WO2017202029A1 - 一种测量水中溶解性有机卤含量的方法及系统 - Google Patents

一种测量水中溶解性有机卤含量的方法及系统 Download PDF

Info

Publication number
WO2017202029A1
WO2017202029A1 PCT/CN2017/000244 CN2017000244W WO2017202029A1 WO 2017202029 A1 WO2017202029 A1 WO 2017202029A1 CN 2017000244 W CN2017000244 W CN 2017000244W WO 2017202029 A1 WO2017202029 A1 WO 2017202029A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
halogen
water
dissolved organic
rich
Prior art date
Application number
PCT/CN2017/000244
Other languages
English (en)
French (fr)
Inventor
陈白杨
卜毅男
Original Assignee
哈尔滨工业大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学深圳研究生院 filed Critical 哈尔滨工业大学深圳研究生院
Publication of WO2017202029A1 publication Critical patent/WO2017202029A1/zh
Priority to US16/199,325 priority Critical patent/US20190094191A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • G01N2001/4011Concentrating samples by transferring a selected component through a membrane being a ion-exchange membrane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes

Definitions

  • the present application relates to the field of measuring the total amount of halogenated substances, and more particularly to a method and system for measuring the content of dissolved organic halogens in water.
  • Dissolved Organic Halogen is the total indicator of many halogenated substances in drinking water and beverages. Due to the coexistence of Dissolved Inorganic Halogen (DIH) and DOH in water and the absolute advantage of DIH, the prior art cannot directly measure DOH. Only in the measurement of DOH, the content of the DIH is absolutely removed, then the DOH is converted to DIH, and the DOH index in the water sample is measured. At present, the general DOH measurement step is divided into three steps: separation of DOH and DIH by activated carbon, conversion of DIH to DIH, measurement of DIH after combustion conversion, and analysis of the total amount of DOH.
  • DIH Dissolved Inorganic Halogen
  • the current measurement method is mainly based on the difference in adsorption performance of activated carbon between DOH and DIH, and uses activated carbon to trap DOH.
  • activated carbon used to trap DOH.
  • part of the hydrophilic DOH will be lost with the solution, thus reducing the recovery of DOH and increasing the measurement error of the late DOH.
  • due to the certain reduction of activated carbon it can cause organic in DOH.
  • the reduction and dehalogenation of chlorine and organic bromine further reduce the recovery of DOH, thereby increasing the measurement error of subsequent DOH.
  • a dedicated activated carbon adsorption column is also needed in the method, which is expensive and cannot be reused, is not environmentally friendly, must be replaced once, and increases the difficulty and trouble of operation such as a better adsorption column.
  • the second step in the existing measurement method that is, when the activated carbon and the DOH adsorbed on the activated carbon are respectively converted into inorganic carbon and DIH by high-temperature combustion, high-temperature combustion is required, and the combustion equipment used is required to be high, and the production of the combustion equipment is required. And the operation is not convenient, and it is not environmentally friendly.
  • a catalyst such as a noble metal catalyst-platinum
  • the halide ion can quench the activity of the catalyst, it is not possible to use the catalyst to the DOH at a relatively low temperature (for example, 680 ° C).
  • the third step in the existing measurement method uses a microcoulometry method and an ion chromatography (IC) method.
  • the microcoulometric method measures the total amount of halogen by the change of current caused by the reaction of halide ions with silver ions, but the fluoride ion in the organic halogen cannot be measured because the silver fluoride does not form a precipitate, and the DIH is increased.
  • the measurement error that is, the total measurement error of DOH is increased, and since the three ions of chlorine, bromine and iodine all produce the same precipitation effect, the contents of chlorine, bromine and iodine in DIH cannot be distinguished.
  • the IC analysis method uses an anion or cation exchange column with low exchange capacity, uses a strong electrolyte as a mobile phase to separate inorganic ions, and uses an IC conductivity detector to continuously detect changes in the conductance of the effluent to measure the anion content in the halogen.
  • the method solves the problem that the fluorine coulometry cannot be measured in the microcoulometric method, and the content of chlorine and bromide ions cannot be distinguished.
  • the IC conductivity detector has a low response to iodide ions, and the iodide ion content of the iodide in drinking water is often low. A few micrograms per liter or even nanograms per liter, so the current IC conductivity detector method does not support the detection of trace amounts of iodide ions, can not effectively and accurately detect the iodide ion content in drinking water.
  • the measurement error is large, the test procedure is cumbersome, the test environment is demanding, the environment is not environmentally friendly, and the test efficiency is low.
  • the present application provides a simple test procedure, environmental protection, and testing. High efficiency, small measurement error, high measurement accuracy and low test environment requirements, and methods and systems for measuring dissolved organic halogens can be performed at normal temperature.
  • the application provides a method for measuring the content of dissolved organic halogen in water, comprising:
  • the converted inorganic halide is analyzed by an instrument having an ion analysis function to analyze the content of the soluble organic halogen in the water sample to be measured.
  • the separating the soluble inorganic halide and the soluble organic halogen in the water sample to be measured by using electrodialysis technology comprises:
  • the soluble inorganic halogen in the water to be measured and the dissolved organic halogen are separated by an electrodialysis technique by an electrodialysis.
  • the separating the soluble inorganic halide and the soluble organic halogen in the water sample to be measured by electrodialysis using an electrodialyzer comprising:
  • Equipped with an electrodialyzer comprising a first membrane chamber, a light chamber tank and a second chamber chamber, which are connected by an exchange membrane and sequentially sorted;
  • the converting the dissolved organic halogen into a soluble inorganic halogen by using an ultraviolet photocatalytic technique comprises:
  • the water sample containing the dissolved organic halogen taken out from the light chamber tank is converted into a soluble inorganic halide by ultraviolet light irradiation.
  • the present application also provides a system for measuring the content of dissolved organic halogen in water, using any of the above methods for measuring the content of dissolved organic halogen in water, comprising:
  • a separating device for separating a soluble inorganic halogen in the water sample to be measured and the soluble organic halogen by electrodialysis
  • a photocatalytic device for converting a dissolved organic halogen to be a dissolved inorganic halogen by a photocatalytic technique
  • An apparatus having an ion analysis function for analyzing and measuring the content of the dissolved organic halogen in the water sample to be measured.
  • the separating device comprises an electrodialyser connected by an exchange membrane, and sequentially sorting the first rich chamber tank, the light chamber tank and the second rich chamber tank; wherein the first rich chamber tank is equipped with the first An electrode, the second rich chamber tank is provided with a second electrode, and the first rich chamber tank and the second rich chamber tank are used for injecting an inorganic electrolyte solution other than halogen in the containing component, the light chamber tank For injecting and accommodating the water sample to be measured, The first electrode and the second electrode are used to form an electric field after being energized, and drive inorganic halogen ions in the shallow chamber to flow through the exchange film to the first rich chamber or the second a concentration chamber to separate the soluble inorganic halide in the water to be measured from the soluble organic halogen, the selective polarity of the exchange membrane connected to the first rich chamber and the shallow chamber and the The second electrode is the same, and the exchange membrane of the second rich chamber and the shallow chamber is connected to have the same polarity as the first
  • the first rich chamber groove comprises a trough body and a water outlet hole and a water inlet hole formed in the groove body
  • the second rich chamber groove comprises a groove body and a water outlet hole formed in the groove body And a water inlet hole for reducing and maintaining a halogen ion concentration in the first rich chamber and the second concentrated chamber through a flow matching of the water outlet and the water inlet.
  • the separation device further includes an electrolyte solution applicator connected to the water inlet hole for adding the injection of the inorganic electrolyte solution to the first rich chamber tank and the second In the rich chamber, by controlling the flow rate of the water outlet hole and the water inlet hole, the flow ratio of the water outlet hole and the water inlet hole reduces and maintains the first rich chamber groove and the The concentration of halogen ions in the second rich chamber.
  • an electrolyte solution applicator connected to the water inlet hole for adding the injection of the inorganic electrolyte solution to the first rich chamber tank and the second In the rich chamber, by controlling the flow rate of the water outlet hole and the water inlet hole, the flow ratio of the water outlet hole and the water inlet hole reduces and maintains the first rich chamber groove and the The concentration of halogen ions in the second rich chamber.
  • the exchange membrane is for separating the soluble organic halogen and the soluble inorganic halogen; wherein the exchange membrane is an ion exchange membrane, a bipolar membrane, a reverse osmosis membrane (RO membrane), a dialysis membrane.
  • the exchange membrane is an ion exchange membrane, a bipolar membrane, a reverse osmosis membrane (RO membrane), a dialysis membrane.
