WO2017202162A1 - 虚拟曲面显示面板、其制作方法及显示装置 - Google Patents

虚拟曲面显示面板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2017202162A1
WO2017202162A1 PCT/CN2017/081620 CN2017081620W WO2017202162A1 WO 2017202162 A1 WO2017202162 A1 WO 2017202162A1 CN 2017081620 W CN2017081620 W CN 2017081620W WO 2017202162 A1 WO2017202162 A1 WO 2017202162A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
vertical
lenticular lenses
vertical lenticular
lenses
Prior art date
Application number
PCT/CN2017/081620
Other languages
English (en)
French (fr)
Inventor
张粲
杨亚锋
高健
王灿
马新利
王维
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/569,415 priority Critical patent/US10126589B2/en
Publication of WO2017202162A1 publication Critical patent/WO2017202162A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a virtual curved display panel, a manufacturing method thereof, and a display device.
  • the current curved display can make people's visual experience more comfortable, the painting is more realistic, and it can bring better immersive effect, so it has been widely used.
  • An object of the present invention is to provide a virtual curved surface display panel, a manufacturing method thereof, and a display device, which are used to solve the problem that the implementation scheme of the existing curved surface display is easy to cause light leakage and color display abnormality and realize complicated.
  • a virtual curved display panel includes a planar display panel having a plurality of pixel units distributed in a matrix, and a lens group disposed on the light exiting side of the flat display panel for imaging a plurality of pixel units to form a curved surface;
  • the lens group includes:
  • the focal lengths of the vertical lenticular lenses are equal;
  • a focal length of each of the vertical lenticular lenses is symmetrically distributed with a central pixel unit as an axis of symmetry, and each of the vertical sides on the same side of the symmetry axis
  • the focal lengths of the lenticular lenses are not equal to each other;
  • the focal length of the horizontal lenticular lens is equal to the focal length of the vertical lenticular lens.
  • a column of the vertical cylindrical lenses corresponding to the column of the pixel units is a unitary structure.
  • a focal length of each of the vertical lenticular lenses is greater than an object distance imaged by a corresponding pixel unit; and, in a row of the vertical lenticular lenses, starting from the symmetry axis to one side edge, each of the vertical The focal length of the lenticular lens is gradually increased.
  • each of the pixel units images an object distance larger than a focal length of the corresponding vertical lenticular lens and less than twice a focal length of the corresponding vertical lenticular lens, and a row of the vertical lenticular lenses
  • the symmetry axis starts to one side edge, and the focal length of each of the vertical lenticular lenses gradually increases.
  • the aperture of the vertical lenticular lens is not less than the width of the pixel unit corresponding to the vertical lenticular lens in the column direction, and/or
  • the aperture of the horizontal lenticular lens is not less than the width of the pixel unit corresponding to the horizontal lenticular lens in the row direction.
  • the aperture of each of the horizontal lenticular lenses is equal to the refractive index of the vertical lenticular lens that is orthogonally connected;
  • each of the horizontal lenticular lenses is equal to the radius of curvature of the vertical lenticular lens that is orthogonally aligned
  • each of the horizontal lenticular lenses is equal to the arch height of the vertical lenticular lens that is orthogonally connected;
  • each of the horizontal lenticular lenses is equal to the aperture of the vertical lenticular lens that is in close contact with each other.
  • f denotes a focal length of the vertical lenticular lens
  • a denotes the vertical columnar shape
  • the object distance at which the pixel unit corresponding to the lens is imaged, b represents the image distance when the pixel unit corresponding to the vertical lenticular lens is imaged, and n represents the refractive index of the vertical lenticular lens.
  • the height of the vertical lenticular lens is Wherein p represents the aperture of the vertical lenticular lens.
  • a display device comprising the virtual curved display panel of any of the above embodiments.
  • a method for manufacturing a virtual curved display panel comprising:
  • a lens group composed of a plurality of sets of orthogonally aligned vertical lenticular lenses and horizontal lenticular lenses; wherein: a column of the vertical lenticular lenses corresponding to the column of pixel units has an equal focal length of each of the vertical lenticular lenses; In a row of vertical lenticular lenses corresponding to the pixel unit, a focal length of each of the vertical lenticular lenses is symmetrically distributed with a central pixel unit as a symmetry axis, and each of the vertical columns on the same side of the symmetry axis The focal lengths of the lenses are not equal to each other; in each of the orthogonally aligned vertical lenticular lenses and horizontal lenticular lenses, the focal length of the horizontal lenticular lens is equal to the focal length of the vertical lenticular lens that is orthogonally aligned;
  • the unit is imaged to form a curved surface.
  • forming a lens group consisting of a plurality of sets of orthogonally aligned vertical lenticular lenses and horizontal lenticular lenses comprises:
  • the method further comprises: pre-forming a first pressing mold for forming each of the vertical lenticular lenses and a second pressing mold for forming each of the horizontal lenticular lenses.
  • the flat display panel includes opposite upper and lower substrates; each of the pixel units is located on the lower substrate; the lens group is located at a light exiting side of the upper substrate;
  • the object distance imaged by each of the pixel units is a thickness of the upper substrate
  • a first pressing mold for forming each vertical lenticular lens and a second pressing mold for forming each horizontal lenticular lens are prepared in advance, including:
  • the first pressing mold is fabricated according to the determined focal length of each of the vertical lenticular lenses
  • the second pressing mold is fabricated according to the determined focal length of each of the horizontal lenticular lenses.
  • the embodiment of the present invention further provides a display method using the virtual curved display panel as described in the above embodiments, comprising: using the plurality of orthogonally aligned vertical cylindrical lenses and horizontal cylindrical lenses to the plurality of pixels
  • the unit is imaged in which a plurality of images form a curved surface.
  • a vertical cylindrical lens and a horizontal cylindrical lens which are orthogonally closely connected and have the same focal length are disposed on the pixel unit of the flat display panel, and the orthogonally aligned
  • the vertical lenticular lens and the horizontal lenticular lens can be equivalent to a spherical lens.
  • the focal lengths of a row of vertical lenticular lenses corresponding to one row of pixel units are symmetrically distributed with the central pixel unit as an axis of symmetry, and the focal lengths of the vertical lenticular lenses on the same side of the symmetry axis are not equal to each other.
  • each equivalent spherical lens can make the image formed by each pixel unit form a curved surface, thereby realizing the virtual curved surface display.
  • the flat display panel there is no need to mechanically process the flat display panel, and the flat display surface
  • the board will not have problems such as light leakage and abnormal color display.
  • the flexible design of the flat display panel can be reduced, and the implementation is simple.
  • FIG. 1 is a schematic structural diagram of a virtual curved surface display panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a lenticular lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an equivalent spherical lens of two cylindrical lenses which are closely connected in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a focal length of each vertical cylindrical lens in a virtual curved display panel according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another virtual curved surface display panel according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a flat display panel according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of imaging behind a screen according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of front view of a screen according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of parameters of a lenticular lens and a spherical lens according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another virtual curved display panel according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for manufacturing a virtual curved surface display panel according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a pressed vertical cylindrical lens according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a pressed vertical lenticular lens according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a pressed horizontal lenticular lens according to an embodiment of the present invention.
  • a virtual curved display panel, a manufacturing method thereof and a display device according to embodiments of the present invention are described in more detail below with reference to the accompanying drawings.
  • the embodiment of the invention provides a new scheme for realizing surface display, namely a virtual curved surface display panel, comprising a flat display panel having a plurality of pixel units distributed in a matrix, and a light-emitting side disposed on the flat display panel for making A plurality of pixel units are imaged to form a curved lens group; wherein the lens group comprises:
  • the focal lengths of the respective vertical lenticular lenses are equal;
  • the focal lengths of the vertical lenticular lenses are symmetrically distributed with the central pixel unit as the axis of symmetry, and the focal lengths of the vertical lenticular lenses on the same side of the symmetry axis are not equal to each other. ;
  • the focal length of the horizontal lenticular lens is equal to the focal length of the vertically aligned lenticular lens.
  • an embodiment of the present invention provides a virtual curved display panel, including a planar display panel 11 having a plurality of pixel units 111 arranged in a matrix, the virtual curved display panel further comprising a light-emitting side disposed on the flat display panel 11 a lens group for causing a plurality of pixel units 111 to form a curved surface; wherein the lens group includes:
  • each set of the orthogonally-aligned vertical lenticular lenses 12 overlapping the horizontal lenticular lens 13 covering the corresponding pixel unit 111;
  • the focal lengths of the vertical lenticular lenses 12 are equal;
  • each vertical lenticular lens 12 is symmetrically distributed with the central pixel unit 111 as a symmetry axis (shown by a broken line A in the figure), and is located on the same side of the symmetry axis.
