WO2019062946A1 - 车载电池的温度调节系统 - Google Patents

车载电池的温度调节系统 Download PDF

Info

Publication number
WO2019062946A1
WO2019062946A1 PCT/CN2018/108750 CN2018108750W WO2019062946A1 WO 2019062946 A1 WO2019062946 A1 WO 2019062946A1 CN 2018108750 W CN2018108750 W CN 2018108750W WO 2019062946 A1 WO2019062946 A1 WO 2019062946A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cooling branch
temperature
vehicle
cooling
Prior art date
Application number
PCT/CN2018/108750
Other languages
English (en)
French (fr)
Inventor
伍星驰
谈际刚
王洪军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019062946A1 publication Critical patent/WO2019062946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of automotive technologies, and in particular, to a temperature regulation system for a vehicle battery.
  • the performance of the vehicle battery of an electric vehicle is greatly affected by the climatic environment. If the ambient temperature is too high or too low, the performance of the vehicle battery will be affected. Therefore, the temperature of the vehicle battery needs to be adjusted to maintain the temperature within the preset range. .
  • the above methods cannot solve the problem of excessive temperature and low temperature of the vehicle battery, and the method for adjusting the temperature of the vehicle battery is rough, and it cannot be heated according to the actual condition of the vehicle battery.
  • the power and cooling power are precisely controlled so that the temperature of the vehicle battery cannot be maintained within the preset range.
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • the present disclosure proposes a temperature adjustment system for a vehicle battery, which can adjust the temperature when the temperature of the vehicle battery is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding the performance of the vehicle battery due to temperature influence. Case.
  • Embodiments of the present disclosure provide a temperature adjustment system for a vehicle battery, including: a vehicle air conditioner, the vehicle air conditioner including a cooling branch and a plurality of battery cooling branches connected in series with the cooling branch, wherein
  • the refrigeration branch includes a compressor and a condenser connected to the compressor, each of the battery cooling branches including a heat exchanger and a valve connected to the heat exchanger; and the battery cooling branch is connected a battery temperature adjusting device forming a heat exchange flow path; a controller connected to the vehicle air conditioning device and the battery temperature adjusting device for adjusting a temperature of the battery.
  • the controller adjusts the temperature of the corresponding battery by controlling a plurality of battery temperature adjustment devices. Therefore, the system can adjust the temperature when the temperature of the vehicle battery is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding the situation that the performance of the vehicle battery is affected by the temperature.
  • thermo adjustment system of the vehicle battery may further have the following additional technical features:
  • each of the battery temperature adjusting devices includes: a heater connected to the controller for heating a medium in the heat exchange flow path; a pump, the pump Means for flowing a medium in the heat exchange flow path; a first temperature sensor for detecting an inlet temperature of a medium flowing into the battery; a medium container for storing and The heat exchange flow path provides a medium; a second temperature sensor for detecting an outlet temperature of a medium flowing out of the battery; and a flow rate sensor for detecting the heat exchange flow path The flow rate of the medium.
  • the cooling branch is one or more, wherein when the cooling branch is one, the compressor is plural, and the plurality of the compressors are connected in parallel with each other One of the condensers is respectively connected to the plurality of compressors; when the plurality of cooling branches are plural, a plurality of the compressors and the condensers are connected in series and then connected in parallel.
  • the controller includes: a battery management controller, a battery thermal management controller, and a vehicle air conditioner controller, wherein the battery management controller is coupled to the battery state detecting device for acquiring the The required power of the battery; the battery thermal management controller is coupled to the pump, the first temperature sensor, the second temperature sensor, the flow rate sensor, and the heater for acquiring actual power of the battery, and according to the required power Adjusting the power of the heater with the actual power to adjust the temperature of the battery; the vehicle air conditioning controller is coupled to the compressor and the valve for determining the power and the actual power according to the demand The power of the compressor is adjusted to adjust the temperature of the battery.
  • the battery management controller is further configured to acquire a temperature of the battery, when the temperature of the battery is greater than a first temperature threshold, the temperature adjustment system enters a cooling mode, and When the temperature of the battery is less than the second temperature threshold, the temperature adjustment system enters the heating mode.
  • the vehicle air conditioner controller acquires a power difference between the required power and the actual power when the required power is greater than the actual power; when the temperature adjustment system is in a cooling mode The vehicle air conditioner controller increases at least one of a power of a compressor for cooling the battery and an opening degree of the valve according to the power difference, and when the required power is less than or equal to the actual power Reducing/maintaining at least one of a power of a compressor of the battery and an opening degree of the valve; when the temperature adjustment system is in a heating mode, the battery thermal management controller is increased for heating according to the power difference The power of the heater of the battery, and the power of the heater is reduced/held when the required power is less than or equal to the actual power.
  • the battery thermal management controller is further configured to reduce/maintain a rotational speed of the pump when the required power is less than or equal to the actual power; and the required power is greater than the actual
  • the battery thermal management controller is also used to increase the rotational speed of the pump.
  • the in-vehicle air conditioning apparatus further includes a plurality of in-vehicle cooling branches respectively connected in series with the plurality of cooling branches.
  • the compressor includes a first compressor and a second compressor
  • the battery cooling branch includes a first battery cooling branch and a second battery cooling branch
  • the in-vehicle cooling branch The road includes a first in-vehicle cooling branch and a second in-vehicle cooling branch
  • the system further comprising: a first electronic valve connected between the first compressor and the first in-vehicle cooling branch; a third regulating valve and a second electronic valve connected between the first compressor and the first battery cooling branch; connected between the second compressor and the second in-vehicle cooling branch a third electronic valve; a second regulating valve and a fourth electronic valve connected between the second compressor and the second battery cooling branch; connected to the second compressor and the second electronic a first regulating valve between the valves; a fourth regulating valve connected between the first compressor and the fourth electronic valve.
  • the cooling branch includes a first cooling branch and a second cooling branch
  • the battery cooling branch includes a first battery cooling branch and a second battery cooling branch
  • the inner cooling branch includes a first in-vehicle cooling branch and a second in-vehicle cooling branch, the system further including a first regulating valve, a second regulating valve, a third regulating valve, and a fourth regulating valve; a first compressor, a condenser, and a first electronic valve, a first expansion valve, and an evaporator in the first in-vehicle cooling branch form a first in-vehicle cooling circuit;
  • the second cooling a second compressor, a condenser, and a third electronic valve, a first expansion valve, and an evaporator in the second in-vehicle cooling branch are connected in series to form a second in-vehicle cooling circuit;
  • the first cooling branch a first compressor, a condenser, a third regulator valve, and a second electronic valve
  • the cooling branch is one, the battery cooling branch includes a first battery cooling branch and a second battery cooling branch, and the in-vehicle cooling branch includes first in-vehicle cooling a branch and a second in-vehicle cooling branch; a first compressor and a second compressor, a condenser, and a first electronic valve in the first in-vehicle cooling branch, which are connected in parallel with each other in the cooling branch, The first expansion valve and the evaporator are connected in series to form a first in-vehicle cooling circuit; the first compressor and the second compressor, the condenser and the second in-vehicle cooling branch in the cooling branch are connected in parallel a third electronic valve, a first expansion valve, and an evaporator are connected in series to form a second in-vehicle cooling circuit; the first compressor and the second compressor, the condenser and the first battery are cooled in parallel with each other in the cooling branch a second electronic valve, a second expansion valve, and
  • the cooling branch is one, the battery cooling branch includes a first battery cooling branch and a second battery cooling branch, and the in-vehicle cooling branch includes first in-vehicle cooling a branch road and a second in-vehicle cooling branch, the system further comprising a first regulating valve, a second regulating valve, a third regulating valve and a fourth regulating valve; the first compressor in parallel with each other in the cooling branch Forming a first in-vehicle cooling circuit in series with the second compressor, the condenser and the third regulating valve, and the first electronic valve, the first expansion valve, and the evaporator in the first in-vehicle cooling branch; a first compressor and a second compressor, a condenser and a fourth regulating valve in the cooling branch, and a third electronic valve, a first expansion valve, and an evaporation in the second in-vehicle cooling branch
  • the second in-vehicle cooling circuit is formed in series; the first compressor and the second
  • the battery cooling branch includes a first battery cooling branch and a second battery cooling branch
  • the battery temperature adjusting device includes a first battery temperature adjusting device and a second battery temperature adjusting device
  • the system further includes: a first three-way valve disposed in the first battery temperature adjustment device, a first end of the first three-way valve and a heat exchanger in the first battery cooling branch The first end is connected, the second end of the first three-way valve is connected to the heater, and the third end of the first three-way valve is combined with the semiconductor heating end or the semiconductor cooling end of the semiconductor heat exchange device or preset heat exchange a first channel of the device; a second three-way valve disposed in the first battery temperature regulating device, a first end of the second three-way valve and a heat exchanger in the first battery cooling branch The second end of the second three-way valve is connected to the medium container, the third end of the second three-way valve and the semiconductor heating end or the semiconductor cooling end of the semiconductor heat exchange device Or the first channel of the preset
  • the temperature adjustment system of the vehicle battery further includes: a first fan connected to the semiconductor cooling end; and a second fan connected to the semiconductor heating end.
  • the temperature regulation system of the on-vehicle battery further includes: a first fan connected to the semiconductor cooling end; and a second fan connected to the semiconductor heating end.
  • FIG. 1 is a schematic structural view of a temperature adjustment system of a vehicle battery according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a second embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a third embodiment of the present disclosure
  • FIG. 3A is a schematic diagram of a working principle of a controller according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a fourth embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a working principle of a controller according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic view showing a distribution position of an air outlet according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a fifth embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a sixth embodiment of the present disclosure.
  • FIG. 9 is a schematic structural view of a semiconductor heat exchange device in a temperature regulation system of a vehicle battery according to a seventh embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of a semiconductor heat exchange device in a temperature regulation system of a vehicle battery according to a seventh embodiment of the present disclosure when reversely supplied;
  • FIG. 11 is a schematic structural view of a temperature adjustment system of an in-vehicle battery according to an eighth embodiment of the present disclosure.
  • the temperature regulation system of the vehicle battery may include: a vehicle air conditioner 100, a plurality of battery temperature adjustment devices, and a controller (not specifically shown in the drawings).
  • the vehicle air conditioner 100 may include a cooling branch 10 and a plurality of battery cooling branches connected in series with the cooling branch 10.
  • the cooling branch 10 may include a compressor 1 and a condenser 2 connected to the compressor 1.
  • the battery cooling branch includes a heat exchanger and a valve coupled to the heat exchanger.
  • a plurality of battery temperature regulating devices are respectively connected to the plurality of battery cooling branches to form a heat exchange flow path.
  • the controller is connected to the vehicle air conditioner 100 and a plurality of battery temperature adjusting devices for adjusting the temperature of the battery.
  • the valve may include an electronic valve and an expansion valve.
  • the refrigeration branch 10 can be one or more.
  • each battery cooling branch there are two pipes in each battery cooling branch, and the battery cooling cooling branch 401 is taken as an example.
  • the first pipe is in communication with the compressor 1
  • the second pipe is in communication with the battery temperature regulating device 501, wherein the first pipe and the second pipe are disposed adjacent to each other independently to allow the medium (refrigerant, water, oil, air, etc. to flow)
  • Media or other chemicals such as media or phase change materials are independent of each other.
  • the vehicle air conditioning refrigeration function When the temperature of the first battery 61 is too high, the vehicle air conditioning refrigeration function is turned on, the battery cooling function is activated, and the flow directions of the medium (such as the refrigerant) in the first pipeline and the second pipeline are: compressor 1 - condenser 2 - battery Cooling branch 401 - compressor 1 and battery cooling branch 401 - battery temperature adjusting device 501 - first battery 61 - battery temperature adjusting device 501 - battery cooling branch 401.
  • the medium such as the refrigerant
  • the vehicle air conditioning refrigeration function is turned on, the battery cooling function is activated, and the flow directions of the medium (such as the refrigerant) in the first pipe and the second pipe are respectively: the compressor 1 - the condenser 2 - Battery Cooling Branch 402 - Compressor 1 and Battery Cooling Branch 402 - Battery Temperature Regulating Device 502 - Second Battery 62 - Battery Temperature Regulating Device 502 - Battery Cooling Branch 402.
  • the vehicle air conditioner is only used to cool and heat a plurality of batteries, and the temperature adjustment system can also cool the cabin and the plurality of batteries through the vehicle air conditioner.
  • the vehicle air conditioner 100 may further include a series connection with the cooling branch 10 and a plurality of batteries.
  • the in-vehicle cooling branch 3 in which the cooling branches 4 are connected in parallel.
  • the in-vehicle cooling branch 3 may include an evaporator 31, a first expansion valve 32, and a first electronic valve 33.
  • the interior of the vehicle air conditioner is divided into three independent cooling branches from the condenser 2, which are an in-vehicle cooling branch 3, a battery cooling branch 401 and a battery cooling branch 402, and the in-vehicle cooling branch 3 passes through the evaporator.
  • 31 provides cooling power to the space within the cabin
  • battery cooling branch 401 provides cooling power for battery cooling through heat exchanger 411
  • battery cooling branch 402 provides cooling power for battery cooling through heat exchanger 412.
  • the cooling function inside the vehicle is started, and the flow direction of the medium is: compressor 1 - condenser 2 - interior cooling branch 3 - compressor 1.
  • the battery cooling function is activated, and the flow directions of the medium in the first pipe and the second pipe are: compressor 1 - condenser 2 - battery cooling branch 401 - compressor 1 and battery cooling Branch 401 - battery temperature adjusting device 501 - first battery 61 - battery temperature adjusting device 501 - battery cooling branch 401.
  • the temperature of the second battery 62 is too high, the battery cooling function is activated, and the flow direction of the medium in the first pipe and the second pipe is: compressor 1 - condenser 2 - battery cooling branch 402 - compressor 1 And battery cooling branch 402 - battery temperature regulating device 502 - second battery 62 - battery temperature adjusting device 502 - battery cooling branch 402. Therefore, the temperature can be adjusted when the temperature of the vehicle battery is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding the situation that the performance of the vehicle battery is affected by the temperature, and also the temperature of the battery. When the requirements are met, the temperature inside the vehicle is made to meet the demand.
  • each battery temperature adjusting device includes: a heater, a pump, a first temperature sensor, a medium container, a second temperature sensor, and a flow rate sensor, wherein the heater and the controller a connection for heating a medium in the heat exchange flow path, a pump for flowing the medium in the heat exchange flow path, a first temperature sensor for detecting an inlet temperature of the medium flowing into the battery, and a medium container for storing and transferring heat
  • the flow path provides a medium
  • the second temperature sensor is used to detect the outlet temperature of the medium flowing out of the battery
  • the flow rate sensor is used to detect the flow rate of the medium in the heat exchange flow path.
  • the heater may be a PTC (Positive Temperature Coefficient, a positive temperature coefficient, generally refers to a semiconductor material or component having a large positive temperature coefficient).
  • the above system may further include a battery state detecting device connected to the battery, and the battery state detecting device is configured to detect a current of the battery.
  • the battery state detecting means may be a current Hall sensor
  • the battery state detecting means 611 is for detecting the current of the first battery 61
  • the battery state detecting means 621 is for detecting the current of the second battery 62.
  • the battery cooling branch 401 is taken as an example.
  • the battery cooling branch 401 supplies cooling power to the first battery 61 mainly through a heat exchanger 411 such as a plate heat exchanger.
  • the battery cooling branch 401 may further include: a second expansion valve 421 and a second electronic valve 431.
  • the second electronic valve 431 is for controlling the opening and closing of the battery cooling branch 401
  • the second expansion valve 421 is for controlling the flow rate of the refrigerant of the battery cooling branch 401.
  • the heat exchanger 411 may include a first pipe and a second pipe, the second pipe is connected to the battery temperature adjusting device 501, and the first pipe is connected to the compressor 1, wherein the first pipe and the second pipe Independent adjacent settings.
  • the physical position of the heat exchanger 411 can be located in the branch where the vehicle air conditioner compressor 1 is located, which facilitates the commissioning of the vehicle air conditioner, and enables the vehicle air conditioner to be separately supplied and assembled, and at the same time, the vehicle air conditioner is installed. Only one medium (refrigerant) needs to be added during the process.
  • the physical position of the heat exchanger 411 may also be located in the branch where the first battery 61 is located, and the physical position of the heat exchanger 411 may also be set independently of the branch where the vehicle air conditioner compressor 1 is located and the branch where the first battery 61 is located.
  • the heat exchanger 411 is installed in the battery temperature adjusting device 501, the refrigerant branch of the vehicle air conditioner is not completely sealed, so the second electronic valve 431 needs to be closed first, and then the refrigerant is added, and after being installed in the vehicle, Then, the battery temperature adjusting device 501 is docked, the second electronic expansion valve 431 is opened, and the refrigerant is again vacuumed to perform normal operation.
  • the heat exchanger 411 may not be disposed in the battery cooling branch 401.
  • the refrigerant flowing in the battery cooling branch 401 is the refrigerant.
  • the heat exchanger 411 is disposed, the refrigerant flowing in the first pipe of the battery cooling branch 401 is the refrigerant, the medium flowing in the second pipe is the refrigerant, and the refrigerant flowing in the cooling branch 3 of the vehicle is the refrigerant.
  • the cooling flow path and the medium container in the heater, the pump, and the battery are connected in series, that is, the positions of the respective portions connected in series are not limited, wherein the flow rate sensor is disposed on the above-mentioned series branch, and the first temperature sensor is disposed in the cooling of the battery.
  • a second temperature sensor is disposed at the outlet of the cooling flow path of the battery.
  • the heater is connected to the heat exchanger
  • the pump is connected to the heater and the first end of the cooling flow path of the battery
  • the first temperature sensor is disposed at the inlet of the cooling flow path of the battery (first end) for detecting the battery
  • the inlet temperature of the medium, the medium container is connected to the second end of the cooling flow path of the battery, and the second temperature sensor is disposed at the outlet of the cooling flow path of the battery (the second end) for detecting the outlet temperature of the medium of the battery
  • the flow rate sensor is disposed at the outlet of the cooling flow path of the battery for detecting the flow rate of the medium of the battery 6.
