WO2017201827A1 - 一种终端设备的充电控制方法、装置及终端设备 - Google Patents

一种终端设备的充电控制方法、装置及终端设备 Download PDF

Info

Publication number
WO2017201827A1
WO2017201827A1 PCT/CN2016/089446 CN2016089446W WO2017201827A1 WO 2017201827 A1 WO2017201827 A1 WO 2017201827A1 CN 2016089446 W CN2016089446 W CN 2016089446W WO 2017201827 A1 WO2017201827 A1 WO 2017201827A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
module
charging current
temperature
current
Prior art date
Application number
PCT/CN2016/089446
Other languages
English (en)
French (fr)
Inventor
刘川
马彦青
曲廷
程翠香
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017201827A1 publication Critical patent/WO2017201827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • H02J7/0088

Definitions

  • the present application relates to, but is not limited to, the field of communication technologies, and in particular, to a charging control method, device and terminal device for a terminal device.
  • the layout of the device on the motherboard of the terminal product is generally dense, which makes the charging module generally close to some other or some functional modules, such as CPU, RF amplifier, wireless fidelity wifi module, LED LCD. Backlight drive, camera module, etc.
  • Terminal products generally use other operations when charging, such as surfing the Internet through a mobile network, playing games, and so on. These operations can lead to serious heat problems in the terminal products, especially local heat. This is mainly because the charging module of the terminal product and other modules work at the same time, and a large amount of heat is generated at the same time, and the spatial distance between the two modules is relatively close, which causes the superposition of heat, so that the local heat is obvious.
  • the object of the embodiments of the present invention is to provide a charging control method, device and terminal device for a terminal device, which solves the problem that the local temperature of the terminal device is too high during the charging process.
  • a charging control method for a terminal device comprising: when detecting that a charging interface of the terminal device is connected to the charger, starting a charging control function; and receiving temperature data within a preset range of the corresponding charging module transmitted by each temperature sensor; The received temperature data is compared with a preset threshold to determine a heating condition within a preset range of the corresponding temperature sensor; and the charging current of each charging module is controlled according to the determined heating condition.
  • the heating condition in the preset range of the sensor includes: when the temperature data is greater than or equal to the preset upper temperature threshold, determining that the working module in the preset range of the corresponding temperature sensor has a higher heating current; when the temperature data is less than or equal to When the preset lower temperature threshold is used, it is determined that the working module in the preset range of the corresponding temperature sensor has lower heat generation; when the temperature data is between the upper temperature threshold and the lower temperature threshold, the corresponding temperature sensor is determined.
  • the working module within the preset range is currently hot.
  • the controlling the charging current of each charging module according to the determined heating condition comprises: when the working module in the preset range of the temperature sensor is currently hot, controlling the corresponding charging module to reduce the charging current until Stopping the charging module; when the working module in the preset range of the temperature sensor is currently low in heat, controlling the corresponding charging module to start working or raising the charging current; when the working module of the temperature sensor is within the preset range When the current heating is normal, the corresponding charging module is controlled to maintain the original charging current.
  • controlling the charging current of each charging module according to the determined heating condition further comprises: after a part of the charging modules of the charging module lowers or raises the charging current, controlling another part of the charging module to decrease or increase The high charging current is compensated to maintain the state in which the overall charging current of the terminal device maintains the original rating.
  • controlling another charging module to compensate for the reduced or increased charging current includes: when the target charging module decreases or raises the charging After the current is controlled, one or a group of charging modules other than the target charging module are controlled to compensate for a reduced or increased charging current of the target charging module;
  • the controlling a set of charging modules to compensate for the reduced or increased charging current comprises:
  • the compensated charging current is distributed according to a predetermined ratio according to a distance of each of the charging modules from the target charging module or temperature data within a preset range of each charging module.
  • the plurality of charging modules are distributed in different locations on the terminal device, and the plurality of temperature sensors are respectively arranged in a preset range of each charging module, and the temperature around the corresponding charging module is monitored in real time. data.
  • the device comprises: a startup module, a receiving module, a judging module and a control module.
  • the startup module is configured to start a charging control function when the charging interface of the terminal device is connected, and the receiving module is configured to receive temperature data within a preset range of the corresponding charging module transmitted by each temperature sensor; The method is configured to compare the received temperature data with a preset threshold to determine a heating condition within a preset range of the corresponding temperature sensor; and the control module is configured to control the charging current of each charging module according to the determined heating condition.
  • the determining module compares the received temperature data with a preset threshold, and determines that the heating condition in the preset range of the corresponding temperature sensor comprises: when the temperature data is greater than or equal to a preset upper temperature threshold.
  • the working module in the preset range of the corresponding temperature sensor is determined to have a higher heat generation; when the temperature data is less than or equal to the preset lower temperature threshold, it is determined that the working module in the preset range of the corresponding temperature sensor has lower heat generation;
  • the temperature data is between the upper temperature threshold and the lower temperature threshold, it is determined that the working module in the preset range of the corresponding temperature sensor is currently hot.