  • the focal lengths of the respective vertical lenticular lenses 12 are not equal to each other;
  • the focal length of the horizontal lenticular lens 13 is equal to the focal length of the vertically lenticular lens 12 which is orthogonally aligned.
  • the horizontal lenticular lens 13 shown in FIG. 1 is above the vertical lenticular lens 12.
  • the lenticular lens is a lens that is cut out from a part of a cylinder.
  • the axial directions of the two lenticular lenses having the same focal length are perpendicular and closely adhered, that is, orthogonally connected, and can be equivalent to one focal length and two columns respectively.
  • a spherical lens with equal lenses refers to a lens that is cut from a portion of a sphere.
  • a vertical lenticular lens refers to a lenticular lens arranged axially in the direction in which a column of pixel units is located
  • a horizontal lenticular lens refers to a lenticular lens arranged axially in the direction of a row of pixel units.
  • a vertical lenticular lens and a horizontal lenticular lens which are orthogonally closely connected and have the same focal length are disposed on the pixel unit of the flat display panel, and the orthogonally contiguous vertical lenticular lens and the horizontal lenticular lens may be equivalent to one Spherical lens.
  • the focal lengths of a row of vertical lenticular lenses corresponding to one row of pixel units are symmetrically distributed with the central pixel unit as an axis of symmetry, and the focal lengths of the vertical lenticular lenses on the same side of the symmetry axis are not equal to each other.
  • each equivalent spherical lens can make the image formed by each pixel unit form a curved surface, thereby realizing the virtual curved surface display.
  • the flat display panel does not have problems such as light leakage and abnormal color display.
  • the flexible design of the flat display panel can be reduced, and the implementation is simple.
  • the manufacturing process of the lenticular lens has low precision and is easy to manufacture.
  • the number of pixel units in FIG. 1 is only an example, and does not represent the number of real pixel units. If the number of pixel units in a row is an odd number, the central pixel unit refers to one pixel unit in the center. If the number of pixel units in a row is an even number, the central pixel unit refers to two pixel units in the center. In Fig. 1, an example in which the number of pixel units in a row is an odd number is taken as an example.
  • the focal length of the vertical lenticular lens 12 corresponding to the central pixel unit is f1, as shown in the schematic diagram of the focal length of each vertical lenticular lens as shown in FIG.
  • the central pixel unit is the axis of symmetry, and the right vertical cylindrical lens has a focal length from left to right of f2, ..., fn, and the left vertical cylindrical lens has a focal length from right to left. In order, it is f2, ..., fn.
  • a column of vertical lenticular lenses corresponding to the column of pixel units is an integrated structure, such as Figure 5 shows. In this way, a lenticular lens penetrating the column can be disposed on a column of pixel units, which reduces the process precision and is simpler to implement.
  • imaging can be performed in front of the screen, and imaging can be performed behind the screen.
  • the imaging position can be flexibly set according to actual needs. The following is an example of a specific implementation.
  • the flat display panel includes an upper substrate 113 and a lower substrate 112 opposite to each other; each pixel unit 111 is located on the lower substrate 112; and the lens group is located on the light emitting side of the upper substrate 113.
  • the object distance (shown as a in the figure) imaged by each pixel unit 111 is the thickness of the upper substrate.
  • each vertical lenticular lens is greater than the thickness of the upper substrate (ie, the object distance imaged by the corresponding pixel unit); and, in a row of vertical lenticular lenses, starting from the symmetry axis to the side edge, each vertical The focal length of the straight cylindrical lens is gradually increased. That is, from f1 to fn, it gradually increases.
  • the image distance of the central pixel unit during imaging (b1 shown in the figure) is the smallest,
  • the most edged pixel unit has the largest image distance when imaging.
  • each of the pixel units images an object distance greater than a focal length of the corresponding vertical lenticular lens and less than twice a focal length of the corresponding vertical lenticular lens.
  • the focal length of each vertical lenticular lens gradually increases from the symmetry axis to the one side edge. That is, from f1 to fn, it gradually increases.
  • the main parameter of a lenticular lens includes a refractive index n, a radius of curvature r, an aperture p, and an arch height h, where O1 is the center of the bottom surface of the cylinder corresponding to the lenticular lens.
  • the main parameters of the spherical lens equivalent to two orthogonally aligned lenticular lenses of equal focal length are also the focal length f, the refractive index n, the radius of curvature r, the aperture p and the arch height h, where O2 is the sphere corresponding to the spherical lens. Heart of the ball.
  • the object distance and the image distance can determine the focal length f of each pixel unit when imaging the above equivalent spherical lens. Further, since the orthogonally aligned vertical lenticular lens and the horizontal lenticular lens are equal in focal length to the equivalent spherical lens, the focal lengths of the vertical lenticular lens and the horizontal lenticular lens can be determined.
  • the parameters such as the refractive index n, the radius of curvature r, the aperture p, and the arch height h are determined in combination with the focal length of the column lens and the like.
  • the refractive index of a lens is related to its material.
  • the radius of curvature of the horizontal lenticular lens that is in close contact with the vertical lenticular lens also applies to the above formula.
  • n represents the refractive index of the horizontal lenticular lens.
  • the arch height of the vertical lenticular lens is Wherein p represents the aperture of the vertical lenticular lens; the aperture of the vertical lenticular lens is not less than the width of the pixel unit corresponding to the vertical lenticular lens in the column direction.
  • the aperture of the vertical lenticular lens is not smaller than the width of the pixel unit corresponding to the vertical lenticular lens in the column direction.
  • the width of the pixel unit in the column direction is the width of the column in which the pixel unit is located, so that the pixel unit can be covered.
  • the above formula is also applicable to the arch height of the horizontal lenticular lens which is in close contact with the vertical lenticular lens.
  • p denotes the aperture of the horizontal lenticular lens
  • the aperture of the horizontal lenticular lens is not smaller than the width of the pixel unit corresponding to the horizontal lenticular lens in the row direction.
  • the width of the pixel unit in the row direction is the width of the row of the pixel unit.
  • the refractive index of each horizontal lenticular lens is equal to the refractive index of the vertical lenticular lens that is orthogonally connected;
  • each horizontal lenticular lens is equal to the radius of curvature of the vertically aligned lenticular lens
  • each horizontal lenticular lens is equal to the arch height of the vertically aligned cylindrical lens
  • each horizontal lenticular lens is perpendicular to the aperture of the vertical lenticular lens that is closely connected Wait.
  • the refractive index, the radius of curvature, the arch height, and the aperture of the vertical lenticular lens and the horizontal lenticular lens are equal, and the parameters of the equivalent spherical lens are also equal to those of the horizontal lenticular lens or the vertical lenticular lens. Make the design easier.
  • a virtual curved display panel provided by an embodiment of the present invention will be described in more detail below by taking a specific structure as an example.
  • the flat display panel is a liquid crystal display panel. As shown in FIG. 10, the flat display panel is opposite to the upper substrate 113 and the lower substrate 112, and the liquid crystal layer between the upper substrate 113 and the lower substrate 112. 114.
  • the lower substrate 112 includes a lower polarizer 1121 and an array substrate 1122.
  • the upper substrate 113 includes a color filter substrate 1131 and an upper polarizer 1132.
  • the flat display panel further includes a plurality of pixel units 111 distributed in a matrix.
  • a lens group is disposed on the upper polarizer 1132, and the lens group is attached to the liquid crystal display panel by an adhesive.
  • the lens group is used to cause each pixel unit to be imaged to form a curved surface.
  • the object distance when each pixel unit is imaged is the sum of the thickness of the color filter substrate 1131, the thickness of the upper polarizer 1132, and the thickness of the adhesive. If imaging is performed behind the screen, the image distance at the time of imaging of each pixel unit can be referred to the embodiment related to FIG. 7. If imaging is performed in front of the screen, the image distance when each pixel unit is imaged can be referred to the related embodiment of FIG.