  • the photocatalytic device comprises an ultraviolet light irradiation device, and the ultraviolet light irradiation device is configured to convert the separated dissolved organic halogen into a soluble inorganic halogen by using a photocatalytic technique, and the ultraviolet light irradiation device uses The dissolved organic halogen which has been separated from the shallow chamber is irradiated into a soluble inorganic halogen; wherein the ultraviolet lamp is a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, mercury Qi ultraviolet lamp, excimer excitation UV lamp, xenon lamp or halogen lamp.
  • the ultraviolet lamp is a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, mercury Qi ultraviolet lamp, excimer excitation UV lamp, xenon lamp or halogen lamp.
  • 1a is a flow chart of a method for measuring dissolved organic halogen content in water according to an embodiment of the present invention
  • FIG. 1b is another flow chart of a method for measuring dissolved organic halogen content in water according to the embodiment
  • FIG. 2 is a flow chart of another method for measuring the content of dissolved organic halogen in water according to the embodiment
  • FIG. 3 is a structural diagram of an electrodialyser device for measuring dissolved organic halogen content in water according to an embodiment of the present invention
  • FIG. 5 is a flow chart of another method for measuring the content of dissolved organic halogen in water according to the embodiment.
  • FIG. 6 is a flow chart of another method for measuring the content of dissolved organic halogen in water according to the embodiment.
  • FIG. 7 is a flow chart of another method for measuring the content of dissolved organic halogen in water according to the embodiment.
  • FIG. 1a is a flow chart of a method for measuring dissolved organic halogen content in water according to an embodiment of the present invention.
  • the present invention provides a method for measuring dissolved organic halogen content in water, including :
  • the electrolytic inorganic halide and the dissolved organic halogen in the water sample to be measured are separated by electrodialysis, including:
  • the soluble inorganic halide and the dissolved organic halogen in the water to be measured are separated by electrodialysis using an electrodialyzer.
  • the soluble inorganic halogen and the dissolved organic halogen in the water sample to be measured are separated by electrodialysis using an electrodialyzer, including:
  • Equipped with an electrodialyzer comprising a first membrane chamber, a light chamber tank and a second chamber chamber, which are connected by an exchange membrane and sequentially sorted;
  • the exchange electrode having the second electrode, the first rich chamber and the shallow chamber is selected to have the same polarity as the second electrode, and the exchange membrane of the second rich chamber and the shallow chamber is the same polarity as the first electrode .
  • the converted soluble organic halogen is converted into a soluble inorganic halogen by ultraviolet photocatalysis:
  • the water sample containing the dissolved organic halogen taken out from the light chamber tank is converted into a soluble inorganic halide by ultraviolet light irradiation.
  • the present application also provides a system for measuring the content of dissolved organic halogen in water, using any of the above methods for measuring the content of dissolved organic halogen in water, comprising:
  • Photocatalytic equipment using photocatalytic technology to convert the separated dissolved organic halogen into a soluble inorganic halogen
  • An instrument with an ion analysis function for analyzing the content of a dissolved organic halogen in a water sample to be measured is an instrument with an ion analysis function for analyzing the content of a dissolved organic halogen in a water sample to be measured.
  • the separation device comprises an electrodialyser, connected by an exchange membrane, and firstly ordered a chamber tank, a light chamber tank and a second rich chamber tank; wherein the first rich chamber tank is provided with a first electrode, the second rich chamber tank is provided with a second electrode, and the first rich chamber tank and the second rich chamber tank are used for Injecting an inorganic electrolyte solution other than halogen into the containing component, the light chamber tank is for injecting and containing the water sample to be measured, and the first electrode and the second electrode are used to form an electric field after being energized, and driving the inorganic halogen ions in the light chamber tank to penetrate
  • the exchange membrane flows to the first rich chamber tank or the second rich chamber tank to separate the soluble inorganic halide and the dissolved organic halogen in the water to be measured, and the selective polarity of the exchange membrane connected to the first rich chamber tank and the shallow chamber tank
  • the polarity of the exchange membrane connected to the second electrode and the second rich chamber and the shallow chamber is the
  • the first rich chamber groove comprises a water outlet hole and a water inlet hole formed in the groove body and the groove body
  • the second two-concentration chamber groove comprises a water outlet hole and a water inlet hole formed in the groove body and the groove body, and is used for The concentration of the halogen ions in the first rich chamber and the second concentrated chamber is reduced and maintained by the flow matching of the water outlet and the inlet.
  • the separating apparatus further comprises an electrolyte solution applicator connected to the water inlet hole for adding the injected inorganic electrolyte solution in the first rich chamber tank and the second rich chamber tank, by controlling the water outlet hole and the water inlet The flow rate of the orifice is reduced by the flow fit through the outlet orifice and the inlet orifice to maintain the concentration of halide ions in the first rich compartment tank and the second rich compartment tank.
  • the exchange membrane is used for separating the soluble organic halogen and the soluble inorganic halide; wherein the exchange membrane is an ion exchange membrane, a bipolar membrane, a reverse osmosis membrane (PO membrane), a dialysis membrane.
  • the exchange membrane is an ion exchange membrane, a bipolar membrane, a reverse osmosis membrane (PO membrane), a dialysis membrane.
  • the photocatalytic device comprises an ultraviolet light irradiation device, and the ultraviolet light irradiation device is used for converting the separated dissolved organic halogen into a dissolved inorganic halogen by using a photocatalytic technique, and the ultraviolet light irradiation device is used for the irradiation to be taken out from the light chamber tank.
  • the dissolved organic halogen which has been separated is converted into a soluble inorganic halogen, wherein the ultraviolet lamp is a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an amalgam ultraviolet lamp, an excimer excited ultraviolet lamp, a xenon lamp or Halogen lamp.
  • the functional instrument analyzes the converted soluble inorganic halide to analyze and measure the content of dissolved organic halogen in the water to be measured, realizing the accurate measurement of the dissolved organic halogen content in the measured water, and realizing the accurate measurement of the dissolved organic halogen. Fluorine, chlorine, bromine, iodine content.
  • FIG. 1b is a flow chart of a method for measuring dissolved organic halogen content in water according to an embodiment of the present invention. As shown in FIG. 1b, a method for measuring dissolved organic halogen content in water is provided in the embodiment. The measurement steps include:
  • Step S110 in this embodiment uses electrodialysis technology to separate the soluble inorganic halogen and the dissolved organic halogen in the water to be measured, thereby completely separating the dissolved organic halide ion and the dissolved inorganic halide ion, reducing the entrapment step of the activated carbon, and saving the step.
  • the resources are environmentally friendly, and the test items are not replaced once per test, which simplifies the test steps and improves the test efficiency.
  • step S120 in the embodiment uses the photocatalytic technology to convert the separated dissolved organic halogen into a dissolved inorganic halogen, does not need to use a special high-temperature combustion device, is simple and easy to operate, and can be tested at normal temperature, without Heating and time-consuming cooling of the sample reduces the harsh environmental requirements for conversion using special high-temperature combustion equipment, increases the efficiency of the test, and eliminates the need to burn activated carbon, does not require the addition of a catalyst, and is more environmentally friendly.
  • the converted soluble inorganic halogen is analyzed by an ion chromatograph having a conductivity detector and an ultraviolet detector to analyze the content of the soluble organic halogen in the water to be measured.
  • FIG. 2 is a flowchart of a method for measuring dissolved organic halogen content in water according to an embodiment of the present invention. Based on the steps shown in FIG. 1, the step S110 is specifically as follows:
  • the dissolved organic halide ion and the dissolved inorganic halide are separated by an ion exchange membrane.
  • the ion exchange membrane is used for separating the soluble organic halogen and the soluble inorganic halogen; wherein the exchange membrane can also be replaced by a bipolar membrane, a reverse osmosis membrane (RO membrane) or a dialysis membrane.
  • RO membrane reverse osmosis membrane
  • FIG. 3 is a structural diagram of an electrodialyser device for measuring dissolved organic halogen content in water according to an embodiment of the present invention. As shown in FIG. 3, the structure of the electrodialyser device in the operation step of S111 is specifically described as follows:
  • the electrodialyzer comprises a first rich chamber tank 200, a light chamber tank 210 and a second rich chamber tank 220 which are connected by an ion exchange membrane 100, and the first rich chamber tank 200 is provided with a first electrode 300, and a second The thick chamber tank 220 is provided with a second electrode 310, and the ion exchange membrane 100 connected to the first rich chamber tank 200 and the shallow chamber tank 210 has the same polarity as the second electrode 310, and the second rich chamber tank 220 and the shallow chamber tank The polarity of the 210-connected ion exchange membrane 100 is the same as that of the first electrode 300.
  • step S112 that is, the method of separating the soluble inorganic halide and the dissolved organic halogen in the water to be measured by electrodialysis using an electrodialyzer further comprises the following steps:
  • a water sample containing DOH in the light chamber tank 210 is taken out, and DIH and DOH in the water to be measured are separated.
  • a voltage is applied to the first electrode 300 and the second electrode 310, and the inorganic halogen ions in the light chamber groove 210 are driven to flow through the ion exchange membrane 100 to the first rich chamber tank 200 or the second rich chamber tank 220 by the electric field.
  • the inorganic halogen ions in the low chamber trench 210 are driven to flow through the ion exchange membrane 100 to the first by an electric field.
  • the electrolyte solution was a sodium hydrogencarbonate solution having a concentration of 0.01 mol/L.
  • the inorganic electrolyte solution other than the halogen in the injection component is in the first rich chamber tank 200 and the second rich chamber tank 220; and, before the injection of the water sample to be measured in the low chamber tank 210, the method further includes:
  • a water hole 400 and a water inlet hole 500 are respectively defined for each of the first rich chamber tank 200 and the second rich chamber tank 220;
  • the method also includes:
  • the inorganic electrolyte solution is injected into the first rich chamber tank 200 and the second rich chamber tank 220 through the water inlet hole 500 at a fixed rate or a specific rate, and the flow matching through the water outlet hole 400 and the water inlet hole 500 is reduced and maintained.
  • FIG. 4a and FIG. 4b are flowcharts of a method for measuring dissolved organic halogen content in water according to an embodiment of the present invention. Based on the steps shown in FIG. 2, as shown in FIG. 4a, the specificity of S120 is shown in FIG. The operation steps are as follows:
  • the implementation of the S121 operation step specifically includes the following steps:
  • the immersion ultraviolet lamp or the suspended irradiation ultraviolet lamp is a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an amalgam ultraviolet lamp, an excimer excitation ultraviolet lamp, a xenon lamp or a halogen lamp.
  • the ultraviolet light irradiation time is less than or equal to 120 minutes, and the irradiation dose is less than or equal to 90,000 joules/L.
  • FIG. 5 is a flow chart of a method for measuring dissolved organic halogen content in water according to the embodiment. Based on the steps shown in FIG. 4, the specific operation steps of S130 are as follows:
  • the water sample of the converted DIH is divided into at least two samples; and, the eluent is configured and filtered;
  • the content of DIH in the water sample is measured by an ion chromatograph using a tandem double detector with conductivity detection and ultraviolet detection.
  • the ion chromatograph When performing the operations of step S132 and step S133, the ion chromatograph specifically sets the function of the ion chromatograph to a gradient elution mode, and then starts to work, that is, through the eluent, and injects the sample to the ion chromatograph containing the chromatographic column.
  • the separation device the sample is subjected to ion chromatography separation by a gradient elution method to obtain ions to be detected in the eluent flowing out of the ion chromatography device; and, step S133 is continued.
  • FIG. 6 is a flow chart of a method for measuring dissolved organic halogen content in water according to the embodiment. Based on the steps shown in FIG. 5, as shown in FIG. 6, before performing the S111 operation step, the following steps are further included:
  • the microfiltration membrane has a pore diameter of not less than 0.22 ⁇ m but not more than 0.7 ⁇ m.
  • the sample is ion chromatographically separated by gradient elution to obtain the ions to be tested in the eluent flowing out of the ion chromatography device;
  • the concentration of Na 2 CO 3 in the eluent was 2.2 mmol/l, and the concentration of NaHCO 3 was 1.5 mmol/l.
  • FIG. 7 is a flow chart of another method for measuring dissolved organic halogen content in water according to the embodiment. As shown in FIG. 7 , the method for measuring dissolved organic halogen content in water provided by the embodiment is provided.
  • the measurement steps include:
  • step S710 in this embodiment the soluble inorganic halogen and the dissolved organic halogen in the water sample to be measured are separated by electrodialysis, and the diameter of the dialysis membrane is limited, and the DIH having a small diameter can easily permeate the dialysis membrane. The larger diameter of the DOH will be trapped by the dialysis membrane. Therefore, through this selective permeability, the separation of the dissolved organic halide ions and the dissolved inorganic halide ions is achieved, the removal step of the activated carbon is reduced, the resources are saved, and the environment is environmentally friendly, and It is not necessary to replace the test items once every test, simplifying the test steps and improving the test efficiency.
  • step S720 in the embodiment uses the photocatalytic technology to convert the separated dissolved organic halogen into a dissolved inorganic halogen, does not need to use a special high-temperature combustion device, is simple and easy to operate, and can be tested at normal temperature, and is not required. Heating and time-consuming cooling of the sample reduces the harsh environmental requirements for conversion using special high-temperature combustion equipment, increases the efficiency of the test, and eliminates the need to burn activated carbon, does not require the addition of a catalyst, and is more environmentally friendly. Further, in step S730 in the present embodiment, the dissolved inorganic halide after conversion is analyzed by an ion meter to analyze and measure the content of the soluble organic halogen in the water to be measured.
  • a system for measuring the content of dissolved organic halogen in water comprises:
  • a separation device for separating DIH and DOH in the water to be measured by electrodialysis
  • Photocatalytic conversion equipment photocatalytic conversion equipment for converting the separated DOH to DIH by photocatalytic conversion technology
  • An ion meter with ion detection function analyzes the converted DIH to analyze the content of DOH in the water to be measured.
  • the separation device is an electrodialyser having an ion exchange membrane 100
  • the electrodialysis device includes an ion exchange membrane 100, is connected by an ion exchange membrane 100, and sequentially sorts the first rich compartment tank 200, and the shallow chamber tank 210 And a second rich chamber tank 220; wherein the first rich chamber tank 200 is provided with a first electrode 300, and the second concentrated chamber tank 220 is provided with a second electrode 310, and the first rich chamber tank 200 and the shallow chamber tank 210 are connected with ions
  • the polarity of the exchange membrane 100 is the same as that of the second electrode 310
  • the polarity of the ion exchange membrane 100 connected to the second rich chamber tank 220 and the shallow chamber tank 210 is the same as that of the first electrode 300
  • the second rich chamber tank 220 is for containing an inorganic electrolyte solution other than halogen in the injected component
  • the light chamber tank 210 is for accommodating the injected water sample to be measured
  • first rich chamber groove 200 includes a water outlet hole 400 and a water inlet hole 500 formed in the groove body and the groove body
  • the second rich chamber groove 220 includes a water outlet hole 400 and a water inlet provided in the groove body and the groove body. Hole 500.
  • the separating apparatus further includes an electrolyte solution applicator connected to the water inlet hole 500 for adding the injection inorganic electrolyte solution in the first rich chamber tank 200 and the second rich chamber tank 220 at a fixed rate, through The flow matching of the water outlet hole 400 and the water inlet hole 500 reduces and maintains the halogen ion concentration in the first rich chamber tank 200 and the second rich chamber tank 220.
  • the photocatalytic conversion device comprises an ultraviolet light irradiation device for converting the separated DOH to DIH by photocatalytic conversion technology.
  • the ultraviolet light irradiation device comprises at least one immersion ultraviolet lamp and/or at least one suspended irradiation ultraviolet lamp for illuminating the separated DOH taken out from the light chamber groove 210 and converted into DIH;
  • Immersion type ultraviolet lamps or suspended ultraviolet lamps are low-pressure mercury lamps, medium-pressure mercury lamps, High pressure mercury lamp, amalgam UV lamp, excimer excitation UV lamp, xenon lamp or halogen lamp.
  • the method and system for measuring the total amount of dissolved organic halogen in water provided by the embodiment of the present application are analyzed by using an ion meter to analyze the converted soluble inorganic halide to analyze the content of the dissolved organic halogen in the water to be measured.
  • the electrolysis method is used to separate the soluble inorganic halogen and the dissolved organic halogen in the water to be measured, thereby completely separating the dissolved organic halide ion and the dissolved inorganic halide ion, reducing the interception step of the activated carbon, saving resources and complying with environmental protection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种测量水中溶解性有机卤含量的方法及系统,包括采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤(S1),通过电渗析技术,实现溶解性有机卤与溶解性无机卤的彻底分离,减少活性炭及一次性吸附柱的使用,简化步骤,提高效率;采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤(S2),不需要使用特殊的高温燃烧设备,操作简单容易,且常温下就可以进行测试,以及不需要燃烧活性炭及加入催化剂,更加环保;以及,利用具有离子分析功能的仪器分析转化后的溶解性无机卤(S3),以分析测量待测量水中的溶解性有机卤总含量指标和各溶解性有机卤(氟、氯、溴、碘)的含量指标。

