WO2017201996A1 - 电动汽车及其havc空调系统 - Google Patents

电动汽车及其havc空调系统 Download PDF

Info

Publication number
WO2017201996A1
WO2017201996A1 PCT/CN2016/107331 CN2016107331W WO2017201996A1 WO 2017201996 A1 WO2017201996 A1 WO 2017201996A1 CN 2016107331 W CN2016107331 W CN 2016107331W WO 2017201996 A1 WO2017201996 A1 WO 2017201996A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
damper
havc
air
air conditioning
Prior art date
Application number
PCT/CN2016/107331
Other languages
English (en)
French (fr)
Inventor
谷丰
Original Assignee
北京新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新能源汽车股份有限公司 filed Critical 北京新能源汽车股份有限公司
Publication of WO2017201996A1 publication Critical patent/WO2017201996A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00035Air flow details of HVAC devices for sending an air stream of uniform temperature into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors

Definitions

  • the present invention relates to the field of electric vehicle technology, and in particular to an electric vehicle and its HAVC air conditioning system.
  • HAVC Heating, Ventilating and Air Conditioning
  • the existing HAVC air conditioning system for electric vehicles is usually designed based on the HAVC air conditioning system of the conventional internal combustion engine.
  • the structure of the air conditioning system is not greatly improved.
  • the air first flows through the cold source to cool down, and then controls a certain proportion of the air through the heat source. Heating is performed, thereby achieving control of the air temperature.
  • Due to the characteristics of the compressor refrigeration system there is an ideal pressure state, and the system should work within this ideal pressure range. Therefore, the cold source temperature is adjusted according to the set value only in a very small range (for example, 2 ° C ⁇ 5 ° C, only for example), and can not meet the various needs of the adjustable temperature of the air outlet.
  • the power battery since the power battery always supplies power to the cold source and the heat source during the actual temperature adjustment, a huge waste of energy is caused.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes an HAVC air conditioning system that increases the adjustable range of the outlet air temperature at the air outlet.
  • the invention also proposes an electric vehicle having the HAVC air conditioning system.
  • An HAVC air conditioning system for an electric vehicle includes: a casing having an air inlet and an air outlet; a heating element, the heating element being located in the casing and adjacent to the The air inlet is provided with a refrigerating element, the refrigerating element is located in the box and disposed adjacent to the air outlet, the refrigerating element and the inner wall of the box together define a flow port; and a damper, the damper is disposed at the Inside the casing and between the heating element and the refrigerating element, the damper is used to adjust the proportion of air flowing through the vent and the refrigerating element.
  • the HAVC air conditioning system of the electric vehicle not only increases the adjustable range of the outlet air temperature at the air outlet, but also effectively reduces the energy consumption of the entire vehicle.
  • the damper is configured to completely close the flow port and completely expose the first position of the refrigeration element and fully open the flow port and completely cover the second of the refrigeration element Between positions Switch.
  • the air conditioning system has a controller electrically connected to the damper and the heating element, respectively, to respectively control a position of the damper and a heating element Heating temperature.
  • the controller controls the damper to be in a first position and the heating element is not heated in a cooling mode, and the controller controls the damper to be in a second state in a heating mode The location and the heating element are heated.
  • a mechanical drive element or an electronic control element for driving the damper rotation is also included.
  • the damper is pivotally coupled to an inner wall of the casing.
  • the air inlet and the air outlet are opposite to each other in an axial direction of the casing, and a pivot axis of the damper is perpendicular to an axial direction of the casing.
  • the heating element completely encloses the inner wall of the casing in the axial direction, the heating element having a heat exchange passage for air circulation.
  • the refrigeration element is an evaporator and the heating element is a PTC heater.
  • An electric vehicle includes the HAVC air conditioning system.
  • FIG. 1 is a schematic diagram of a HAVC air conditioning system for an electric vehicle (the damper is in a second position) in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a HAVC air conditioning system for an electric vehicle (the damper is in a first position) in accordance with an embodiment of the present invention.
  • the HAVC air conditioning system 100 The HAVC air conditioning system 100, the casing 10, the air inlet 11, the air outlet 12, the heating element 20, the refrigeration element 30, the damper 40, and the flow port 50.
  • the HAVC air conditioning system 100 of an electric vehicle will be described in detail below with reference to FIGS. 1 and 2.
  • a HAVC air conditioning system 100 for an electric vehicle includes a casing 10, a heating element 20, a refrigerating element 30, and a damper 40.
  • the housing 10 has an air inlet 11 and an air outlet 12, and the heating element 20 is disposed in the housing 10 and adjacent to the air inlet 11.
  • the cooling element 30 is located in the housing 10 and disposed adjacent to the air outlet 12, and the cooling unit 30 and the housing 10
  • the inner walls collectively define a flow port 50 that is disposed within the casing 10 and between the heating element 20 and the refrigeration element 30.
  • the damper 40 is used to regulate the proportion of air flowing through the vent 50 and the refrigeration element 30.