  • the lens group therein adopts the structure shown in FIG. 5, wherein:
  • a plurality of orthogonally aligned vertical lenticular lenses 12 and horizontal lenticular lenses 13 respectively located on the light outgoing side of each pixel unit 111; overlapping regions of each set of orthogonally aligned vertical lenticular lenses 12 and horizontal lenticular lenses 13 cover corresponding pixel units 111;
  • the focal lengths of the vertical lenticular lenses 12 are equal;
  • each vertical lenticular lens 12 In a row of vertical lenticular lenses 12 corresponding to a row of pixel units 111, the focal length of each vertical lenticular lens 12 is symmetrically distributed with the central pixel unit 111 as an axis of symmetry (shown by a broken line A in the figure), and is located at the same symmetry axis.
  • the focal lengths of the vertical lenticular lenses 12 on the side are not equal to each other;
  • a column of the vertical cylindrical lenses corresponding to the column of the pixel unit is an integrated structure.
  • the focal length of the horizontal lenticular lens 13 is equal to the focal length of the vertically lenticular lens 12 which is orthogonally aligned.
  • the refractive index of each horizontal lenticular lens is equal to the refractive index of the vertically aligned lenticular lens;
  • the radius of curvature of each horizontal lenticular lens is equal to the radius of curvature of the vertically aligned lenticular lens;
  • the height of each horizontal lenticular lens is equal to the height of the vertically aligned vertical lenticular lens; the aperture of each horizontal lenticular lens
  • the vertical lenticular lens that is in close contact with it is equal in aperture.
  • the aperture of the vertical lenticular lens is larger than the width of the long side of the pixel unit corresponding to the vertical lenticular lens to ensure that the entire pixel unit is covered by the overlapping area of the vertical lenticular lens and the horizontal lenticular lens.
  • the horizontal lenticular lens and the vertical lenticular lens have a refractive index of 1.5.
  • the parameters of the focal length, the arch height, and the aperture of the vertical lenticular lens and the horizontal lenticular lens can be referred to the formulas in the above related embodiments, and are not described herein again.
  • an embodiment of the present invention further provides a display device, including the virtual curved display panel of any of the above embodiments.
  • the embodiment of the present invention further provides a method for manufacturing a virtual curved surface display panel. As shown in FIG. 11 , the method includes at least the following steps:
  • Step 1110 Form a planar display panel having a plurality of pixel units distributed in a matrix
  • Step 1120 forming a lens group consisting of a plurality of sets of orthogonally aligned vertical lenticular lenses and horizontal lenticular lenses; wherein: in a column of vertical lenticular lenses corresponding to a column of pixel units, each vertical lenticular lens has an equal focal length; In a row of vertical lenticular lenses corresponding to the unit, the focal lengths of the vertical lenticular lenses are symmetrically distributed with the central pixel unit as the symmetry axis, and the focal lengths of the vertical lenticular lenses on the same side of the symmetry axis are not equal to each other; In the orthogonally aligned vertical lenticular lens and the horizontal lenticular lens, the focal length of the horizontal lenticular lens is equal to the focal length of the vertically aligned lenticular lens;
  • the lens group is attached to the light exiting side of the flat display panel, and overlapping regions of the vertically aligned vertical lenticular lenses and the horizontal lenticular lenses respectively cover the corresponding pixel units, so that the plurality of pixel units are imaged to form one. Surface.
  • a vertical lenticular lens and a horizontal lenticular lens which are orthogonally closely connected and have the same focal length are disposed on the pixel unit of the flat display panel, and the orthogonally contiguous vertical lenticular lens and the horizontal lenticular lens may be equivalent to one Spherical lens.
  • the focal lengths of a row of vertical lenticular lenses corresponding to one row of pixel units are symmetrically distributed with the central pixel unit as an axis of symmetry, and the focal lengths of the vertical lenticular lenses on the same side of the symmetry axis are not equal to each other.
  • the focal lengths of the equivalent spherical lenses are also symmetrically distributed with the central pixel unit as the axis of symmetry, and the focal lengths of the spherical lenses on the same side of the symmetric axis are not equal to each other.
  • each equivalent spherical lens can make the image formed by each pixel unit form a curved surface, thereby realizing the virtual The pseudo surface is displayed.
  • the flat display panel does not have problems such as light leakage and abnormal color display.
  • the flexible design of the flat display panel can be reduced, and the implementation is simple.
  • a lens group formed by a plurality of sets of orthogonally aligned vertical lenticular lenses and horizontal lenticular lenses is formed, including:
  • Step 11 Applying a whole layer of lens embossing glue on the first lens substrate and the second lens substrate, respectively;
  • Step 12 pressing a pattern of a plurality of vertical lenticular lenses on a first lens substrate coated with a lens embossing material by using a first pressing mold, and applying a lens embossing adhesive material by using a second pressing mold A pattern of a plurality of horizontal lenticular lenses pressed on the two lens substrate;
  • the patterns of the pressed vertical lenticular lenses may respectively be the patterns shown in FIGS. 12 and 13, and a plurality of vertical lenticular lenses are pressed on the first lens substrate 14, and the pressed horizontal lenticular lenses are patterned. As shown in FIG. 14, a plurality of horizontal lenticular lenses are pressed on the second lens substrate 15.
  • Step 13 Perform a curing process on the first lens substrate on which the pattern of the plurality of vertical lenticular lenses is pressed to form a plurality of vertical lenticular lenses, and cure the second lens substrate on which the pattern of the plurality of horizontal lenticular lenses is pressed To form a plurality of horizontal lenticular lenses;
  • step 14 the first lens substrate on which the plurality of vertical lenticular lenses are formed is bonded to the second lens substrate on which the plurality of horizontal lenticular lenses are formed, so that the horizontal lenticular lenses are in close contact with each of the vertical lenticular lenses.
  • the method further comprises: pre-making a first pressing mold for forming each vertical lenticular lens and a second pressing mold for forming each horizontal lenticular lens.
  • the flat display panel includes opposite upper and lower substrates; each pixel unit is located on the lower substrate; and the lens group is located on the light emitting side of the upper substrate;
  • the object distance imaged by each pixel unit is the thickness of the upper substrate
  • the steps of pre-fabricating the first pressing mold for forming each of the vertical lenticular lenses and the second pressing mold for forming the respective horizontal lenticular lenses include:
  • Step 21 Determine a curved surface formed by each of the required pixel units
  • Step 22 determining an image distance imaged by each pixel unit according to the curved surface
  • Step 23 determining, according to an image distance imaged by each pixel unit and a thickness of the upper substrate, a focal length for imaging each pixel unit;
  • Step 24 determining, according to a focal length corresponding to each pixel unit, each of the covering pixel units a focal length of a vertically aligned vertical cylindrical lens and a horizontal cylindrical lens;
  • Step 25 Make a first pressing mold according to the determined focal lengths of the respective vertical lenticular lenses, and prepare a second pressing mold according to the determined focal lengths of the horizontal lenticular lenses.
  • the step may be: determining a radius of curvature of each vertical lenticular lens according to a refractive index of the lens embossed rubber, and a determined focal length of each vertical lenticular lens; determining each vertical according to a width of each pixel unit in a column direction
  • the aperture of the straight cylindrical lens; the arch height is determined according to the aperture and the radius of curvature of each vertical cylindrical lens; and the first pressing mold is fabricated according to the determined arch height, radius of curvature and aperture of each vertical cylindrical lens.
  • each horizontal lenticular lens Determining a radius of curvature of each horizontal lenticular lens according to a refractive index of the lens embossed rubber material and a determined focal length of each horizontal lenticular lens; determining an aperture of each horizontal lenticular lens according to a width of each pixel unit in a row direction; according to each horizontal lenticular lens The aperture and the radius of curvature determine the arch height; and the second pressing mold is fabricated according to the determined arch height, radius of curvature and aperture of each horizontal lenticular lens.
  • a vertical cylindrical lens and a horizontal cylindrical lens which are orthogonally closely connected and have the same focal length are disposed on the pixel unit of the flat display panel, and the orthogonally aligned
  • the vertical lenticular lens and the horizontal lenticular lens can be equivalent to a spherical lens.
  • the focal lengths of a row of vertical lenticular lenses corresponding to one row of pixel units are symmetrically distributed with the central pixel unit as an axis of symmetry, and the focal lengths of the vertical lenticular lenses on the same side of the symmetry axis are not equal to each other.
  • each equivalent spherical lens can make the image formed by each pixel unit form a curved surface, thereby realizing the virtual curved surface display.
  • the flat display panel does not have problems such as light leakage and abnormal color display.
  • the flexible design of the flat display panel can be reduced, and the implementation is simple.
