RSRQ is detected during the synchronization period.
  • the average value of RSRQ of all subframes of the CRS state (method 1), or the average value of RSRQs of all subframes in which the state of the CRS is detected within a preset time (method 2), or greater than or equal to the CRS detection threshold Fixed value (method three).
  • the third reference RSRQ may also be set in combination with the above three methods. For example, if the terminal determines that the number of subframes in which the CRS is detected in the radio link measurement window is greater than the first specified threshold, the method 2 is used to set the third reference RSRQ, otherwise the terminal further determines that the synchronization evaluation period is detected. Whether the number of subframes to the CRS is greater than a second specified threshold, if greater, the third reference RSRQ is set by method one, and if less, the third reference RSRQ is set by method three.
  • the measuring method when determining that the state of the wireless link is wireless link synchronization, the measuring method further includes: transmitting a wireless link synchronization indication; wherein, the time interval for transmitting the wireless link synchronization indication is greater than or equal to the wireless link measurement window Cycle.
  • the synchronization indication is not transmitted. Otherwise send a synchronization indication.
  • the UE In the non-DRX (continuous reception) mode, when the UE detects the RSRP of the CRS and evaluates the average RSRQ of the CRS during the synchronization evaluation period (100 ms), if the evaluation result is higher than the preset downlink channel synchronization threshold ( When Qin is determined, the downlink channel is synchronized, and the physical layer of the terminal sends a synchronization indication to the upper layer.
  • the terminal recalculates the average RSRQ in the synchronization evaluation period every 10 ms, and the interval at which the terminal physical layer reports the synchronization indication is at least 10 ms.
  • the synchronization evaluation period of the terminal is an integer multiple of the DRX cycle, and the terminal recalculates the average RSRQ in the synchronization evaluation period every other DRX cycle.
  • the interval at which the layer reports the synchronization indication is at least 10 ms and the larger value in the DRX cycle.
  • the base station transmits the CRS only in the subframe in which the DRS is located or in other subframes in which the PDSCH is transmitted, and the other subframes do not transmit the CRS.
  • the terminal recalculates the average RSRQ in the synchronization evaluation period every 10 ms or every other DRX period, and reports the minimum interval of the synchronization indication to the physical layer in 10 ms or DRX period, because the terminal is within 10 ms or in the DRX.
  • the subframes of any CRS may not be detected in the period, which may cause the terminal to additionally report the same synchronization indication multiple times, and thus may cause the high-level terminal to judge the wireless link synchronization error.
  • the synchronization evaluation period is set. For the integer multiple of the period of the wireless link measurement window, the terminal of the Multefire system recalculates the average RSRQ in the synchronization evaluation period every cycle of the radio link measurement window, and the interval at which the terminal physical layer reports the synchronization indication is the minimum wireless link measurement window. Cycle. Or, further setting a radio link measurement window in which the interval at which the terminal physical layer reports the synchronization indication is the smallest (for example, the minimum radio link measurement window in MulteFire is 40 milliseconds).
  • synchronization evaluation periods may also be set, and the synchronization evaluation period may be set to a fixed period or an integer multiple of the period of the wireless link measurement window.
  • the synchronization evaluation period may be set to an integral multiple of the radio link measurement window period according to the period of the different radio link measurement window, as shown in Table 1:
  • Table 1 sets the synchronization evaluation period according to the period of different wireless link measurement windows.
  • the synchronization evaluation period may be set to an integer multiple of the period of the fixed period or the wireless link measurement window according to the period of the different wireless link measurement window, as shown in Table 2:
  • Table 2 shows the case where the synchronization evaluation period is set to a fixed period or an integral multiple of the period of the radio link measurement window
  • the radio link quality measurement method of the embodiment of the present disclosure includes steps 71 to 74.
  • Step 71 Acquire a probability that the base station successfully transmits the discovery reference signal DRS.
  • Step 72 Detecting a cell reference signal CRS of each subframe in an out-of-step evaluation period, and obtaining a subframe state of each subframe, where the subframe state includes detecting a state of the CRS and not detecting in the radio link measurement window. The status of the DRS.
  • Step 73 Determine, according to the probability that the base station successfully transmits the DRS, the state of the subframe to be the state of the subframe in which the state of the DRS is not detected in the radio link measurement window.
  • Step 74 Perform out-of-synchronization detection on the radio link quality in the out-of-step evaluation period according to the status generation cause and the subframe status, and determine the status of the radio link.
  • step 74 in a specific implementation includes steps 741 to 743.
  • Step 741 acquiring, in the out-of-step evaluation period, the third RSRQ of the subframe in which the state of the CRS is detected in the radio link measurement window and the state of the subframe in which the radio link measurement window does not detect the state of the DRS is not the base station.
  • the fourth reference RSRQ of the LBT failed subframe.
  • Step 742 Determine a third average RSRQ according to the third RSRQ and the fourth reference RSRQ.
  • Step 743 if the third average RSRQ is less than the preset out-of-synchronization threshold, determine the shape of the wireless link.
  • the state is that the wireless link is out of step.
  • the third RSRQ is the actually measured RSRQ, and the fourth reference RSRQ cannot be measured, which is a virtual value set by the terminal that is smaller than the CRS detection threshold.
  • the average RSRQ of the third RSRQ and the fourth reference RSRQ is compared with the preset out-of-synchronization threshold to obtain whether the wireless link belongs to an out-of-synchronization state.
  • step 74 in a specific implementation includes steps 744 through 746.
  • Step 744 in the out-of-synchronization evaluation period, the fourth RSRQ of the subframe in which the state of the CRS is detected in the radio link measurement window, and the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is generated.
  • the fifth reference RSRQ of the subframe in which the base station LBT fails and the state of the subframe in which the state of the DRS is not detected in the radio link measurement window are generated as the sixth reference RSRQ of the subframe in which the base station LBT fails.
  • Step 745 Determine a fourth average RSRQ according to the fourth RSRQ, the fifth reference RSRQ, and the sixth reference RSRQ.
  • Step 746 If the fourth average RSRQ is less than the preset out-of-synchronization threshold, determine that the state of the wireless link is a wireless link out of synchronization.
  • the fourth RSRQ is the actually measured RSRQ
  • the fifth reference RSRQ cannot be measured, which is a virtual value set by the terminal that is smaller than the CRS detection threshold
  • the sixth reference RSRQ is detected during the out-of-synchronization period.
  • the average value of RSRQ of all subframes of the CRS state (method 1), or the average value of RSRQs of all subframes in which the state of the CRS is detected within a preset time (method 2), or greater than or equal to the CRS detection threshold Fixed value (method three).
  • the sixth reference RSRQ may also be set in combination with the above three methods. For example, if the terminal determines that the number of subframes in which the CRS is detected in the radio link measurement window is greater than the first specified threshold, the method 2 is used to set the sixth reference RSRQ, otherwise the terminal further determines the out-of-step evaluation period. It is detected whether the number of subframes of the CRS is greater than a second specified threshold. If yes, the sixth reference RSRQ is set by using the first method, otherwise the sixth reference RSRQ is set by using the third method.
  • the measuring method when determining that the state of the wireless link is a wireless link out of synchronization, the measuring method further includes: sending a wireless link out-of-synchronization indication; wherein, the time interval of sending the wireless link out-of-synchronization indication is greater than Or equal to the period of the wireless link measurement window.
  • the base station transmits the CRS only in the subframe in which the DRS is located or in other subframes in which the PDSCH is transmitted, and the other subframes do not transmit the CRS.
  • the terminal recalculates the average RSRQ in the out-of-synchronization evaluation period every 10 ms or every other DRX period, and reports the minimum interval of the out-of-synchronization indication to the physical layer in 10 ms or DRX period, because the terminal is within 10 ms or A subframe of any CRS may not be detected in the DRX period, which may cause the terminal to additionally report the same out-of-synchronization indication multiple times, and thus may cause the high-level terminal to judge the wireless link out-of-synchronization error.
  • the terminal since the terminal is in the out-of-synchronization detection, whether the DRS is detected in the radio link measurement window, the subframe of the DRS in the window must be measured using the radio link, and therefore, the out-of-step evaluation is performed in this embodiment.
  • the period is set to an integral multiple of the period of the radio link measurement window.
  • the terminal of the Multefire system recalculates the average RSRQ in the out-of-step evaluation period every cycle of the radio link measurement window, and the interval at which the terminal physical layer reports the out-of-synchronization indication is minimum. The period of the link measurement window.
  • out-of-step evaluation periods may also be set, and the out-of-synchronization evaluation period may be set to a fixed period or an integer multiple of the period of the wireless link measurement window.
  • the out-of-step evaluation period may be set to an integral multiple of the radio link measurement window period according to the period of the different radio link measurement window, as shown in Table 3:
  • Table 3 sets the out-of-step evaluation period according to the period of different wireless link measurement windows
  • the out-of-step evaluation period may be set to an integer multiple of the period of the fixed period or the wireless link measurement window according to the period of the different wireless link measurement window, as shown in Table 4:
  • Table 4 shows the case where the out-of-step evaluation period is set to a fixed period or an integral multiple of the period of the wireless link measurement window.
  • the first reference RSRQ and the fourth reference RSRQ in the embodiment shown in FIG. 6A and the embodiment shown in FIG. 7A can be set to be the same.
  • the value may also be set to a different value; the second reference RSRQ and the fifth reference RSRQ may be set to the same value or may be set to different values.
  • the terminal determines whether the subframe in which the DRS is not detected according to the probability that the base station contends to the channel in the DTxW is caused by the failure of the base station LBT to transmit the DRS or the channel quality is poor. It is assumed that the probability of the base station transmitting the DRS is A%. When the terminal does not detect the DRS subframe in the DTxW, the subframe is not caused by the failure of the base station LBT, and the probability of the subframe due to the failure of the base station LBT is A%*.