  • the cooling element 30 and/or the heating element 20 are controlled according to the operating mode of the air conditioner, and the damper 40 is controlled to be in a suitable position to satisfy the cooling in different working modes.
  • the proportion of air is required, so that the air enters the tank 10 through the air inlet 11 and flows through the heating element 20 first, then flows through the cooling element 30 and the vents in a certain proportion, and finally the air and the cooling air cooled by the cooling element 30
  • the uncooled air flowing out of the vents is mixed and finally discharged into the vehicle through the air outlet 12, thereby not only increasing the adjustable range of the outlet air temperature at the air outlet, but also reducing the amount of air flowing through the evaporator.
  • the overall downtime of the compressor is lengthened or the overall speed is reduced, which reduces the energy consumption of the whole vehicle.
  • the damper 40 is configured to be switchable between a first position that completely closes the flow port 50 and completely exposes the refrigeration element 30 and a second position that completely opens the flow port 50 and completely covers the refrigeration element 30. Specifically, when the damper 40 is in the first position, the air is completely cooled by the cooling element 30 and then flows to the air outlet 12. When the damper 40 is in the second position, the air is not cooled by the cooling element 30 but is directly discharged through the flow port 50 and flows to the air outlet. 12. When the damper 40 is in any position between the first position and the second position, a portion of the air is cooled by the refrigerating element 30 and discharged, and another portion of the air is directly discharged through the flow port 50. Thereby, the ratio of the air flowing through the refrigeration element 30 and the flow port 50 is effectively adjusted by the damper 40.
  • the air conditioning system has a controller that is electrically coupled to the damper 40 and the heating element 20, respectively, to control the position of the damper 40 and the heating temperature of the heating element 20, respectively.
  • the position of the damper 40 is controlled by the controller to mix the air flowing through the refrigerating element 30 and the flow port 50 in a desired ratio, and the controller controls the heating element 20 to adjust to a suitable heating temperature according to different operating modes.
  • the controller controls the heating element 20 to adjust to a suitable heating temperature according to different operating modes. In order to match the refrigeration capacity of the refrigeration element, a wide range of adjustment requirements for the outlet air temperature at the air outlet are met.
  • the controller controls the damper 40 to be in the first position and the heating element 20 is not heated.
  • the controller controls the damper 40 to be in the second position and the heating element 20 is heated. Therefore, in the cooling mode, the natural wind passes through the heating element 20 without temperature change, flows through the damper 40, and is completely cooled by the refrigerating element 30, and then flows to the air outlet 12, and the heating element 20 is effectively turned off to reduce the air conditioning system.
  • the heating mode the natural wind is first heated by the heating element 20, and since the damper 40 completely blocks the refrigeration element 30, the wind resistance is minimized, and the power of the heating element 20 itself can be adjusted. Adjustment of the temperature of the tuyere 12.
  • the damper 40 is pivotally coupled to the inner wall of the casing 10.
  • the damper 40 is rotatable between a first position and a second position, and a rotation angle of the damper 40 from the first position to the second position is 180 degrees, and the damper 40 is from the first position to the first
  • the two positions rotate, the closer to the second position, the flow through the refrigeration element The greater the proportion of air in 30, the smaller the proportion of air flowing through the flow port 50.
  • the structure of the damper 40 is simple and compact, and is convenient to adjust.
  • a mechanical drive element or an electronic control element for driving the rotation of the damper 40 is also included.
  • the damper 40 is driven by the mechanical driving element or the electric control element so that the damper 40 is in a proper position to control the wind entering the refrigerating element 30 to exchange heat and cool, and the wind flowing out through the flow port 50 is mixed in a certain ratio, and finally The wind at the air outlet 12 reaches a preset temperature.
  • the air inlet 11 and the air outlet 12 are opposed to each other in the axial direction of the casing 10, and the pivot shaft of the damper 40 is perpendicular to the axial direction of the casing 10.
  • the heating element 20 completely encloses the inner wall of the casing 10 in the axial direction, and the heating element 20 has a heat exchange passage for the air to circulate. Thereby, the air entering through the air inlet 11 is rapidly heated through the heat exchange passage, which facilitates rapid temperature rise of the air conditioning system in the heating mode.
  • the refrigeration element 30 is an evaporator and the heating element 20 is a PTC heater.
  • a refrigerant is disposed in the refrigerating element 30, and the refrigerant exchanges heat with the air flowing through the evaporator to cool and cool the air.
  • An electric vehicle includes the HAVC air conditioning system 100 of the above embodiment.
  • the electric vehicle is not only more energy-efficient, but also low in cost, and the air outlet temperature of the air conditioning system can be adjusted more widely.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • first Features “above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