  • the controller includes: a battery management controller, a battery thermal management controller, and a vehicle air conditioner controller, wherein the battery management controller is connected to the battery state detecting device for acquiring The required power of the battery, the battery thermal management controller is connected to the pump, the first temperature sensor, the second temperature sensor, the flow rate sensor and the heater, for obtaining the actual power of the battery, and according to the required power and the actual power to the heater power Adjustment is made to adjust the temperature of the battery, and the vehicle air conditioner controller is connected to the compressor and the valve for adjusting the power of the compressor according to the required power and the actual power to adjust the temperature of the battery.
  • the battery management controller is connected to the battery state detecting device for acquiring The required power of the battery
  • the battery thermal management controller is connected to the pump, the first temperature sensor, the second temperature sensor, the flow rate sensor and the heater, for obtaining the actual power of the battery, and according to the required power and the actual power to the heater power Adjustment is made to adjust the temperature of the battery
  • the vehicle air conditioner controller is connected to
  • the battery thermal management controller may be connected to the first temperature sensor 551, the first temperature sensor 552, the second temperature sensor 561, the second temperature sensor 562, the flow rate sensor 571, and the flow rate sensor 572, and the pump 511, the pump 512,
  • the heater 531 and the heater 532 perform CAN communication, and acquire the actual power P2, control the rotation speed of the pump, and control the power of the heater according to the specific heat capacity of the medium, the density of the medium, and the cross-sectional area of the flow path.
  • the battery management controller collects the current flowing through the battery, the temperature of the battery itself, and obtains the required power P1 according to the target temperature of the battery, the target time t, the specific heat capacity C of the battery, the mass M of the battery, the internal resistance R of the battery, and the control.
  • the vehicle air conditioner controller starts or stops working.
  • the vehicle air conditioner controller is connected with the expansion valve and the electronic valve, and the vehicle air conditioner controller can perform CAN communication with the battery management controller and the battery thermal management controller and the compressor 1 to obtain the required power P1 and the battery according to the battery management controller.
  • the actual power P2 obtained by the thermal management controller controls the power P of the compressor, the opening and closing of the expansion valve and the electronic valve, and achieves the purpose of controlling the heat exchange amount.
  • the battery thermal management controller is located inside the battery temperature adjusting device, and the first temperature sensor 551 and the second temperature sensor 561 are respectively located at the water inlet and the water outlet of the first battery 61, and are used for
  • the water inlet temperature and the outlet temperature detected in real time are transmitted to the battery thermal management controller, so that the battery thermal management controller calculates the temperature difference between the water inlet and the water outlet, and the flow rate sensor 571 detects the medium in the circulation pipe of the first battery 61 in real time.
  • the flow rate information is transmitted to the battery thermal management controller so that the battery thermal management controller can estimate the actual flow information of the current medium.
  • the first electronic valve 33 is used to control the opening and closing of the in-vehicle cooling branch 3, and the first expansion valve 32 can be used to control the flow rate of the medium in the in-vehicle cooling branch 3.
  • the second electronic valve 431 is used to control the opening and closing of the battery cooling branch 401, and the second expansion valve 421 can be used to control the flow of the medium in the battery cooling branch 401. It should be understood that the medium flows into the interior of the first battery 61 from the water inlet of the flow path and flows out from the water outlet of the flow path, thereby achieving heat exchange between the first battery and the medium.
  • the battery thermal management controller can control the heater 531 and the heater 532 to operate and adjust the heating power of the heater through the CAN communication, still taking the first battery 61 as an example, when the heater 531 receives the battery thermal management controller.
  • the battery thermal management controller After the battery heating function starts the information, the work is started, the battery thermal management controller sends the battery heating power demand in real time, and the heater 531 adjusts the output power according to the heating power demand.
  • the battery thermal management controller can also control the working state of the pump through CAN communication, thereby controlling the flow rate of the battery medium and the flow direction of the medium.
  • the pump is primarily used to provide power
  • the media container is primarily used to store media and accept media added to the temperature conditioning system, and when the media in the temperature regulation system is reduced, the media in the media container is automatically supplement.
  • the heater can communicate with the battery thermal management controller for CAN, providing heating power for the on-board battery temperature regulation system, controlled by the battery thermal management controller, and the heater can be placed anywhere between the media container and the first temperature sensor. That is, the heater is not directly in contact with the battery, and has high safety, reliability, and practicability.
  • the first battery 61 and the second battery 62 are not associated in parallel.
  • the battery cooling function is activated, at which time the second electronic valve 431 is opened, the second electronic valve 432 is closed, and the battery is turned off.
  • the circulation direction of the medium in the cooling pipe is: heat exchanger 411 - heater 531 (closed) - pump 511 - first temperature sensor 551 - first battery 61 - second temperature sensor 561 - flow rate sensor 571 - medium container 521 - change Heater 411.
  • the battery cooling function is activated, at which time the second electronic valve 432 is opened and the second electronic valve 431 is closed.
  • the circulation direction of the medium in the battery cooling duct is: heat exchanger 412 - heater 532 (closed) - pump 512 - first temperature sensor 552 - second battery 62 - second temperature sensor 562 - flow rate sensor 572 - medium container 522 - Heat exchanger 412.
  • the second electronic valve 431 and the second electronic valve 432 are both turned on, and the medium circulation directions in the battery cooling duct are: Heater 411 - heater 531 (closed) - pump 511 - first temperature sensor 551 - first battery 61 - second temperature sensor 561 - flow rate sensor 571 - medium container 521 - heat exchanger 411; heat exchanger 412 - heating 532 (closed) - pump 512 - first temperature sensor 552 - second battery 62 - second temperature sensor 562 - flow rate sensor 572 - media container 522 - heat exchanger 412.
  • the battery heating function is activated, the second electronic valve 431 is closed, the heater 531 is activated, and the flow direction of the medium in the battery cooling duct is: heat exchanger 411 - heater 531 ( Startup - pump 511 - first temperature sensor 551 - first battery 61 - second temperature sensor 561 - flow rate sensor 571 - medium container 521 - heat exchanger 411.
  • the battery heating function is activated, the second electronic valve 432 is closed, the heater 532 is activated, and the flow direction of the medium in the battery cooling duct is: heat exchanger 412 - heater 532 ( Startup - pump 512 - first temperature sensor 552 - second battery 62 - second temperature sensor 562 - flow rate sensor 572 - media container 522 - heat exchanger 412.
  • the first battery 61 is taken as an example.
  • the acquiring, by the battery management controller, the required power of the battery specifically includes: acquiring a first parameter when the battery is turned on, and generating a first required power according to the first parameter, and acquiring the battery when the temperature is adjusted. And a second parameter, and generating a second required power according to the second parameter, and generating the required power P1 according to the first required power and the second required power.
  • the first parameter is an initial temperature and a target temperature when the battery is turned on, and a target time from the initial temperature to the target temperature
  • the battery management controller acquires the first temperature between the initial temperature and the target temperature Poor, and generate the first demand power according to the first temperature difference and the target time.
  • the battery management controller may generate the first required power by formula (1):
  • ⁇ T 1 is the first temperature difference between the initial temperature and the target temperature
  • t is the target time
  • C is the specific heat capacity of the battery
  • M is the mass of the battery.
  • the second parameter is the average current I of the battery within a preset time, and the battery management controller generates the second required power by the following formula (2):
  • I is the average current and R is the internal resistance of the battery.
  • the battery thermal management controller generates a second temperature difference based on the inlet temperature and the outlet temperature, and generates the actual power P2 according to the second temperature difference and the flow rate.
  • the battery thermal management controller can obtain the actual power by the following formula (3):
  • ⁇ T 2 is the difference between the first temperature and the second temperature
  • c is the specific heat capacity of the medium in the flow path
  • m is the mass of the medium flowing through the cross section of the flow path per unit time
  • m v* ⁇ *s
  • v is the flow velocity of the medium
  • is the density of the medium
  • s is the cross-sectional area of the flow path.
  • the battery management controller determines whether the vehicle needs to perform temperature adjustment. If it is determined that the vehicle requires temperature adjustment, for example, the temperature of the first battery 61 is too high, the opening temperature is sent to the vehicle air conditioner controller through CAN communication. To adjust the function information, the vehicle air conditioner controller turns on the temperature adjustment function and sends the heat exchange information to the battery thermal management controller, while the vehicle controller controls the second electronic valve 431 to be turned on, and the battery thermal management controller controls the pump 511 to the default speed (eg, Low speed) starts working.
  • the vehicle air conditioner controller turns on the temperature adjustment function and sends the heat exchange information to the battery thermal management controller, while the vehicle controller controls the second electronic valve 431 to be turned on, and the battery thermal management controller controls the pump 511 to the default speed (eg, Low speed) starts working.
  • the battery management controller acquires the initial temperature (ie, the current temperature) of the first battery 61, the target temperature, and the target time t from the initial temperature to the target temperature, wherein the target temperature and the target time t can be preset according to actual conditions. And calculating the first required power of the battery according to the above formula (1).
  • the battery management controller also acquires the average current I of the first battery 61 for a preset time and calculates the second required power of the battery according to formula (2).
  • the battery thermal management controller acquires the first temperature sensor 551 and the second temperature sensor 561 to detect the temperature information, and acquires the flow rate information detected by the flow rate sensor 571, and calculates the actual power P2 of the first battery 61 according to the above formula (3).
  • the vehicle air conditioner controller controls the output power of the compressor and the opening degree of the second expansion valve 421 according to the required power P1 of the first battery 61 and the actual power P2, and the battery thermal management controller adjusts the rotational speed of the pump 511. For example, if the required power P1 is greater than the actual power P2, the power of the compressor is increased and the opening of the second expansion valve 421 is increased according to the difference between the required power P1 and the actual power P2, so that the rotation speed of the pump 511 can be increased; When the required power P1 is smaller than the actual power P2, the power of the compressor is reduced and the opening degree of the second expansion valve 421 is reduced according to the difference between the required power P1 and the actual power P2, and the rotation speed of the pump 511 can be reduced.
  • the required power P1 is composed of two parts.
  • the battery is lowered from 45 ° C to
  • the heat that needs to be dissipated at 35 ° C is fixed, and can be directly calculated by the above formula (1), that is, ⁇ T 1 *C*M/t, that is, the first required power.
  • the discharge and charging process which generates heat. Since the discharge of the first battery 61 or the charging current is varied, this part of the heat can also be detected by detecting the average current of the battery.
  • I directly obtains, by the above formula (2), that is, I 2 *R, directly calculates the heating power of the current first battery 61, that is, the second required power.
  • a battery management controller is further configured to acquire a temperature of a battery, when the temperature of the battery is greater than a first temperature threshold, the temperature adjustment system enters a cooling mode, and when the temperature of the battery is less than a second temperature threshold The temperature adjustment system enters the heating mode.
  • the first battery 61 is still taken as an example.
  • the battery management controller detects the temperature of the first battery 61 in real time and judges it. If the temperature of the first battery 61 is higher than 40 ° C, the temperature of the first battery 61 is too high at this time, in order to avoid the influence of the high temperature on the performance of the first battery 61, the first battery 61 needs to be cooled to control the temperature.
  • the adjustment system enters the cooling mode and sends a battery cooling function start message to the vehicle air conditioner controller.
  • the vehicle air conditioner controller controls the second electronic valve 431 to open after receiving the battery cooling function activation information to cause the medium to exchange heat with the first battery 61 to lower the temperature of the first battery 61. As shown in FIG.
  • the flow directions of the medium in the corresponding first pipe and the second pipe in the branch where the first battery 61 is located are: compressor 1 - condenser 2 - Two electronic valve 431 - second expansion valve 421 - heat exchanger 411 - compressor 1; heat exchanger 411 - heater 531 (closed) - pump 511 - first temperature sensor 551 - first battery 61 - second temperature sensor 561 - Flow Rate Sensor 571 - Medium Container 521 - Heat Exchanger 411, circulated, heat exchange at heat exchanger 411 to achieve temperature reduction of first battery 61.
  • the controller controls the temperature adjustment system to enter the heating mode and sends a battery heating function start message to the vehicle air conditioner controller.
  • the vehicle air conditioner controller controls the second electronic valve 431 to be turned off after receiving the battery heating function activation information, and the battery thermal management controller controls the heater 531 to be turned on to provide heating power for the temperature regulation system.
  • the flow direction of the medium in the first battery 61 is: heat exchanger 411 - heater 531 (on) - pump 511 - first temperature sensor 551 - first battery 61 - second temperature
  • the sensor 561 - the flow rate sensor 571 - the medium container 521 - the heat exchanger 411, is circulated in such a manner as to increase the temperature of the first battery 61.
  • the vehicle air conditioner controller acquires a power difference between the required power and the actual power when the required power is greater than the actual power.
  • the vehicle air conditioner controller is based on the power difference. Increasing at least one of a power of a compressor for cooling the battery and an opening degree of the valve, and reducing/maintaining at least one of a power of the compressor of the battery and an opening degree of the valve when the required power is less than or equal to the actual power .
  • the battery thermal management controller increases the power of the heater for heating the battery according to the power difference, and reduces/maintains the power of the heater when the required power is less than or equal to the actual power.
  • the first battery is still taken as an example.
  • the battery management controller acquires the required power P1 of the first battery 61
  • the battery thermal management controller acquires the actual power P2 of the first battery 61
  • the vehicle air conditioning controller according to the required power P1 and the actual power P2 judges. If the required power P1 of the first battery 61 is greater than the actual power P2, it indicates that if the cooling of the first battery 61 cannot be completed within the target time according to the current cooling power or the medium flow rate, the vehicle air conditioning controller acquires the required power of the battery.
  • a power difference between P1 and the actual power P2 and increasing the power of the compressor 1 according to the power difference, or increasing the medium flow rate of the battery, that is, increasing the opening degree of the second expansion valve 421 to increase the cooling power of the battery, wherein
  • the vehicle air conditioner controller can keep the power of the compressor 1 constant or appropriately reduce the power of the compressor 1, or reduce the medium flow of the battery, that is, decrease
  • the opening of the small second expansion valve 421 is to reduce the cooling power of the battery.
  • the vehicle air conditioner controller appropriately increases the power of the compressor 1 so that the battery can be cooled as soon as possible. .
  • the battery thermal management controller acquires the battery P1, and the battery thermal management controller acquires the actual power P2 of the battery. If the required power P1 of the first battery 61 is greater than the actual power P2, it indicates that if the temperature rise of the first battery 61 cannot be completed within the target time according to the current heating power or the medium flow rate, the battery thermal management controller acquires the battery.
  • the power difference between the required power P1 and the actual power P2, and the power for heating the heater 531 of the first battery 61 is increased according to the power difference, or the medium flow rate of the battery is increased, for example, the rotation speed of the pump 511 can be increased, so that The battery can be temperature adjusted within the target time.
  • the battery thermal management controller may appropriately reduce the power of the heater 531, or keep the power of the heater 531 unchanged, or adjust the medium flow rate of the battery branch. To reduce the heating power of the battery.
  • a preset temperature for example, 10 ° C
  • the heating of the first battery 61 is completed, and the battery management controller sends information for turning off the temperature adjustment function to the battery thermal management controller through CAN communication, and the battery thermal management control
  • the heater control heater 531 is turned off.
  • the battery thermal management controller appropriately increases the power of the heater 531 to make the first battery 61 Complete the temperature rise as soon as possible.
  • the battery thermal management controller when the required power is less than or equal to the actual power, the battery thermal management controller is further configured to reduce/maintain the rotational speed of the pump, and when the required power is greater than the actual power, the battery thermal management controller is further used to improve The speed of the pump.
  • the first battery 61 is still taken as an example.
  • the battery thermal management controller controls the rotation speed of the pump 511 to decrease to save power or keep the rotation speed of the pump 511 unchanged.
  • the battery thermal management controller is further configured to control the increase of the rotational speed of the pump 511, thereby increasing the mass of the medium flowing through the cross-sectional area of the cooling flow path per unit time, thereby improving the battery.
  • the actual power P2 is used to achieve temperature regulation within the target time t. And if the required power P1 of the first battery 61 is equal to the actual power P2, then the rotation speed of the control pump 511 is kept at the current rotation speed.
  • the first battery is taken as an example.
  • the temperature adjustment principle of the second battery is the same as that of the first battery. To avoid redundancy, details are not described herein again.
  • the battery cooling branch may further include a regulating valve.
  • the vehicle air conditioner controller when adjusting the cooling power allocated by the cooling branch to the battery cooling branch branch, the vehicle air conditioner controller first adjusts the opening degree of the expansion valve, and after the adjustment is completed, the vehicle air conditioner controller estimates the cooling power of each battery cooling branch branch. , to determine whether it has been adjusted in place, if the battery cooling branch branch power has not reached the target value, continue to adjust the expansion valve opening. At the same time, the air conditioner adjusts the refrigerant flow rate of the battery cooling branch 401 and the battery cooling branch 402 according to the temperature condition between the two batteries, thereby adjusting the cooling power of the first battery 61 and the second battery 62.
  • the vehicle air conditioner controller can control the medium flow rate of the two cooling branch branches of the first battery 61 and the second battery 62 according to the temperature conditions of the first battery 61 and the second battery 62 by controlling the opening degrees of the regulating valve 441 and the regulating valve 442.
  • the distribution is such that the temperature balance of the control first battery 61 and the second battery 62 is controlled.
  • the opening degree of the regulating valve 441 can be increased to reduce the opening degree of the regulating valve 442 when the first battery 61 and the second battery
  • the opening of the regulating valve can be controlled to be the same to maintain the temperature balance of the two power battery packs.
  • a single compressor 1 is unable to meet the power required to cool a plurality of batteries, a plurality of compressors 1 may be provided to provide cooling power to the battery 6.
  • the cooling branch is one or more, wherein when the cooling branch is one, there are a plurality of compressors, and the plurality of compressors are connected in parallel with each other, and one condenser is respectively It is connected to a plurality of compressors; when there are a plurality of cooling branches, a plurality of compressors and condensers are connected in series and then connected in parallel.