Description

一种测量水中溶解性有机卤含量的方法及系统 技术领域
本申请涉及测量卤代物质总量指标的领域,特别涉及一种测量水中溶解性有机卤含量的方法及系统。
背景技术
溶解性有机卤(Dissolved Organic Halogen,简称DOH)是饮用水和饮料类食品中诸多卤代物质的总量指标。因水中溶解性无机卤(Dissolved Inorganic Halogen,简称DIH)和DOH共存且DIH占绝对优势,现有技术无法实现DOH的直接测量。而才有在测量DOH前先去除含量占绝对优势的DIH,然后将DOH转化为DIH,再测量水样中的DOH指标。目前通用的DOH测量步骤分为三步即活性炭分离DOH与DIH、DOH燃烧转化为DIH、测量燃烧转化后的DIH,进而分析出DOH总量指标。
目前的测量方法主要基于DOH和DIH对活性炭的吸附性能的差别,利用活性炭来截留DOH。然而,截留过程中,部分亲水性DOH会随着溶液流失,因此,降低了DOH的回收率,加大了后期DOH的测量误差;而且,由于活性炭具有一定还原性,可造成DOH中的有机氯和有机溴的还原脱卤,进一步降低DOH的回收率,从而加大随后DOH的测量误差。另外,在该方法中还需要用到专用活性炭吸附柱,该吸附柱价格昂贵且不能重复利用,不够环保,使用一次即必须更换,且增加了更好吸附柱等操作的困难和麻烦。
现有测量方法中的第二步,即通过高温燃烧将活性炭及吸附在活性炭上的DOH分别转化为无机碳和DIH时,需要高温燃烧,对所使用的燃烧设备要求较高,燃烧设备的制作和操作也不方便,也不够环保。另外,为了提高DOH的转化率,还需要加入催化剂(如贵金属催化剂-铂),但因卤离子可淬灭催化剂的活性,所以不能在相对较低的温度(如680℃)下使用催化剂对DOH进行燃烧转化,而必须将温度提高至950℃以上,对于燃烧设备的材料要求更加苛 刻。另外,高温燃烧后的冷却过程中会导致卤素的凝结,如三氟乙酸高温燃烧后分解成氟化氢,其在冷却过程中会与空气中的水发生反应形成氢氟酸,降低了三氟乙酸的回收率,进一步加大了后期DOH的测量误差。
现有测量方法中的第三步采用微库仑法和离子色谱(Ion chromatography,简称IC)法。其中,微库仑法是通过卤素离子与银离子发生反应产生沉淀所造成的电流变化来测量卤素的总量,但是因氟化银不形成沉淀而无法测量有机卤中的氟离子,增加了DIH的测量误差,亦即增加了DOH的总量测量误差,而且由于氯、溴、碘三种离子均产生相同的沉淀效果,所以无法区分出DIH中的氯、溴、碘三种离子的含量。IC分析法则是采用低交换容量的阴离子或阳离子交换柱,以强电解质做流动相分离无机离子,用IC电导检测器连续检测流出物电导变化的方法来测量卤素中阴离子的含量。该方法解决了微库仑法中无法测量氟离子,无法区分氯、溴离子的含量的问题,但是IC电导检测器对碘离子的响应较低,而饮用水中碘化物的碘离子含量常低至几微克每升甚至纳克每升,所以,目前IC电导检测器方法不支持痕量碘离子的检测,无法有效、精确检出饮用水中的碘离子含量。
发明内容
为解决目前通用的溶解性有机卤总量测量方法存在的测量误差大、测试步骤繁琐、测试环境要求苛刻,不够环保、测试效率低等问题,本申请提供了一种测试步骤简单,环保、测试效率高,测量误差小,测量精度高并且测试环境要求低,常温下就可以进行测量溶解性有机卤的方法及系统。
本申请的技术方案如下:
本申请提供一种测量水中溶解性有机卤含量的方法,包括:
采用电渗析技术分离待测量水样中的溶解性无机卤与所述溶解性有机卤;
采用光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤;
利用具有离子分析功能的仪器分析转化后的所述溶解性无机卤,以分析测量所述待测量水样中的所述溶解性有机卤的含量。
优选的,所述采用电渗析技术分离待测量水样中的溶解性无机卤与所述溶解性有机卤,包括:
通过电渗析器,采用电渗析技术分离所述待测量水中的溶解性无机卤与所述溶解性有机卤。
优选的,所述通过电渗析器,采用电渗析技术分离所述待测量水样中的溶解性无机卤与所述溶解性有机卤,包括:
配备包含了采用交换膜连接,及依次排序的第一浓室槽,淡室槽和第二浓室槽的电渗析器;
注入组分中除卤素以外的无机电解质溶液于所述第一浓室槽中和所述第二浓室槽中;以及,注入所述待测量水样于所述淡室槽中;
对所述第一电极及所述第二电极施加电压,利用电场驱动所述淡室槽中的无机卤素离子透过所述交换膜流动到所述第一浓室槽或者所述第二浓室槽;
取出所述淡室槽中的包含有所述溶解性有机卤的水样,则获得所述待测量水样中的所述溶解性有机卤;其中,所述第一浓室槽配有第一电极,所述第二浓室槽配有第二电极。
优选的,所述采用紫外光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤,包括:
采用紫外光照射从将所述淡室槽中取出的包含所述溶解性有机卤的水样,转化为溶解性无机卤。
另一方面,本申请还提供一种测量水中溶解性有机卤含量的系统,采用如上任一测量水中溶解性有机卤含量的方法,包括:
分离设备,采用电渗析技术分离待测量水样中的溶解性无机卤与所述溶解性有机卤;
光催化设备,采用光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤;
具有离子分析功能的仪器,用于分析测量所述待测量水样中的所述溶解性有机卤的含量。
优选的,所述分离设备包括电渗析器,采用交换膜连接,及依次排序的第一浓室槽,淡室槽和第二浓室槽;其中,所述第一浓室槽配有第一电极,所述第二浓室槽配有第二电极,所述第一浓室槽和所述第二浓室槽用于注入容纳组分中除卤素以外的无机电解质溶液,所述淡室槽用于注入容纳所述待测量水样, 所述第一电极和所述第二电极用于通电后形成电场,并驱动所述淡室槽中的无机卤素离子透过所述交换膜流动到所述第一浓室槽或者所述第二浓室槽,以分离所述待测量水中的溶解性无机卤与所述溶解性有机卤,所述第一浓室槽和所述淡室槽连接的所述交换膜的选择极性与所述第二电极相同,以及所述第二浓室槽和所述淡室槽连接的所述交换膜的极性与所述第一电极相同。
优选的,所述第一浓室槽包括槽本体和所述槽本体上开设的出水孔和进水孔,以及,所述第二浓室槽包括槽本体和所述槽本体上开设的出水孔和进水孔,用于通过所述出水孔和所述进水孔的流量配合减小及保持所述第一浓室槽和所述第二浓室槽中的卤素离子浓度。
优选的,所述分离设备还包括电解质溶液添加器,所述电解质溶液添加器连接至所述进水孔,用于添加注入所述无机电解质溶液于所述第一浓室槽和所述第二浓室槽中,通过控制所述出水孔和所述进水孔的流动速率,以通过所述出水孔和所述进水孔的流量配合减小及保持所述第一浓室槽和所述第二浓室槽中的卤素离子浓度。
优选的,所述交换膜,用于分离所述溶解性有机卤和溶解性无机卤;其中所述交换膜为离子交换膜,双极膜,反渗透膜(RO膜),渗析膜。
优选的,所述光催化设备包括紫外光照射设备,所述紫外光照射设备用于采用光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤,所述紫外光照射设备,用于照射从所述淡室槽中取出的已被分离的所述溶解性有机卤,转化为溶解性无机卤;其中所述紫外光灯为低压汞灯、中压汞灯、高压汞灯、汞齐紫外灯、准分子激发紫外灯、氙灯或者卤灯。
本申请的有益效果:本申请提供的测量水中溶解性有机卤总量的方法及系统中,采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤,,实现溶解性有机卤离子与溶解性无机卤离子的彻底分离,,节省了资源,符合环保,并且不用每次试验都更换一次试验物品,简化测试步骤,提高了测试效率;以及采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤,不需要使用特殊的高温燃烧设备,操作起来简单容易,且常温下就可以进行测试,不需要加温及耗费时间冷却样品,降低了使用特殊的高温燃烧设备进行转化的苛刻环境要求,提高了测试的效率,以及不需要燃烧活性炭,也不需要加入催化剂, 更加环保;以及,利用具有离子分析功能的仪器分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤的含量,实现了对测量水中溶解性有机卤含量的精确测量,并实现了精确测量溶解性有机卤中的氟、氯、溴、碘的含量。
附图说明
图1a为本实施例提供的一种测量水中溶解性有机卤含量的方法流程图;
图1b为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图;
图2为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图;