一种电动汽车的HAVC空调系统(100),包括:箱体(10),箱体(10)具有进风口(11)和出风口(12);供热元件(20),供热元件(20)位于箱体(10)内且邻近进风口(11)设置;制冷元件(30),制冷元件(30)位于箱体(10)内且邻近出风口(12)设置,制冷元件(30)与箱体(10)的内壁共同限定出流通口(50);以及风门(40),风门(40)设置在箱体(10)内且位于供热元件(20)与制冷元件(30)之间,风门(40)用于调节流经通风口(50)和制冷元件(30)的空气的比例。还公开了一种包括该HAVC空调系统的电动汽车。

Description

电动汽车及其HAVC空调系统 技术领域
本发明涉及电动汽车技术领域,具体而言,涉及一种电动汽车及其HAVC空调系统。
背景技术
传统内燃机汽车的HAVC(Heating,Ventilating and Air Conditioning;采暖通风与空调)空调系统的冷源、热源由来自发动机余热或由发动机动力驱动,因此非常稳定且其制冷、制热功率非常充足,且几乎不必考虑能耗。
已有的电动汽车的HAVC空调系统通常以传统内燃机汽车的HAVC空调系统为蓝本进行设计,空调系统的结构并无较大改进,空气先流经冷源进行降温,之后控制一定比例的空气经过热源进行加热,由此实现了空气温度的控制。由于压缩机制冷系统特点,存在一个理想的压力状态,系统应在此理想的压力范围进行工作。所以,冷源温度仅在非常小的范围内按照设定值调节(如2℃~5℃,仅举例),无法满足出风口可调温度的多种需求。此外,对于电动汽车而言,由于在实际的调温中动力电池始终对冷源和热源进行供能,会造成能量的巨大浪费。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种增大了出风口处出风温度的可调节范围的HAVC空调系统。
本发明还提出了一种具有该HAVC空调系统的电动汽车。
根据本发明第一方面实施例的电动汽车的HAVC空调系统,包括:箱体,所述箱体具有进风口和出风口;供热元件,所述供热元件位于所述箱体内且邻近所述进风口设置;制冷元件,所述制冷元件位于所述箱体内且邻近所述出风口设置,所述制冷元件与所述箱体的内壁共同限定出流通口;以及风门,所述风门设置在所述箱体内且位于所述供热元件与所述制冷元件之间,所述风门用于调节流经所述通风口和所述制冷元件的空气的比例。
根据本发明第一方面实施例的电动汽车的HAVC空调系统,不仅增大了出风口处出风温度的可调节范围,而且有效降低整车能耗。
根据本发明是的一些实施例,所述风门被构造成在完全封闭所述流通口且完全露出所述制冷元件的第一位置与完全打开所述流通口且完全覆盖所述制冷元件的第二位置之间可 切换。
根据本发明是的一些实施例,所述空调系统具有控制器,所述控制器分别与所述风门、所述供热元件电连接,以分别控制所述风门的位置和所述供热元件的加热温度。
根据本发明是的一些实施例,在制冷模式下所述控制器控制所述风门处于第一位置且所述供热元件不加热,在制热模式下所述控制器控制所述风门处于第二位置且所述供热元件加热。
根据本发明是的一些实施例,还包括用于驱动所述风门转动的机械驱动元件或电控元件。
根据本发明是的一些实施例,所述风门可枢转地连接在所述箱体的内壁上。
根据本发明是的一些实施例,所述进风口与所述出风口在所述箱体的轴向上相对,所述风门的枢转轴与所述箱体的轴向互相垂直。
根据本发明是的一些实施例,所述供热元件在轴向上完全封盖所述箱体的内壁,所述供热元件具有供空气流通的换热通道。
根据本发明是的一些实施例,所述制冷元件为蒸发器,所述供热元件为PTC加热器。
根据本发明第二方面实施例的电动汽车,包括所述的HAVC空调系统。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明实施例的电动汽车的HAVC空调系统的示意图(风门处于第二位置)。