  • the error of the subframe caused by the failure of the base station LBT is not (1 - A%) * A% due to the failure of the base station LBT, and the probability of the above two misjudgments is the same. Therefore, the virtual RSRQs that have not detected the DRS subframes are averaged, and the two can cancel each other. Further, the terminal sets the virtual RSRQ of the subframe in which the DRS is not detected due to the failure of the base station LBT according to the average RSRQ of the subframe in which the CRS is detected. Compared with the related art, the terminal does not detect the DRS caused by the failure of the base station LBT. The estimation of the RSRQ of the subframe is more accurate.
  • the disclosure sets the physical layer to re-measure the synchronization, the interval of the out-of-synchronization, and the reporting synchronization and the out-of-synchronization.
  • the interval is the wireless link measurement window period.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes: a first acquiring module 81, configured to acquire a probability that a base station successfully sends a discovery reference signal DRS; and a state detecting module 82, configured to perform a preset evaluation.
  • the cell reference signal CRS of each subframe is detected in the period, and the subframe state of each subframe is obtained.
  • the subframe state includes a state in which the CRS is detected and a state in which the DRS is not detected in the radio link measurement window; the determining module 83 And determining, according to a probability that the base station successfully transmits the DRS, a state in which the subframe state is a state of a subframe in which the state of the DRS is not detected in the radio link measurement window; and a link state determining module 84, configured to use the state according to the state
  • the cause and the status of the subframe are preset detections of the quality of the radio link in the preset evaluation period to determine the state of the radio link.
  • the first obtaining module 81 includes: a first acquiring unit 811, configured to acquire a probability that the base station successfully transmits the DRS sent by the system broadcast in a preset period; or a second acquiring unit 812, configured to acquire the base station in the system The average channel occupancy rate counted in the preset period sent in the broadcast, and the probability that the base station successfully transmits the DRS is determined according to the average channel occupancy rate.
  • the second acquiring unit is specifically configured to: use the average channel occupancy rate as a probability that the base station successfully transmits the DRS; or calculate a probability that the base station successfully transmits the DRS according to the average channel occupancy rate.
  • the state detecting module 82 is configured to: if the reference signal received quality RSRQ of the CRS is greater than or equal to the CRS detection threshold, the subframe status of the detected subframe is detected as being detected in the preset evaluation period. The status of the CRS.
  • the state detecting module 82 is configured to: in the radio link measurement window in the preset evaluation period, if the DRS is detected, mark the subframe status of the subframe in which the DRS is detected as the state in which the CRS is detected. .
  • the state detecting module 82 is configured to: in the radio link measurement window in the preset evaluation period, if the subframe of the DRS is not detected, mark the subframe status of the DRS subframe as being in the wireless chain. The state of the DRS is not detected in the road measurement window.
  • the preset evaluation period is a preset value or a positive integer multiple of the wireless link measurement window period.
  • the terminal further includes a determining module, configured to determine, in the subframe state, a subframe in a state in which the DRS is not detected in the radio link measurement window, if part or all of the subframes in the DRS transmission window In a downlink continuous data subframe corresponding to a subframe in which the state of the CRS is detected, Then, it is determined that the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is caused by the fact that the LBT fails after the base station first listens.
  • a determining module configured to determine, in the subframe state, a subframe in a state in which the DRS is not detected in the radio link measurement window, if part or all of the subframes in the DRS transmission window In a downlink continuous data subframe corresponding to a subframe in which the state of the CRS is detected.
  • the determining module 83 determines that the subframe status is in the wireless chain according to the probability that the base station successfully transmits the DRS. The cause of the state of the subframe in which the state of the DRS is not detected in the road measurement window occurs.
  • the determining module is configured to: if a subframe in the DRS transmission window is partially or completely located in a downlink continuous data subframe corresponding to a subframe that is in a state of detecting a CRS before the DRS transmission window or in a radio link measurement window. Or, if part or all of the subframes in the DRS transmission window are located in the downlink continuous data subframe corresponding to the subframe in which the CRS is transmitted after the DRS transmission window, it is determined that the transmission is not detected in the radio link measurement window.
  • the state of the subframe of the state of the DRS is caused by the failure of the base station LBT.
  • the determining module 83 is specifically configured to: when the probability that the base station successfully transmits the DRS is greater than or equal to the preset probability threshold, determine that the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is caused by the base station LBT. Failure, otherwise the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is not caused by the failure of the base station LBT.
  • the determining module 83 is specifically configured to: obtain a reference value generated according to a preset rule, where the reference value is greater than or equal to 0, and is less than or equal to 1; when the reference value is greater than or equal to a probability that the base station successfully transmits the DRS, obtaining the wireless
  • the state of the subframe in which the state of the DRS is not detected in the link measurement window is not caused by the failure of the base station LBT. Otherwise, the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is generated.
  • the cause of the failure of the base station LBT is .
  • the link state determining module 84 includes a third acquiring unit, a first determining unit, a first determining unit, or a fourth acquiring unit. And a second determining unit and a third determining unit.
  • a third acquiring unit configured to acquire, in a synchronization evaluation period, a first RSRQ of a subframe in which a state of the CRS is detected, and a state in which a state of a subframe in which a DRS is not detected in the radio link measurement window is generated, and the cause is not a failure of the base station LBT a first reference RSRQ of the subframe; a first determining unit, configured to determine a first average RSRQ according to the first RSRQ and the first reference RSRQ; and a first determining unit, configured to: if the first average RSRQ is greater than or equal to a preset synchronization Threshold, it is determined that the state of the wireless link is wireless Link synchronization.
  • a fourth acquiring unit configured to acquire, in the synchronization evaluation period, a second RSRQ of the subframe in which the state of the CRS is detected, and a state in which the state of the subframe in which the DRS is not detected in the radio link measurement window is generated, and the cause is not the failure of the base station LBT
  • the second reference RSRQ of the subframe and the state of the subframe in which the state of the DRS is not detected in the radio link measurement window is generated as a third reference RSRQ of the subframe in which the base station LBT fails;
  • the second determining unit is configured to Determining a second average RSRQ by the second RSRQ, the second reference RSRQ, and the third reference RSRQ, and determining, by the second determining unit, that the state of the wireless link is a wireless link, if the second average RSRQ is greater than or equal to the preset synchronization threshold Synchronize.
  • the first reference RSRQ and the second reference RSRQ are both smaller than the CRS detection threshold.
  • the third reference RSRQ is an average value of RSRQs of all subframes in which the state of the CRS is detected in the synchronization period, or an average value of RSRQs of all subframes in which the state of the CRS is detected within a preset time, or is greater than or equal to CRS A fixed value of the detection threshold.
  • the terminal When determining that the state of the wireless link is wireless link synchronization, the terminal further includes a synchronization indication sending module, where the synchronization indication sending module is configured to send a wireless link synchronization indication; wherein, the time interval for transmitting the wireless link synchronization indication is greater than or equal to wireless The period of the link measurement window.
  • the one of the preset report value and the period of the wireless link measurement window is selected as the transmit wireless link.
  • the time interval for the synchronization indication is set in the terminal.
  • the synchronization indication sending module is specifically configured to: if there is no subframe that detects the state of the CRS and a subframe that does not detect the state of the DRS in the radio link measurement window after the synchronization indication is sent last time, Then the synchronization indication is not sent, otherwise the synchronization indication is sent.
  • the link state determining module 84 includes a fifth obtaining unit, a third determining unit, and a third determining unit, or includes the first Six acquisition unit, fourth determination unit or fourth determination unit.
  • a fifth obtaining unit configured to acquire, in the out-of-step evaluation period, a third RSRQ of the subframe in which the state of the CRS is detected in the radio link measurement window, and a state of the subframe in which the radio link measurement window does not detect the state of the DRS The reason is not the fourth reference RSRQ of the subframe in which the base station LBT fails; the third determining unit is configured to determine the third average RSRQ according to the third RSRQ and the fourth reference RSRQ; and the third determining unit is configured to use the third average RSRQ Less than the preset out-of-step threshold, then determining the wireless link The status is that the wireless link is out of sync; or
  • a sixth obtaining unit configured to acquire, in the out-of-step evaluation period, a fourth RSRQ of the subframe in which the state of the CRS is detected in the radio link measurement window, and a subframe in which the state of the DRS is not detected in the radio link measurement window
  • the state is caused by the fifth reference RSRQ of the subframe in which the base station LBT fails and the state of the subframe in which the state of the DRS is not detected in the radio link measurement window.
  • the sixth reference RSRQ of the subframe in which the base station LBT fails is generated; a determining unit, configured to determine a fourth average RSRQ according to the fourth RSRQ, the fifth reference RSRQ, and the sixth reference RSRQ; and a fourth determining unit, configured to determine the wireless chain if the fourth average RSRQ is less than the preset out-of-synchronization threshold
  • the state of the road is the wireless link out of synchronization.
  • the fourth reference RSRQ and the fifth reference RSRQ are both smaller than the CRS detection threshold.
  • the sixth reference RSRQ is an average value of RSRQs of all subframes in which the state of the CRS is detected in the out-of-synchronization period, or an average value of RSRQs of all subframes in which the state of the CRS is detected within a preset time, or is greater than or equal to The fixed value of the CRS detection threshold.
  • the terminal When determining that the state of the wireless link is a wireless link out of synchronization, the terminal further includes an out-of-synchronization indication sending module, where the out-of-step indication sending module is configured to send a wireless link out-of-synchronization indication; wherein, the time of transmitting the wireless link out-of-synchronization indication The interval is greater than or equal to the period of the wireless link measurement window.
  • the preset report value of the time interval for transmitting the wireless link out-of-synchronization indication is set in the terminal, the one with the larger value is selected as the transmission wireless link loss in the preset report value and the wireless link measurement window period.