图3为本实施例提供的一种测量水中溶解性有机卤含量的电渗析器装置结构图;
图4为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图;
图5为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图;
图6为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图;
图7为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图。
具体实施方式
下面阐述的实施例代表允许本领域技术人员实践本申请的必要信息,并且示出实践本申请的最佳方式。一旦根据附图阅读了以下的描述,本领域技术人员就将理解本申请的构思并且将认识到此处未特别阐明的这些构思的应用。应当理解,这些构思和应用落入本公开和所附权利要求书的范围。下面结合实施例对本申请进一步说明。
本申请的技术方案如下:
请参见图1a,图1a为本实施例提供的一种测量水中溶解性有机卤含量的方法流程图,如图1a所示,本申请提供的一种测量水中溶解性有机卤含量的方法,包括:
S1,采用电渗析技术分离待测量水样中的溶解性无机卤与溶解性有机卤;
S2,采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤;
S3,利用具有离子分析功能的仪器分析转化后的溶解性无机卤,以分析测 量所述待测量水样中的溶解性有机卤的含量。
优选的,采用电渗析技术分离待测量水样中的溶解性无机卤与溶解性有机卤,包括:
通过电渗析器,采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤。
优选的,通过电渗析器,采用电渗析技术分离待测量水样中的溶解性无机卤与溶解性有机卤,包括:
配备包含了采用交换膜连接,及依次排序的第一浓室槽,淡室槽和第二浓室槽的电渗析器;
注入组分中除卤素以外的无机电解质溶液于第一浓室槽中和第二浓室槽中;以及,注入待测量水样于淡室槽中;
对第一电极及第二电极施加电压,利用电场驱动淡室槽中的无机卤素离子透过交换膜流动到第一浓室槽或者第二浓室槽;
取出淡室槽中的包含有溶解性有机卤的水样,则获得待测量水样中的所述溶解性有机卤;其中,第一浓室槽配有第一电极,第二浓室槽配有第二电极,第一浓室槽和淡室槽连接的交换膜的选择极性与第二电极相同,以及第二浓室槽和淡室槽连接的交换膜的极性与第一电极相同。
优选的,采用紫外光催化技术转化被分离的溶解性有机卤为溶解性无机卤包括:
采用紫外光照射从将淡室槽中取出的包含溶解性有机卤的水样,转化为溶解性无机卤。
另一方面,本申请还提供一种测量水中溶解性有机卤含量的系统,采用如上任一测量水中溶解性有机卤含量的方法,包括:
分离设备,采用电渗析技术分离待测量水样中的溶解性无机卤与溶解性有机卤;
光催化设备,采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤,
具有离子分析功能的仪器,用于分析测量待测量水样中的溶解性有机卤的含量。
优选的,分离设备包括电渗析器,采用交换膜连接,及依次排序的第一浓 室槽,淡室槽和第二浓室槽;其中,第一浓室槽配有第一电极,第二浓室槽配有第二电极,第一浓室槽和第二浓室槽用于注入容纳组分中除卤素以外的无机电解质溶液,淡室槽用于注入容纳待测量水样,第一电极和第二电极用于通电后形成电场,并驱动淡室槽中的无机卤素离子透过交换膜流动到第一浓室槽或者第二浓室槽,以分离待测量水中的溶解性无机卤与溶解性有机卤,第一浓室槽和淡室槽连接的交换膜的选择极性与第二电极相同,以及第二浓室槽和淡室槽连接的交换膜的极性与第一电极相同。
优选的,第一浓室槽包括槽本体和槽本体上开设的出水孔和进水孔,以及,第二二浓室槽包括槽本体和槽本体上开设的出水孔和进水孔,用于通过出水孔和进水孔的流量配合减小及保持第一浓室槽和第二浓室槽中的卤素离子浓度。
优选的,分离设备还包括电解质溶液添加器,电解质溶液添加器连接至进水孔,用于添加注入无机电解质溶液于第一浓室槽和第二浓室槽中,通过控制出水孔和进水孔的流动速率,以通过出水孔和进水孔的流量配合减小及保持第一浓室槽和第二浓室槽中的卤素离子浓度。
优选的,交换膜,用于分离溶解性有机卤和溶解性无机卤;其中交换膜为离子交换膜,双极膜,反渗透膜(PO膜),渗析膜。
优选的,光催化设备包括紫外光照射设备,紫外光照射设备用于采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤,紫外光照射设备,用于照射从淡室槽中取出的已被分离的所述溶解性有机卤,转化为溶解性无机卤,其中紫外光灯为低压汞灯、中压汞灯、高压汞灯、汞齐紫外灯、准分子激发紫外灯、氙灯或者卤灯。
本申请的有益效果:本申请提供的测量水中溶解性有机卤总量的方法及系统中,采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤,实现溶解性有机卤离子与溶解性无机卤离子的彻底分离,节省了资源,符合环保,并且不用每次试验都更换一次试验物品,简化测试步骤,提高了测试效率,以及采用光催化转化技术转化被分离的溶解性有机卤为溶解性无机卤,不需要使用特殊的高温燃烧设备,操作起来简单容易,且常温下就可以进行测试,不
Figure PCTCN2017000244-appb-000001
要加温及耗费时间冷却样品,降低了使用特殊的高温燃烧设备进行转化的苛刻环境要求,提高了测试的效率,以及不需要燃烧活性炭,也不需要加入催化剂 更加环保;以及,利用具有离子分析功能的仪器分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤的含量,实现了对测量水中溶解性有机卤含量的精确测量,并实现了精确测量溶解性有机卤中的氟、氯、溴、碘的含量。
请参见图1b,图1b为本实施例提供的一种测量水中溶解性有机卤含量的方法流程图,如图1b所示,本实施例提供的一种测量水中溶解性有机卤含量的方法的测量步骤包括:
S110、采用电渗析技术分离待测量水中的DIH与DOH;
S120、采用光催化转化技术转化被分离的DOH为DIH;
S130、利用具有电导检测器和紫外检测器的离子色谱分析器分析转化后的DIH,以分析测量待测量水样中的DOH的含量。因氟、氯、溴对电导检测器的响应信号较强,而溴、碘对紫外检测器的响应信号较强,所以使用双检测器方式可以同步获得四种卤素离子(即氟、氯、溴、碘)的低浓度测量。
本实施例中的步骤S110采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤,实现溶解性有机卤离子与溶解性无机卤离子的彻底分离,减少活性炭进行截留步骤,节省了资源,符合环保,并且不用每次试验都更换一次试验物品,简化测试步骤,提高了测试效率。以及本实施例中的步骤S120采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤,不需要使用特殊的高温燃烧设备,操作起来简单容易,且常温下就可以进行测试,不需要加温及耗费时间冷却样品,降低了使用特殊的高温燃烧设备进行转化的苛刻环境要求,提高了测试的效率,以及不需要燃烧活性炭,也不需要加入催化剂,更加环保。另外本实施例中的步骤S130利用具有电导检测器和紫外检测器的离子色谱仪分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤的含量。
请参见图2,图2为本实施例提供的一种测量水中溶解性有机卤含量的方法流程图,基于图1所示的步骤,如图2所示,S110步骤具体为:
S111、配备具有离子交换膜的电渗析器;
S112、通过电渗析器,采用电渗析技术分离待测量水中的DOH与DIH。
本实施方式中,通过离子交换膜实现溶解性有机卤离子与溶解性无机卤离 子的彻底分离,减少活性炭进行截留步骤,节省了资源,符合环保,并且不用每次试验都更换一次试验物品,简化测试步骤,提高了测试效率。
优选的,所述离子交换膜,用于分离所述溶解性有机卤和溶解性无机卤;其中所述交换膜也可替换为双极膜,反渗透膜(RO膜)或者渗析膜,具体实现方式不受本实施例的限制。
请参见图3,图3为本实施例提供的一种测量水中溶解性有机卤含量的电渗析器装置结构图,如图3所示,S111操作步骤中的电渗析器装置结构具体如下描述:
电渗析器包含了采用离子交换膜100连接,且依次排序的第一浓室槽200,淡室槽210和第二浓室槽220,第一浓室槽200配有第一电极300,第二浓室槽220配有第二电极310,第一浓室槽200和淡室槽210连接的离子交换膜100的选择极性与第二电极310相同,以及第二浓室槽220和淡室槽210连接的离子交换膜100的极性与第一电极300相同。