图2是根据本发明实施例的电动汽车的HAVC空调系统的示意图(风门处于第一位置)。
附图标记:
HAVC空调系统100,箱体10,进风口11,出风口12,供热元件20,制冷元件30,风门40,流通口50。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照图1和图2详细描述根据本发明实施例的电动汽车的HAVC空调系统100。
如图1所示,根据本发明第一方面实施例的电动汽车的HAVC空调系统100,包括:箱体10、供热元件20、制冷元件30以及风门40。
箱体10具有进风口11和出风口12,供热元件20位于箱体10内且邻近进风口11设置,制冷元件30位于箱体10内且邻近出风口12设置,制冷元件30与箱体10的内壁共同限定出流通口50,风门40设置在箱体10内且位于供热元件20与制冷元件30之间,风门40用于调节流经通风口50和制冷元件30的空气的比例。
根据本发明第一方面实施例的电动汽车的HAVC空调系统100,根据空调的工作模式控制制冷元件30和/或供热元件20工作,并控制风门40处于合适位置以满足不同工作模式下对制冷空气的比例需求,这样,空气经进风口11进入箱体10内,先流经供热元件20,之后按一定比例分别流经制冷元件30和通风口,最终经制冷元件30冷却的空气与经通风口流出的未冷却的空气进行混合,并最终经出风口12排向车内,由此不仅增大了出风口处出风温度的可调节范围,而且降低了流经蒸发器的空气量,使压缩机整体停机时间变长或整体转速下降,降低了整车能耗。
根据本发明的一些实施例,风门40被构造成在完全封闭流通口50且完全露出制冷元件30的第一位置与完全打开流通口50且完全覆盖制冷元件30的第二位置之间可切换。具体地,风门40处于第一位置时空气全部经制冷元件30冷却后流向出风口12,风门40处于第二位置时空气不经过制冷元件30制冷而是全部经流通口50直接排出并流向出风口12,风门40在第一位置和第二位置之间的任一位置时,一部分空气经制冷元件30制冷后排出且另一部分空气直接经流通口50排出。由此,通过风门40有效调节了流经制冷元件30与流通口50的空气的比例。
在一些实施例中,空调系统具有控制器,控制器分别与风门40、供热元件20电连接,以分别控制风门40的位置和供热元件20的加热温度。由此,通过控制器控制风门40所处的位置以使流经制冷元件30以及流通口50的空气按所需比例混合,通过控制器根据不同工作模式控制供热元件20调节至合适的加热温度以便于与制冷元件的制冷能力相匹配,满足出风口处出风温度的大范围调节需求。
进一步地,在制冷模式下控制器控制风门40处于第一位置且供热元件20不加热,在制热模式下控制器控制风门40处于第二位置且供热元件20加热。由此,在制冷模式下自然风通过供热元件20后无温度变化,再流经风门40并全部经制冷元件30换热冷却后流向出风口12,供热元件20的关闭有效降低了空调系统的能耗;在制热模式下,自然风先经供热元件20加热,且由于风门40完全挡住制冷元件30,最大限度减小了风阻,通过调节供热元件20自身的功率就能实现出风口12的温度的调节。
在图1和图2所示的具体实施例中,风门40可枢转地连接在箱体10的内壁上。参照图1和图2所示,风门40在第一位置与第二位置之间可转动,风门40自第一位置转动至第二位置的转动角度为180度,风门40自第一位置向第二位置转动时,越靠近第二位置,流经制冷元件 30的空气比例越大,流经流通口50的空气比例越小。由此,风门40的结构简单紧凑,方便调节。
根据本发明的一些实施例,还包括用于驱动风门40转动的机械驱动元件或电控元件。由此,通过机械驱动元件或电控元件对风门40进行驱动,以使风门40处于合适位置进而控制进入制冷元件30换热冷却的风与经流通口50流出的风按一定比例混合,最终使出风口12处的风达到预设温度。