  • the vehicle air conditioning apparatus 100 further includes a plurality of in-vehicle cooling branches connected in series with the plurality of cooling branches.
  • the compressor may include a first compressor 11 and a second compressor 12, the battery cooling branch may include a first battery cooling branch 401 and a second battery cooling branch 402, and the in-vehicle cooling branch may include first in-vehicle cooling
  • the branch circuit 301 and the second in-vehicle cooling branch 302, the system further includes: a first electronic valve 331 connected between the first compressor 11 and the first in-vehicle cooling branch 301, connected to the first compressor 11 and A third regulating valve 443 and a second electronic valve 431 between the first battery cooling branch 401, and a third electronic valve 332 connected between the second compressor 12 and the second in-vehicle cooling branch 302 are connected
  • the second regulator valve 442 and the fourth electronic valve 432 between the second compressor 12 and the second battery but branch 402 are connected to the first regulator valve 441 between the second compressor 12 and the second electronic valve 431, and are connected.
  • a fourth regulating valve 444 between the first compressor 11 and the fourth electronic valve 432.
  • the first electronic valve 331, the second electronic valve 431, the third electronic valve 332, and the fourth electronic valve 432 are turned on or off under the control of the vehicle air conditioner.
  • the first expansion valve 321, the second expansion valve 421, the first expansion valve 322, and the second expansion valve 422 are controlled by the vehicle air conditioner, and the opening range of the switch can be adjusted to achieve the function of controlling the flow rate of the refrigerant.
  • the first regulating valve 441, the second regulating valve 442, the third regulating valve 443, and the fourth regulating valve 444 are controlled by the electric vehicle air conditioner, and the opening degree of the regulating valve may be based on the cooling power required by the first battery 61 and the second battery 62.
  • first regulating valve 441 and the third regulating valve 443 are used to control the medium flow rate of the first battery 61 to cool the branch branch
  • second regulating valve 442 and the fourth regulating valve 444 are used to control the second battery 62 to cool the branch branch.
  • the cooling branch may be plural, for example, including a first cooling branch (such as the cooling branch 102) and a second cooling branch (such as a cooling branch) 101)
  • the battery cooling branch includes a first battery cooling branch (such as battery cooling branch 401) and a second battery cooling branch (such as battery cooling branch 402)
  • the in-vehicle cooling branch includes a first in-vehicle cooling branch.
  • the road (such as the in-vehicle cooling branch 301) and the second in-vehicle cooling branch (such as the in-vehicle cooling branch 302), the system further includes a first regulating valve 441, a second regulating valve 442, a third regulating valve 443, and a Four regulating valve 444.
  • the first compressor 11 and the condenser 21 in the first cooling branch are connected in series with the first electronic valve 331 , the first expansion valve 321 , and the evaporator 311 in the first in-vehicle cooling branch to form a first interior cooling.
  • a second compressor 12 and a condenser 22 in the second cooling branch are connected in series with a third electronic valve 332, a first expansion valve 322, and an evaporator 312 in the second in-vehicle cooling branch to form a second interior cooling.
  • the first compressor 11 in the first cooling branch, the condenser 21 and the third regulating valve 443, and the second electronic valve 431, the second expansion valve 421, and the heat exchanger 411 in the first battery cooling branch are connected in series Forming a first portion of the first battery cooling circuit; a second compressor 12 in the second cooling branch, the condenser 22 and the first regulating valve 441, and a second electronic valve 431 in the first battery cooling branch, a second expansion
  • the valve 421 and the heat exchanger 411 are connected in series to form a second portion of the first battery cooling circuit; the first compressor 11, the condenser 21 and the fourth regulating valve 444 in the first cooling branch, and the second battery cooling branch
  • the fourth electronic valve 432, the second expansion valve 422, and the heat exchanger 412 are connected in series to form a second electric a first portion of the cooling circuit; a second compressor 12 in the second cooling branch, a condenser 22 and a second regulating valve 442, and a fourth electronic valve 432, a second expansion valve 4
  • heat exchanger 411 - heater 531 start) - water pump 511 - first temperature sensor 551 - first battery 61 - second temperature sensor 561 - flow rate sensor 571 - medium container 521 - heat exchange 411.
  • Heat exchanger 412 - heater 532 start) - pump 512 - first temperature sensor 552 - second battery 62 - second temperature sensor 562 - flow rate sensor 572 - media container 522 - heat exchanger 412.
  • the vehicle air conditioner controller also detects the air temperature in each area of the vehicle compartment, and can adjust the cooling branch branch to the battery cooling branch branch according to the temperature difference of each area and the thermal management power demand of the system. Power distribution to balance the temperature in each area.
  • both the air outlet 1 and the air outlet 2 are supplied with cooling power by the cooling branch 1, and both the air outlet 3 and the air outlet 4 are supplied with cooling power by the cooling branch 2.
  • the vehicle air conditioner controller detects that the temperature near the air outlet 1 and the air outlet 2 is higher than the temperature of the air outlet 3 and the air outlet 4, and the difference is large, the vehicle air conditioner controller can control The opening degree of the second expansion valve 421 is decreased, and the opening degree of the first expansion valve 321 is increased, so that the cooling power of the in-vehicle cooling branch branch 301 in the cooling branch 1 is increased, and the cooling power of the battery cooling branch branch 401 is reduced. .
  • the vehicle air conditioner controller can also control the opening degree of the first expansion valve 322 to decrease, and the opening degree of the second expansion valve 422 is increased, so that the cooling branch branch of the cooling branch 2 is cooled.
  • the cooling power of the path 302 is reduced, and the cooling power of the battery cooling branch branch 402 is increased. This allows the temperature in each area of the cabin to be balanced while meeting the cooling power requirements of the battery box.
  • the vehicle air conditioner controller first adjusts the opening degree of the expansion valve, and after the adjustment is completed, the vehicle air conditioner estimates the cooling of each battery cooling branch branch.
  • the air conditioner determines whether it has been adjusted in place, if the battery cooling branch branch power has not reached the target value, continue to adjust the expansion valve opening.
  • the air conditioner adjusts the refrigerant flow rate of the battery cooling branch 401 and the battery cooling branch 402 by controlling the regulating valve according to the temperature condition between the two battery packs, thereby adjusting the cooling power of the first battery 61 and the second battery 62.
  • the vehicle air conditioner controller may also control the opening degree control of the first regulator valve 441, the second regulator valve 442, the third regulator valve 443, and the fourth regulator valve 444 according to the battery temperature conditions of the first battery 61 and the second battery 62.
  • the media flow rates of the two cooling branch branches of a battery 61 and the second battery 62 are such that the battery temperature balance of the first battery 61 and the second battery 62 is controlled.
  • the opening degrees of the first regulator valve 441 and the third regulator valve 443 may be increased, and the second regulator valve 442 and the second regulator may be decreased.
  • the opening degree of the four regulating valve 444 can control the opening degree of the regulating valve to be the same when the average temperatures of the first battery 61 and the second battery 62 are equal to maintain the temperature balance of the two power battery packs.
  • FIG. 7 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a fifth embodiment of the present disclosure.
  • the cooling branches of the two compressors share one condenser, and the two compressors are distributed to the in-vehicle cooling branch 301, the battery cooling branch 401, and the in-vehicle cooling branch.
  • the refrigerant flow rate of the 302 and the battery cooling branch 402 is adjusted and distributed by the first expansion valve 321, the second expansion valve 421, the first expansion valve 322, and the second expansion valve 422, respectively, thereby controlling the cooling power distribution of the cooling branches.
  • the cooling branch is one, and the battery cooling branch includes a first battery cooling branch (such as the battery cooling branch 401) and a second battery cooling branch (
  • the battery cooling branch 402) includes an in-vehicle cooling branch (such as the in-vehicle cooling branch 301) and a second in-vehicle cooling branch (such as the in-vehicle cooling branch 301).
  • the first compressor 11 and the second compressor 12, the condenser 2 and the first electronic valve 331 in the first in-vehicle cooling branch, the first expansion valve 321, and the evaporator 311 are connected in parallel in the cooling branch.
  • first in-vehicle cooling circuit in series; a first compressor 11 and a second compressor 12, a condenser 2 and a third electronic valve 332 in the second in-vehicle cooling branch, which are connected in parallel in the cooling branch, first The expansion valve 322 and the evaporator 312 are connected in series to form a second in-vehicle cooling circuit; the first compressor 11 and the second compressor 12, the condenser 2 and the second of the first battery cooling branches are connected in parallel in the cooling branch; The electronic valve 431, the second expansion valve 421, and the heat exchanger 411 are connected in series to form a first battery cooling circuit; the first compressor 11 and the second compressor 12, the condenser 2 and the second battery are cooled in parallel with each other in the cooling branch.
  • the fourth electronic valve 432, the second expansion valve 422, and the heat exchanger 412 in the branch form a second battery cooling circuit in series.
  • FIG. 8 is a schematic structural diagram of a temperature adjustment system of a vehicle battery according to a sixth embodiment of the present disclosure.
  • the cooling branches of the two compressors share one condenser 2 and the first expansion valve 31, and the two compressors are distributed to the in-vehicle cooling branch. 301.
  • the refrigerant flow rates of the battery cooling branch 401, the in-vehicle cooling branch 302, and the battery cooling branch 402 are adjusted by the third regulating valve 443, the first regulating valve 441, the fourth regulating valve 444, and the second regulating valve 442, respectively. Assignment to control the cooling power distribution of a cooling branch.
  • the cooling branch is one, and the battery cooling branch includes a first battery cooling branch (such as the battery cooling branch 401) and a second battery cooling branch (
  • the battery cooling branch 402 the in-vehicle cooling branch includes a first in-vehicle cooling branch (such as the in-vehicle cooling branch 301) and a second in-vehicle cooling branch (such as the in-vehicle cooling branch 302), and the system also
  • the first regulating valve 441, the second regulating valve 442, the third regulating valve 443, and the fourth regulating valve 444 are included.
  • first compressor 11 and the second compressor 12, the condenser 2 and the third regulating valve 443, and the first electronic valve 331 in the first in-vehicle cooling branch which are connected in parallel with each other, in the cooling branch, the first expansion The valve 321 and the evaporator 311 are connected in series to form a first in-vehicle cooling circuit; the first compressor 11 and the second compressor 12, the condenser 2 and the fourth regulating valve 444 and the second in-vehicle cooling in parallel in the cooling branch;
  • the third electronic valve 332, the first expansion valve 322, and the evaporator 312 in the branch line are connected in series to form a second in-vehicle cooling circuit; the first compressor 11 and the second compressor 12 and the condenser are connected in parallel in the cooling branch.
  • first battery cooling circuit in series with the first regulating valve 441 and the second electronic valve 431 and the heat exchanger 411 in the first battery cooling branch; the first compressor 11 and the second in parallel in the cooling branch
  • the compressor 12, the condenser 2 and the second regulating valve 442, and the fourth electronic valve 432 and the heat exchanger 412 of the second battery cooling branch are connected in series to form a second battery cooling circuit.
  • the temperature regulation system of the vehicle battery may include: a plurality of compressors, a plurality of in-vehicle cooling branches, a plurality of battery cooling branches, and a plurality of battery temperature adjusting devices.
  • the battery cooling branch may include a first battery cooling branch 401 and a second battery cooling branch 402 and the battery temperature adjusting device may include a first battery temperature adjustment
  • the system may further include: a first three-way valve 581 disposed in the first battery temperature adjusting device 501, the first end of the first three-way valve 581 is cooled with the first battery
  • the first end of the heat exchanger 411 in the branch 401 is connected, the second end of the first three-way valve 581 is connected to the heater 531, and the third end of the first three-way valve 581 and the semiconductor heating end of the semiconductor heat exchange device 7 74 or the semiconductor cooling end 73 or the first passage of the preset heat exchanger 8 is connected.
  • a second three-way valve 582 disposed in the first battery temperature adjusting device 501, the first end of the second three-way valve 582 is connected to the second end of the heat exchanger 411 of the first battery cooling branch 401, and the second The second end of the three-way valve 582 is connected to the medium container 521, the third end of the second three-way valve 582 and the semiconductor heating end 74 of the semiconductor heat exchange device 7 are the semiconductor cooling end 73 or the first of the preset or heat exchanger 8.
  • the channels are connected.
  • a third three-way valve 583 disposed in the second battery temperature adjusting device 502, the first end of the third three-way valve 583 is connected to the first end of the heat exchanger 412 in the second battery cooling branch 402, and the third The second end of the three-way valve 583 is connected to the heater 532, the third end of the third three-way valve 583 is opposite to the semiconductor cooling end 73 of the semiconductor heat exchange device 7 or the semiconductor heating end 74 or the second of the preset heat exchanger 8.
  • the channels are connected.
  • a fourth three-way valve 584 disposed in the second battery temperature adjusting device 502, the first end of the fourth three-way valve 584 being connected to the second end of the heat exchanger 412 in the second battery cooling branch 402, fourth The second end of the three-way valve 584 is connected to the medium container 522, and the third end of the fourth three-way valve 584 is opposite to the semiconductor cooling end 73 of the semiconductor heat exchange device 7 or the semiconductor heating end 74 or the second of the preset heat exchanger 8.
  • the channels are connected.
  • the system may further include: a first fan 71 and a second fan 72, wherein the first fan 71 is connected to the semiconductor cooling end, and the second fan 72 is connected to the semiconductor heating end.
  • the refrigerant flow direction of the battery cooling branch branch 401 is: compressor 11 - condenser 21 - second electronic valve 431 - second expansion valve 421 - heat exchanger 411 - compressor 11.
  • the flow direction of the refrigerant in the battery cooling branch branch 402 is: compressor 12 - condenser 22 - fourth electronic valve 432 - second expansion valve 422 - heat exchanger 412 - compressor 12.
  • the flow direction of the refrigerant in the in-vehicle cooling branch branch 301 is: compressor 11 - condenser 21 - An electronic valve 331 - a first expansion valve 321 - an evaporator 311 - a compressor 11;
  • the refrigerant flow direction of the battery cooling branch branch 401 is: a compressor 11 - a condenser 21 - a second electronic valve 431 - a second expansion valve 421 - Heat exchanger 411 - compressor 11.
  • the flow direction of the refrigerant in the cooling branch 2 is as follows, and the flow direction of the refrigerant in the in-vehicle cooling branch branch 302 is: compressor 12 - condenser 22 - third electronic valve 332 - first expansion valve 322 - evaporator 312 - compression
  • the refrigerant flow direction of the battery cooling branch branch 402 is: compressor 12 - condenser 22 - fourth electronic valve 432 - second expansion valve 422 - heat exchanger 412 - compressor 12.
  • the second electronic valve 431 and the fourth electronic valve 432 are closed.
  • the second electronic valve 431 and the fourth electronic valve 432 are opened when the battery cooling function is activated.
  • Heat exchanger 412 - Channel 2 of the third three-way valve 583 - Heater 532 (closed) - Pump 512 - First temperature sensor 552 - Second battery 62 - Second temperature sensor 562 - Flow rate sensor 572 - Media container 522 - Channel 2 of the fourth three-way valve 584 - heat exchanger 412.
  • the semiconductor heat exchange device 7 enters the battery temperature equalization mode of operation.
  • the semiconductor cooling end 73 is connected to the water-cooled branch of the battery with a higher battery temperature
  • the semiconductor heating end 74 is connected to the water-cooled branch of the battery with a lower battery temperature to cool the battery with a higher temperature, and the temperature is lower.
  • the battery is heated to exchange heat between the higher temperature battery and the lower temperature battery, and the semiconductor heat exchange device 7 increases the heat exchange rate between the batteries. For example, as shown in FIG.
  • the temperature of the first battery 61 is low, the temperature of the second battery 62 is high, and the temperature difference exceeds the set value, the semiconductor heating end 74 is connected to the circulation loop of the first battery 61, and the semiconductor The cooling end 73 is connected to the circulation loop of the second battery 62.
  • the semiconductor heating end 74 is connected to the circulation loop of the second battery 62, and the semiconductor is cooled.
  • the terminal 73 is connected to the loop of the first battery 61.
  • the semiconductor heat exchange device 7 can control the operation of the first fan 71 and the second fan 72, and exchange heat through the fan and the external environment.
  • the vehicle air conditioner controller also detects the air temperature in each area of the vehicle compartment, and adjusts the cooling branch branch to the battery cooling branch branch according to the temperature difference of each area and the thermal management power demand of the system. The power is distributed to balance the temperature in each area. For details, refer to the control method shown in FIG. 6. To avoid redundancy, details are not described herein.
  • FIG. 11 is a schematic structural diagram of the temperature regulation system of the vehicle battery according to the eighth embodiment of the present disclosure.
  • the temperature regulation system of the vehicle battery may include: a plurality of unrelated compressors, a plurality of in-vehicle cooling branches, a plurality of battery cooling branches, a plurality of battery temperature adjusting devices, and preset heat exchange 8.
  • the refrigerant flow direction of the battery cooling branch branch 401 is: the compressor 11 - the condenser 21 - the second electronic valve 431 - the second expansion valve 421 - the heat exchanger 411 - the compressor 11.
  • the flow direction of the refrigerant in the battery cooling branch branch 402 is: compressor 12 - condenser 22 - fourth electronic valve 432 - second expansion valve 422 - heat exchanger 412 - compressor 12.
  • the flow direction of the refrigerant in the in-vehicle cooling branch branch 301 is: compressor 11 - condenser 21 - An electronic valve 331 - a first expansion valve 321 - an evaporator 311 - a compressor 11;
  • the refrigerant flow direction of the battery cooling branch branch 401 is: a compressor 11 - a condenser 21 - a second electronic valve 431 - a second expansion valve 421 - Heat exchanger 411 - compressor 11.
  • the flow direction of the refrigerant in the cooling branch 2 is as follows, and the flow direction of the refrigerant in the in-vehicle cooling branch branch 302 is: compressor 12 - condenser 22 - third electronic valve 332 - first expansion valve 322 - evaporator 312 - compression
  • the refrigerant flow direction of the battery cooling branch branch 402 is: compressor 12 - condenser 22 - fourth electronic valve 432 - second expansion valve 422 - heat exchanger 412 - compressor 12.
  • the second electronic valve 431 and the fourth electronic valve 432 are closed.
  • the second electronic valve 431 and the fourth electronic valve 432 are opened when the battery cooling function is activated.
  • Heat exchanger 412 - Channel 2 of the third three-way valve 583 - Heater 532 (closed) - Pump 512 - First temperature sensor 552 - Second battery 62 - Second temperature sensor 562 - Flow rate sensor 572 - Media container 522 - Channel 2 of the fourth three-way valve 584 - heat exchanger 412.
  • the battery thermal management controller controls the opening of each channel of the first three-way valve 581, the second three-way valve 582, the third three-way valve 583, and the fourth three-way valve 584. And closing, turning on the circulation loop of the preset heat exchanger 8, so that the preset heat exchanger 8 is connected to the liquid circulation loop of the two batteries, so that heat exchange between the higher temperature battery and the lower temperature battery
  • the preset heat exchanger 8 increases the heat exchange rate between the batteries.
  • the semiconductor changing device has a semiconductor heating end and a semiconductor cooling end.
  • the heating end and the cooling end are exchanged, thereby controlling the heating end of the semiconductor heat exchange device to be connected to the battery water cooling branch having a lower battery temperature.
  • the cooling end is connected to the water-cooled branch of the battery with a higher battery temperature.
  • the refrigerant flow paths between the two compressors are independent of each other; the refrigerant flow paths of the two in-vehicle cooling and cooling branches are also unreasonable, and the operating states of the two compressors are independent of each other, and The temperature balance between the batteries can be achieved by an external battery equalization branch.
  • the controller adjusts the temperature of the corresponding battery by controlling a plurality of battery temperature adjustment devices. Therefore, the system can adjust the temperature when the temperature of the vehicle battery is too high or too low, so that the temperature of the vehicle battery is maintained within a preset range, thereby avoiding the situation that the performance of the vehicle battery is affected by the temperature.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