  • the time interval indicated by the step is set in the terminal.
  • radio link measurement window mentioned in the present disclosure is a DTxW or DMTC window, or a window including a DTxW or DMTC window.
  • the terminal embodiment of the present disclosure is a terminal corresponding to the embodiment of the foregoing measurement method, and all implementation means in the foregoing measurement method embodiment are applicable to the embodiment of the terminal, and the same technical effect can be achieved.
  • an embodiment of the present disclosure further provides a terminal including a receiver 91 and a processor 92.
  • the receiver 91 is configured to receive a probability that the base station successfully sends the discovery reference signal DRS.
  • the processor 92 is connected to the receiver 91, and is configured to: detect a cell reference signal CRS of each subframe in a preset evaluation period, and obtain a subframe state of each subframe, where the subframe state includes detecting a CRS.
  • the processor 92 can also be configured and implement the functions implemented by all the modules in the foregoing terminal embodiment, and can achieve the same technical effects as those of the above terminal embodiment.
  • the terminal in the embodiment of the present disclosure may be a mobile phone (or mobile phone), or other device capable of transmitting or receiving wireless signals, including a user equipment (terminal), a personal digital assistant (PDA), and wireless modulation.
  • a user equipment terminal
  • PDA personal digital assistant
  • Mediator wireless communication device, handheld device, laptop computer, cordless phone, wireless local loop (WLL) station, CPE or Mifi capable of converting mobile signals into wifi signals, smart home appliances, or other non-human operations
  • WLL wireless local loop
  • CPE wireless local loop
  • Mifi capable of converting mobile signals into wifi signals, smart home appliances, or other non-human operations
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing a method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Abstract

本公开提供了一种无线链路质量的测量方法及终端,该测量方法包括:获取基站成功发送发现参考信号DRS的概率;在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态。

Description

一种无线链路质量的测量方法及终端
相关申请的交叉引用
本申请主张在2016年5月27日在中国提交的中国专利申请号No.201610365876.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种无线链路质量的测量方法及终端。
背景技术
MulteFire是一种新的基于LTE(长期演进)的无线接入技术,该技术可以不借助授权频段载波独立运行于非授权频谱中。MulteFire将LTE扩展到非授权频谱中,为了与WiFi设备公平竞争非授权频段信道资源,MulteFire物理层引入类似WiFi的载波监听技术的先听后说(LBT,Listen Before Talk)机制。当基站或终端监听到非授权频段信道被占用时,即当LBT失败时,停止发送信号;当监听到信道空闲时,即当LBT成功时,发送信号。
在LTE系统中,每个下行子帧都发送小区参考信号(CRS,Cell Specific Reference Signal)。在未检测到CRS时,用户终端(UE)判断该Sample的信道质量很差。但在Multefire系统中,未检测到发现参考信号(DRS,Discovery Reference Signal)可能是因为基站在DRS传输窗口(DTxW,DRS Transmission Window)中LBT失败后未发送DRS,也可能不是因为基站LBT失败而是因为下行信道质量较差致使UE未检测到DRS。当基站由于DTxW内LBT失败而未发送DRS时,不能确定未检测到DRS的子帧的信道质量一定很差。未检测到DRS的Sample是无线链路同步或无线链路失步检测中需要考虑的因素。若根据相关技术,认为未检测到DRS的Sample的参考信号接收质量(RSRQ)很低。将导致UE在失步或同步检测时评估的接收信号质量低于实际的接收信号质量。此外,在Multefire系统中基站只在DRS所在的子帧或者在其他有物理下行共享信道(PDSCH)发送的子帧发送CRS而在其他子帧 不发送CRS,因此UE不能使用任意子帧作为无线链路检测的Sample。使用相关LTE系统中的方法将使UE对Multefire系统的无线链路的同步、失步检测结果不准确。
发明内容
本公开要解决的技术问题是提供一种无线链路质量的测量方法及终端,以解决Multefire系统中若采用相关LTE系统中的失步或同步检测,则评估的接收信号质量低于实际的接收信号质量,导致失步或同步检测结果不准确的问题。
为了解决上述技术问题,本公开实施例提供一种无线链路质量的测量方法。该方法包括:获取基站成功发送发现参考信号DRS的概率;在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,所述子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;根据所述基站成功发送DRS的概率,确定所述子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;根据所述状态产生原因以及所述子帧状态,对所述预设评估周期内的无线链路质量进行预设检测,并确定无线链路所处的状态。
本公开实施例提供一种终端,包括:第一获取模块,用于获取基站成功发送发现参考信号DRS的概率;状态检测模块,用于在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,所述子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;确定模块,用于根据所述基站成功发送DRS的概率,确定所述子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;以及,链路状态确定模块,用于根据所述状态产生原因以及子帧状态,对预设评估周期内的无线链路质量进行预设检测,并确定无线链路所处的状态。
本公开实施例还提供一种终端,包括:接收机,用于接收基站成功发送发现参考信号DRS的概率;处理器,与所述接收机连接,用于实现本公开的实施例所述的方法。
本公开的上述技术方案至少具有如下有益效果:本公开实施例的无线链 路质量的测量方法及终端中,通过首先对无线链路测量窗口内未检测到发送DRS的状态的子帧的状态产生原因进行判定,然后在进行无线链路检测,使得评估得到的RSRQ更接近实际的信道质量,从而使得失步或同步检测结果更加准确。
附图说明
图1为MulteFire系统的同步检测示意图;
图2为MulteFire系统的失步检测示意图;
图3表示本公开的实施例的无线链路质量的测量方法的流程示意图;
图4表示本公开的实施例的无线链路质量的测量方法的流程示意图;
图5表示无线帧的传输状态的示意图;
图6A表示本公开的实施例的无线链路质量的测量方法的流程示意图;
图6B-6C表示本公开的实施例的无线链路质量的测量方法的步骤之一的详细流程示意图;
图7A表示本公开的实施例的无线链路质量的测量方法的流程示意图;
图7B-7C表示本公开的实施例的无线链路质量的测量方法的步骤之一的详细流程示意图;
图8A表示本公开的实施例提供的终端的结构图;
图8B-8C表示本公开的实施例提供的终端中的一个模块的结构图;以及
图9表示本公开的实施例提供的终端的结构图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
相关的Multefire系统中若采用相关LTE系统中的失步或同步检测时,评估的接收信号质量低于实际的接收信号质量,从而导致失步或同步检测结果不准确,针对该问题,本公开提供一种无线链路质量的测量方法及终端。
为了提高先听后说(LBT)机制下基站的下行公共控制信号传输效率,MulteFire引入了参考信号DRS。DRS包含了主要的下行公共控制信号,包括 系统广播、主同步信号(PSS,Primary Sync Signal)、辅同步信号(SSS,Secondary Sync Signal)、增强主同步信号(ePSS,enhanced Primary Sync Signal)、增强辅同步信号(eSSS,enhanced Secondary Sync Signal)和CRS。DRS占用一个下行子帧中的12个或14个符号(Symbol)。DRS在DTxW中传输。当基站的LBT成功时,基站在DTxW内发送一次DRS。DTxW的长度为1到10ms,DTxW出现的周期最小为40ms,并且必须为40ms的整数倍。
Multefire引入了DRS测量时间配置(DMTC,DRS Timing Configuration)窗口,用户终端(UE)在周期出现的DMTC窗口对服务小区和邻小区的CRS进行测量,以进行无线链路质量监测、小区选择、小区重选或切换。基站可以为Multefire服务小区、与服务小区同频的Multefire邻小区以及与服务小区异频的Multefire邻小区配置独立的DMTC。由于Multefire系统只能保证在DTxW内的DRS子帧发送CRS,因此每个频点及小区的DMTC窗口必须包含对应频点及小区的DTxW,以保证对该频点及小区中的DRS子帧的CRS的测量。其中,DMTC窗口长度为1ms-10ms。UE只在服务小区的DMTC、同频邻小区的DMTC和异频邻小区的DMTC内进行无线链路质量测量。
在LTE系统中,基站在每个下行子帧中都发送CRS,每个子帧都可作为检测样本(Sample)。终端通过测量CRS信号的参考信号接收质量(RSRQ,Reference Signal Receive Quality)评估下行信道质量。在失步检测时,当UE在失步(Out-of-Sync)评估周期(如200ms)内测量CRS的RSRQ并评估CRS的平均RSRQ时,若评估的结果为低于预设的下行信道Out-Of-Sync门限(Qout),则判断下行信道失步,UE(终端)物理层向高层发送Out-Of-Sync指示。在同步检测时,当UE在同步(in-Sync)评估周期(如100ms)内测量CRS的RSRP并评估CRS的平均RSRQ时,若评估的结果为高于预设的下行信道in-Sync门限(Qin),则判断下行信道同步,UE物理层向高层发送In-Sync指示。