  • the embodiment of the present invention further provides a display method using the virtual curved display panel as described in the above embodiments, including: using the plurality of orthogonally aligned vertical cylindrical lenses and horizontal cylindrical lens pairs The plurality of pixel units are imaged, wherein the plurality of images formed form a curved surface.

Abstract

一种虚拟曲面显示面板、其制作方法及显示装置。在平面显示面板(11)的像素单元(111)的出光侧设置有正交密接且焦距相同的竖直柱状透镜(12)和水平柱状透镜(13),该正交密接的竖直柱状透镜(12)和水平柱状透镜(13)可以等效成一个球面透镜。一行像素单元(111)对应的一行竖直柱状透镜(12)的焦距以中央的像素单元(111)为对称轴(A)呈对称分布,且位于该对称轴(A)同一侧的各竖直柱状透镜(12)的焦距互不相等。因此,等效的各球面透镜的焦距也以中央的像素单元(111)为对称轴(A)呈对称分布,且位于该对称轴(A)同一侧的各球面透镜的焦距互不相等。由此,各等效的球面透镜可以使得各个像素单元(111)所成的像构成一个曲面,从而实现了虚拟曲面显示。

Description

虚拟曲面显示面板、其制作方法及显示装置
相关申请
本申请要求保护在2016年5月25日提交的申请号为201610353739.X的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种虚拟曲面显示面板、其制作方法及显示装置。
背景技术
目前的曲面显示器,可以让人们的视觉体验更加舒适,画面临场感更逼真,可带来较佳的沉浸式效果,因而得到了广泛应用。
现有技术中,为了形成曲面的效果,需要对平面显示面板进行调节。
例如,为了实现曲面显示,通常是先做成平面显示面板,然后进行边缘曲化处理,最终形成物理机械的曲面形式,会造成边缘场的变形,容易导致漏光及色彩显示异常等问题。另外,由于平面显示面板内部的诸多模组都得有柔性的设计,这样产品的良率很低,相应的产品的成本会增加。并且曲面显示面板切割的话也比较麻烦,浪费的材料较多,也不易大规模生产,实现较为复杂。
发明内容
本发明实施例的目的是提供一种虚拟曲面显示面板、其制作方法及显示装置,用于解决现有的曲面显示的实现方案容易导致漏光及色彩显示异常且实现复杂的问题。
本发明实施例的目的是通过以下技术方案实现的:
一种虚拟曲面显示面板,包括具有呈矩阵分布的多个像素单元的平面显示面板、以及设置于所述平面显示面板出光侧用于使得多个像素单元所成像构成一个曲面的透镜组;其中,所述透镜组包括:
与所述多个像素单元一一对应的多组正交密接的竖直柱状透镜和 水平柱状透镜,每组所述正交密接的竖直柱状透镜与水平柱状透镜的重叠区域覆盖对应的像素单元;
一列所述像素单元所对应的一列竖直柱状透镜中,各所述竖直柱状透镜的焦距均相等;
一行所述像素单元所对应的一行竖直柱状透镜中,各所述竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于所述对称轴同一侧的各所述竖直柱状透镜的焦距互不相等;
每组所述正交密接的竖直柱状透镜和水平柱状透镜中,水平柱状透镜的焦距与竖直柱状透镜的焦距相等。
可选地,一列所述像素单元所对应的一列竖直柱状透镜为一体结构。
可选地,各所述竖直柱状透镜的焦距大于对应的像素单元成像的物距;并且,一行所述竖直柱状透镜中,从所述对称轴开始到一侧边缘,各所述竖直柱状透镜的焦距逐渐增大。
可选地,各所述像素单元成像的物距大于对应的竖直柱状透镜的焦距,且小于对应的竖直柱状透镜的焦距的2倍,并且,一行所述竖直柱状透镜中,从所述对称轴开始到一侧边缘,各所述竖直柱状透镜的焦距逐渐增大。
可选地,所述竖直柱状透镜的孔径不小于与所述竖直柱状透镜所对应的像素单元在列方向上的宽度,和/或,
所述水平柱状透镜的孔径不小于与所述水平柱状透镜所对应的像素单元在行方向上的宽度。
可选地,各所述水平柱状透镜的孔径与其所正交密接的所述竖直柱状透镜的折射率相等;
各所述水平柱状透镜的曲率半径与其所正交密接的所述竖直柱状透镜的曲率半径相等;
各所述水平柱状透镜的拱高与其所正交密接的所述竖直柱状透镜的拱高相等;
各所述水平柱状透镜的孔径与其所正交密接的所述竖直柱状透镜的孔径相等。
可选地,所述竖直柱状透镜的焦距为f=ab/(a+b);其中,a表示与所述竖直柱状透镜对应的像素单元成像时的物距,b表示与所述竖直 柱状透镜对应的像素单元成像时的像距。
可选地,所述竖直柱状透镜的曲率半径为r=ab(n-1)/(a+b);其中,f表示所述竖直柱状透镜的焦距,a表示与所述竖直柱状透镜对应的像素单元成像时的物距,b表示与所述竖直柱状透镜对应的像素单元成像时的像距,n表示所述竖直柱状透镜的折射率。
可选地,所述竖直柱状透镜的拱高为
Figure PCTCN2017081620-appb-000001
其中,p表示所述竖直柱状透镜的孔径。
一种显示装置,包括以上任一实施例所述的虚拟曲面显示面板。
一种虚拟曲面显示面板的制作方法,该方法包括:
形成具有呈矩阵分布的多个像素单元的平面显示面板;
形成由多组正交密接的竖直柱状透镜和水平柱状透镜构成的透镜组;其中:一列所述像素单元所对应的一列竖直柱状透镜中,各所述竖直柱状透镜的焦距相等;一行所述像素单元所对应的一行竖直柱状透镜中,各所述竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于所述对称轴同一侧的各所述竖直柱状透镜的焦距互不相等;每组所述正交密接的竖直柱状透镜和水平柱状透镜中,所述水平柱状透镜的焦距与其所正交密接的所述竖直柱状透镜的焦距相等;
将所述透镜组贴附于所述平面显示面板的出光侧并且各组所述正交密接的竖直柱状透镜与所述水平柱状透镜的重叠区域分别覆盖对应的像素单元,以使得多个像素单元所成像构成一个曲面。
可选地,形成由多组正交密接的竖直柱状透镜和水平柱状透镜构成的透镜组,包括:
分别在第一透镜基板和第二透镜基板上涂覆一整层透镜压印胶材;
利用所述第一压制模具在涂覆有透镜压印胶材的所述第一透镜基板上压制多个竖直柱状透镜的图形,以及利用所述第二压制模具在涂覆有透镜压印胶材的所述第二透镜基板上压制多个水平柱状透镜的图形;
对压制有多个竖直柱状透镜的图形的所述第一透镜基板进行固化处理以形成多个竖直柱状透镜,以及对压制有多个水平柱状透镜的图形的所述第二透镜基板进行固化处理以形成多个水平柱状透镜;
将形成有多个竖直柱状透镜的第一透镜基板与形成有多个水平柱状透镜的第二透镜基板进行贴合,使得各水平柱状透镜与各竖直柱状 透镜正交密接。
可选地,该方法还包括:预先制作用于形成各所述竖直柱状透镜的第一压制模具和用于形成各所述水平柱状透镜的第二压制模具。
可选地,所述平面显示面板包括相对而置的上基板和下基板;各所述像素单元位于所述下基板上;所述透镜组位于所述上基板的出光侧;
各所述像素单元成像的物距为所述上基板的厚度;
预先制作用于形成各竖直柱状透镜的第一压制模具和用于形成各水平柱状透镜的第二压制模具,包括:
确定一个所需的各所述像素单元所成像构成的曲面;
根据该曲面确定各所述像素单元成像的像距;
根据各所述像素单元成像的像距以及所述上基板的厚度,确定各所述像素单元成像的焦距;
根据各所述像素单元对应的焦距,确定覆盖各所述像素单元的各组正交密接的所述竖直柱状透镜和所述水平柱状透镜的焦距;
根据确定的各所述竖直柱状透镜的焦距制作所述第一压制模具,并根据确定的各所述水平柱状透镜的焦距制作所述第二压制模具。
本发明实施例还提供了一种利用如以上实施例所述的虚拟曲面显示面板的显示方法,包括:利用所述多组正交密接的竖直柱状透镜和水平柱状透镜对所述多个像素单元成像,其中所成的多个像构成一个曲面。
本发明实施例的有益效果如下:
本发明实施例提供的虚拟曲面显示面板、其制作方法及显示装置中,在平面显示面板的像素单元上设置有正交密接且焦距相同的竖直柱状透镜和水平柱状透镜,该正交密接的竖直柱状透镜和水平柱状透镜可以等效成一个球面透镜。一行像素单元对应的一行竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各竖直柱状透镜的焦距互不相等。因此,等效的各球面透镜的焦距也以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各球面透镜的焦距互不相等。由此,各等效的球面透镜可以使得各个像素单元所成的像构成一个曲面,从而实现了虚拟曲面显示。与现有技术的方案相比,无需对平面显示面板进行机械处理,平面显示面 板就不会存在漏光及色彩显示异常等问题。另外,还可以减少对平面显示面板的柔性设计,实现简单。