本公开公开了一种车载电池的温度调节系统,包括:车载空调装置,包括制冷支路以及与制冷支路串联的多个电池冷却支路,其中,制冷支路包括压缩机以及与压缩机相连的冷凝器,每个电池冷却支路包括换热器以及与换热器连接的阀;与电池冷却支路相连以形成换热流路的电池温度调节装置;控制器,与车载空调装置和电池温度调节装置连接,用于调节电池的温度。本公开的温度调节系统,能够在车载电池温度过高或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。

Description

车载电池的温度调节系统
相关申请的交叉引用
本公开要求比亚迪股份有限公司于2017年09月30日提交的、发明名称为“车载电池的温度调节方法和温度调节系统”的、中国专利申请号“201710922710.3的优先权。
技术领域
本公开涉及汽车技术领域,特别涉及一种车载电池的温度调节系统。
背景技术
目前,电动汽车的车载电池的性能受气候环境影响较大,环境温度过高或者过低都会影响车载电池的性能,因此需要对车载电池的温度进行调节,以使其温度维持在预设范围内。
相关技术中,对于气候环境炎热的地区,通过在电动汽车中增加电池冷却系统,以在车载电池温度过高时降低其温度;对于气候环境寒冷的地区,通过在电动汽车中增加电池加热系统,以在车载电池温度过低时升高其温度。
然而,对于夏天炎热、冬天又寒冷的地区,上述方法无法兼顾解决车载电池温度过高和温度过低的问题,且对车载电池温度的调节方法较为粗糙,无法根据车载电池的实际状况对其加热功率和冷却功率进行精确控制,从而无法保证车载电池的温度维持在预设范围内。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提出一种车载电池的温度调节系统,能够在车载电池温度过高或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
本公开的实施例提出了一种车载电池的温度调节系统,包括:车载空调装置,所述车载空调装置包括制冷支路以及与所述制冷支路串联的多个电池冷却支路,其中,所述制冷支路包括压缩机以及与所述压缩机相连的冷凝器,每个所述电池冷却支路包括换热器以及与所述换热器连接的阀;与所述电池冷却支路相连以形成换热流路的电池温度调节装置;控制器,所述控制器与所述车载空调装置和电池温度调节装置连接,用于调节所述电池的 温度。
根据本公开实施例的车载电池的温度调节系统,控制器通过控制多个电池温度调节装置来调节对应电池的温度。由此,该系统能够在车载电池温度过高或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
另外,根据本公开上述实施例提出的车载电池的温度调节系统还可以具有如下附加技术特征:
根据本公开的一个实施例,每个所述电池温度调节装置包括:加热器,所述加热器与所述控制器连接,用于加热所述换热流路中的介质;泵,所述泵用于使所述换热流路中的介质流动;第一温度传感器,所述第一温度传感器用于检测流入所述电池的介质的入口温度;介质容器,所述介质容器用于存储以及向所述换热流路提供介质;第二温度传感器,所述第二温度传感器用于检测流出所述电池的介质的出口温度;流速传感器,所述流速传感器用于检测所述换热流路中的介质的流速。
根据本公开的一个实施例,所述制冷支路为一个或多个,其中,当所述制冷支路为一个时,所述压缩机为多个,且所述多个所述压缩机相互并联,一个所述冷凝器分别与所述多个压缩机相连;当所述制冷支路为多个时,多个所述压缩机及冷凝器相互串联后并联。
根据本公开的一个实施例,所述控制器包括:电池管理控制器、电池热管理控制器和车载空调控制器,其中,所述电池管理控制器与电池状态检测装置连接,用于获取所述电池的需求功率;所述电池热管理控制器与所述泵、第一温度传感器、第二温度传感器、流速传感器和加热器连接,用于获取所述电池的实际功率,并根据所述需求功率与所述实际功率对所述加热器的功率进行调节,以调节所述电池的温度;所述车载空调控制器与所述压缩机以及阀连接,用于根据所述需求功率与所述实际功率对所述压缩机的功率进行调节,以调节所述电池的温度。
根据本公开的一个实施例,所述电池管理控制器,还用于获取所述电池的温度,在所述电池的温度大于第一温度阈值时,所述温度调节系统进入冷却模式,以及在所述电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式。
根据本公开的一个实施例,所述车载空调控制器在所述需求功率大于所述实际功率时,获取所述需求功率和所述实际功率之间的功率差;当温度调节系统为冷却模式时,所述车载空调控制器根据所述功率差增加用于冷却所述电池的压缩机的功率和所述阀的开度中至少一者,以及在所述需求功率小于或等于所述实际功率时,减小/保持所述电池的压缩机的功率和所述阀的开度中至少一者;当温度调节系统为加热模式时,所述电池热管理控制器根据所述功率差增加用于加热所述电池的加热器的功率,以及在所述需求功率小于或等于所述实际功率时,减小/保持所述加热器的功率。
根据本公开的一个实施例,在所述需求功率小于或等于所述实际功率时,所述电池热管理控制器还用于降低/保持所述泵的转速;在所述需求功率大于所述实际功率时,所述电池热管理控制器还用于提高所述泵的转速。
根据本公开的一个实施例,所述车载空调装置还包括分别与多个制冷支路串联的多个车内冷却支路。
根据本公开的一个实施例,所述压缩机包括第一压缩机和第二压缩机,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路,所述系统还包括:连接在所述第一压缩机和所述第一车内冷却支路之间的第一电子阀;连接在所述第一压缩机和所述第一电池冷却支路之间的第三调节阀和第二电子阀;连接在所述第二压缩机和所述第二车内冷却支路之间的第三电子阀;连接在所述第二压缩机和所述第二电池冷却支路之间的第二调节阀和第四电子阀;连接在所述第二压缩机和所述第二电子阀之间的第一调节阀;连接在所述第一压缩机和所述第四电子阀之间的第四调节阀。
根据本公开的一个实施例,所述制冷支路包括第一制冷支路和第二制冷支路,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路,所述系统还包括第一调节阀、第二调节阀、第三调节阀和第四调节阀;所述第一制冷支路中的第一压缩机、冷凝器与所述第一车内冷却支路中的第一电子阀、第一膨胀阀、蒸发器串联形成第一车内冷却回路;所述第二制冷支路中的第二压缩机、冷凝器与所述第二车内冷却支路中的第三电子阀、第一膨胀阀、蒸发器串联形成第二车内冷却回路;所述第一制冷支路中的第一压缩机、冷凝器与所述第三调节阀以及所述第一电池冷却支路中的第二电子阀、第二膨胀阀、换热器串联形成第一电池冷却回路的第一部分;所述第二制冷支路中的第二压缩机、冷凝器与所述第一调节阀以及所述第一电池冷却支路中的第二电子阀、第二膨胀阀、换热器串联形成第一电池冷却回路的第二部分;所述第一制冷支路中的第一压缩机、冷凝器与所述第四调节阀以及所述第二电池冷却支路中的第四电子阀、第二膨胀阀、换热器串联形成第二电池冷却回路的第一部分;所述第二制冷支路中的第二压缩机、冷凝器与所述第二调节阀以及所述第二电池冷却支路中的第四电子阀、第二膨胀阀、换热器串联形成第二电池冷却回路的第二部分。
根据本公开的一个实施例,所述制冷支路为一个,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第一车内冷却支路中的第一电子阀、第一膨胀阀、蒸发器串联形成第一车内冷却回路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第二车内冷却支路中的第三电子 阀、第一膨胀阀、蒸发器串联形成第二车内冷却回路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第一电池冷却支路中的第二电子阀、第二膨胀阀、换热器串联形成第一电池冷却回路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第二电池冷却支路中的第四电子阀、第二膨胀阀、换热器串联形成第二电池冷却回路。
根据本公开的一个实施例,所述制冷支路为一个,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路,所述系统还包括第一调节阀、第二调节阀、第三调节阀和第四调节阀;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第三调节阀以及所述第一车内冷却支路中的第一电子阀、第一膨胀阀、蒸发器串联形成第一车内冷却回路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第四调节阀以及所述第二车内冷却支路中的第三电子阀、第一膨胀阀、蒸发器串联形成第二车内冷却回路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第一调节阀以及所述第一电池冷却支路中的第二电子阀、换热器串联形成第一电池冷却回路;所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第二调节阀以及所述第二电池冷却支路中的第四电子阀、换热器串联形成第二电池冷却回路。
根据本公开的一个实施例,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述电池温度调节装置包括第一电池温度调节装置和第二电池温度调节装置,所述系统还包括:设置在所述第一电池温度调节装置之中的第一三通阀,所述第一三通阀的第一端与所述第一电池冷却支路中换热器的第一端相连,所述第一三通阀的第二端与加热器相连,所述第一三通阀的第三端与半导体换热装置的半导体发热端或半导体冷却端或预置换热器的第一通道相连;设置在所述第一电池温度调节装置之中的第二三通阀,所述第二三通阀的第一端与所述第一电池冷却支路中换热器的第二端相连,所述第二三通阀的第二端与所述介质容器相连,所述第二三通阀的第三端与所述半导体换热装置的半导体发热端或半导体冷却端或预置换热器的第一通道相连;设置在所述第二电池温度调节装置之中的第三三通阀,所述第三三通阀的第一端与所述第二电池冷却支路中换热器的第一端相连,所述第三三通阀的第二端与加热器相连,所述第三三通阀的第三端与半导体换热装置的半导体冷却端或半导体发热端或预置换热器的第二通道相连;设置在所述第二电池温度调节装置之中的第四三通阀,所述第四三通阀的第一端与所述第二电池冷却支路中换热器的第二端相连,所述第四三通阀的第二端与所述介质容器相连,所述第四三通阀的第三端与所述半导体换热装置的半导体冷却端或半导体发热端或预置换热器的第二通道相连。
根据本公开的一个实施例,所述车载电池的温度调节系统还包括:第一风机,与所述 半导体冷却端相连;第二风机,与所述半导体发热端相连。
根据本公开的一个实施例,上述的车载电池的温度调节系统,还包括:第一风机,与所述半导体冷却端相连;第二风机,与所述半导体发热端相连。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1是根据本公开第一个实施例的车载电池的温度调节系统的结构示意图;
图2是根据本公开第二个实施例的车载电池的温度调节系统的结构示意图;
图3是根据本公开第三个实施例的车载电池的温度调节系统的结构示意图;
图3A是根据本公开一个实施例的控制器的工作原理示意图;
图4是根据本公开第四个实施例的车载电池的温度调节系统的结构示意图;
图5是根据本公开一个实施例的控制器的工作原理示意图;
图6是根据本公开一个实施例的出风口分布位置示意图;
图7是根据本公开第五个实施例的车载电池的温度调节系统的结构示意图;
图8是根据本公开第六个实施例的车载电池的温度调节系统的结构示意图;
图9是根据本公开第七个实施例的车载电池的温度调节系统中半导体换热装置正向供电时的结构示意图;
图10是根据本公开第七个实施例的车载电池的温度调节系统中半导体换热装置反向供电时的结构示意图;
图11是根据本公开第八个实施例的车载电池的温度调节系统的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述根据本公开实施例提出的车载电池的温度调节系统。
需要说明的是,在下述实施例中,涉及到多个时,均以两个为例。
图1是根据本公开第一个实施例的车载电池的温度调节系统流路的结构示意图。如图1所示,该车载电池的温度调节系统可包括:车载空调装置100、多个电池温度调节装置和控制器(图中未具体示出)。
其中,车载空调装置100可包括制冷支路10以及与制冷支路10串联的多个电池冷却 支路,其中,制冷支路10可包括压缩机1以及与压缩机1相连的冷凝器2,每个电池冷却支路包括换热器以及与换热器连接的阀。多个电池温度调节装置分别与多个电池冷却支路相连以形成换热流路。控制器与车载空调装置100和多个电池温度调节装置连接,用于调节电池的温度。其中,阀可包括电子阀和膨胀阀。制冷支路10可以为一个或多个。
具体地,如图1所示,每个电池冷却支路中具有两个管道,以电池冷却冷却支路401为例。第一管道与压缩机1相连通,第二管道与电池温度调节装置501相连通,其中,第一管道与第二管道相互独立的临近设置,以使介质(冷媒、水、油、空气等流动介质或相变材料等介质或其他化学制品)相互独立。在第一电池61的温度过高时,车载空调制冷功能开启,电池冷却功能启动,第一管道与第二管道中介质(如冷媒)的流动方向分别为:压缩机1—冷凝器2—电池冷却支路401—压缩机1和电池冷却支路401—电池温度调节装置501—第一电池61—电池温度调节装置501—电池冷却支路401。同样地,在第二电池62的温度过高时,车载空调制冷功能开启,电池冷却功能启动,第一管道与第二管道中介质(如冷媒)的流动方向分别为:压缩机1—冷凝器2—电池冷却支路402—压缩机1和电池冷却支路402—电池温度调节装置502—第二电池62—电池温度调节装置502—电池冷却支路402。
在上述实施例中,车载空调仅用于对多个电池进行冷却及加热,温度调节系统也可以通过车载空调对车厢和多个电池均进行冷却。当该系统通过车载空调对车厢和多个电池均进行冷却时,如图2所示,在本公开的一个实施例中,车载空调装置100还可包括与制冷支路10串联且与多个电池冷却支路4并联的车内冷却支路3。其中,如图3所示,车内冷却支路3可包括:蒸发器31、第一膨胀阀32和第一电子阀33。
具体地,车载空调内部从冷凝器2开始分成三个独立的冷却支路,分别为车内冷却支路3、电池冷却支路401和电池冷却支路402,车内冷却支路3通过蒸发器31为车厢内的空间提供制冷功率,电池冷却支路401通过换热器411为电池冷却提供制冷功率,电池冷却支路402通过换热器412为电池冷却提供制冷功率。当车内温度过高时,车内冷却功能启动,介质的流动方向为:压缩机1—冷凝器2—车内冷却支路3—压缩机1。当第一电池61的温度过高时,电池冷却功能启动,第一管道和第二管道中介质的流动方向为:压缩机1—冷凝器2—电池冷却支路401—压缩机1和电池冷却支路401—电池温度调节装置501—第一电池61—电池温度调节装置501—电池冷却支路401。同样地,当第二电池62的温度过高时,电池冷却功能启动,第一管道和第二管道中介质的流动方向为:压缩机1—冷凝器2—电池冷却支路402—压缩机1和电池冷却支路402—电池温度调节装置502—第二电池62—电池温度调节装置502—电池冷却支路402。由此,能够在车载电池温度过高时或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车 载电池性能的情况,并且,还可以在电池的温度满足要求的情况下,使车内温度满足需求。
根据本公开的一个实施例,如图3所示,每个电池温度调节装置包括:加热器、泵、第一温度传感器、介质容器、第二温度传感器和流速传感器,其中,加热器与控制器连接,用于加热换热流路中的介质,泵用于使换热流路中的介质流动,第一温度传感器用于检测流入电池的介质的入口温度,介质容器用于存储以及向换热流路提供介质,第二温度传感器用于检测流出电池的介质的出口温度,流速传感器用于检测换热流路中的介质的流速。其中,加热器可以为PTC(Positive Temperature Coefficient,正的温度系数,泛指正温度系数很大的半导体材料或元器件)加热器。
在本公开的实施例中,如图3所示,上述的系统还可包括与电池连接的电池状态检测装置,电池状态检测装置用于检测电池的电流。例如,电池状态检测装置可以为电流霍尔传感器,电池状态检测装置611用于检测第一电池61的电流,电池状态检测装置621用于检测第二电池62的电流。