具体地,S112操作步骤,即通过电渗析器,采用电渗析技术分离所述待测量水中的溶解性无机卤与所述溶解性有机卤的方法进一步包括如下步骤:
注入组分中除卤素以外的无机电解质溶液于第一浓室槽200中和第二浓室槽220中;以及,注入待测量水样于淡室槽210中;
对第一电极300及第二电极310施加电压,利用电场驱动淡室槽210中的无机卤素离子透过离子交换膜100流动到第一浓室槽200或者第二浓室槽220;
取出淡室槽210中的包含有DOH的水样,分离待测量水中的DIH与DOH。
具体地,对第一电极300及第二电极310施加电压,利用电场驱动淡室槽210中的无机卤素离子透过离子交换膜100流动到第一浓室槽200或者第二浓室槽220,包括:
对第一电极300及第二电极310施加通电时间在20分钟至100分钟,且不超过30V的直流电压,利用电场驱动淡室槽210中的无机卤素离子透过离子交换膜100流动到第一浓室槽200或者第二浓室槽220;
以及,电解质溶液为浓度0.01mol/L的碳酸氢钠溶液。
具体地,在注入组分中除卤素以外的无机电解质溶液于第一浓室槽200中和第二浓室槽220中;以及,注入待测量水样于淡室槽210中之前,还包括:
对第一浓室槽200和第二浓室槽220中的每一个都分别开设出水孔400和进水孔500;
以及,在对第一电极300及第二电极310施加电压,利用电场驱动淡室槽210中的无机卤素离子透过离子交换膜100流动到第一浓室槽200或者第二浓室槽220之后,方法还包括:
按固定速率或者特定的速率通过进水孔500添加注入无机电解质溶液于第一浓室槽200和第二浓室槽220中,通过出水孔400和进水孔500的流量配合减小及保持第一浓室槽200和第二浓室槽220中的卤素离子浓度。
请参见图4a和图4b,图4a和图4b为本实施例提供的一种测量水中溶解性有机卤含量的方法流程图,基于图2所示的步骤,如图4a所示,S120的具体操作步骤为:
S121、采用紫外光照射从淡室槽中取出的已被分离的DOH,转化为DIH。
进一步地,如图4b所示,基于图4a所示的操作方法流程图,其中S121操作步骤的实现具体包括以下步骤:
S122、采用至少一个浸没式紫外光灯和/或至少一个悬空辐照式紫外光灯照射从淡室槽中取出的已被分离的DOH,转化为DIH。其中,浸没式紫外光灯或者悬空辐照式紫外光灯为低压汞灯、中压汞灯、高压汞灯、汞齐紫外灯、准分子激发紫外灯、氙灯或者卤灯。以及,紫外光照射时间小于或者等于120分钟,照射计量小于或者等于90000焦耳/L。
请参见图5,图5本实施例提供的一种测量水中溶解性有机卤含量的方法流程图,基于图4所示的步骤,如图5所示,S130的具体操作步骤为:
S131、转化后的DIH的水样分成至少两份小样;以及,配置并过滤淋洗液;
S132、设置梯度淋洗方式;
S133、利用具有电导检测和紫外检测功能的串联型双检测器的离子色谱仪测量水样中的DIH的含量。
离子色谱仪在进行步骤S132和步骤S133的工作时,具体是将离子色谱仪的功能设置成梯度淋洗方式,然后就开始工作,即通淋洗液,以及注入小样至容纳色谱柱的离子色谱分离装置中,采用梯度淋洗方式对小样进行离子色谱分离,获取流出离子色谱装置中的淋洗液中的待测离子;以及,继续执行步骤S133。
请参见图6,图6本实施例提供的一种测量水中溶解性有机卤含量的方法流程图,基于图5所示的步骤,如图6示,进行S111操作步骤之前,还包括以下步骤:
S113、配置待测量水样;
S114、采用微滤滤膜去除待测量水样中的杂质。
具体地,微滤滤膜的孔径不小于0.22μm但不大于0.7μm。
采用梯度淋洗方式对小样进行离子色谱分离,获取流出离子色谱装置中的淋洗液中的待测离子;
淋洗液中的Na2CO3的浓度为2.2mmol/l,NaHCO3的浓度为1.5mmol/l。
方法例2
请参见图7,图7为本实施例提供的另一种测量水中溶解性有机卤含量的方法流程图,如图7所示,本实施例提供的一种测量水中溶解性有机卤含量的方法的测量步骤包括:
S710、采用电渗析技术分离待测量水中的DIH与DOH;
S720、采用光催化技术转化被分离的DOH为DIH;
S730、利用离子计分析转化后的DIH,以分析测量待测量水样中的DOH的含量。
本实施例中的步骤S710采用电渗析技术分离待测量水样中的溶解性无机卤与溶解性有机卤,通过渗析膜孔径的限制,直径较小的DIH会很容易的透过渗析膜,而直径较大的DOH会被渗析膜截留,因此通过这种选择透过性,实现溶解性有机卤离子与溶解性无机卤离子的彻底分离,减少活性炭进行截留步骤,节省了资源,符合环保,并且不用每次试验都更换一次试验物品,简化测试步骤,提高了测试效率。以及本实施例中的步骤S720采用光催化技术转化被分离的溶解性有机卤为溶解性无机卤,不需要使用特殊的高温燃烧设备,操作起来简单容易,且常温下就可以进行测试,不需要加温及耗费时间冷却样品,降低了使用特殊的高温燃烧设备进行转化的苛刻环境要求,提高了测试的效率,以及不需要燃烧活性炭,也不需要加入催化剂,更加环保。另外本实施例中的步骤S730利用具有离子计分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤的含量。
本实施例中提供一种测量水中溶解性有机卤含量的系统,采用上述任一测量水中溶解性有机卤总量的方法,包括:
分离设备,分离设备用于采用电渗析技术分离待测量水中的DIH与DOH;
光催化转化设备,光催化转化设备用于采用光催化转化技术转化被分离的DOH为DIH;
具有离子检测功能的离子计分析转化后的DIH,以分析测量待测量水中的DOH的含量。
如图3所示,分离设备为具有离子交换膜100的电渗析器,电渗析器包括离子交换膜100,采用离子交换膜100连接,及依次排序的第一浓室槽200,淡室槽210和第二浓室槽220;其中,第一浓室槽200配有第一电极300,第二浓室槽220配有第二电极310,第一浓室槽200和淡室槽210连接的离子交换膜100的选择极性与第二电极310相同,以及第二浓室槽220和淡室槽210连接的离子交换膜100的极性与第一电极300相同,第一浓室槽200和第二浓室槽220用于容纳注入的组分中除卤素以外的无机电解质溶液,淡室槽210用于容纳注入的待测量水样,第一电极300和第二电极310用于通电后形成电场,并驱动淡室槽210中的无机卤素离子透过离子交换膜100流动到第一浓室槽200或者第二浓室槽220,分离待测量水中的DIH与DOH。
进一步地,第一浓室槽200包括槽本体和槽本体上开设的出水孔400和进水孔500,以及,第二浓室槽220包括槽本体和槽本体上开设的出水孔400和进水孔500。
进一步地,分离设备还包括电解质溶液添加器,电解质溶液添加器连接至进水孔500,用于按固定速率添加注入无机电解质溶液于第一浓室槽200和第二浓室槽220中,通过出水孔400和进水孔500的流量配合减小及保持第一浓室槽200和第二浓室槽220中的卤素离子浓度。
进一步地,光催化转化设备包括紫外光照射设备,紫外光照射设备用于采用光催化转化技术转化被分离的DOH为DIH。
进一步地,紫外光照射设备包括至少一个浸没式紫外光灯和/或至少一个悬空辐照式紫外光灯,用于照射从淡室槽210中取出的已被分离的DOH,转化为DIH;其中浸没式紫外光灯或者悬空福照式紫外光灯为低压汞灯、中压汞灯、 高压汞灯、汞齐紫外灯、准分子激发紫外灯、氙灯或者卤灯。
进一步地,使用离子计分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤的含量综上描述,本申请实施例提供的测量水中溶解性有机卤总量的方法及系统中,采用电渗析技术分离待测量水中的溶解性无机卤与溶解性有机卤,实现溶解性有机卤离子与溶解性无机卤离子的彻底分离,减少活性炭进行截留步骤,节省了资源,符合环保,并且不用每次试验都更换一次试验物品,简化测试步骤,提高了测试效率;以及采用光催化转化技术转化被分离的溶解性有机卤为溶解性无机卤,不需要使用特殊的高温燃烧设备,操作起来简单容易,且常温下就可以进行测试,不需要加温及耗费时间冷却样品,降低了使用特殊的高温燃烧设备进行转化的苛刻环境要求,提高了测试的效率,以及不需要燃烧活性炭,也不需要加入催化剂,更加环保;以及,利用具有离子检测功能的离子计分析转化后的溶解性无机卤,以分析测量待测量水中的溶解性有机卤的含量。
显然,上述实施例仅仅是为清楚地说明本申请所作的举例,而并非是对本申请的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本申请的精神所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (10)