附图说明
图1为本发明实施例提供的一种虚拟曲面显示面板的结构示意图;
图2为本发明实施例中柱状透镜的结构示意图;
图3为本发明实施例中正交密接的两个柱状透镜等效一个球面透镜的结构示意图;
图4为本发明实施例提供的一种虚拟曲面显示面板中各竖直柱状透镜的焦距的示意图;
图5为本发明实施例提供的另一种虚拟曲面显示面板的结构示意图;
图6为本发明实施例提供的一种平面显示面板的结构示意图;
图7为本发明实施例提供的屏幕后方成像的示意图;
图8为本发明实施例提供的屏幕前方成像的示意图;
图9为本发明实施例提供的柱状透镜和球面透镜的参数的示意图;
图10为本发明实施例提供的又一种虚拟曲面显示面板的结构示意图;
图11为本发明实施例提供的一种虚拟曲面显示面板的制作方法流程图;
图12为本发明实施例提供的压制竖直柱状透镜的结构示意图;
图13为本发明另一实施例提供的压制竖直柱状透镜的结构示意图;以及
图14为本发明实施例提供的压制水平柱状透镜的结构示意图。
具体实施方式
下面结合附图对本发明实施例提供的一种虚拟曲面显示面板、其制作方法及显示装置进行更详细地说明。
本发明实施例提出了一种新的实现曲面显示的方案,即一种虚拟曲面显示面板,包括具有呈矩阵分布的多个像素单元的平面显示面板、以及设置于平面显示面板出光侧用于使得多个像素单元所成像构成一个曲面的透镜组;其中,透镜组包括:
与所述多个像素单元一一对应的多组正交密接的竖直柱状透镜和水平柱状透镜,每组所述正交密接的竖直柱状透镜与水平柱状透镜的重叠区域覆盖对应的像素单元;
一列像素单元所对应的一列竖直柱状透镜中,各竖直柱状透镜的焦距均相等;
一行像素单元所对应的一行竖直柱状透镜中,各竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各竖直柱状透镜的焦距互不相等;
每组正交密接的竖直柱状透镜和水平柱状透镜中,水平柱状透镜的焦距与其所正交密接的竖直柱状透镜的焦距相等。
下面结合附图对上述方案进行举例说明。
如图1所示,本发明实施例提供一种虚拟曲面显示面板,包括具有呈矩阵分布的多个像素单元111的平面显示面板11,该虚拟曲面显示面板还包括设置于平面显示面板11出光侧用于使得多个像素单元111所成像构成一个曲面的透镜组;其中,该透镜组包括:
与所述多个像素单元111一一对应的多组(set)正交密接的(fit tightly and orthogonally)竖直柱状透镜12和水平柱状透镜13,每组所述正交密接的竖直柱状透镜12与水平柱状透镜13的重叠区域覆盖对应的像素单元111;
一列像素单元111所对应的一列竖直柱状透镜12中,各竖直柱状透镜12的焦距均相等;
一行像素单元111所对应的一行竖直柱状透镜12中,各竖直柱状透镜12的焦距以中央的像素单元111为对称轴(图中虚线A所示)呈对称分布,且位于对称轴同一侧的各竖直柱状透镜12的焦距互不相等;
每组正交密接的竖直柱状透镜12和水平柱状透镜13中,水平柱状透镜13的焦距与其所正交密接的竖直柱状透镜12的焦距相等。
图1中所示的水平柱状透镜13在竖直柱状透镜12上方。
本发明实施例中,如图2所示,柱状透镜是由圆柱体的一部分截制而成的透镜。如图3所示,两个焦距相等的柱状透镜轴向(图中虚线B和C所示为轴向)垂直并紧密贴合,即正交密接,可以等效成一个焦距分别与两个柱状透镜相等的球面透镜。术语“球面透镜”是指由球体的一部分截制而成的透镜。
在本公开的上下文中,竖直柱状透镜是指轴向沿一列像素单元所在方向排布的柱状透镜,水平柱状透镜是指轴向沿一行像素单元所在方向排布的柱状透镜。
本发明实施例中,在平面显示面板的像素单元上设置有正交密接且焦距相同的竖直柱状透镜和水平柱状透镜,该正交密接的竖直柱状透镜和水平柱状透镜可以等效成一个球面透镜。一行像素单元对应的一行竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各竖直柱状透镜的焦距互不相等。因此,等效的各球面透镜的焦距也以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各球面透镜的焦距互不相等。由此,各等效的球面透镜可以使得各个像素单元所成的像构成一个曲面,从而实现了虚拟曲面显示。与现有技术的方案相比,无需对平面显示面板进行机械处理,平面显示面板就不会存在漏光及色彩显示异常等问题。另外,还可以减少对平面显示面板的柔性设计,实现简单。
另外,柱状透镜的制作工艺对精度要求较低,容易制作。
需要说明的是,图1中的像素单元的数量仅是举例,并非代表真实的像素单元的数量。如果一行像素单元的数量是奇数,上述中央的像素单元是指中央的一个像素单元,如果一行像素单元的数量是偶数,上述中央的像素单元是指中央的两个像素单元。图1中是以一行像素单元的数量是奇数为例进行说明的。
假设在一行像素单元111所对应的一行竖直柱状透镜12中,中央的像素单元对应的竖直柱状透镜12的焦距为f1,以如图4所示的各竖直柱状透镜的焦距的示意图中,以该中央的像素单元为对称轴,右侧的竖直柱状透镜的焦距从左向右依次为f2、......、fn,左侧的竖直柱状透镜的焦距从右向左依次为f2、......、fn。
由于一列像素单元所对应的一列竖直柱状透镜中,各竖直柱状透镜的焦距均相等,为了实现简单,可选地,一列所述像素单元所对应的一列竖直柱状透镜为一体结构,如图5所示。这样,在一列像素单元上设置一个贯穿该列的柱状透镜即可,降低了工艺精度,实现更加简单。
本发明实施例中,利用对各竖直柱状透镜和水平柱状透镜的焦距进行调整,既可以实现在屏幕前方成像,也可以实现在屏幕后方成像, 可以根据实际需要灵活设置成像位置。下面举例说明具体实现方式。
具体实施时,可选地,如图6所示,平面显示面板包括相对而置的上基板113和下基板112;各像素单元111位于下基板112上;上述透镜组位于上基板113的出光侧;各像素单元111成像的物距(图中a所示)为上基板的厚度。
基于上述实施例的平面显示面板,如图7所示的截面图,为了实现在屏幕后方成像,中央的像素单元成像时的像距(图中所示b1)最大,最边缘的像素单元成像时的像距最小。可选地,各竖直柱状透镜的焦距大于上基板的厚度(即,对应的像素单元成像的物距);并且,一行竖直柱状透镜中,从上述对称轴开始到一侧边缘,各竖直柱状透镜的焦距逐渐增大。即,从f1至fn,逐渐增大。
基于图7所示的虚拟曲面显示面板,需要形成的曲面(图中虚线所示)的拱高H就是最大的像距b1,如果一行像素单元中,从中央的像素单元开始到一侧最边缘共有M个像素单元,那么,第n个像素单元成像时的像距bn=b1-(n-1)*b1/M。
基于上述实施例的平面显示面板,如图8所示的截面图,为了实现在屏幕前方(即屏幕的出光侧)成像,中央的像素单元成像时的像距(图中所示b1)最小,最边缘的像素单元成像时的像距最大。可选地,各所述像素单元成像的物距大于对应的竖直柱状透镜的焦距,且小于对应的竖直柱状透镜的焦距的2倍。并且,一行竖直柱状透镜中,从上述对称轴开始到一侧边缘,各竖直柱状透镜的焦距逐渐增大。即,从f1至fn,逐渐增大。
基于图8所示的虚拟曲面显示面板,需要形成的曲面(图中虚曲线所示)的拱高为H,如果一行像素单元中,从中央的像素单元开始到一侧最边缘共有M个像素单元,那么,第n个像素单元成像时的像距bn=b1+(n-1)*H/M。
如图9所示,通常,一个柱状透镜的主要参数除焦距f外,还包括折射率n、曲率半径r、孔径p和拱高h,其中,O1为柱状透镜所对应的圆柱体的底面圆心。两个焦距相等的正交密接的柱状透镜所等效的球面透镜的主要参数也是包括焦距f、折射率n、曲率半径r、孔径p和拱高h,其中,O2为球面透镜所对应的球体的球心。
具体实施时,根据高斯公式1/f=1/a+1/b,结合各个像素单元成像 时的物距、像距就可以确定各个像素单元在上述等效的球面透镜成像时的焦距f。又由于正交密接的竖直柱状透镜和水平柱状透镜与该等效的球面透镜的焦距相等,因而也就可以确定竖直柱状透镜和水平柱状透镜的焦距。因而,可选地,竖直柱状透镜的焦距为f=ab/(a+b);其中,a表示与竖直柱状透镜对应的像素单元成像时的物距,b表示与竖直柱状透镜对应的像素单元成像时的像距。结合该列柱透镜的焦距等去确定折射率n、曲率半径r、孔径p和拱高h等参数。
具体实施时,结合透镜的焦距公式f=r/(n-1),可选地,竖直柱状透镜的曲率半径为r=ab(n-1)/(a+b);其中,f表示竖直柱状透镜的焦距,a表示与竖直柱状透镜对应的像素单元成像时的物距,b表示与竖直柱状透镜对应的像素单元成像时的像距,n表示竖直柱状透镜的折射率。
一般,透镜的折射率与其材料相关。相应的,与竖直柱状透镜正交密接的水平柱状透镜的曲率半径也适用上述公式。这时,n就表示水平柱状透镜的折射率。