可选地,进风口11与出风口12在箱体10的轴向上相对,风门40的枢转轴与箱体10的轴向互相垂直。由此,空调系统的结构更紧凑,布置更合理。
在图1和图2所示的具体实施例中,供热元件20在轴向上完全封盖箱体10的内壁,供热元件20具有供空气流通的换热通道。由此,经进风口11进入的空气经换热通道被快速加热,便于制热模式下空调系统的快速升温。
在一个具体实施例中,制冷元件30为蒸发器,供热元件20为PTC加热器。制冷元件30内设有制冷剂,制冷剂与流经蒸发器的空气进行换热以对空气进行降温冷却。
根据本发明第二方面实施例的电动汽车包括上述实施例的HAVC空调系统100。该电动汽车不仅更节能,而且成本低,空调系统的出风温度的可调节范围更广。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一 特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种电动汽车的HAVC空调系统,其特征在于,包括:
    箱体,所述箱体具有进风口和出风口;
    供热元件,所述供热元件位于所述箱体内且邻近所述进风口设置;
    制冷元件,所述制冷元件位于所述箱体内且邻近所述出风口设置,所述制冷元件与所述箱体的内壁共同限定出流通口;以及
    风门,所述风门设置在所述箱体内且位于所述供热元件与所述制冷元件之间,所述风门用于调节流经所述通风口和所述制冷元件的空气的比例。
  2. 根据权利要求1所述的HAVC空调系统,其特征在于,所述风门被构造成在完全封闭所述流通口且完全露出所述制冷元件的第一位置与完全打开所述流通口且完全覆盖所述制冷元件的第二位置之间可切换。
  3. 根据权利要求2所述的HAVC空调系统,其特征在于,所述空调系统具有控制器,所述控制器分别与所述风门、所述供热元件电连接,以分别控制所述风门的位置和所述供热元件的加热温度。
  4. 根据权利要求3所述的HAVC空调系统,其特征在于,在制冷模式下所述控制器控制所述风门处于第一位置且所述供热元件不加热,在制热模式下所述控制器控制所述风门处于第二位置且所述供热元件加热。
  5. 根据权利要求2所述的HAVC空调系统,其特征在于,还包括用于驱动所述风门转动的机械驱动元件或电控元件。
  6. 根据权利要求2所述的HAVC空调系统,其特征在于,所述风门可枢转地连接在所述箱体的内壁上。
  7. 根据权利要求6所述的HAVC空调系统,其特征在于,所述进风口与所述出风口在所述箱体的轴向上相对,所述风门的枢转轴与所述箱体的轴向互相垂直。
  8. 根据权利要求1-7中任一项所述的HAVC空调系统,其特征在于,所述供热元件在轴向上完全封盖所述箱体的内壁,所述供热元件具有供空气流通的换热通道。
  9. 根据权利要求1-8中任一项所述的HAVC空调系统,其特征在于,所述制冷元件为蒸发器,所述供热元件为PTC加热器。
  10. 一种电动汽车,其特征在于,包括如权利要求1-9中任一项所述的HAVC空调系统。
PCT/CN2016/107331 2016-05-27 2016-11-25 电动汽车及其havc空调系统 WO2017201996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610365842.6A CN105966193B (zh) 2016-05-27 2016-05-27 电动汽车及其havc空调系统
CN201610365842.6 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017201996A1 true WO2017201996A1 (zh) 2017-11-30