  1. 一种测量水中溶解性有机卤含量的方法,其特征在于,包括:
    采用电渗析技术分离待测量水样中的溶解性无机卤与所述溶解性有机卤:
    采用光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤;
    利用具有离子分析功能的仪器分析转化后的所述溶解性无机卤,以分析测量所述待测量水样中的所述溶解性有机卤的含量。
  2. 如权利要求1所述的方法,其特征在于,所述采用电渗析技术分离待测量水样中的溶解性无机卤与所述溶解性有机卤,包括:
    通过电渗析器,采用电渗析技术分离所述待测量水中的溶解性无机卤与所述溶解性有机卤。
  3. 如权利要求2所述的方法,其特征在于,所述通过电渗析器,采用电渗析技术分离所述待测量水样中的溶解性无机卤与所述溶解性有机卤,包括:
    配备包含了采用交换膜连接,及依次排序的第一浓室槽,淡室槽和第二浓室槽的电渗析器;
    注入组分中除卤素以外的无机电解质溶液于所述第一浓室槽中和所述第二浓室槽中;以及,注入所述待测量水样于所述淡室槽中;
    对所述第一电极及所述第二电极施加电压,利用电场驱动所述淡室槽中的无机卤素离子透过所述交换膜流动到所述第一浓室槽或者所述第二浓室槽;
    取出所述淡室槽中的包含有所述溶解性有机卤的水样,则获得所述待测量水样中的所述溶解性有机卤;其中,所述第一浓室槽配有第一电极,所述第二浓室槽配有第二电极,所述第一浓室槽和所述淡室槽连接的所述交换膜的选择极性与所述第二电极相同,以及所述第二浓室槽和所述淡室槽连接的所述交换膜的极性与所述第一电极相同。
  4. 如权利要求1至3中任一所述的方法,其特征在于,所述采用紫外光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤,包括:
    采用紫外光照射从将所述淡室槽中取出的包含所述溶解性有机卤的水样,转化为溶解性无机卤。
  5. 一种测量水中溶解性有机卤含量的系统,采用如权利要求1至4中任一测量水中溶解性有机卤含量的方法,其特征在于,包括:
    分离设备,采用电渗析技术分离待测量水样中的溶解性无机卤与所述溶解性有机卤;
    光催化设备,采用光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤;
    具有离子分析功能的仪器,用于分析测量所述待测量水样中的所述溶解性有机卤的含量。
  6. 如权利要求5所述的系统,其特征在于,所述分离设备包括电渗析器,采用交换膜连接,及依次排序的第一浓室槽,淡室槽和第二浓室槽;其中,所述第一浓室槽配有第一电极,所述第二浓室槽配有第二电极,所述第一浓室槽和所述第二浓室槽用于注入容纳组分中除卤素以外的无机电解质溶液,所述淡室槽用于注入容纳所述待测量水样,所述第一电极和所述第二电极用于通电后形成电场,并驱动所述淡室槽中的无机卤素离子透过所述交换膜流动到所述第一浓室槽或者所述第二浓室槽,以分离所述待测量水中的溶解性无机卤与所述溶解性有机卤。
  7. 如权利要求6所述的系统,其特征在于,所述第一浓室槽包括槽本体和所述槽本体上开设的出水孔和进水孔,以及,所述第二浓室槽包括槽本体和所述槽本体上开设的出水孔和进水孔,用于通过所述出水孔和所述进水孔的流量配合减小及保持所述第一浓室槽和所述第二浓室槽中的卤素离子浓度。
  8. 如权利要求7所述的系统,其特征在于,所述分离设备还包括电解质溶液添加器,所述电解质溶液添加器连接至所述进水孔,用于添加注入所述无机电解质溶液于所述第一浓室槽和所述第二浓室槽中,通过控制所述出水孔和所述进水孔的流动速率,以通过所述出水孔和所述进水孔的流量配合减小及保持所述第一浓室槽和所述第二浓室槽中的卤素离子浓度。
  9. 如权利要求7所述的系统,其特征在于,所述交换膜,用于分离所述溶解性有机卤和溶解性无机卤;其中所述交换膜为离子交换膜,双极膜,反渗透膜或者渗析膜。
  10. 如权利要求5至9中任一所述的系统,其特征在于,所述光催化设备包括紫外光照射设备,所述紫外光照射设备用于采用光催化技术转化被分离的所述溶解性有机卤为溶解性无机卤,所述紫外光照射设备,用于照射从所述淡 室槽中取出的已被分离的所述溶解性有机卤,转化为溶解性无机卤;其中所述紫外光灯为低压汞灯、中压汞灯、高压汞灯、汞齐紫外灯、准分子激发紫外灯、氙灯或者卤灯。
PCT/CN2017/000244 2016-05-26 2017-03-21 一种测量水中溶解性有机卤含量的方法及系统 WO2017202029A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/199,325 US20190094191A1 (en) 2016-05-26 2018-11-26 Method and system for measuring content of dissolved organic halogens in water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610362531.4A CN106093215B (zh) 2016-05-26 2016-05-26 一种测量水中溶解性有机卤含量的方法及系统
CN201610362531.4 2016-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/199,325 Continuation US20190094191A1 (en) 2016-05-26 2018-11-26 Method and system for measuring content of dissolved organic halogens in water