具体实施时,结合图9所示的几何关系,可选地,竖直柱状透镜的拱高为
Figure PCTCN2017081620-appb-000002
其中,p表示竖直柱状透镜的孔径;竖直柱状透镜的孔径不小于与竖直柱状透镜所对应的像素单元在列方向上的宽度。
可选地,竖直柱状透镜的孔径不小于竖直柱状透镜所对应的像素单元在列方向上的宽度。其中,像素单元在列方向上的宽度,就是该像素单元所在列的宽度,这样,可以保证像素单元被覆盖。
相应的,与竖直柱状透镜正交密接的水平柱状透镜的拱高也适用上述公式。这时,p就表示水平柱状透镜的孔径,水平柱状透镜的孔径不小于与该水平柱状透镜所对应的像素单元在行方向上的宽度。其中,像素单元在行方向上的宽度,就是该像素单元所在行的宽度。
具体实施时,可选地,各水平柱状透镜的折射率与其所正交密接的竖直柱状透镜的折射率相等;
各水平柱状透镜的曲率半径与其所正交密接的竖直柱状透镜的曲率半径相等;
各水平柱状透镜的拱高与其所正交密接的竖直柱状透镜的拱高相等;
各水平柱状透镜的孔径与其所正交密接的竖直柱状透镜的孔径相 等。
本实施例中,竖直柱状透镜和水平柱状透镜的折射率、曲率半径、拱高和孔径这些参数相等,等效的球面透镜的参数也与水平柱状透镜或竖直柱状透镜的这些参数相等,使得设计更加简单。
下面以一个具体结构为例对本发明实施例提供的一种虚拟曲面显示面板进行更加详细地说明。
本实施例中,平面显示面板为液晶显示面板,如图10所示,该平面显示面板包相对而置的上基板113和下基板112,以及位于上基板113和下基板112之间的液晶层114。其中,下基板112包括下偏光片1121和阵列基板1122,上基板113包括彩膜基板1131和上偏光片1132。该平面显示面板还包括呈矩阵分布的多个像素单元111。
在上偏光片1132上设置有透镜组,该透镜组通过黏胶贴附在液晶显示面板上。该透镜组用于使得各个像素单元所成像构成一个曲面。本实施例中,在上述结构基础上,各个像素单元成像时的物距为彩膜基板1131的厚度、上偏光片1132的厚度以及黏胶的厚度之和。如果在屏幕后方成像,各个像素单元成像时的像距可以参照图7相关的实施例,如果在屏幕前方成像,各个像素单元成像时的像距可以参照图8相关实施例。
其中的透镜组具体采用图5所示的结构,其中:
多组分别位于各像素单元111出光侧的正交密接的竖直柱状透镜12和水平柱状透镜13;每组正交密接的竖直柱状透镜12与水平柱状透镜13的重叠区域覆盖对应的像素单元111;
一列像素单元111所对应的一列竖直柱状透镜12中,各竖直柱状透镜12的焦距均相等;
一行像素单元111所对应的一行竖直柱状透镜12中,各竖直柱状透镜12的焦距以中央的像素单元111为对称轴(图中虚线A所示)呈对称分布,且位于该对称轴同一侧的各竖直柱状透镜12的焦距互不相等;
其中,一列所述像素单元所对应的一列竖直柱状透镜为一体结构。
每组正交密接的竖直柱状透镜12和水平柱状透镜13中,水平柱状透镜13的焦距与其所正交密接的竖直柱状透镜12的焦距相等。各水平柱状透镜的折射率与其所正交密接的竖直柱状透镜的折射率相等; 各水平柱状透镜的曲率半径与其所正交密接的竖直柱状透镜的曲率半径相等;各水平柱状透镜的拱高与其所正交密接的竖直柱状透镜的拱高相等;各水平柱状透镜的孔径与其所正交密接的竖直柱状透镜的孔径相等。其中,竖直柱状透镜的孔径大于竖直柱状透镜所对应的像素单元长边的宽度,以保证整个像素单元被竖直柱状透镜和水平柱状透镜的重叠区域所覆盖。
本实施例中,水平柱状透镜和竖直柱状透镜的折射率为1.5。竖直柱状透镜和水平柱状透镜的焦距、拱高、孔径这些参数的大小可以参照上述相关实施例中的公式,此处不再赘述。
基于同样的构思,本发明实施例还提供一种显示装置,包括以上任意实施例的虚拟曲面显示面板。
基于同样的构思,本发明实施例还提供一种虚拟曲面显示面板的制作方法,如图11所示,该方法至少包括如下步骤:
步骤1110、形成具有呈矩阵分布的多个像素单元的平面显示面板;
步骤1120、形成由多组正交密接的竖直柱状透镜和水平柱状透镜构成的透镜组;其中:一列像素单元所对应的一列竖直柱状透镜中,各竖直柱状透镜的焦距相等;一行像素单元所对应的一行竖直柱状透镜中,各竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于对称轴同一侧的各竖直柱状透镜的焦距互不相等;每组正交密接的竖直柱状透镜和水平柱状透镜中,水平柱状透镜的焦距与其所正交密接的竖直柱状透镜的焦距相等;
步骤1130、将透镜组贴附于平面显示面板的出光侧并且各组正交密接的竖直柱状透镜与水平柱状透镜的重叠区域分别覆盖对应的像素单元,以使得多个像素单元所成像构成一个曲面。
本发明实施例中,在平面显示面板的像素单元上设置有正交密接且焦距相同的竖直柱状透镜和水平柱状透镜,该正交密接的竖直柱状透镜和水平柱状透镜可以等效成一个球面透镜。一行像素单元对应的一行竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各竖直柱状透镜的焦距互不相等。因此,等效的各球面透镜的焦距也以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各球面透镜的焦距互不相等。由此,各等效的球面透镜可以使得各个像素单元所成的像构成一个曲面,从而实现了虚 拟曲面显示。与现有技术的方案相比,无需对平面显示面板进行机械处理,平面显示面板就不会存在漏光及色彩显示异常等问题。另外,还可以减少对平面显示面板的柔性设计,实现简单。
可选地,上述步骤1110中形成由多组正交密接的竖直柱状透镜和水平柱状透镜构成的透镜组,包括:
步骤11、分别在第一透镜基板和第二透镜基板上涂覆一整层透镜压印胶材;
步骤12、利用第一压制模具在涂覆有透镜压印胶材的第一透镜基板上压制多个竖直柱状透镜的图形,以及利用第二压制模具在涂覆有透镜压印胶材的第二透镜基板上压制多个水平柱状透镜的图形;
该步骤中,所压制的竖直柱状透镜的图形分别可以是图12和图13所示的图形,在第一透镜基板14上压制了多个竖直柱状透镜,所压制的水平柱状透镜的图形如图14所示,在第二透镜基板15上压制了多个水平柱状透镜。
步骤13、对压制有多个竖直柱状透镜的图形的第一透镜基板进行固化处理以形成多个竖直柱状透镜,以及对压制有多个水平柱状透镜的图形的第二透镜基板进行固化处理以形成多个水平柱状透镜;以及
步骤14、将形成有多个竖直柱状透镜的第一透镜基板与形成有多个水平柱状透镜的第二透镜基板进行贴合,使得各水平柱状透镜与各竖直柱状透镜正交密接。
可选地,该方法还包括:预先制作用于形成各竖直柱状透镜的第一压制模具和用于形成各水平柱状透镜的第二压制模具。
可选地,平面显示面板包括相对而置的上基板和下基板;各像素单元位于下基板上;透镜组位于上基板的出光侧;
各像素单元成像的物距为上基板的厚度;
预先制作用于形成各竖直柱状透镜的第一压制模具和用于形成各水平柱状透镜的第二压制模具的步骤包括:
步骤21、确定一个所需的各像素单元所成像构成的曲面;
步骤22、根据该曲面确定各像素单元成像的像距;
步骤23、根据各像素单元成像的像距以及上基板的厚度,确定各像素单元成像的焦距;
步骤24、根据各像素单元对应的焦距,确定覆盖各像素单元的各 组正交密接的竖直柱状透镜和水平柱状透镜的焦距;以及
步骤25、根据确定的各竖直柱状透镜的焦距制作第一压制模具,并根据确定的各水平柱状透镜的焦距制作第二压制模具。
该步骤具体的可以是:根据透镜压印胶材的折射率、确定的各竖直柱状透镜的焦距,确定各竖直柱状透镜的曲率半径;根据各像素单元在列方向上的宽度确定各竖直柱状透镜的孔径;根据各竖直柱状透镜的孔径、曲率半径确定拱高;根据确定的各竖直柱状透镜的拱高、曲率半径和孔径制作第一压制模具。根据透镜压印胶材的折射率、确定的各水平柱状透镜的焦距,确定各水平柱状透镜的曲率半径;根据各像素单元在行方向上的宽度确定各水平柱状透镜的孔径;根据各水平柱状透镜的孔径、曲率半径确定拱高;根据确定的各水平柱状透镜的拱高、曲率半径和孔径制作第二压制模具。
本发明实施例提供的虚拟曲面显示面板、其制作方法及显示装置中,在平面显示面板的像素单元上设置有正交密接且焦距相同的竖直柱状透镜和水平柱状透镜,该正交密接的竖直柱状透镜和水平柱状透镜可以等效成一个球面透镜。一行像素单元对应的一行竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各竖直柱状透镜的焦距互不相等。因此,等效的各球面透镜的焦距也以中央的像素单元为对称轴呈对称分布,且位于该对称轴同一侧的各球面透镜的焦距互不相等。由此,各等效的球面透镜可以使得各个像素单元所成的像构成一个曲面,从而实现了虚拟曲面显示。与现有技术的方案相比,无需对平面显示面板进行机械处理,平面显示面板就不会存在漏光及色彩显示异常等问题。另外,还可以减少对平面显示面板的柔性设计,实现简单。