具体地,以电池冷却支路401为例。电池冷却支路401主要通过换热器411(如板式换热器)为第一电池61提供制冷功率。其中,如图3所示,电池冷却支路401还可包括:第二膨胀阀421和第二电子阀431。第二电子阀431用于控制电池冷却支路401的开通和关闭,第二膨胀阀421用于控制电池冷却支路401的冷媒流量。
如图3所示,换热器411可包括第一管道和第二管道,第二管道与电池温度调节装置501相连,第一管道与压缩机1相连通,其中,第一管道与第二管道相互独立的临近设置。在本公开的实施例中,换热器411的物理位置可以位于车载空调压缩机1所在的支路,便于车载空调出厂调试,并且使车载空调可以单独供货和组装,同时,车载空调在安装过程中只需要加注一次介质(制冷剂)。换热器411的物理位置也可以位于第一电池61所在的支路,换热器411的物理位置也可以独立于车载空调压缩机1所在的支路和第一电池61所在的支路设置。
另外,如果换热器411安装在电池温度调节装置501内,则车载空调的冷媒支路不完全密封,所以需要先关闭第二电子阀431,然后加注冷媒,待到安装在车上后,再与电池温度调节装置501对接,打开第二电子膨胀阀431,再次抽真空加注冷媒后,即可进行正常工作。
可以理解的是,电池冷却支路401中也可以不设置换热器411,当没有换热器411时,电池冷却支路401内流的就是冷媒。当设置换热器411时,电池冷却支路401的第一管道中流的是冷媒,第二管道中流的是介质,车内冷却支路3中流的是冷媒。
需要说明的是,电池冷却支路402和电池冷却支路401相同,这里不再详述。
另外,加热器、泵、电池中的冷却流路、介质容器串联连接,即不对串联连接的各部 分的位置进行限定,其中流速传感器设置在上述串联支路上,第一温度传感器设置在电池的冷却流路的入口处,第二温度传感器设置在电池的冷却流路的出口处。例如,加热器与换热器相连,泵与加热器和电池的冷却流路的第一端相连,第一温度传感器设置在电池的冷却流路的入口处(第一端),用于检测电池的介质的入口温度,介质容器与电池的冷却流路的第二端相连,第二温度传感器设置在电池的冷却流路的出口处(第二端),用于检测电池的介质的出口温度,流速传感器设置在电池的冷却流路的出口处,用于检测电池6的介质的流速。
根据本公开的一个实施例,如图3A所示,控制器包括:电池管理控制器、电池热管理控制器和车载空调控制器,其中,电池管理控制器与电池状态检测装置连接,用于获取电池的需求功率,电池热管理控制器与泵、第一温度传感器、第二温度传感器、流速传感器和加热器连接,用于获取电池的实际功率,并根据需求功率与实际功率对加热器的功率进行调节,以调节电池的温度,车载空调控制器与压缩机以及阀连接,用于根据需求功率与实际功率对压缩机的功率进行调节,以调节电池的温度。
具体地,电池热管理控制器可以与第一温度传感器551、第一温度传感器552、第二温度传感器561、第二温度传感器562、流速传感器571和流速传感器572连接,与泵511、泵512、加热器531和加热器532进行CAN通信,并根据介质的比热容、介质的密度、流路的横截面积,获取实际功率P2、并控制泵的转速和控制加热器的功率。电池管理控制器采集流经电池的电流、电池本身的温度,并根据电池的目标温度、目标时间t以及电池的比热容C、电池的质量M、电池的内阻R,获取需求功率P1,以及控制车载空调控制器启动或停止工作。车载空调控制器与膨胀阀及电子阀连接,且车载空调控制器可以与电池管理控制器和电池热管理控制器和压缩机1进行CAN通信,以根据电池管理控制器获取的需求功率P1以及电池热管理控制器获取的实际功率P2控制压缩机的功率P、膨胀阀及电子阀的开合,达到控制换热量的目的。
其中,以第一电池为例,电池热管理控制器位于电池温度调节装置的内部,第一温度传感器551和第二温度传感器561分别位于第一电池61的进水口处和出水口处,用于将实时检测的进水口温度和出水口温度传输给电池热管理控制器,以便电池热管理控制器计算进水口与出水口的温度差值,同时流速传感器571实时检测第一电池61循环管道内介质的流速信息,并将流速信息传输给电池热管理控制器,以便电池热管理控制器可以估算当前的介质的实际流量信息。第一电子阀33用以控制车内冷却支路3的开通和关闭,第一膨胀阀32可用以控制车内冷却支路3中的介质流量。第二电子阀431用以控制电池冷却支路401的开通和关闭,第二膨胀阀421可用于控制电池冷却支路401中的介质流量。应理解的是,介质从流路的进水口流入第一电池61的内部,从流路的出水口流出,从而实现第一 电池与介质之间的热交换。
另外,电池热管理控制器可通过CAN通信控制加热器531和加热器532工作和调整加热器的加热功率,仍以第一电池61为例,当加热器531接收到电池热管理控制器发送的电池加热功能启动信息后,启动工作,电池热管理控制器实时发送电池加热功率需求,加热器531根据加热功率需求调整输出功率。同时电池热管理控制器还可通过CAN通信控制泵的工作状态,从而控制电池介质的流速和介质的流向,当接收到电池热管理控制器发送的泵511启动信息后,开始工作,并根据电池热管理控制器发送的流量信息调整转速和流量。
在本公开的一个实施例中,泵主要用于提供动力,介质容器主要用于存储介质和接受向温度调节系统添加的介质,当温度调节系统中的介质减少时,介质容器中的介质可自动补充。加热器可以与电池热管理控制器进行CAN通信,为车载电池的温度调节系统提供加热功率,受电池热管理控制器控制,加热器可以设置在介质容器与第一温度传感器之间任意位置。即加热器不直接与电池接触,具有较高的安全性、可靠性和实用性。
具体地,第一电池61和第二电池62不关联并联。当第一电池61的温度高于设定值,而第二电池62的温度未高于设定值时,启动电池冷却功能,此时第二电子阀431开启,第二电子阀432关闭,电池冷却管道内的介质循环方向为:换热器411—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—换热器411。当第二电池62的温度高于设定值,且第一电池的61的温度未高于设定值时,启动电池冷却功能,此时第二电子阀432开启,第二电子阀431关闭,电池冷却管道内的介质循环方向为:换热器412—加热器532(关闭)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—换热器412。当第一电池61的温度和第二电池62的温度均高于设定值时,此时第二电子阀431和第二电子阀432均开启,电池冷却管道内的介质循环方向分别为:换热器411—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—换热器411;换热器412—加热器532(关闭)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—换热器412。
当第一电池61的温度低于设定值时,启动电池加热功能,第二电子阀431关闭,加热器531启动,电池冷却管道内的介质流动方向为:换热器411—加热器531(启动)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—换热器411。当第一电池62的温度低于设定值时,启动电池加热功能,第二电子阀432关闭,加热器532启动,电池冷却管道内的介质流动方向为:换热器412—加热器532(启动)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—换热器412。
下面结合具体实施例描述电池温度调节装置5如何获取电池6的需求功率P1和实际功率P2。以第一电池61为例。
根据本公开的一个实施例,电池管理控制器用于获取电池的需求功率具体包括:获取电池开启温度调节时的第一参数,并根据第一参数生成第一需求功率,以及获取电池在温度调节时的第二参数,并根据第二参数生成第二需求功率,并根据第一需求功率和第二需求功率生成需求功率P1。
根据本公开的一个实施例,第一参数为电池开启温度调节时的初始温度和目标温度以及从初始温度达到目标温度的目标时间,电池管理控制器获取初始温度和目标温度之间的第一温度差,并根据第一温度差和目标时间生成第一需求功率。
根据本公开的一个实施例,电池管理控制器可通过以述公式(1)生成第一需求功率:
ΔT 1*C*M/t      (1)
其中,ΔT 1为初始温度和目标温度之间的第一温度差,t为目标时间,C为电池的比热容,M为电池的质量。
第二参数为电池在预设时间内的平均电流I,电池管理控制器通过下述公式(2)生成第二需求功率:
I 2*R          (2)
其中,I为平均电流,R为电池的内阻。
根据本公开的一个实施例,电池热管理控制器根据入口温度和出口温度生成第二温度差,并根据第二温度差和流速生成实际功率P2。
根据本公开的一个实施例,电池热管理控制器可通过以下公式(3)获取实际功率:
ΔT 2*c*m        (3)
其中,ΔT 2为第一温度与第二温度之间的差值,c为流路中介质的比热容,m为单位时间内流过流路的横截面的介质质量,其中,m=v*ρ*s,v为介质的流速,ρ为介质的密度,s为流路的横截面积。
另外,流速传感器还可由流量传感器替代,m=Q*ρ,Q为流量传感器测得的单位时间内流经流路横截面积的介质流量。
具体地,车辆上电后,电池管理控制器判断车辆是否需要进行温度调节,如果判断车辆需要温度调节,例如,第一电池61的温度过高,则通过CAN通信向车载空调控制器发送开启温度调节功能的信息,车载空调控制器开启温度调节功能后发送热交换信息给电池热管理控制器,同时车载控制器控制第二电子阀431开启,电池热管理控制器控制泵511以默认转速(如低转速)开始工作。
同时,电池管理控制器获取第一电池61的初始温度(即当前温度)、目标温度和从初 始温度达到目标温度的目标时间t,其中,目标温度和目标时间t可以根据实际情况进行预设,并根据上述公式(1)计算出电池的第一需求功率。电池管理控制器还获取第一电池61在预设时间内的平均电流I,并根据公式(2)计算电池的第二需求功率。然后,电池管理控制器根据第一电池61的第一需求功率和第二需求功率计算需求功率P1(即将第一电池61的温度在目标时间内调节至目标温度的需求功率),其中,当对第一电池61进行冷却时,P1=ΔT 1*C*M/t+I 2*R,当对第一电池61进行加热时,P1=ΔT 1*C*M/t-I 2*R。
并且,电池热管理控制器获取第一温度传感器551和第二温度传感器561检测温度信息,并获取流速传感器571检测的流速信息,根据上述公式(3)计算出第一电池61的实际功率P2。
最后,车载空调控制器根据第一电池61的需求功率P1、实际功率P2控制压缩机的输出功率及第二膨胀阀421的开度,电池热管理控制器调节泵511的转速。如,若需求功率P1大于实际功率P2时,则根据需求功率P1和实际功率P2的差值,增加压缩机的功率及增大第二膨胀阀421的开度,可增加泵511的转速;若需求功率P1小于实际功率P2时,则根据需求功率P1和实际功率P2的差值,减小压缩机的功率及减小第二膨胀阀421的开度,可减小泵511的转速。
举例说明,由上述实施例可知,需求功率P1由两部分组成,当第一电池61需要冷却时,假设第一电池61初始温度为45℃,目标温度为35℃,则电池从45℃下降到35℃需要散发的热量是固定,通过上述公式(1)即ΔT 1*C*M/t直接计算可以获得,即第一需求功率。同时,第一电池61在冷却过程中,存在放电和充电过程,此过程会产生热量,由于第一电池61的放电或者是充电电流是变化的,这部分的热量也可以通过检测电池的平均电流I直接获得,通过上述公式(2)即I 2*R,直接计算出当前第一电池61的发热功率,即第二需求功率。本公开的冷却完成时间是基于目标时间t设定的(t可以根据用户需求或者是车辆实际设计情况改变)。在确定了冷却完成所需要的目标时间t后,就可以预估出当前第一电池61冷却需要的需求功率P1,P1=ΔT 1*C*M/t+I 2*R。而如果是加热功能启动,则需求功率P1=ΔT 1*C*M/t-I 2*R,即在第一电池61在加热过程中,第一电池61的放电或者充电电流越大,所需要的加热功率即需求功率P1越小。
下面将结合具体地实施例描述车载空调控制器如何根据根据每个电池6的需求功率P1和实际功率P2对电池6的温度进行调节。根据本公开的一个实施例,电池管理控制器,还用于获取电池的温度,在电池的温度大于第一温度阈值时,温度调节系统进入冷却模式,以及在电池的温度小于第二温度阈值时,温度调节系统进入加热模式。
具体地,仍以第一电池61为例。车辆上电后,电池管理控制器实时检测第一电池61的温度,并对其进行判断。如果第一电池61的温度高于40℃,说明此时第一电池61的温 度过高,为避免高温对该第一电池61的性能产生影响,需要对第一电池61进行降温处理,控制温度调节系统进入冷却模式,并发送电池冷却功能启动信息给车载空调控制器。车载空调控制器在接收到电池冷却功能启动信息后控制第二电子阀431开启,以使介质与第一电池61进行热交换以降低第一电池61的温度。如图3所示,当温度调节系统工作在冷却模式时,第一电池61所在支路中对应的第一管道和第二管道中介质的流动方向分别为:压缩机1—冷凝器2—第二电子阀431—第二膨胀阀421—换热器411—压缩机1;换热器411—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—换热器411,如此循环,在换热器411处换热,实现第一电池61的降温。
而如果第一电池61的温度低于0℃,说明此时第一电池61的温度过低,为避免低温对第一电池61的性能产生影响,需要对第一电池61进行升温处理,电池管理控制器控制温度调节系统进入加热模式,并发送电池加热功能启动信息至车载空调控制器。车载空调控制器在接收到电池加热功能启动信息后控制第二电子阀431关闭,同时电池热管理控制器控制加热器531开启,以为温度调节系统提供加热功率。当温度调节系统工作在加热模式时,第一电池61中介质的流动方向为:换热器411—加热器531(开启)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—换热器411,如此循环,实现第一电池61的升温。
根据本公开的一个实施例,车载空调控制器在所述需求功率大于实际功率时,获取需求功率和实际功率之间的功率差,当温度调节系统为冷却模式时,车载空调控制器根据功率差增加用于冷却电池的压缩机的功率和阀的开度中至少一者,以及在需求功率小于或等于实际功率时,减小/保持电池的压缩机的功率和阀的开度中至少一者。当温度调节系统为加热模式时,电池热管理控制器根据功率差增加用于加热电池的加热器的功率,以及在需求功率小于或等于实际功率时,减小/保持加热器的功率。
具体地,仍以第一电池为例。当温度调节系统工作在冷却模式时,电池管理控制器获取第一电池61的需求功率P1,电池热管理控制器获取第一电池61的实际功率P2,车载空调控制器根据需求功率P1和实际功率P2进行判断。如果第一电池61的需求功率P1大于实际功率P2,说明如果按照当前的制冷功率或者介质流量,无法在目标时间内完成该第一电池61的降温,所以,车载空调控制器获取电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加压缩机1的功率,或者增加电池的介质流量,即增加第二膨胀阀421的开度,以增加该电池的冷却功率,其中,实际功率P1与实际功率P2的功率差越大,压缩机1的功率和该电池的介质流量增加越多,以使该电池的温度在预设时间t内降低至目标温度。而如果第一电池61的实际功率P1小于或等于实际功率P2,车载空调控制器可以 保持压缩机1的功率不变或适当减小压缩机1的功率,或者减少该电池的介质流量,即减小第二膨胀阀421的开度,以减少电池的冷却功率。当第一电池61的温度低于35℃时,则电池6冷却完成,电池管理控制器通过CAN通信向车载空调控制器发送关闭温度调节功能的信息,车载空调控制器控制第二电子阀431关闭。如果温度调节系统进入冷却模式较长时间后,例如1小时后,仍有第一电池61的温度高于35℃,则车载空调控制器适当增加压缩机1的功率,以使该电池尽快完成降温。
当温度调节系统工作在加热模式时,电池热管理控制器获取电池的P1,电池热管理控制器获取电池的实际功率P2。如果第一电池61的需求功率P1大于实际功率P2,说明如果按照当前的加热功率或者介质流量,无法在目标时间内完成该第一电池61的升温,所以,电池热管理控制器获取该电池的需求功率P1和实际功率P2之间的功率差,并根据功率差增加用于加热第一电池61的加热器531的功率,或者调节增加电池的介质流量,例如可以增泵511的转速,以使该电池可以在目标时间内完成温度调节。其中,需求功率P1和实际功率P2的差值越大,加热器531的功率和该电池支路的介质流量增加的越多。而如果电池的需求功率P1小于或等于实际功率P2,电池热管理控制器可以适当减小加热器531的功率,或保持加热器531的功率不变,或者调节减少该电池支路的介质流量,以减少电池的加热功率。当第一电池61的温度高于预设温度,例如10℃时,第一电池61加热完成,电池管理控制器通过CAN通信向电池热管理控制器发送关闭温度调节功能的信息,电池热管理控制器控制加热器531关闭。如果温度调节系统进入加热模式较长时间后,例如1小时后,仍有第一电池61的温度低于10℃,则电池热管理控制器再适当增加加热器531的功率,以使第一电池61尽快完成升温。