UE的无线链路测量窗口一般是DTxW或DMTC窗口,或者是包含DTxW或DMTC窗口的窗口。
但是,在Multefire系统中,基站只在DRS所在的子帧或者在其他有物理下行共享信道(PDSCH,Physical Downlink Shared Channel)发送的子帧发 送CRS,其他子帧不发送CRS。
图1为MulteFire系统的同步检测示意图。在同步检测时,UE只考虑In-Sync评估周期内检测到CRS的Sample和未检测到DRS的Sample。图2为MulteFire系统的失步检测示意图。在失步检测时,Out-of-Synce周期内只考虑在无线链路测量窗口(DTxW或DMTC)内检测到CRS的Sample和未检测到DRS的Sample。其中,检测到CRS的Sample指CRS的RSRQ高于指定检测门限的Sample和在无线链路测量窗口内检测到DRS的Sample,在无线链路测量窗口内检测到DRS指的是在DTxW内的一个子帧检测到DRS的PSS/SSS和ePSS/eSSS,在无线链路测量窗口内未检测到DRS指的是在无线链路测量窗口内的每个子帧都未检测到DRS的PSS/SSS和ePSS/eSSS。
在LTE系统中,基站在每个下行子帧中都发送CRS,每个子帧都可作为检测样本。终端通过测量CRS信号的RSRQ评估下行信道质量。而在Multefire系统中也是采用上述方式进行下行信道质量的评估。
如图3所示,本公开的实施例提供一种用于终端的无线链路质量的测量方法,包括步骤31至步骤34。
步骤31,获取基站成功发送发现参考信号DRS的概率。
需要说明的是,当没有下行数据时,基站可以在DTxW中的每个子帧进行短期LBT(Cat.2 LBT)以尝试发送DRS,在DTxW中子帧的前2个Symbol的25微秒检测信道。当检测到信道未被占用时,发送DRS,该DRS占用12个Symbol。当有下行数据时,基站也可以在发送下行PDSCH时进行的普通LBT(Cat.4 LBT)后,在发送PDSCH的突发Burst(基站连续发送的下行数据子帧)中或者在与发送PDSCH的Burst后续的子帧中发送DRS。基站在发送下行PDSCH前做Cat.4 LBT,当检测到信道未被占用时,基站发送PDSCH和CRS。若在该LBT之后的下行Burst发送时间包含DTxW的子帧0和子帧5,则基站可以不用进行Cat.2 LBT并可在子帧0和子帧5直接发送一次DRS,该DRS占用14个Symbol。基站在DTxW内未竞争到信道时不发送DRS,因此基站发送DRS的概率即为基站在DTxW内竞争到信道的概率,范围为:0~100%。
步骤32,在预设评估周期内对每个子帧的小区参考信号CRS进行检测, 得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态。
步骤32主要实现的是对预设评估周期内的每个子帧的状态进行判定。需要说明的是,在无线链路测量窗口内未检测到发送DRS的状态的子帧指的是在无线链路测量窗口内的每个子帧都未检测到DRS的PSS/SSS和ePSS/eSSS。
还需要说明的是,预设评估周期可以为同步评估周期也可以为失步评估周期。
步骤33,根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因。
需要说明的是,状态产生原因主要指的是:为基站LBT失败和不为基站LBT失败。
步骤34,根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态。
本实施例中,在明确了无线链路测量窗口内未检测到发送DRS的子帧的产生原因后,对无线链路进行同步检测或失步检测,以确定无线链路的状态。此种方式测量得到的RSRQ更接近于实际的信道质量,通过测量得到的RSRQ能够更为精确的判定得到无线链路状态,从而保证了同步或失步检测结果较为准确。
如图4所示,本公开的实施例提供一种无线链路质量的测量方法,包括步骤41至步骤45。
步骤41,获取基站成功发送发现参考信号DRS的概率。
需要说明的是,本步骤中,可以采用如下两种方式进行基站成功发送DRS的概率的获取。
方式一:获取基站在预设周期内通过系统广播发送的成功发送DRS的概率。
在具体实现时,基站可以在系统广播中(例如eSIB中)向终端发送预设周期内平均的成功发送DRS的概率,终端通过接收基站的系统广播获取基站成功发送DRS的概率。
方式二:获取基站在系统广播中发送的预设周期内统计的平均信道占用 率,并根据平均信道占用率确定基站成功发送DRS的概率。
在具体实现时,基站也可以在系统广播中向终端发送预设周期内统计的平均信道占用率,终端通过接收基站的系统广播获取基站发送的平均信道占用率,将平均信道占用率作为基站成功发送DRS的概率,或者终端根据平均信道占用率计算基站成功发送DRS的概率。
步骤42,在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态。
需要说明的是,本步骤在实现时的具体实现方式为:在预设评估周期内,若检测到CRS的参考信号接收质量RSRQ大于或等于CRS检测门限,则将所检测子帧的子帧状态标记为检测到CRS的状态;在预设评估周期内的无线链路测量窗口内,若检测到DRS,则将检测到DRS的子帧的子帧状态标记为检测到CRS的状态;在预设评估周期内的无线链路测量窗口内,若未检测到DRS的子帧,则将DRS的子帧的子帧状态标记为在无线链路测量窗口内未检测到DRS的状态。
需要说明的是,在无线链路测量窗口内检测到DRS指的是在无线链路测量窗口内的一个子帧检测到DRS的PSS/SSS和ePSS/eSSS,在无线链路测量窗口内未检测到DRS指的是在无线链路测量窗口内的每个子帧都未检测到DRS的PSS/SSS和ePSS/eSSS。
还需要说明的是,该无线链路测量窗口为DTxW或DMTC窗口,或者为包含DTxW或DMTC窗口的窗口。
步骤43,对子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧进行判断,若DTxW内的子帧部分或全部位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站先听后说LBT失败;否则执行步骤44。
步骤43中,若DTxW内的子帧部分或全部位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到发送DRS的状态的子帧的状态产生原因不为基站先听后说LBT失败可以采用如下方式实现:
方式一:若DTxW内的子帧部分或全部位于在DTxW之前或位于在无线链路测量窗口中检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败。
需要说明的是,当有下行数据时,基站可以在发送下行数据时进行的普通LBT(Cat.4 LBT)后,在发送PDSCH的Burst中或者在与发送PDSCH的Burst后连续的子帧中发送DRS,基站在发送PDSCH前做Cat.4 LBT,当检测到信道未被占用时,基站发送PDSCH和CRS,若在该LBT之后的下行Burst发送时间包含DTxW的子帧0或子帧5,则基站可以不用进行Cat.2 LBT并在子帧0或子帧5直接发送一次DRS,该DRS占用14个Symbol。
若终端检测到CRS的状态的子帧,并且DTxW的部分或全部子帧位于该CRS的状态的子帧对应的下行Burst中,可以判断基站在该Burst内直接发送了一次DRS,在该无线链路测量窗口内未检测到发送DRS的子帧不是由于LBT失败导致。其中,终端可通过基站发送的PDCCH信号或C-PDCCH信号或其他物理层信道获知上述下行Burst的起始子帧和长度。举例来说,如图5所示,终端在无线帧N的子帧5检测到CRS的状态的子帧,在下一个无线帧N+1的DTxW中未检测到DRS的子帧。若终端获知无线帧N的子帧5对应的Burst的起始子帧为子帧5,并且长度为8ms,则判断该DTxW的部分子帧位于子帧5对应的Burst内,终端可确定在该无线链路测量窗口内未检测到发送DRS子帧的CRS不是由于LBT失败导致。
特别地,若终端在DTxW的子帧0之前检测到连续的CRS的状态的子帧或在DTxW的子帧0检测到CRS,则终端可以判断基站在DTxW的子帧0发送了DRS,即在该无线链路测量窗口内未检测到发送DRS子帧不是由于LBT失败导致;或者当终端在DTxW的子帧5之前检测到连续的CRS的状态的子帧或在DTxW的子帧0检测到CRS,则终端可以判断基站在DTxW的子帧0发送了DRS,即在该无线链路测量窗口内未检测到发送DRS子帧的CRS不是由于LBT失败导致。
方式二:若DTxW内的子帧部分或全部位于DTxW之后检测到的发送CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内 未检测到发送DRS的状态的子帧的状态产生原因不为基站LBT失败。
具体来说,因为基站在足够短时间内重新做LBT的概率比较低,若在DTxW之后的预设时间内(例如4个子帧)检测到CRS的子帧,终端可判断DTxW的部分或全部子帧与该检测到CRS的子帧位于同一次LBT成功过程对应的Burst内,在该无线链路测量窗口内未检测到发送DRS子帧不是由于LBT失败导致。
步骤44,根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因。
状态产生原因主要指的是:为基站LBT失败和不为基站LBT失败。
该步骤44可以采用如下方式实现:
方式一:当基站成功发送DRS的概率大于或等于预设概率阈值时,确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败,否则,无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败。
方式二:获取根据预设规则生成的参考值,参考值大于或等于0,且小于或等于1;需要说明的是,参考值是终端在0~100%内按照均匀分布规则生成的随机数。
当参考值大于或等于基站成功发送DRS的概率时,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败,否则,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败。
步骤45,根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态。
通过本实施例所提供的方式,明确获知无线链路测量窗口内未检测到发送DRS的子帧的产生原因后,对无线链路进行同步检测或失步检测,以确定无线链路的状态,此种方式测量得到的RSRQ更接近于实际发送的RSRQ,通过测量得到的RSRQ能够更为精确的得到无线链路状态,从而保证了同步或失步检测结果较为准确。
下面分实施例对同步检测和失步检测的检测方式进行说明。
当在同步评估周期内进行同步检测时,如图6A所示,本公开的实施例的无线链路质量的测量方法,包括步骤61至步骤64。
步骤61,获取基站成功发送发现参考信号DRS的概率。
步骤62,在同步评估周期内对每个子帧的小区参考信号CRS进行检测。得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态。
步骤63,根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因。
需要说明的是,上述步骤61-步骤63采用与图4所示的实施例中相同的实现方式。
步骤64,根据状态产生原因以及子帧状态对同步评估周期内的无线链路质量进行同步检测,确定无线链路所处的状态。
具体地,步骤64在具体实现时的第一种实现方式包括:
步骤641,在同步评估周期内获取检测到CRS的状态的子帧的第一RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第一参考RSRQ;
步骤642,根据第一RSRQ和第一参考RSRQ,确定第一平均RSRQ;以及
步骤643,若第一平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步。
需要说明的是,第一RSRQ为实际测量得到的RSRQ,第一参考RSRQ无法测量得到,其为终端设定的小于CRS检测门限的虚拟值。
该实现方式中,通过求得第一RSRQ和第一参考RSRQ的平均RSRQ,通过此平均RSRQ与预设同步阈值进行比较,即可得到无线链路是否属于同步的状态。
步骤64在具体实现时的第二种实现方式包括:
步骤644,在同步评估周期内获取检测到CRS的状态的子帧的第二RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第二参考RSRQ以及无线链路测量窗口内未检测到DRS 的状态的子帧的状态产生原因为基站LBT失败的子帧的第三参考RSRQ;
步骤645,根据第二RSRQ、第二参考RSRQ和第三参考RSRQ,确定第二平均RSRQ;
步骤646,若第二平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步。