基于同样的构思,本发明实施例还提供了一种利用如以上实施例所述的虚拟曲面显示面板的显示方法,包括:利用所述多组正交密接的竖直柱状透镜和水平柱状透镜对所述多个像素单元成像,其中所成的多个像构成一个曲面。
尽管已描述了本发明的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

  1. 一种虚拟曲面显示面板,包括具有呈矩阵分布的多个像素单元的平面显示面板、以及设置于所述平面显示面板出光侧用于使得多个像素单元所成像构成一个曲面的透镜组;其中,所述透镜组包括:
    与所述多个像素单元一一对应的多组正交密接的竖直柱状透镜和水平柱状透镜,每组所述正交密接的竖直柱状透镜与水平柱状透镜的重叠区域覆盖对应的像素单元;
    一列所述像素单元所对应的一列竖直柱状透镜中,各所述竖直柱状透镜的焦距均相等;
    一行所述像素单元所对应的一行竖直柱状透镜中,各所述竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于所述对称轴同一侧的各所述竖直柱状透镜的焦距互不相等;
    每组所述正交密接的竖直柱状透镜和水平柱状透镜中,水平柱状透镜的焦距与竖直柱状透镜的焦距相等。
  2. 根据权利要求1所述的虚拟曲面显示面板,其中一列所述像素单元所对应的一列竖直柱状透镜为一体结构。
  3. 根据权利要求1所述的虚拟曲面显示面板,其中各所述竖直柱状透镜的焦距大于对应的像素单元成像的物距;并且,一行所述竖直柱状透镜中,从所述对称轴开始到一侧边缘,各所述竖直柱状透镜的焦距逐渐增大。
  4. 根据权利要求1所述的虚拟曲面显示面板,其中各所述像素单元成像的物距大于对应的竖直柱状透镜的焦距,且小于对应的竖直柱状透镜的焦距的2倍,并且,一行所述竖直柱状透镜中,从所述对称轴开始到一侧边缘,各所述竖直柱状透镜的焦距逐渐增大。
  5. 根据权利要求1所述的虚拟曲面显示面板,其中所述竖直柱状透镜的孔径不小于与所述竖直柱状透镜所对应的像素单元在列方向上的宽度,和/或,
    所述水平柱状透镜的孔径不小于与所述水平柱状透镜所对应的像素单元在行方向上的宽度。
  6. 根据权利要求1~5任一项所述的虚拟曲面显示面板,其中各所述水平柱状透镜的折射率与其所正交密接的所述竖直柱状透镜的折射 率相等;
    各所述水平柱状透镜的曲率半径与其所正交密接的所述竖直柱状透镜的曲率半径相等;
    各所述水平柱状透镜的拱高与其所正交密接的所述竖直柱状透镜的拱高相等;
    各所述水平柱状透镜的孔径与其所正交密接的所述竖直柱状透镜的孔径相等。
  7. 根据权利要求6所述的虚拟曲面显示面板,其中所述竖直柱状透镜的焦距为f=ab/(a+b);其中,a表示与所述竖直柱状透镜对应的像素单元成像时的物距,b表示与所述竖直柱状透镜对应的像素单元成像时的像距。
  8. 根据权利要求6所述的虚拟曲面显示面板,其中所述竖直柱状透镜的曲率半径为r=ab(n-1)/(a+b);其中,a表示与所述竖直柱状透镜对应的像素单元成像时的物距,b表示与所述竖直柱状透镜对应的像素单元成像时的像距,n表示所述竖直柱状透镜的折射率。
  9. 根据权利要求6所述的虚拟曲面显示面板,其中所述竖直柱状透镜的拱高为
    Figure PCTCN2017081620-appb-100001
    其中,r表示所述竖直柱状透镜的曲率半径;p表示所述竖直柱状透镜的孔径。
  10. 一种显示装置,包括权利要求1~9任一项所述的虚拟曲面显示面板。
  11. 一种虚拟曲面显示面板的制作方法,包括:
    形成具有呈矩阵分布的多个像素单元的平面显示面板;
    形成由多组正交密接的竖直柱状透镜和水平柱状透镜构成的透镜组;其中:一列所述像素单元所对应的一列竖直柱状透镜中,各所述竖直柱状透镜的焦距相等;一行所述像素单元所对应的一行竖直柱状透镜中,各所述竖直柱状透镜的焦距以中央的像素单元为对称轴呈对称分布,且位于所述对称轴同一侧的各所述竖直柱状透镜的焦距互不相等;每组所述正交密接的竖直柱状透镜和水平柱状透镜中,所述水平柱状透镜的焦距与其所正交密接的所述竖直柱状透镜的焦距相等;
    将所述透镜组贴附于所述平面显示面板的出光侧并且各组所述正交密接的竖直柱状透镜与所述水平柱状透镜的重叠区域分别覆盖对应的像素单元,以使得多个像素单元所成像构成一个曲面。
  12. 根据权利要求11所述的方法,其中形成由多组正交密接的竖直柱状透镜和水平柱状透镜构成的透镜组,包括:
    分别在第一透镜基板和第二透镜基板上涂覆一整层透镜压印胶材;
    利用第一压制模具在涂覆有透镜压印胶材的所述第一透镜基板上压制多个竖直柱状透镜的图形,以及利用第二压制模具在涂覆有透镜压印胶材的所述第二透镜基板上压制多个水平柱状透镜的图形;
    对压制有多个竖直柱状透镜的图形的所述第一透镜基板进行固化处理以形成多个竖直柱状透镜,以及对压制有多个水平柱状透镜的图形的所述第二透镜基板进行固化处理以形成多个水平柱状透镜;
    将形成有多个竖直柱状透镜的第一透镜基板与形成有多个水平柱状透镜的第二透镜基板进行贴合,使得各水平柱状透镜与各竖直柱状透镜正交密接。
  13. 根据权利要求12所述的制作方法,还包括:预先制作用于形成各所述竖直柱状透镜的第一压制模具和用于形成各所述水平柱状透镜的第二压制模具。
  14. 根据权利要求13所述的制作方法,其中所述平面显示面板包括相对而置的上基板和下基板;各所述像素单元位于所述下基板上;所述透镜组位于所述上基板的出光侧;
    各所述像素单元成像的物距为所述上基板的厚度;
    预先制作用于形成各竖直柱状透镜的第一压制模具和用于形成各水平柱状透镜的第二压制模具,包括:
    确定一个所需的各所述像素单元所成像构成的曲面;
    根据该曲面确定各所述像素单元成像的像距;
    根据各所述像素单元成像的像距以及所述上基板的厚度,确定各所述像素单元成像的焦距;
    根据各所述像素单元对应的焦距,确定覆盖各所述像素单元的各组正交密接的所述竖直柱状透镜和所述水平柱状透镜的焦距;
    根据确定的各所述竖直柱状透镜的焦距制作所述第一压制模具,并根据确定的各所述水平柱状透镜的焦距制作所述第二压制模具。
  15. 一种利用如权利要求1~9所述的虚拟曲面显示面板的显示方法,包括:
    利用所述多组正交密接的竖直柱状透镜和水平柱状透镜对所述多 个像素单元成像,其中所成的多个像构成一个曲面。
PCT/CN2017/081620 2016-05-25 2017-04-24 虚拟曲面显示面板、其制作方法及显示装置 WO2017202162A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/569,415 US10126589B2 (en) 2016-05-25 2017-04-24 Virtual curved surface display panel, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610353739.XA CN105807481B (zh) 2016-05-25 2016-05-25 一种虚拟曲面显示面板、其制作方法及显示装置
CN201610353739.X 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017202162A1 true WO2017202162A1 (zh) 2017-11-30

Family

ID=56451919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081620 WO2017202162A1 (zh) 2016-05-25 2017-04-24 虚拟曲面显示面板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US10126589B2 (zh)
CN (1) CN105807481B (zh)
WO (1) WO2017202162A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807481B (zh) 2016-05-25 2022-07-15 京东方科技集团股份有限公司 一种虚拟曲面显示面板、其制作方法及显示装置
CN105842905B (zh) 2016-05-25 2018-08-03 京东方科技集团股份有限公司 一种虚拟曲面显示面板及显示装置
CN106054289B (zh) * 2016-05-27 2019-01-25 京东方科技集团股份有限公司 一种显示面板、显示装置
CN107219629B (zh) * 2017-07-14 2021-01-08 惠州Tcl移动通信有限公司 采用rgb叠加防vr设备色散的方法、存储介质及设备