根据本公开的一个实施例,在需求功率小于或等于实际功率时,电池热管理控制器还用于降低/保持泵的转速,在需求功率大于实际功率时,电池热管理控制器还用于提高泵的转速。
具体地,仍以第一电池61为例。当温度调节系统进入加热模式或者冷却模式时,如果第一电池61的需求功率P1小于实际功率P2,电池热管理控制器控制泵511的转速降低,以节省电能,或者保持泵511的转速不变。而如果第一电池61的需求功率P1大于实际功率P2,电池热管理控制器还用于控制泵511的转速提高,可以增加单位时间内流经冷却流路横截面积的介质质量,从而提高电池的实际功率P2,以在目标时间t内实现温度调节。而如果第一电池61的需求功率P1等于于实际功率P2,那么控制泵511的转速保持在当前转速不变即可。
需要说明的是,上述实施例均以第一电池为例,同样地,第二电池的温度调节原理与第一电池的原理相同,为避免冗长,具体这里不再赘述。
在本公开的一个实施例中,如图4所示,电池冷却支路还可包括调节阀。
具体地,调节制冷支路对电池冷却分支支路分配的冷却功率时,车载空调控制器先调节膨胀阀的开度,待调节完成后,车载空调控制器估算各电池冷却分支支路的制冷功率,确定是否已经调节到位,如果电池冷却分支支路功率还没有达到目标值,则继续调整膨胀阀开度。同时空调根据2个电池之间的温度情况,通过调控制调节阀,来调节电池冷却支路401和电池冷却支路402的冷媒流量,从而调节第一电池61和第二电池62的冷却功率。车载空调控制器可以根据第一电池61和第二电池62的温度状况,控制调节阀441和调节阀442的开度控制第一电池61和第二电池62这两个冷却分支支路的介质流量分配,从而达到控制动力第一电池61和第二电池62的温度均衡。当车辆需要冷却时,如果第一电池61的温度比第二电池62的温度高,则可增大调节阀441的开度,减少调节阀442的开度,当第一电池61和第二电池62的平均温度相等时,可控制调节阀的开度相同,以保持两个动力电池组温度均衡。
可以理解的是,如果单个压缩机1无法满足冷却多个电池时所需的功率,则可设置多个压缩机1为电池6提供冷却功率。
根据本公开的一个实施例,如图5所示,制冷支路为一个或多个,其中当制冷支路为一个时,压缩机为多个,且多个压缩机相互并联,一个冷凝器分别与多个压缩机相连;当制冷支路为多个时,多个压缩机及冷凝器相互串联后并联。
所述车载空调装置100还包括与多个制冷支路串联的多个车内冷却支路。
压缩机可包括第一压缩机11和第二压缩机12,电池冷却支路可包括第一电池冷却支路401和第二电池冷却支路402,车内冷却支路可包括第一车内冷却支路301和第二车内冷却支路302,系统还包括:连接在第一压缩机11和第一车内冷却支路301之间的第一电子阀331,连接在第一压缩机11和第一电池冷却支路401之间的第三调节阀443和第二电子阀431,连接在第二压缩机12和第二车内冷却支路302之间的第三电子阀332,连接在第二压缩机12和第二电池却支路402之间的第二调节阀442和第四电子阀432,连接在第二压缩机12和第二电子阀431之间的第一调节阀441,连接在第一压缩机11和第四电子阀432之间的第四调节阀444。
其中,第一电子阀331、第二电子阀431、第三电子阀332和第四电子阀432受车载空调的控制而开通或者关断。第一膨胀阀321、第二膨胀阀421、第一膨胀阀322和第二膨胀阀422受车载空调的控制,可调节开关的开启幅度,从而达到控制冷媒流量的作用。第一调节阀441、第二调节阀442、第三调节阀443和第四调节阀444受电车载空调控制,调节阀的开度可根据第一电池61和第二电池62所需的冷却功率确定,第一调节阀441和第三调节阀443用于控制第一电池61冷却分支支路的介质流量,第二调节阀442和第四调节阀 444用于控制第二电池62冷却分支支路的介质流量。
具体地,根据本公开的一个实施例,如图5所示,制冷支路可以为多个,例如包括第一制冷支路(如制冷支路102)和第二制冷支路(如制冷支路101),电池冷却支路包括第一电池冷却支路(如电池冷却支路401)和第二电池冷却支路(如电池冷却支路402),车内冷却支路包括第一车内冷却支路(如车内冷却支路301)和第二车内冷却支路(如车内冷却支路302),系统还包括第一调节阀441、第二调节阀442、第三调节阀443和第四调节阀444。其中,第一制冷支路中的第一压缩机11、冷凝器21与第一车内冷却支路中的第一电子阀331、第一膨胀阀321、蒸发器311串联形成第一车内冷却回路;第二制冷支路中的第二压缩机12、冷凝器22与第二车内冷却支路中的第三电子阀332、第一膨胀阀322、蒸发器312串联形成第二车内冷却回路;第一制冷支路中的第一压缩机11、冷凝器21与第三调节阀443以及第一电池冷却支路中的第二电子阀431、第二膨胀阀421、换热器411串联形成第一电池冷却回路的第一部分;第二制冷支路中的第二压缩机12、冷凝器22与第一调节阀441以及第一电池冷却支路中的第二电子阀431、第二膨胀阀421、换热器411串联形成第一电池冷却回路的第二部分;第一制冷支路中的第一压缩机11、冷凝器21与第四调节阀444以及第二电池冷却支路中的第四电子阀432、第二膨胀阀422、换热器412串联形成第二电池冷却回路的第一部分;第二制冷支路中的第二压缩机12、冷凝器22与第二调节阀442以及第二电池冷却支路中的第四电子阀432、第二膨胀阀422、换热器412串联形成第二电池冷却回路的第二部分。
具体地,如图5所示,当电池温度低于设定值时,启动电池加热功能,第二电子阀431和第四电子阀432关闭,加热器启动,电池冷却管道内的介质循环方向有2个,如下所示为:换热器411—加热器531(启动)—水泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—换热器411。换热器412—加热器532(启动)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—换热器412。
在本公开的实施例中,车载空调控制器还检测车厢内各区域的气温,并可根据各区域的气温差异,以及系统的热管理功率需求,调节各制冷支路对电池冷却分支支路的功率分配,从而平衡各区域的气温。
举例而言,如图6所示,假设出风口1和出风口2都由制冷支路1提供冷却功率,出风口3和出风口4都由制冷支路2提供冷却功率。当电池冷却功能启动时,当车载空调控制器检测到出风口1和出风口2附近的气温比出风口3和出风口4所在区域的气温高,且相差较大时,车载空调控制器可以控制第二膨胀阀421的开度减少,第一膨胀阀321的开度增大,从而使得制冷支路1中车内冷却分支支路301的冷却功率增加,电池冷却分支支 路401的冷却功率减少。同时,为了保证电池箱的冷却功率不变,车载空调控制器还可以控制第一膨胀阀322开度减少,第二膨胀阀422开度增大,从而使得制冷支路2中车内冷却分支支路302的冷却功率减少,电池冷却分支支路402的冷却功率增加。这样使得车厢内各区域的气温可实现均衡,同时又可以满足电池箱的制冷功率需求。
作为一个具体示例,当车厢内的各出风口附近所在区域的温度差异较大时,需要调节车内冷却分支支路的制冷量分配,此时可通过调节第一膨胀阀321、第二膨胀阀421、第一膨胀阀322和第二膨胀阀422的开度,达到重新分配车内冷却分支支路和电池冷却分支支路的制冷功率分配。调节制冷支路1和制冷支路2对电池冷却分支支路分配的冷却功率时,车载空调控制器先调节膨胀阀的开度,待调节完成后,车载空调估算各电池冷却分支支路的制冷功率,确定是否已经调节到位,如果电池冷却分支支路功率还没有达到目标值,则继续调整膨胀阀开度。同时空调根据2个电池包之间的温度情况,通过控制调节阀,来调节电池冷却支路401和电池冷却支路402的冷媒流量,从而调节第一电池61和第二电池62的冷却功率。车载空调控制器还可以根据第一电池61和第二电池62的电池温度状况,控制第一调节阀441、第二调节阀442、第三调节阀443和第四调节阀444的开度控制第一电池61和第二电池62这两个冷却分支支路的介质流量分配,从而达到控制第一电池61和第二电池62的电池温度均衡。当车辆需要冷却时,如果动第一电池61的温度比第二电池62的温度高,则可增大第一调节阀441和第三调节阀443的开度,减少第二调节阀442和第四调节阀444的开度,当第一电池61和第二电池62的平均温度相等时,可控制调节阀的开度相同,以保持两个动力电池组温度均衡。
需要说明的是,图5所示的车载电池的温度调节系统中未披露的细节,请参照图1所示的车载电池的温度调节系统中所披露的细节,为避免冗长,这里不再详述。
图7是根据本公开第五个实施例的车载电池的温度调节系统的结构示意图。相较于图5所示的系统,主要是两个压缩机的制冷支路共用一个冷凝器,且两个压缩机分配到车内冷却支路301、电池冷却支路401、车内冷却支路302和电池冷却支路402的冷媒流量分别由第一膨胀阀321、第二膨胀阀421、第一膨胀阀322和第二膨胀阀422进行调节分配,从而控制个冷却支路的冷却功率分配。
具体地,根据本公开的一个实施例,如图7所示,制冷支路为一个,电池冷却支路包括第一电池冷却支路(如电池冷却支路401)和第二电池冷却支路(如电池冷却支路402),车内冷却支路包括第一车内冷却支路(如车内冷却支路301)和第二车内冷却支路(如车内冷却支路301)。其中,制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第一车内冷却支路中的第一电子阀331、第一膨胀阀321、蒸发器311串联形成第一车内冷却回路;制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第 二车内冷却支路中的第三电子阀332、第一膨胀阀322、蒸发器312串联形成第二车内冷却回路;制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第一电池冷却支路中的第二电子阀431、第二膨胀阀421、换热器411串联形成第一电池冷却回路;制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第二电池冷却支路中的第四电子阀432、第二膨胀阀422、换热器412串联形成第二电池冷却回路。
需要说明的是,图7所示的车载电池的温度调节系统的工作原理和图5所示的车载电池的温度调节系统的工作原理相同,这里不再详述。
图8是根据本公开第六个实施例的车载电池的温度调节系统的结构示意图。如图8所示,相较于图5所示的系统,主要是两个压缩机的制冷支路共用一个冷凝器2和第一膨胀阀31,且两个压缩机分配到车内冷却支路301、电池冷却支路401、车内冷却支路302和电池冷却支路402的冷媒流量分别由第三调节阀443、第一调节阀441、第四调节阀444和第二调节阀442进行调节分配,从而控制个冷却支路的冷却功率分配。
具体地,根据本公开的一个实施例,如图8所示,制冷支路为一个,电池冷却支路包括第一电池冷却支路(如电池冷却支路401)和第二电池冷却支路(如电池冷却支路402),车内冷却支路包括第一车内冷却支路(如车内冷却支路301)和第二车内冷却支路(如车内冷却支路302),系统还包括第一调节阀441、第二调节阀442、第三调节阀443和第四调节阀444。其中,制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第三调节阀443以及第一车内冷却支路中的第一电子阀331、第一膨胀阀321、蒸发器311串联形成第一车内冷却回路;制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第四调节阀444以及第二车内冷却支路中的第三电子阀332、第一膨胀阀322、蒸发器312串联形成第二车内冷却回路;制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第一调节阀441以及第一电池冷却支路中的第二电子阀431、换热器411串联形成第一电池冷却回路;制冷支路中的相互并联的第一压缩机11和第二压缩机12、冷凝器2与第二调节阀442以及第二电池冷却支路中的第四电子阀432、换热器412串联形成第二电池冷却回路。
图9是根据本公开第七个实施例的车载电池的温度调节系统中半导体换热装置正向供电时的结构示意图。如图9所示,该车载电池的温度调节系统可包括:多个压缩机、多个车内冷却支路、多个电池冷却支路、多个电池温度调节装置。
根据本公开的一个实施例,如图9和图10所示,电池冷却支路可包括第一电池冷却支路401和第二电池冷却支路402,电池温度调节装置可包括第一电池温度调节装置501和第二电池温度调节装置502,系统还可包括:设置在第一电池温度调节装置501之中的第一三通阀581,第一三通阀581的第一端与第一电池冷却支路401中换热器411的第一端 相连,第一三通阀581的第二端与加热器531相连,第一三通阀581的第三端与半导体换热装置7的半导体发热端74或半导体冷却端73或预置换热器8的第一通道相连。设置在第一电池温度调节装置501之中的第二三通阀582,第二三通阀582的第一端与第一电池冷却支路401中换热器411的第二端相连,第二三通阀582的第二端与介质容器521相连,第二三通阀582的第三端与半导体换热装置7的半导体发热端74半导体冷却端73或预置或换热器8的第一通道相连。设置在第二电池温度调节装置502之中的第三三通阀583,第三三通阀583的第一端与第二电池冷却支路402中换热器412的第一端相连,第三三通阀583的第二端与加热器532相连,第三三通阀583的第三端与半导体换热装置7的半导体冷却端73或半导体发热端74或预置换热器8的第二通道相连。设置在第二电池温度调节装置502之中的第四三通阀584,第四三通阀584的第一端与第二电池冷却支路402中换热器412的第二端相连,第四三通阀584的第二端与介质容器522相连,第四三通阀584的第三端与半导体换热装置7的半导体冷却端73或半导体发热端74或预置换热器8的第二通道相连。
根据本公开的一个实施例,该系统还可包括:第一风机71和第二风机72,其中,第一风机71与半导体冷却端相连,第二风机72与半导体发热端相连。
具体地,多个压缩机不关联,且多个电池不关联。当电池冷却功能启动时,电池冷却分支支路401的冷媒流动方向为:压缩机11—冷凝器21—第二电子阀431—第二膨胀阀421—换热器411—压缩机11。电池冷却分支支路402的冷媒流动方向为:压缩机12—冷凝器22—第四电子阀432—第二膨胀阀422—换热器412—压缩机12。
当电池冷却功能启动时,每个制冷支路的冷媒存在2个流动方向,以制冷支路1为例,车内冷却分支支路301的冷媒流动方向为:压缩机11—冷凝器21—第一电子阀331—第一膨胀阀321—蒸发器311—压缩机11;电池冷却分支支路401的冷媒流动方向为:压缩机11—冷凝器21—第二电子阀431—第二膨胀阀421—换热器411—压缩机11。制冷支路2的冷媒流动方向如下所示,车内冷却分支支路302的冷媒流动方向为:压缩机12—冷凝器22—第三电子阀332—第一膨胀阀322—蒸发器312—压缩机12;电池冷却分支支路402的冷媒流动方向为:压缩机12—冷凝器22—第四电子阀432—第二膨胀阀422—换热器412—压缩机12。
电池冷却功能没有启动时,第二电子阀431和第四电子阀432关闭。当电池冷却功能启动时第二电子阀431和第四电子阀432开启。电池冷却管道内的介质循环方向有2个,如下所示为:换热器411—第一三通阀581的通道2—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—第二三通阀582的通道2—换热器411。换热器412—第三三通阀583的通道2—加热器532 (关闭)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—第四三通阀584的通道2—换热器412。
当电池加热功能启动时,电池冷却管道内的介质循环方向有2个。换热器411—第一三通阀581的通道2—加热器531(开启)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—第二三通阀582的通道2—换热器411。换热器412—第三三通阀583的通道2—加热器532(开启)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—第四三通阀584的通道2—换热器412。