Family

ID=56956749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107331 WO2017201996A1 (zh) 2016-05-27 2016-11-25 电动汽车及其havc空调系统

Country Status (2)

Country Link
CN (1) CN105966193B (zh)
WO (1) WO2017201996A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105966193B (zh) * 2016-05-27 2018-06-12 北京新能源汽车股份有限公司 电动汽车及其havc空调系统
CN110103666A (zh) * 2019-05-08 2019-08-09 泰铂(上海)环保科技股份有限公司 一种冷暖一体的空调系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328855A (en) * 1978-10-20 1982-05-11 Nippondenso Co., Ltd. Method and apparatus for controlling automobile air conditioners
JPH08156571A (ja) * 1994-12-06 1996-06-18 Matsushita Electric Ind Co Ltd 電気自動車用ヒートポンプ冷暖房除湿装置
CN103317995A (zh) * 2012-03-19 2013-09-25 日本空调系统股份有限公司 车辆用空调装置
CN103987549A (zh) * 2011-10-17 2014-08-13 三电有限公司 车辆用空气调节装置
CN105966193A (zh) * 2016-05-27 2016-09-28 北京新能源汽车股份有限公司 电动汽车及其havc空调系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258905B2 (ja) * 1999-05-11 2009-04-30 株式会社デンソー 車両用空調装置
CN102452297B (zh) * 2010-10-29 2014-07-09 杭州三花研究院有限公司 电动汽车及其热管理系统
JP2013018351A (ja) * 2011-07-11 2013-01-31 Suzuki Motor Corp 車両用空調装置
JP6015607B2 (ja) * 2013-09-18 2016-10-26 株式会社デンソー 車両用空調ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328855A (en) * 1978-10-20 1982-05-11 Nippondenso Co., Ltd. Method and apparatus for controlling automobile air conditioners
JPH08156571A (ja) * 1994-12-06 1996-06-18 Matsushita Electric Ind Co Ltd 電気自動車用ヒートポンプ冷暖房除湿装置
CN103987549A (zh) * 2011-10-17 2014-08-13 三电有限公司 车辆用空气调节装置
CN103317995A (zh) * 2012-03-19 2013-09-25 日本空调系统股份有限公司 车辆用空调装置
CN105966193A (zh) * 2016-05-27 2016-09-28 北京新能源汽车股份有限公司 电动汽车及其havc空调系统

Also Published As

Publication number Publication date
CN105966193B (zh) 2018-06-12
CN105966193A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
KR101571905B1 (ko) 자동차의 보조 냉난방장치
CN109378550B (zh) 汽车空调器和新能源汽车
SG182068A1 (en) Air conditioning device utilizing temperature differentiation of exhausted gas to even temperature of external heat exchanger
KR102406231B1 (ko) 차량 내 배터리의 온도 조절 시스템
CN106016461A (zh) 一种空调设备
CN210638189U (zh) 用于空调室外机的送风组件及空调室外机
CN105202730A (zh) 可调风向的风管式空调机组及其出风方法
WO2019062946A1 (zh) 车载电池的温度调节系统
CN104764091A (zh) 空气调节箱、汽车空调装置及汽车
WO2017201996A1 (zh) 电动汽车及其havc空调系统
CN104061777B (zh) 一种循环烘干机的独立混风调节装置
JP2010195287A (ja) 車両用空調装置
CN204187950U (zh) 一种循环烘干机的独立混风调节装置
CN209763302U (zh) 空调室内机
CN210478335U (zh) 一种冷暖汽车空调暖风水阀和旁通风门联动装置
CN205191772U (zh) 移动空调
WO2023103369A1 (zh) 车载空调机组和车辆
CN207849552U (zh) 室内机及应用其的空调器
CN105823129A (zh) 空调器室内机及具有其的空调器
CN109827243A (zh) 空调室内机和具有其的空调器
CN217274490U (zh) 空调器的室内机及空调器
CN215446646U (zh) 一种室内空调器
CN217031378U (zh) 空调器的室内机及空调器
KR20200040996A (ko) 차량의 공조 시스템
CN210624834U (zh) 可调式新风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16902980

Country of ref document: EP

Kind code of ref document: A1