需要说明的是,该第二RSRQ为实际测量得到的RSRQ;第二参考RSRQ因无法测量得到,其为终端设定的小于CRS检测门限的虚拟值;该第三参考RSRQ为同步周期内检测到CRS的状态的所有子帧的RSRQ的平均值(方法一),或者为预设时间内检测到CRS的状态的所有子帧的RSRQ的平均值(方法二),或者为大于或等于CRS检测门限的固定值(方法三)。
需要说明的是,在具体实现中,也可以结合以上三种方法对第三参考RSRQ进行设定。举例来说,若终端判断在该无线链路测量窗口中检测到CRS的子帧个数大于第一指定阈值,则采用方法二来设定第三参考RSRQ,否则终端进一步判断在同步评估周期检测到CRS的子帧个数是否大于第二指定阈值,若大于,则采用方法一来设定第三参考RSRQ,若小于,则采用方法三来设定第三参考RSRQ。
需要说明的是,在判定无线链路的状态为无线链路同步时,测量方法还包括:发送无线链路同步指示;其中,发送无线链路同步指示的时间间隔大于或等于无线链路测量窗口的周期。
还需要说明的是,若从在上次发送同步指示之后,不存在检测到CRS的状态的子帧和在无线链路测量窗口内未检测到DRS的状态的子帧,则不发送同步指示,否则发送同步指示。
非DRX(连续接收)模式下,在同步检测时,当UE在同步评估周期(100ms)内测量CRS的RSRP并评估CRS的平均RSRQ,若评估的结果为高于预设的下行信道同步门限(Qin)时则判断下行信道同步,终端物理层向高层发送同步指示。终端每隔10ms重新计算同步评估周期内的平均RSRQ,终端物理层上报同步指示的间隔最小为10ms。
DRX(非连续接收)模式下,终端的同步评估周期为DRX周期的整数倍,终端每隔一个DRX周期重新计算同步评估周期内的平均RSRQ,终端物 理层上报同步指示的间隔最小为10ms和DRX周期中的较大值。
但是,在Multefire系统中,基站只在DRS所在的子帧或者在其他有PDSCH发送的子帧发送CRS,其他子帧不发送CRS。若使用相关技术,则终端每隔10ms或者每隔一个DRX周期重新计算同步评估周期内的平均RSRQ,并以10ms或DRX周期为物理层上报同步指示的最小间隔,由于终端在10ms内或者在DRX周期内可能未检测到任何CRS的子帧,可导致终端额外上报多次相同的同步指示,因此可引起终端的高层对于无线链路同步错误的判断结果。
在MulteFire系统中,由于终端在同步检测中,无论在无线链路测量窗口内是否检测到DRS,一定会使用无线链路测量窗口内DRS的子帧,因此,本实施例中将同步评估周期设置为无线链路测量窗口的周期的整数倍,Multefire系统的终端每隔无线链路测量窗口的周期重新计算同步评估周期内的平均RSRQ,终端物理层上报同步指示的间隔最小为无线链路测量窗口的周期。或者,进一步设定终端物理层上报同步指示的间隔为最小的无线链路测量窗口(例如,在MulteFire中最小的无线链路测量窗口为40毫秒)。
进一步地,还可以设置不同的同步评估周期,可设置同步评估周期为固定周期或为无线链路测量窗口的周期的整数倍。
具体地,可以根据不同的无线链路测量窗口的周期将同步评估周期设为无线链路测量窗口周期的整数倍,如表1所示:
Figure PCTCN2017085719-appb-000001
表1  根据不同的无线链路测量窗口的周期设置同步评估周期的情况
或者,可以根据不同的无线链路测量窗口的周期将同步评估周期设为固定周期或无线链路测量窗口的周期的整数倍,如表2所示:
Figure PCTCN2017085719-appb-000002
表2  将同步评估周期设为固定周期或无线链路测量窗口的周期的整数倍的情况
当在失步评估周期内进行失步检测时,如图7A所示,本公开的实施例的无线链路质量的测量方法包括步骤71至步骤74。
步骤71,获取基站成功发送发现参考信号DRS的概率。
步骤72,在失步评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态。
步骤73,根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因。
需要说明的是,上述步骤71-步骤73采用与图4所示的实施例中相同的实现方式。
步骤74,根据状态产生原因以及子帧状态对失步评估周期内的无线链路质量进行失步检测,确定无线链路所处的状态。
具体地,步骤74在具体实现时的第一种实现方式包括步骤741至步骤743。
步骤741,在失步评估周期内获取在无线链路测量窗口检测到CRS的状态的子帧的第三RSRQ以及无线链路测量窗口未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第四参考RSRQ。
步骤742,根据第三RSRQ和第四参考RSRQ,确定第三平均RSRQ。
步骤743,若第三平均RSRQ小于预设失步阈值,则判定无线链路的状 态为无线链路失步。
需要说明的是,第三RSRQ为实际测量得到的RSRQ,第四参考RSRQ无法测量得到,其为终端设定的小于CRS检测门限的虚拟值。
该实现方式中,通过求得第三RSRQ和第四参考RSRQ的平均RSRQ,通过此平均RSRQ与预设失步阈值进行比较,即可得到无线链路是否属于失步的状态。
步骤74在具体实现时的第二种实现方式包括步骤744至步骤746。
步骤744,在失步评估周期内获取在无线链路测量窗口内检测到CRS的状态的子帧的第四RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第五参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第六参考RSRQ。
步骤745,根据第四RSRQ、第五参考RSRQ和第六参考RSRQ,确定第四平均RSRQ。
步骤746,若第四平均RSRQ小于预设失步阈值,则判定无线链路的状态为无线链路失步。
需要说明的是,该第四RSRQ为实际测量得到的RSRQ,第五参考RSRQ无法测量得到,其为终端设定的小于CRS检测门限的虚拟值,该第六参考RSRQ为失步周期内检测到CRS的状态的所有子帧的RSRQ的平均值(方法一),或者为预设时间内检测到CRS的状态的所有子帧的RSRQ的平均值(方法二),或者为大于或等于CRS检测门限的固定值(方法三)。
需要说明的是,在具体实现中,也可以结合以上三种方法对第六参考RSRQ进行设定。举例来说,若终端判断在该无线链路测量窗口中检测到CRS的子帧个数大于第一指定阈值,则采用方法二来设定第六参考RSRQ,否则终端进一步判断在失步评估周期检测到CRS的子帧个数是否大于第二指定阈值,若是则采用方法一来设定第六参考RSRQ,否则采用方法三来设定第六参考RSRQ。
需要说明的是,在判定无线链路的状态为无线链路失步时,测量方法还包括发送无线链路失步指示;其中,发送无线链路失步指示的时间间隔大于 或等于无线链路测量窗口的周期。
与图6A所示的实施例中的同步检测类似,在Multefire系统中,基站只在DRS所在的子帧或者在其他有PDSCH发送的子帧发送CRS,其他子帧不发送CRS。若使用相关技术,终端每隔10ms或者每隔一个DRX周期重新计算失步评估周期内的平均RSRQ,并以10ms或DRX周期为物理层上报失步指示的最小间隔,由于终端在10ms内或者在DRX周期内可能未检测到任何CRS的子帧,可导致终端额外上报多次相同的失步指示,因此可引起终端的高层对于无线链路失步错误的判断结果。
在MulteFire系统中,由于终端在失步检测中,无论在无线链路测量窗口内是否检测到DRS,一定会使用无线链路测量窗口内DRS的子帧,因此,本实施例中将失步评估周期设置为无线链路测量窗口的周期的整数倍,Multefire系统的终端每隔无线链路测量窗口的周期重新计算失步评估周期内的平均RSRQ,终端物理层上报失步指示的间隔最小为无线链路测量窗口的周期。
进一步地,还可以设置不同的失步评估周期,可设置失步评估周期为固定周期或为无线链路测量窗口的周期的整数倍。
具体地,可以根据不同的无线链路测量窗口的周期将失步评估周期设为无线链路测量窗口周期的整数倍,如表3所示:
Figure PCTCN2017085719-appb-000003
表3  根据不同的无线链路测量窗口的周期设置失步评估周期的情况
或者,可以根据不同的无线链路测量窗口的周期将失步评估周期设为固定周期或无线链路测量窗口的周期的整数倍,如表4所示:
Figure PCTCN2017085719-appb-000004
表4  将失步评估周期设为固定周期或无线链路测量窗口的周期的整数倍的情况
需要说明的是,因终端同时存在同步检测和失步检测方式,因此,图6A所示的实施例和图7A所示的实施例中的第一参考RSRQ和第四参考RSRQ可以设置为相同的值,也可以设置为不同的值;第二参考RSRQ和第五参考RSRQ可以设置为相同的值,也可以设置为不同的值。
由本公开以上实施例可知,终端根据基站在DTxW内竞争到信道的概率判断未检测到DRS的子帧是由于基站LBT失败未发送DRS引起还是由于信道质量较差导致。假定基站发送DRS的概率为A%,当终端在DTxW内未检测到DRS子帧时,将不是由于基站LBT失败导致的子帧误判为由于基站LBT失败导致的子帧的概率为A%*(1-A%),将由于基站LBT失败导致的子帧误判为不是由于基站LBT失败导致的子帧的概率为(1-A%)*A%,以上两种误判的概率相同,因此将未检测到DRS子帧的虚拟RSRQ进行平均后两者可以相互抵消。进一步地,终端根据检测出CRS的子帧的平均RSRQ设置由于基站LBT失败引起的未检测到DRS的子帧的虚拟RSRQ,与相关技术相比,终端对基站LBT失败引起的未检测到DRS的子帧的RSRQ的估计更加准确。针对基站只在DRS所在的子帧或者在其他有PDSCH发送的子帧发送CRS,其他子帧不发送CRS的特性,本公开设定物理层重新测量同步、失步的间隔及上报同步、失步的间隔为无线链路测量窗口周期。本公开使终端在同步检测或失步检测时对CRS的平均RSRQ的评估结果非常接近实际情况,从而使同步或失步检测的结果更准确。
如图8所示,本公开的实施例提供一种终端,该终端包括:第一获取模块81,用于获取基站成功发送发现参考信号DRS的概率;状态检测模块82,用于在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;确定模块83,用于根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;以及,链路状态确定模块84,用于根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态。
可选地,第一获取模块81包括:第一获取单元811,用于获取基站在预设周期内通过系统广播发送的成功发送DRS的概率;或者第二获取单元812,用于获取基站在系统广播中发送的预设周期内统计的平均信道占用率,并根据平均信道占用率确定基站成功发送DRS的概率。
进一步地,第二获取单元具体用于:将平均信道占用率作为基站成功发送DRS的概率;或者根据平均信道占用率计算得到基站成功发送DRS的概率。
可选地,状态检测模块82具体用于:在预设评估周期内,若检测到CRS的参考信号接收质量RSRQ大于或等于CRS检测门限,则将所检测子帧的子帧状态标记为检测到CRS的状态。
可选地,状态检测模块82具体用于:在预设评估周期内的无线链路测量窗口内,若检测到DRS,则将检测到DRS的子帧的子帧状态标记为检测到CRS的状态。
可选地,状态检测模块82具体用于:在预设评估周期内的无线链路测量窗口内,若未检测到DRS的子帧,则将DRS的子帧的子帧状态标记为在无线链路测量窗口内未检测到DRS的状态。
需要说明的是,预设评估周期为预设值或为无线链路测量窗口周期的正整数倍。
可选地,终端还包括判断模块,该判断模块用于对子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧进行判断,若DRS传输窗口内的子帧部分或全部位于检测到CRS的状态的子帧对应的下行连续数据子帧中, 则确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站先听后说LBT失败。
若DRS传输窗口内的子帧部分或全部未位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定模块83根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因。
具体地,判断模块用于实现:若DRS传输窗口内的子帧部分或全部位于在DRS传输窗口之前或位于在无线链路测量窗口中检测到CRS的状态的子帧对应的下行连续数据子帧中,或者若DRS传输窗口内的子帧部分或全部位于DRS传输窗口之后检测到的发送CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到发送DRS的状态的子帧的状态产生原因不为基站LBT失败。
可选地,确定模块83具体用于:当基站成功发送DRS的概率大于或等于预设概率阈值时,确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败,否则无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败。