当电池温度均衡功能开启时,电池冷却管道内的介质循环方向有2个。第一三通阀581的通道1—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—第二三通阀582的通道1—半导体换热装置7—第一三通阀581的通道1。第三三通阀583的通道1—加热器532(关闭)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—第四三通阀584的通道1—半导体换热装置7—第三三通阀583的通道1。
当两个电池之间存在较大温差时,半导体换热装置7进入电池温度均衡工作模式。半导体冷却端73接入电池温度较高的电池的水冷支路,半导体发热端74接入到电池温度较低的电池的水冷支路中,对温度较高的电池进行冷却,对温度较低的电池进行加热,使得温度较高的电池与温度较低电池之间进行热量交换,半导体换热装置7提高了电池之间的换热速率。例如,如图9所示,第一电池61的温度较低,第二电池62的温度较高,且温度差异超过设定值,则半导体发热端74接入第一电池61的循环回路,半导体冷却端73接入第二电池62的循环回路。如图10所示,如果第一电池61的温度较高,第二电池62的温度较低,且温度差异超过设定值,则半导体发热端74接入第二电池62的循环回路,半导体冷却端73接入第一电池61的循环回路。半导体换热装置7可控制第一风机71和第二风机72工作,并通过风机和外部环境交换热量。在本公开的一个实施例中,车载空调控制器还检测车厢内各区域的气温,并可根据各区域的气温差异,以及系统的热管理功率需求,调节各制冷支路对电池冷却分支支路的功率分配,从而平衡各区域的气温。具体可参照图6所示的控制方法,为避免冗长,这里不再详述。
可以理解的是,不仅可以通过半导体装置实现温度均衡,还可以通过换热器实现温度均衡,图11是根据本公开第八个实施例的车载电池的温度调节系统的结构示意图。如图11所示,该车载电池的温度调节系统可包括:多个不关联的压缩机、多个车内冷却支路、多个电池冷却支路、多个电池温度调节装置和预置换热器8。
其中,当电池冷却功能启动时,电池冷却分支支路401的冷媒流动方向为:压缩机11 —冷凝器21—第二电子阀431—第二膨胀阀421—换热器411—压缩机11。电池冷却分支支路402的冷媒流动方向为:压缩机12—冷凝器22—第四电子阀432—第二膨胀阀422—换热器412—压缩机12。
当电池冷却功能启动时,每个制冷支路的冷媒存在2个流动方向,以制冷支路1为例,车内冷却分支支路301的冷媒流动方向为:压缩机11—冷凝器21—第一电子阀331—第一膨胀阀321—蒸发器311—压缩机11;电池冷却分支支路401的冷媒流动方向为:压缩机11—冷凝器21—第二电子阀431—第二膨胀阀421—换热器411—压缩机11。制冷支路2的冷媒流动方向如下所示,车内冷却分支支路302的冷媒流动方向为:压缩机12—冷凝器22—第三电子阀332—第一膨胀阀322—蒸发器312—压缩机12;电池冷却分支支路402的冷媒流动方向为:压缩机12—冷凝器22—第四电子阀432—第二膨胀阀422—换热器412—压缩机12。
电池冷却功能没有启动时,第二电子阀431和第四电子阀432关闭。当电池冷却功能启动时第二电子阀431和第四电子阀432开启。电池冷却管道内的介质循环方向有2个,如下所示为:换热器411—第一三通阀581的通道2—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—第二三通阀582的通道2—换热器411。换热器412—第三三通阀583的通道2—加热器532(关闭)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—第四三通阀584的通道2—换热器412。
当电池加热功能启动时,电池冷却管道内的介质循环方向有2个。换热器411—第一三通阀581的通道2—加热器531(开启)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—第二三通阀582的通道2—换热器411。换热器412—第三三通阀583的通道2—加热器532(开启)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—第四三通阀584的通道2—换热器412。
当电池温度均衡功能开启时,电池冷却管道内的介质循环方向有2个。第一三通阀581的通道1—加热器531(关闭)—泵511—第一温度传感器551—第一电池61—第二温度传感器561—流速传感器571—介质容器521—第二三通阀582的通道1—预置换热器8—第一三通阀581的通道1。第三三通阀583的通道1—加热器532(关闭)—泵512—第一温度传感器552—第二电池62—第二温度传感器562—流速传感器572—介质容器522—第四三通阀584的通道1—预置换热器8—第三三通阀583的通道1。
当两个电池之间存在较大温差时,电池热管理控制器控制第一三通阀581、第二三通阀582、第三三通阀583和第四三通阀584的各通道的开启和关闭,接通预置换热器8的循环 回路,使得预置换热器8接入到两个电池的液体循环回路中,使得温度较高的电池与温度较低电池之间进行热量交换,预置换热器8提高了电池之间的换热速率。
其中,半导体换装置具有半导体发热端和半导体冷却端,当供电电源反接后,发热端和冷却端位置交换,从而控制半导体换热装置的发热端接入到电池温度较低的电池水冷支路中,冷却端接入电池温度较高的电池水冷支路中。
需要说明的是,图9和图11所示的车载电池的温度调节系统中未披露的细节,请参照图1所示的车载电池的温度调节系统中所披露的细节,具体这里不再赘述。
因此,图9所示的系统,两个压缩机之间的冷媒流路相互独立,;两个车内冷却冷却支路的冷媒流路也不想通,两个压缩机的工作状态相互独立,并且可通过外置的电池均衡支路实现电池之间的温度均衡。
综上所述,根据本公开实施例的车载电池的温度调节系统,控制器通过控制多个电池温度调节装置来调节对应电池的温度。由此,该系统能够在车载电池温度过高或者过低时对温度进行调节,使车载电池的温度维持在预设范围,避免发生由于温度影响车载电池性能的情况。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征 在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种车载电池的温度调节系统,其特征在于,包括:
    车载空调装置,所述车载空调装置包括制冷支路以及与所述制冷支路串联的多个电池冷却支路,其中,所述制冷支路包括压缩机以及与所述压缩机相连的冷凝器,每个所述电池冷却支路包括换热器以及与所述换热器连接的阀;
    与所述电池冷却支路相连以形成换热流路的电池温度调节装置;
    控制器,所述控制器与所述车载空调装置和电池温度调节装置连接,用于调节所述电池的温度。
  2. 如权利要求1所述的车载电池的温度调节系统,其特征在于,每个所述电池温度调节装置包括:
    加热器,所述加热器与所述控制器连接,用于加热所述换热流路中的介质;
    泵,所述泵用于使所述换热流路中的介质流动;
    第一温度传感器,所述第一温度传感器用于检测流入所述电池的介质的入口温度;
    介质容器,所述介质容器用于存储以及向所述换热流路提供介质;
    第二温度传感器,所述第二温度传感器用于检测流出所述电池的介质的出口温度;
    流速传感器,所述流速传感器用于检测所述换热流路中的介质的流速。
  3. 如权利要求1所述的车载电池的温度调节系统,其特征在于,所述制冷支路为一个或多个,其中,
    当所述制冷支路为一个时,所述压缩机为多个,且所述多个所述压缩机相互并联,一个所述冷凝器分别与所述多个压缩机相连;
    当所述制冷支路为多个时,多个所述压缩机及冷凝器相互串联后并联。
  4. 如权利要求2所述的车载电池的温度调节系统,其特征在于,所述控制器包括:电池管理控制器、电池热管理控制器和车载空调控制器,其中,
    所述电池管理控制器与电池状态检测装置连接,用于获取所述电池的需求功率;
    所述电池热管理控制器与所述泵、第一温度传感器、第二温度传感器、流速传感器和加热器连接,用于获取所述电池的实际功率,并根据所述需求功率与所述实际功率对所述加热器的功率进行调节,以调节所述电池的温度;
    所述车载空调控制器与所述压缩机以及阀连接,用于根据所述需求功率与所述实际功率对所述压缩机的功率进行调节,以调节所述电池的温度。
  5. 如权利要求4所示的车载电池的温度调节系统,其特征在于,所述电池管理控制器,还用于获取所述电池的温度,在所述电池的温度大于第一温度阈值时,所述温度调节系统 进入冷却模式,以及在所述电池的温度小于第二温度阈值时,所述温度调节系统进入加热模式。
  6. 如权利要求5所述的车载电池的温度调节系统,其特征在于,
    所述车载空调控制器在所述需求功率大于所述实际功率时,获取所述需求功率和所述实际功率之间的功率差;
    当所述温度调节系统为冷却模式时,所述车载空调控制器根据所述功率差增加用于冷却所述电池的压缩机的功率和所述阀的开度中至少一者,以及在所述需求功率小于或等于所述实际功率时,减小/保持所述电池的压缩机的功率和所述阀的开度中至少一者;
    当所述温度调节系统为加热模式时,所述电池热管理控制器根据所述功率差增加用于加热所述电池的加热器的功率,以及在所述需求功率小于或等于所述实际功率时,减小/保持所述加热器的功率。
  7. 如权利要求6所述的车载电池的温度调节系统,其特征在于,
    在所述需求功率小于或等于所述实际功率时,所述电池热管理控制器还用于降低/保持所述泵的转速;
    在所述需求功率大于所述实际功率时,所述电池热管理控制器还用于提高所述泵的转速。
  8. 如权利要求3所述的车载电池的温度调节系统,其特征在于,所述车载空调装置还包括分别与多个制冷支路串联的多个车内冷却支路。
  9. 如权利要求8所述的车载电池的温度调节系统,其特征在于,所述压缩机包括第一压缩机和第二压缩机,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路,所述系统还包括:
    连接在所述第一压缩机和所述第一车内冷却支路之间的第一电子阀;
    连接在所述第一压缩机和所述第一电池冷却支路之间的第三调节阀和第二电子阀;
    连接在所述第二压缩机和所述第二车内冷却支路之间的第三电子阀;
    连接在所述第二压缩机和所述第二电池冷却支路之间的第二调节阀和第四电子阀;
    连接在所述第二压缩机和所述第二电子阀之间的第一调节阀;
    连接在所述第一压缩机和所述第四电子阀之间的第四调节阀。
  10. 如权利要求8所述的车载电池的温度调节系统,其特征在于,所述制冷支路包括第一制冷支路和第二制冷支路,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路,所述系统还包括第一调节阀、第二调节阀、第三调节阀和第四调节阀;
    所述第一制冷支路中的第一压缩机、冷凝器与所述第一车内冷却支路中的第一电子阀、 第一膨胀阀、蒸发器串联形成第一车内冷却回路;
    所述第二制冷支路中的第二压缩机、冷凝器与所述第二车内冷却支路中的第三电子阀、第一膨胀阀、蒸发器串联形成第二车内冷却回路;
    所述第一制冷支路中的第一压缩机、冷凝器与所述第三调节阀以及所述第一电池冷却支路中的第二电子阀、第二膨胀阀、换热器串联形成第一电池冷却回路的第一部分;
    所述第二制冷支路中的第二压缩机、冷凝器与所述第一调节阀以及所述第一电池冷却支路中的第二电子阀、第二膨胀阀、换热器串联形成第一电池冷却回路的第二部分;
    所述第一制冷支路中的第一压缩机、冷凝器与所述第四调节阀以及所述第二电池冷却支路中的第四电子阀、第二膨胀阀、换热器串联形成第二电池冷却回路的第一部分;
    所述第二制冷支路中的第二压缩机、冷凝器与所述第二调节阀以及所述第二电池冷却支路中的第四电子阀、第二膨胀阀、换热器串联形成第二电池冷却回路的第二部分。
  11. 如权利要求8所述的车载电池的温度调节系统,其特征在于,所述制冷支路为一个,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第一车内冷却支路中的第一电子阀、第一膨胀阀、蒸发器串联形成第一车内冷却回路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第二车内冷却支路中的第三电子阀、第一膨胀阀、蒸发器串联形成第二车内冷却回路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第一电池冷却支路中的第二电子阀、第二膨胀阀、换热器串联形成第一电池冷却回路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第二电池冷却支路中的第四电子阀、第二膨胀阀、换热器串联形成第二电池冷却回路。
  12. 如权利要求8所述的车载电池的温度调节系统,其特征在于,所述制冷支路为一个,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述车内冷却支路包括第一车内冷却支路和第二车内冷却支路,所述系统还包括第一调节阀、第二调节阀、第三调节阀和第四调节阀;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第三调节阀以及所述第一车内冷却支路中的第一电子阀、第一膨胀阀、蒸发器串联形成第一车内冷却回路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第四调节阀以及所述第二车内冷却支路中的第三电子阀、第一膨胀阀、蒸发器串联形成第二车内冷却回路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第一调节阀以及所述第一电池冷却支路中的第二电子阀、换热器串联形成第一电池冷却回路;
    所述制冷支路中的相互并联的第一压缩机和第二压缩机、冷凝器与所述第二调节阀以及所述第二电池冷却支路中的第四电子阀、换热器串联形成第二电池冷却回路。
  13. 如权利要求2所述的车载电池的温度调节系统,其特征在于,所述电池冷却支路包括第一电池冷却支路和第二电池冷却支路,所述电池温度调节装置包括第一电池温度调节装置和第二电池温度调节装置,所述系统还包括:
    设置在所述第一电池温度调节装置之中的第一三通阀,所述第一三通阀的第一端与所述第一电池冷却支路中换热器的第一端相连,所述第一三通阀的第二端与加热器相连,所述第一三通阀的第三端与半导体换热装置的半导体发热端或半导体冷却端或预置换热器的第一通道相连;
    设置在所述第一电池温度调节装置之中的第二三通阀,所述第二三通阀的第一端与所述第一电池冷却支路中换热器的第二端相连,所述第二三通阀的第二端与所述介质容器相连,所述第二三通阀的第三端与所述半导体换热装置的半导体发热端或半导体冷却端或预置换热器的第一通道相连;
    设置在所述第二电池温度调节装置之中的第三三通阀,所述第三三通阀的第一端与所述第二电池冷却支路中换热器的第一端相连,所述第三三通阀的第二端与加热器相连,所述第三三通阀的第三端与半导体换热装置的半导体冷却端或半导体发热端或预置换热器的第二通道相连;
    设置在所述第二电池温度调节装置之中的第四三通阀,所述第四三通阀的第一端与所述第二电池冷却支路中换热器的第二端相连,所述第四三通阀的第二端与所述介质容器相连,所述第四三通阀的第三端与所述半导体换热装置的半导体冷却端或半导体发热端或预置换热器的第二管道相连。
  14. 如权利要求13所述的车载电池的温度调节系统,其特征在于,还包括:
    第一风机,与所述半导体冷却端相连;
    第二风机,与所述半导体发热端相连。
PCT/CN2018/108750 2017-09-30 2018-09-29 车载电池的温度调节系统 WO2019062946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710922710.3A CN109599608B (zh) 2017-09-30 2017-09-30 车载电池的温度调节系统
CN201710922710.3 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062946A1 true WO2019062946A1 (zh) 2019-04-04