CN108828826B (zh) * 2018-06-15 2021-01-12 厦门天马微电子有限公司 曲面显示面板和曲面显示面板的制造方法
CN109633908A (zh) * 2019-01-09 2019-04-16 京东方科技集团股份有限公司 虚拟曲面显示面板及显示装置
CN112771436B (zh) * 2019-08-26 2023-10-20 京东方科技集团股份有限公司 三维显示装置及虚拟现实设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094242A (en) * 1994-12-19 2000-07-25 Sharp Kabushiki Kaisha Optical device and head-mounted display using said optical device
US20080018631A1 (en) * 2006-07-24 2008-01-24 Kabushiki Kaisha Toshiba Display device
CN101681023A (zh) * 2007-06-01 2010-03-24 夏普株式会社 光学系统和显示器
CN104575322A (zh) * 2014-12-30 2015-04-29 上海中航光电子有限公司 一种平面显示面板及显示装置
CN204758851U (zh) * 2015-06-04 2015-11-11 李应樵 一种柱状透镜阵列面板、户外3d显示装置
CN105807481A (zh) * 2016-05-25 2016-07-27 京东方科技集团股份有限公司 一种虚拟曲面显示面板、其制作方法及显示装置
CN205787478U (zh) * 2016-05-25 2016-12-07 京东方科技集团股份有限公司 一种虚拟曲面显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901077A (nl) * 1989-04-28 1990-11-16 Koninkl Philips Electronics Nv Optische belichtingsstelsel en projectie-apparaat voorzien van een dergelijk stelsel.
JP3255087B2 (ja) * 1997-06-23 2002-02-12 株式会社エム・アール・システム研究所 立体画像表示装置
TWI472802B (zh) * 2012-11-15 2015-02-11 Au Optronics Corp 顯示裝置
JP2014235896A (ja) * 2013-06-03 2014-12-15 シャープ株式会社 面光源装置、表示装置および照明装置
CN204269857U (zh) * 2014-12-18 2015-04-15 Tcl显示科技(惠州)有限公司 曲面显示装置及其光线传导板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094242A (en) * 1994-12-19 2000-07-25 Sharp Kabushiki Kaisha Optical device and head-mounted display using said optical device
US20080018631A1 (en) * 2006-07-24 2008-01-24 Kabushiki Kaisha Toshiba Display device
CN101681023A (zh) * 2007-06-01 2010-03-24 夏普株式会社 光学系统和显示器
CN104575322A (zh) * 2014-12-30 2015-04-29 上海中航光电子有限公司 一种平面显示面板及显示装置
CN204758851U (zh) * 2015-06-04 2015-11-11 李应樵 一种柱状透镜阵列面板、户外3d显示装置
CN105807481A (zh) * 2016-05-25 2016-07-27 京东方科技集团股份有限公司 一种虚拟曲面显示面板、其制作方法及显示装置
CN205787478U (zh) * 2016-05-25 2016-12-07 京东方科技集团股份有限公司 一种虚拟曲面显示面板及显示装置

Also Published As

Publication number Publication date
CN105807481A (zh) 2016-07-27
CN105807481B (zh) 2022-07-15
US10126589B2 (en) 2018-11-13
US20180224695A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017202162A1 (zh) 虚拟曲面显示面板、其制作方法及显示装置
US10007122B2 (en) Three-dimensional display substrate, its Manufacturing method and three-dimensional display device
US9103989B2 (en) Method of manufacturing phase difference plate and 3D display panel
JP2006189844A (ja) マイクロレンズ基板アレイ、それを含む立体映像ディスプレー装置、及びその製造方法
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
WO2013135063A1 (zh) 柱透镜光栅、液晶光栅及显示器件
WO2015070585A1 (zh) 液晶棱镜及其制作方法、显示装置
WO2015113375A1 (zh) 显示基板及其制造方法和显示装置
TW201022736A (en) Color filter substrate, multi-view liquid crystal display and manufacturing method of color filter substrate
TWI451133B (zh) 用於立體顯示裝置之光學濾光片及包含此光學濾光片之立體顯示裝置
US20140063601A1 (en) Color filter substrate, fabrication method thereof and display device
WO2015154368A1 (zh) 显示面板及其制作方法、显示装置
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
US9235058B2 (en) Polarization-type three-dimensional display device and manufacturing method thereof
KR102438249B1 (ko) 다중 곡면 액정표시패널
CN106023821B (zh) 一种阵列基板、显示面板、显示系统
WO2018040755A1 (zh) 一种液晶棱镜及其制作方法、显示装置
US8547489B2 (en) 3D display panel and method for manufacturing the same
JP5659660B2 (ja) 立体画像表示用光学部材、及びそれを用いた液晶表示装置
KR100600037B1 (ko) 편광판의 제조방법
CN205787398U (zh) 一种显示面板和显示设备
CN105954882B (zh) 一种显示面板、显示设备及其制备方法
US11327359B2 (en) Display panel, method for manufacturing the same and display device
TW201107836A (en) Display device with focusing arrangement
CN109407331B (zh) 立体显示装置、立体显示面板及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15569415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802008

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802008

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17802008

Country of ref document: EP

Kind code of ref document: A1