可选地,确定模块83具体用于:获取根据预设规则生成的参考值,参考值大于或等于0,且小于或等于1;当参考值大于或等于基站成功发送DRS的概率时,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败,否则,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败。
可选地,当预设评估周期为同步评估周期,预设检测为同步检测时,链路状态确定模块84包括第三获取单元、第一确定单元、第一判定单元,或者包括第四获取单元、第二确定单元和第三判定单元。
第三获取单元,用于在同步评估周期内获取检测到CRS的状态的子帧的第一RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第一参考RSRQ;第一确定单元,用于根据第一RSRQ和第一参考RSRQ,确定第一平均RSRQ;第一判定单元,用于若第一平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线 链路同步。
第四获取单元,用于在同步评估周期内获取检测到CRS的状态的子帧的第二RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第二参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第三参考RSRQ;第二确定单元,用于根据第二RSRQ、第二参考RSRQ和第三参考RSRQ,确定第二平均RSRQ;第二判定单元,用于若第二平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步。
其中,第一参考RSRQ和第二参考RSRQ均小于CRS检测门限。第三参考RSRQ为同步周期内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为预设时间内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为大于或等于CRS检测门限的固定值。
在判定无线链路的状态为无线链路同步时,终端还包括同步指示发送模块,同步指示发送模块用于发送无线链路同步指示;其中,发送无线链路同步指示的时间间隔大于或等于无线链路测量窗口的周期。
可选地,当终端中设置有发送无线链路同步指示的时间间隔的预设上报值时,在预设上报值和无线链路测量窗口的周期中选择数值较大的一个作为发送无线链路同步指示的时间间隔。
可选地,同步指示发送模块具体用于:若从在上次发送同步指示之后,不存在检测到CRS的状态的子帧和在无线链路测量窗口内未检测到DRS的状态的子帧,则不发送同步指示,否则发送同步指示。
可选地,当预设评估周期为失步评估周期时,预设检测为失步检测时,链路状态确定模块84包括第五获取单元、第三确定单元以及第三判定单元,或者包括第六获取单元、第四确定单元或第四判定单元。
第五获取单元,用于在失步评估周期内获取在无线链路测量窗口检测到CRS的状态的子帧的第三RSRQ以及无线链路测量窗口未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第四参考RSRQ;第三确定单元,用于根据第三RSRQ和第四参考RSRQ,确定第三平均RSRQ;第三判定单元,用于若第三平均RSRQ小于预设失步阈值,则判定无线链路的 状态为无线链路失步;或者
第六获取单元,用于在失步评估周期内获取在无线链路测量窗口内检测到CRS的状态的子帧的第四RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第五参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第六参考RSRQ;第四确定单元,用于根据第四RSRQ、第五参考RSRQ和第六参考RSRQ,确定第四平均RSRQ;第四判定单元,用于若第四平均RSRQ小于预设失步阈值,则判定无线链路的状态为无线链路失步。
其中,第四参考RSRQ和第五参考RSRQ均小于CRS检测门限。
第六参考RSRQ为失步周期内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为预设时间内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为大于或等于CRS检测门限的固定值。
在判定无线链路的状态为无线链路失步时,终端还包括失步指示发送模块,失步指示发送模块用于发送无线链路失步指示;其中,发送无线链路失步指示的时间间隔大于或等于无线链路测量窗口的周期。
进一步地,当终端中设置有发送无线链路失步指示的时间间隔的预设上报值时,在预设上报值和无线链路测量窗口周期中选择数值较大的一个作为发送无线链路失步指示的时间间隔。
需要说明的是,本公开中所说的无线链路测量窗口为DTxW或DMTC窗口,或者为包含DTxW或DMTC窗口的窗口。
本公开的该终端实施例是与上述测量方法的实施例对应的终端,上述测量方法实施例中的所有实现手段均适用于该终端的实施例中,也能达到相同的技术效果。
如图9所示,本公开的实施例还提供一种终端,该终端包括接收机91和处理器92。接收机91,用于接收基站成功发送发现参考信号DRS的概率。处理器92,与接收机91连接,用于实现如下功能:在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;根 据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态。
处理器92还可以被配置并实现上述终端实施例中所有模块实现的功能,也能达到和上述终端实施例所能达到的相同的技术效果。
需要说明的是,本公开实施例中的终端,可以是移动电话机(或手机),或者其它能够发送或接收无线信号的设备,包括用户设备(终端)、个人数字助理(PDA)、无线调制调解器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为wifi信号的CPE或Mifi、智能家电、或其它不通过人的操作就能自发与移动通信网络通信的设备等。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开的原理前提下还可以作出若干改进和润饰,这些改进 和润饰也在本公开的保护范围内。

Claims (37)

  1. 一种用于终端的无线链路质量的测量方法,包括:
    获取基站成功发送发现参考信号DRS的概率;
    在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到所述每个子帧的子帧状态,所述子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;
    根据所述基站成功发送DRS的概率,确定所述子帧状态为在所述无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;以及
    根据所述状态产生原因以及所述子帧状态,对预设评估周期内的无线链路质量进行预设检测,并确定无线链路所处的状态。
  2. 根据权利要求1所述的测量方法,其中,获取基站成功发送发现参考信号DRS的概率,包括:
    获取所述基站在预设周期内通过系统广播发送的成功发送DRS的概率;或者
    获取所述基站在系统广播中发送的预设周期内统计的平均信道占用率,并根据所述平均信道占用率确定所述基站成功发送DRS的概率。
  3. 根据权利要求2所述的测量方法,其中,所述获取所述基站在系统广播中发送的预设周期内统计的平均信道占用率,并根据所述平均信道占用率确定所述基站成功发送DRS的概率,包括:
    将所述平均信道占用率作为所述基站成功发送DRS的概率;或者
    根据所述平均信道占用率,计算得到所述基站成功发送DRS的概率。
  4. 根据权利要求1所述的测量方法,其中,所述在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,包括:
    在所述预设评估周期内,若检测到CRS的参考信号接收质量RSRQ大于或等于CRS检测门限,则将所检测的子帧的子帧状态标记为检测到CRS的状态。
  5. 根据权利要求1所述的测量方法,其中,所述在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,包括:
    在所述预设评估周期内的所述无线链路测量窗口内,若检测到DRS,则将检测到DRS的子帧的子帧状态标记为检测到CRS的状态。
  6. 根据权利要求1所述的测量方法,其中,所述在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,包括:
    在所述预设评估周期内的所述无线链路测量窗口内,若未检测到DRS,则将所述DRS的子帧的子帧状态标记为在所述无线链路测量窗口内未检测到DRS的状态。
  7. 根据权利要求1所述的测量方法,其中,所述预设评估周期为预设值或为所述无线链路测量窗口的周期的正整数倍。
  8. 根据权利要求1所述的测量方法,其中,在所述根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因之前,所述测量方法还包括:
    对所述子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧进行判断;
    若DRS传输窗口内的子帧部分或全部位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定所述无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站先听后说LBT失败。
  9. 根据权利要求8所述的测量方法,其中,若DRS传输窗口内的子帧部分或全部未位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因。
  10. 根据权利要求8所述的测量方法,其中,若DRS传输窗口内的子帧部分或全部位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到发送DRS的状态的子帧的状态产生原因不为基站先听后说LBT失败,包括:
    若DRS传输窗口内的子帧部分或全部位于在DRS传输窗口之前或位于在无线链路测量窗口中检测到CRS的状态的子帧对应的下行连续数据子帧中,或者若DRS传输窗口内的子帧部分或全部位于DRS传输窗口之后检测到的发送CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗 口内未检测到发送DRS的状态的子帧的状态产生原因不为基站LBT失败。
  11. 根据权利要求1所述的测量方法,其中,根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因,包括:
    当所述基站成功发送DRS的概率大于或等于预设概率阈值时,确定所述无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败;
    当所述基站成功发送DRS的概率小于预设概率阈值时,无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败。
  12. 根据权利要求1所述的测量方法,其中,根据基站成功发送DRS的概率,确定子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因,包括:
    获取根据预设规则生成的参考值,所述参考值大于或等于0,且小于或等于1;
    当所述参考值大于或等于所述基站成功发送DRS的概率时,得到所述无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败;
    当所述参考值小于所述基站成功发送DRS的概率时,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败。
  13. 根据权利要求1所述的测量方法,其中,当预设评估周期为同步评估周期,预设检测为同步检测时,根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态,包括:
    在所述同步评估周期内获取检测到CRS的状态的子帧的第一RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第一参考RSRQ;
    根据所述第一RSRQ和所述第一参考RSRQ,确定第一平均RSRQ;
    若第一平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步。
  14. 根据权利要求13所述的测量方法,其中,所述第一参考RSRQ小于 所述CRS检测门限。
  15. 根据权利要求1所述的测量方法,其中,当预设评估周期为同步评估周期,预设检测为同步检测时,根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态,包括:
    在同步评估周期内,获取检测到CRS的状态的子帧的第二RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第二参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第三参考RSRQ;
    根据所述第二RSRQ、所述第二参考RSRQ和所述第三参考RSRQ,确定第二平均RSRQ;
    若所述第二平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步。
  16. 根据权利要求15所述的测量方法,其中,所述第二参考RSRQ小于所述CRS检测门限;
    所述第三参考RSRQ为同步周期内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为预设时间内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为大于或等于CRS检测门限的固定值。
  17. 根据权利要求1所述的测量方法,其中,在确定无线链路所处的状态之后,所述测量方法还包括:
    若判定无线链路的状态为无线链路同步,则发送无线链路同步指示,其中,发送无线链路同步指示的时间间隔大于或等于无线链路测量窗口的周期。
  18. 根据权利要求17所述的测量方法,其中,发送无线链路同步指示,包括:
    若从在上次发送同步指示之后,不存在检测到CRS的状态的子帧和在无线链路测量窗口内未检测到DRS的状态的子帧,则不发送同步指示;
    若从在上次发送同步指示之后,存在检测到CRS的状态的子帧和在无线链路测量窗口内未检测到DRS的状态的子帧,则发送同步指示。
  19. 根据权利要求17所述的测量方法,其中,当终端中设置有发送无线链路同步指示的时间间隔的预设上报值时,在预设上报值和无线链路测量窗 口的周期中选择数值较大的一个作为发送无线链路同步指示的时间间隔。
  20. 根据权利要求1所述的测量方法,其中,当预设评估周期为失步评估周期,预设检测为失步检测时,根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态,包括:
    在失步评估周期内获取在无线链路测量窗口检测到CRS的状态的子帧的第三RSRQ以及无线链路测量窗口未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第四参考RSRQ;
    根据所述第三RSRQ和所述第四参考RSRQ,确定第三平均RSRQ;
    若所述第三平均RSRQ小于预设失步阈值,则判定无线链路的状态为无线链路失步。
  21. 根据权利要求20所述的测量方法,其中,所述第四参考RSRQ小于所述CRS检测门限。
  22. 根据权利要求1所述的测量方法,其中,当预设评估周期为失步评估周期,预设检测为失步检测时,根据状态产生原因以及子帧状态对预设评估周期内的无线链路质量进行预设检测,确定无线链路所处的状态,包括:
    在所述失步评估周期内,获取在所述无线链路测量窗口内检测到CRS的状态的子帧的第四RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第五参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第六参考RSRQ;
    根据所述第四RSRQ、所述第五参考RSRQ和所述第六参考RSRQ,确定第四平均RSRQ;
    若所述第四平均RSRQ小于预设失步阈值,则判定无线链路的状态为无线链路失步。
  23. 根据权利要求22所述的测量方法,其中,所述第五参考RSRQ小于CRS检测门限;
    所述第六参考RSRQ为失步周期内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为预设时间内检测到CRS的状态的所有子帧的RSRQ的平均值,或者为大于或等于CRS检测门限的固定值。
  24. 根据权利要求1所述的测量方法,其中,在确定无线链路所处的状态之后,测量方法还包括:
    若无线链路所处的状态为无线链路失步时,则发送无线链路失步指示,其中,发送无线链路失步指示的时间间隔大于或等于无线链路测量窗口的周期。
  25. 根据权利要求24所述的测量方法,其中,当终端中设置有发送无线链路失步指示的时间间隔的预设上报值时,在预设上报值和无线链路测量窗口周期中选择数值较大的一个作为发送无线链路失步指示的时间间隔。
  26. 根据权利要求1-12中任一项所述的测量方法,其中,无线链路测量窗口为DRS传输窗口DTxW或DRS测量时间配置DMTC窗口,或者为包含DTxW或DMTC窗口的窗口。
  27. 一种终端,包括:
    第一获取模块,用于获取基站成功发送发现参考信号DRS的概率;
    状态检测模块,用于在预设评估周期内对每个子帧的小区参考信号CRS进行检测,得到每个子帧的子帧状态,所述子帧状态包括检测到CRS的状态和在无线链路测量窗口内未检测到DRS的状态;
    确定模块,用于根据所述基站成功发送DRS的概率,确定所述子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因;以及
    链路状态确定模块,用于根据所述状态产生原因以及子帧状态,对预设评估周期内的无线链路质量进行预设检测,并确定无线链路所处的状态。
  28. 根据权利要求27所述的终端,其中所述第一获取模块包括第一获取单元或第二获取单元,其中,所述第一获取单元用于获取基站在预设周期内通过系统广播发送的成功发送DRS的概率,所述第二获取单元用于获取基站在系统广播中发送的预设周期内统计的平均信道占用率,并根据平均信道占用率确定基站成功发送DRS的概率。
  29. 根据权利要求28所述的终端,其中所述第二获取单元具体用于:
    将平均信道占用率作为基站成功发送DRS的概率;或者根据平均信道占用率计算得到基站成功发送DRS的概率。
  30. 根据权利要求28所述的终端,其中,所述状态检测模块具体用于:
    在所述预设评估周期内,若检测到CRS的参考信号接收质量RSRQ大于或等于CRS检测门限,则将所检测子帧的子帧状态标记为检测到CRS的状态;或者,
    在所述预设评估周期内的无线链路测量窗口内,若检测到DRS,则将检测到DRS的子帧的子帧状态标记为检测到CRS的状态;或者,
    在所述预设评估周期内的无线链路测量窗口内,若未检测到DRS的子帧,则将DRS的子帧的子帧状态标记为在无线链路测量窗口内未检测到DRS的状态。
  31. 根据权利要求28所述的终端,进一步包括判断模块,所述判断模块用于:
    对子帧状态为在无线链路测量窗口内未检测到DRS的状态的子帧进行判断;以及
    若DRS传输窗口内的子帧部分或全部位于检测到CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站先听后说LBT失败。
  32. 根据权利要求31所述的终端,其中,所述判断模块进一步用于:
    若DRS传输窗口内的子帧部分或全部位于在DRS传输窗口之前或位于在无线链路测量窗口中检测到CRS的状态的子帧对应的下行连续数据子帧中,或者若DRS传输窗口内的子帧部分或全部位于DRS传输窗口之后检测到的发送CRS的状态的子帧对应的下行连续数据子帧中,则确定无线链路测量窗口内未检测到发送DRS的状态的子帧的状态产生原因不为基站LBT失败。
  33. 根据权利要求27所述的终端,其中,所述确定模块具体用于:
    当基站成功发送DRS的概率大于或等于预设概率阈值时,确定无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败,否则无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败。
  34. 根据权利要求27所述的终端,其中,所述确定模块具体用于:
    获取根据预设规则生成的参考值,所述参考值大于或等于0,且小于或等于1;
    当所述参考值大于或等于基站成功发送DRS的概率时,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败,否则,得到无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败。
  35. 根据权利要求27所述的终端,其中,当所述预设评估周期为同步评估周期,预设检测为同步检测时,所述链路状态确定模块包括第三获取单元、第一确定单元、第一判定单元,其中,所述第三获取单元用于在所述同步评估周期内获取检测到CRS的状态的子帧的第一RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第一参考RSRQ;所述第一确定单元用于根据第一RSRQ和第一参考RSRQ,确定第一平均RSRQ;以及,所述第一判定单元用于若第一平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步;或者
    所述链路状态确定模块包括第四获取单元、第二确定单元和第三判定单元,其中,所述第四获取单元用于在所述同步评估周期内获取检测到CRS的状态的子帧的第二RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第二参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第三参考RSRQ;所述第二确定单元用于根据第二RSRQ、第二参考RSRQ和第三参考RSRQ,确定第二平均RSRQ;以及所述第二判定单元,用于若第二平均RSRQ大于或等于预设同步阈值,则判定无线链路的状态为无线链路同步。
  36. 根据权利要求27所述的终端,其中,当所述预设评估周期为失步评估周期时,预设检测为失步检测时,所述链路状态确定模块包括第五获取单元、第三确定单元以及第三判定单元,其中所述第五获取单元用于在所述失步评估周期内获取在无线链路测量窗口检测到CRS的状态的子帧的第三RSRQ以及无线链路测量窗口未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第四参考RSRQ;所述第三确定单元用于根据第三RSRQ和第四参考RSRQ,确定第三平均RSRQ;所述第三判定单元用于若第三平均RSRQ小于预设失步阈值,则判定无线链路的状态为无线链路失步; 或者
    所述链路状态确定模块包括第六获取单元、第四确定单元或第四判定单元,其中所述第六获取单元用于在失步评估周期内获取在无线链路测量窗口内检测到CRS的状态的子帧的第四RSRQ、无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因不为基站LBT失败的子帧的第五参考RSRQ以及无线链路测量窗口内未检测到DRS的状态的子帧的状态产生原因为基站LBT失败的子帧的第六参考RSRQ;所述第四确定单元用于根据第四RSRQ、第五参考RSRQ和第六参考RSRQ,确定第四平均RSRQ;所述第四判定单元用于若第四平均RSRQ小于预设失步阈值,则判定无线链路的状态为无线链路失步。
  37. 一种终端,包括接收机及处理器;
    其中,所述接收机用于接收基站成功发送发现参考信号DRS的概率;
    所述处理器与所述接收机连接并且实现根据权利要求1-26中任一项所述的方法。
PCT/CN2017/085719 2016-05-27 2017-05-24 一种无线链路质量的测量方法及终端 WO2017202339A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17802185.3A EP3468246B1 (en) 2016-05-27 2017-05-24 Method for measuring quality of wireless link and terminal
US16/304,974 US10764820B2 (en) 2016-05-27 2017-05-24 Method for measuring wireless link quality and user equipment
JP2018562197A JP6732955B2 (ja) 2016-05-27 2017-05-24 無線リンク品質の測定方法および端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610365876.5A CN107438263B (zh) 2016-05-27 2016-05-27 一种无线链路质量的测量方法及终端
CN201610365876.5 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017202339A1 true WO2017202339A1 (zh) 2017-11-30

Family

ID=60412047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085719 WO2017202339A1 (zh) 2016-05-27 2017-05-24 一种无线链路质量的测量方法及终端

Country Status (5)

Country Link