Family

ID=65900974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108750 WO2019062946A1 (zh) 2017-09-30 2018-09-29 车载电池的温度调节系统

Country Status (3)

Country Link
CN (1) CN109599608B (zh)
TW (1) TWI666850B (zh)
WO (1) WO2019062946A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281735A (zh) * 2019-06-24 2019-09-27 浙江吉利控股集团有限公司 一种新能源汽车热管理系统及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111186290A (zh) * 2020-03-03 2020-05-22 三一专用汽车有限责任公司 一种电池冷却系统、电动车及控制方法
CN113193267A (zh) * 2021-06-08 2021-07-30 奇瑞商用车(安徽)有限公司 一种电池包液冷系统及其水温控制方法
CN113895311A (zh) * 2021-09-29 2022-01-07 北京罗克维尔斯科技有限公司 车辆制冷控制方法、系统、装置、设备及存储介质
CN113707968A (zh) * 2021-10-29 2021-11-26 三一汽车制造有限公司 多支路高压电池系统及其温差控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146853A1 (fr) * 2011-04-26 2012-11-01 Peugeot Citroen Automobiles Sa Dispositif et procede de refroidissement de cellules d'un pack de batterie de vehicule automobile
CN104157930A (zh) * 2013-09-24 2014-11-19 观致汽车有限公司 用于评估热活化单元运行状态的装置及其方法
CN105835653A (zh) * 2015-01-14 2016-08-10 北京长城华冠汽车科技有限公司 一种新能源车辆的集中式多工况热管理系统
CN205970883U (zh) * 2016-05-10 2017-02-22 比亚迪股份有限公司 汽车热管理系统和电动汽车

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800940A3 (en) * 1996-04-10 2001-06-06 Denso Corporation Vehicular air conditioning system for electric vehicles
JP3910384B2 (ja) * 2000-10-13 2007-04-25 本田技研工業株式会社 車両用バッテリ冷却装置
CN202076386U (zh) * 2010-12-31 2011-12-14 比亚迪股份有限公司 一种电池温度管理系统及一种汽车
JP5652331B2 (ja) * 2011-05-30 2015-01-14 スズキ株式会社 電池温調システムおよび電池充電システム
JP6220549B2 (ja) * 2012-10-24 2017-10-25 株式会社ヴァレオジャパン バッテリ温度調整ユニット及びそれを用いてなるバッテリモジュール
CN103199316B (zh) * 2013-04-19 2015-12-02 安科智慧城市技术(中国)有限公司 电池组及其散热结构
DE102013212524A1 (de) * 2013-06-27 2015-01-15 Behr Gmbh & Co. Kg Thermoelektrische Temperiereinheit
KR20160051882A (ko) * 2013-09-09 2016-05-11 더 리전트 오브 더 유니버시티 오브 캘리포니아 배터리 열관리 시스템, 장치, 및 방법
CN105471005B (zh) * 2014-08-29 2018-12-21 比亚迪股份有限公司 一种电池管理装置、电源系统及电池均衡的方法
CN105870544A (zh) * 2016-06-08 2016-08-17 上海加冷松芝汽车空调股份有限公司 一种电动汽车动力电池热管理系统
CN106532178B (zh) * 2016-11-04 2019-05-17 北京汽车股份有限公司 电池包温度控制装置和温度控制方法以及车辆
CN206236758U (zh) * 2016-11-11 2017-06-09 蔚来汽车有限公司 模块化可扩展的温度调节系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146853A1 (fr) * 2011-04-26 2012-11-01 Peugeot Citroen Automobiles Sa Dispositif et procede de refroidissement de cellules d'un pack de batterie de vehicule automobile
CN104157930A (zh) * 2013-09-24 2014-11-19 观致汽车有限公司 用于评估热活化单元运行状态的装置及其方法
CN105835653A (zh) * 2015-01-14 2016-08-10 北京长城华冠汽车科技有限公司 一种新能源车辆的集中式多工况热管理系统
CN205970883U (zh) * 2016-05-10 2017-02-22 比亚迪股份有限公司 汽车热管理系统和电动汽车

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281735A (zh) * 2019-06-24 2019-09-27 浙江吉利控股集团有限公司 一种新能源汽车热管理系统及其控制方法

Also Published As

Publication number Publication date
CN109599608A (zh) 2019-04-09
TWI666850B (zh) 2019-07-21
TW201916535A (zh) 2019-04-16
CN109599608B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
TWI674695B (zh) 車輛的溫度調節方法和溫度調節系統
TWI680606B (zh) 車載電池的溫度調節方法和溫度調節系統
WO2019062946A1 (zh) 车载电池的温度调节系统
CN109599604B (zh) 车载电池的温度调节系统
CN109599607B (zh) 车载电池的温度调节系统
TWI666808B (zh) 車載電池的溫度調節系統
TWI666135B (zh) 車載電池的溫度調節系統
CN109599605B (zh) 车载电池的温度调节方法和温度调节系统
TWI667827B (zh) 車載電池的溫度調節方法和溫度調節系統
TWI666809B (zh) 車載電池的溫度調節方法和溫度調節系統
TWI681584B (zh) 車載電池的溫度調節方法和溫度調節系統
CN109599637B (zh) 车载电池的温度调节方法和温度调节系统
CN109599617B (zh) 车载电池的温度调节方法和温度调节系统
CN109599610B (zh) 车载电池的温度调节方法和温度调节系统
CN109599619B (zh) 车载电池的温度调节方法和温度调节系统
CN109599624B (zh) 车载电池的温度调节方法和温度调节系统
TW201914856A (zh) 基於半導體的車載電池溫度調節方法和溫度調節系統
TWI685997B (zh) 基於半導體的車載電池溫度調節方法和溫度調節系統
WO2019062988A1 (zh) 车载电池的温度调节方法和温度调节系统
TWI656045B (zh) 車載電池的溫度調節系統
CN109599627B (zh) 车载电池的温度调节系统
TWI672845B (zh) 車載電池的溫度調節系統
CN109599631B (zh) 车载电池的温度系统
CN109599618B (zh) 车载电池的温度调节方法和温度调节系统
CN109599611B (zh) 车载电池的温度调节方法和温度调节系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860452

Country of ref document: EP

Kind code of ref document: A1