Publications (1)

Publication Number Publication Date
WO2017202029A1 true WO2017202029A1 (zh) 2017-11-30

Family

ID=57230082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000244 WO2017202029A1 (zh) 2016-05-26 2017-03-21 一种测量水中溶解性有机卤含量的方法及系统

Country Status (3)

Country Link
US (1) US20190094191A1 (zh)
CN (1) CN106093215B (zh)
WO (1) WO2017202029A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016010328A (es) 2014-02-10 2017-02-06 Hutchinson Fred Cancer Res Tratamiento con halogeno de ataque cardiaco y lesion isquemica.
CN106093215B (zh) * 2016-05-26 2019-09-06 深圳合核环境科技有限公司 一种测量水中溶解性有机卤含量的方法及系统
CN107096572B (zh) * 2017-04-24 2019-07-23 太原师范学院 一种制备双极膜表面粉末态光催化剂的方法
CN107721041A (zh) * 2017-06-01 2018-02-23 哈尔滨工业大学深圳研究生院 一种测量水中总卤代有机物的预处理方法
CN110044762A (zh) * 2019-04-26 2019-07-23 华中科技大学 一种催化还原脱溴测定总有机溴含量的方法
CN111196661B (zh) * 2020-02-14 2023-05-02 山东博苑医药化学股份有限公司 一种含有机碘高盐废水资源化零排放装置
CN112557142B (zh) * 2020-12-24 2024-05-31 广州博诺通技术股份有限公司 样品前处理方法、卤素含量的检测方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115699A (ja) * 2007-11-08 2009-05-28 House Foods Corp 光触媒を用いた食品等の有機化合物を含む試料中のイプロジオン及び/又はイプロジオン代謝物の分析方法
CN101571530A (zh) * 2009-03-27 2009-11-04 浙江树人大学 离子色谱柱后衍生紫外检测含硫阴离子化合物
CN101708883B (zh) * 2009-12-18 2011-08-03 哈尔滨工业大学 一种光促脱卤复合药剂/光联用去除水中卤代有机物的方法
CN105152444A (zh) * 2015-09-23 2015-12-16 山东默锐环境产业股份有限公司 一种hbcd生产废水深度处理与废水中溴的回收综合处理工艺
CN204874184U (zh) * 2015-06-10 2015-12-16 河海大学 光催化膜蒸馏印染废水处理回用系统
CN105467041A (zh) * 2016-01-28 2016-04-06 吴江华衍水务有限公司 一种改进的水中总有机溴的测定方法
CN103983685B (zh) * 2014-05-30 2016-04-27 中国地质科学院水文地质环境地质研究所 一种氯代除草剂中氯同位素的低温转化与测定方法
CN106093215A (zh) * 2016-05-26 2016-11-09 哈尔滨工业大学深圳研究生院 一种测量水中溶解性有机卤含量的方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203965218U (zh) * 2014-04-09 2014-11-26 哈尔滨工业大学深圳研究生院 一种电渗析预处理装置
CN103969411B (zh) * 2014-04-09 2015-12-30 陈白杨 一种基于电渗析预处理方式直接测量水体中溶解性有机氮浓度的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115699A (ja) * 2007-11-08 2009-05-28 House Foods Corp 光触媒を用いた食品等の有機化合物を含む試料中のイプロジオン及び/又はイプロジオン代謝物の分析方法
CN101571530A (zh) * 2009-03-27 2009-11-04 浙江树人大学 离子色谱柱后衍生紫外检测含硫阴离子化合物
CN101708883B (zh) * 2009-12-18 2011-08-03 哈尔滨工业大学 一种光促脱卤复合药剂/光联用去除水中卤代有机物的方法
CN103983685B (zh) * 2014-05-30 2016-04-27 中国地质科学院水文地质环境地质研究所 一种氯代除草剂中氯同位素的低温转化与测定方法
CN204874184U (zh) * 2015-06-10 2015-12-16 河海大学 光催化膜蒸馏印染废水处理回用系统
CN105152444A (zh) * 2015-09-23 2015-12-16 山东默锐环境产业股份有限公司 一种hbcd生产废水深度处理与废水中溴的回收综合处理工艺
CN105467041A (zh) * 2016-01-28 2016-04-06 吴江华衍水务有限公司 一种改进的水中总有机溴的测定方法
CN106093215A (zh) * 2016-05-26 2016-11-09 哈尔滨工业大学深圳研究生院 一种测量水中溶解性有机卤含量的方法及系统

Also Published As

Publication number Publication date
CN106093215A (zh) 2016-11-09
US20190094191A1 (en) 2019-03-28
CN106093215B (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2017202029A1 (zh) 一种测量水中溶解性有机卤含量的方法及系统
US8551318B2 (en) Ion detector and system
US7704749B2 (en) Aqueous stream purifier and method of use
CN107389825B (zh) 基于全自动在线固相萃取-超高效液相色谱-线性离子阱串联质谱测定水中藻类毒素的方法
CN109358128B (zh) 一种有机氮-有机碳串联式在线检测方法与装置
EP3267193A1 (en) Electrolytic four-channel device and method
Wang et al. Pervaporation-flow injection determination of ammonia in the presence of surfactants
Wang et al. Determination of ammonia in beers by pervaporation flow injection analysis and spectrophotometric detection
JP2003302389A (ja) ホウ酸分析方法及び分析装置と超純水製造方法及び製造装置
CN108535349A (zh) 一种快速检测果蔬及肉制品中硝酸盐和亚硝酸盐的方法
US5073502A (en) Method and apparatus for analyzing total organic halogens
TWI409448B (zh) 測定水中低濃度溶解性有機氮濃度的方法
US10663396B2 (en) Refrigerant analyzer and a method of using the same
JP4665154B2 (ja) 共存陰イオンの処理装置及び方法
CN210690409U (zh) 一种荧光监测反渗透膜组件完整性检测装置
CN104749304A (zh) 一种测定脱硫溶液中氰离子与硫离子浓度的方法
EP4148426A1 (en) Check standard recycle setup for ion chromatography
CN105136938A (zh) 一种利用液质联用检测碘离子的水样中总有机碘的测定方法
JP4431708B2 (ja) ケイ酸イオンの高感度分離計測方法及びその装置
JPH10307113A (ja) 水中tocモニター
CN115707660A (zh) 一种水中溶解无机砷形态的电渗析分离定量方法
JPH10307114A (ja) 水中tocモニター
CN114814254A (zh) 一种海水铵氮剖面连续分析装置及其分析方法
CN112326752A (zh) 一种超灵敏的水体中汞离子检测方法
CN114814070A (zh) 一种测定饮用水中溴酸盐含量的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17801887

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17801887

Country of ref document: EP

Kind code of ref document: A1