US (1) US10764820B2 (zh)
EP (1) EP3468246B1 (zh)
JP (1) JP6732955B2 (zh)
CN (1) CN107438263B (zh)
WO (1) WO2017202339A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020193317A1 (en) * 2019-03-28 2020-10-01 Nokia Technologies Oy Enhanced listen before talk mechanism for new radio unlicensed discovery reference signals
EP3952188A4 (en) * 2019-04-01 2022-05-11 Vivo Mobile Communication Co., Ltd. WIRELESS LINK STATUS INDICATION REPORTING METHOD AND TERMINAL DEVICE
CN115299092A (zh) * 2020-04-16 2022-11-04 Oppo广东移动通信有限公司 一种无线链路测量方法、电子设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026662A (ja) 2016-08-09 2018-02-15 ソニー株式会社 通信装置、通信方法、及びプログラム
WO2018083064A1 (en) * 2016-11-04 2018-05-11 Nokia Technologies Oy Group radio resource management in cells employing a clear channel assessment procedure
CN108848523B (zh) * 2017-06-16 2019-09-20 华为技术有限公司 一种无线链路监控方法和装置
CN111096059B (zh) * 2017-08-16 2023-09-05 Lg电子株式会社 在未授权频带中管理无线电链路的方法和设备
CN109644362B (zh) 2018-02-05 2021-02-23 Oppo广东移动通信有限公司 检测链路质量的方法和终端设备
CN112512132B (zh) * 2018-02-14 2022-12-20 Oppo广东移动通信有限公司 无线通信方法和设备
CN110611921B (zh) * 2018-06-15 2021-06-01 维沃移动通信有限公司 一种无线链路状态判断方法及终端
CN112954713A (zh) * 2019-12-11 2021-06-11 维沃移动通信有限公司 测量方法和终端
CN111769866B (zh) * 2020-06-17 2021-10-19 电子科技大学 飞行器同步广播方法、系统与装置
CN111988793B (zh) * 2020-08-05 2023-02-24 南京大鱼半导体有限公司 无线链路的失步检测方法、装置、存储介质和终端
US11799567B2 (en) * 2020-12-16 2023-10-24 Qualcomm Incorporated Beam-specific RSSI and CO for NR-U

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
WO2016039600A1 (en) * 2014-09-12 2016-03-17 Lg Electronics Inc. Method and apparatus for configuring different thresholds for different signals in wireless communication system
US20160127098A1 (en) * 2014-11-03 2016-05-05 Samsung Electronics Co., Ltd. Method and apparatus for channel access for lte on unlicensed spectrum
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105787A1 (en) * 2012-01-09 2013-07-18 Samsung Electronics Co., Ltd. Method and apparatus for providing communication service to mobile station by multiple base stations in cooperation in wireless communication system
CN104429130B (zh) * 2012-07-05 2018-06-26 Lg电子株式会社 在无线通信系统中发送用于终端之间直接通信的终端检测信号的方法及其装置
EP3986031B1 (en) 2013-04-03 2024-04-03 InterDigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments
US9743432B2 (en) * 2013-09-23 2017-08-22 Qualcomm Incorporated LTE-U uplink waveform and variable multi-subframe scheduling
WO2015051843A1 (en) * 2013-10-10 2015-04-16 Nokia Solutions And Networks Oy Using a base station with a failed interface to core network to configure and advertise cluster head for device-to-device (d2d) wireless communications
EP3177061B1 (en) 2014-07-31 2020-02-26 NTT DoCoMo, Inc. User terminal, wireless communication system, and wireless communication method
JP6546185B2 (ja) 2014-09-26 2019-07-17 京セラ株式会社 基地局及びユーザ端末
US20160330678A1 (en) * 2015-05-07 2016-11-10 Electronics And Telecommunications Research Institute Method and device for transmitting and receiving discovery reference signal through channel of unlicensed frequency band
CN105451341B (zh) * 2015-11-06 2019-03-15 北京佰才邦技术有限公司 非授权频段中配置参考信号的方法和装置
WO2017144514A1 (en) * 2016-02-23 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Radio link monitoring in listen-before-talk communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039600A1 (en) * 2014-09-12 2016-03-17 Lg Electronics Inc. Method and apparatus for configuring different thresholds for different signals in wireless communication system
US20160127098A1 (en) * 2014-11-03 2016-05-05 Samsung Electronics Co., Ltd. Method and apparatus for channel access for lte on unlicensed spectrum
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468246A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020193317A1 (en) * 2019-03-28 2020-10-01 Nokia Technologies Oy Enhanced listen before talk mechanism for new radio unlicensed discovery reference signals
EP3952188A4 (en) * 2019-04-01 2022-05-11 Vivo Mobile Communication Co., Ltd. WIRELESS LINK STATUS INDICATION REPORTING METHOD AND TERMINAL DEVICE
CN115299092A (zh) * 2020-04-16 2022-11-04 Oppo广东移动通信有限公司 一种无线链路测量方法、电子设备及存储介质

Also Published As

Publication number Publication date
US20190289535A1 (en) 2019-09-19
CN107438263B (zh) 2019-11-29
JP6732955B2 (ja) 2020-07-29
US10764820B2 (en) 2020-09-01
EP3468246A1 (en) 2019-04-10
EP3468246A4 (en) 2020-01-01
EP3468246B1 (en) 2023-05-10
JP2019522405A (ja) 2019-08-08
CN107438263A (zh) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2017202339A1 (zh) 一种无线链路质量的测量方法及终端
US11178561B2 (en) Method for radio link monitoring and corresponding user equipment
CN113767710B (zh) 基于dl cca操作信息适配ue服务小区过程
KR102052169B1 (ko) 동적 TDD UL/DL 구성 가능 셀들 및/또는 CoMP 셀들로의 핸드오버
JP6549665B2 (ja) セル同期および同期セルインジケーション
US9942009B2 (en) Measurement gap configuration
CN105745956B (zh) 确定测量间隙gap长度的方法和网络设备
CN105934973A (zh) 用于自适应无线电链路监控的方法、网络节点、用户设备和计算机程序产品
KR20160078418A (ko) 동기 신호 송신 시스템 및 방법
EP3032885B1 (en) Dormant cell discovering
WO2018000440A1 (zh) 信号检测的方法和装置
JP2014230142A (ja) 基地局装置、タイミング調整方法及びプログラム
CN109379751A (zh) 邻区上报方法及装置、可读存储介质、用户设备、基站
EP3154282B1 (en) Small cell discovery method and system, base station, and user equipment
JP2023103447A (ja) 無線リンクの監視測定方法、端末デバイス及びネットワークデバイス
US20190074916A1 (en) Method and device for detecting signal strength
TW202007198A (zh) 無線鏈路監測的方法和終端設備
WO2020006754A1 (zh) 小区测量的方法与装置
CN109982371B (zh) 基于载波聚合的异频测量方法及装置、存储介质、终端
WO2013185460A1 (zh) 确定时钟失步的方法和装置
CN108738124B (zh) 一种定时同步方法和装置
TWI713392B (zh) 無線資源管理和無線鏈路監測配置和進程之方法
CN108632842B (zh) 失步确定方法及装置
CN117941403A (zh) 测量放松方法、装置、终端设备及存储介质
CN115428364A (zh) 无线链路监测方法及装置、终端设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802185

Country of ref document: EP

Effective date: 20190102