  • controlling, by the control module, the charging current of each charging module according to the determined heating condition comprises: when the working module in the preset range of the temperature sensor has a high heating current, controlling the corresponding charging module to reduce the charging current Until the charging module stops working; when the working module within the preset range of the temperature sensor is currently low in heat, controlling the corresponding charging module to start working or raising the charging current; when the temperature sensor is within a preset range When the working module is currently hot, the corresponding charging module is controlled to maintain the original charging current.
  • controlling, by the control module, the charging current of each charging module according to the determined heating condition further includes: controlling a portion of the charging module to be lowered after a part of the charging modules of the charging module decreases or increases the charging current. Or the increased charging current is compensated to maintain the state in which the overall charging current of the terminal device maintains the original rating.
  • controlling another charging module to compensate for the reduced or increased charging current includes: when the target charging module decreases or raises the charging After the current is controlled, one or a group of charging modules other than the target charging module are controlled to compensate for a reduced or increased charging current of the target charging module;
  • the controlling a set of charging modules to compensate for the reduced or increased charging current comprises:
  • the compensated charging current is distributed according to a predetermined ratio according to a distance of each of the charging modules from the target charging module or temperature data within a preset range of each charging module.
  • a terminal device includes a battery and a charging interface, the terminal device further comprising: a plurality of charging modules, a plurality of temperature sensors, and a charging control device.
  • a plurality of charging modules are arranged to charge the electric energy conversion output input on the charger received through the charging interface to the battery, and receive the control of the charging control device to change the charging current in real time; the plurality of temperature sensors are set to be monitored in real time Corresponding temperature data around the charging module is sent to the charging control device; the charging control device is configured to activate the charging control function when receiving the charging interface to connect the charging device, and receive the corresponding transmission of each temperature sensor
  • the temperature data in the preset range of the charging module compares the received temperature data with a preset threshold, determines a heating condition within a preset range of the corresponding temperature sensor, and controls a charging current of each charging module according to the determined heating condition. .
  • the charging control device compares the received temperature data with a preset threshold, and determines that the heating condition in the preset range of the corresponding temperature sensor comprises: when the temperature data is greater than or equal to a preset upper temperature threshold. Determining that the working module in the preset range of the corresponding temperature sensor has a higher heating current; when the temperature data is less than or equal to the preset lower temperature threshold, determining that the working module in the preset range of the corresponding temperature sensor has lower heating current; When the temperature data is between the upper temperature threshold and the lower temperature threshold, it is determined that the working module in the preset range of the corresponding temperature sensor is normally hot.
  • controlling, by the charging control device, the charging current of each charging module according to the determined heating condition comprises: when the working module in the preset range of the temperature sensor has a high heating current, controlling the corresponding charging module to reduce charging Current until the charging module stops working; when the working module in the preset range of the temperature sensor is currently low in heat, controlling the corresponding charging module to start working or raising the charging current; when the temperature sensor is within the preset range When the working module is currently hot, the corresponding charging module is controlled to maintain the original charging current.
  • controlling, by the charging control device, the charging current of each charging module according to the determined heating condition further comprises: after a part of the charging modules of the charging module lowers or raises the charging current, controlling another part of the charging module Reducing or increasing the charging current to compensate The overall charging current of the terminal device maintains the original rated state.
  • controlling another charging module to compensate for the reduced or increased charging current includes: when the target charging module decreases or raises the charging After the current, one or a group of charging modules other than the target charging module are controlled to compensate for the reduced or increased charging current of the target charging module.
  • the controlling a set of charging modules to compensate for the reduced or increased charging current comprises:
  • the compensated charging current is distributed according to a predetermined ratio according to a distance of each of the charging modules from the target charging module or temperature data within a preset range of each charging module.
  • the plurality of charging modules are distributed in different locations on the terminal device, and the plurality of temperature sensors are respectively arranged in a preset range of each charging module.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement a charging control method of a terminal device.
  • the charging control method and device of the terminal device and the terminal device according to the present application can dynamically control the charging process of the terminal device according to the real-time temperature condition of each location in the terminal device, and reduce the corresponding charging module when the temperature rises.
  • the charging current reduces the heating of the charging module, and when the temperature is lowered, the charging current of the corresponding charging module is raised to restore the normal charging, so that the terminal device does not have a local temperature excessively while charging.
  • the overall charging current of the terminal device is maintained to maintain the original rated state, thereby avoiding affecting the charging speed of the terminal device.
  • FIG. 1 is a schematic block diagram of a terminal device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a charging control device according to a second embodiment of the present invention.
  • FIG. 3 is a flowchart of a charging control method according to a third embodiment of the present invention.
  • step S306 in FIG. 3 is a first specific flowchart of step S306 in FIG. 3;
  • FIG. 5 is a second specific flowchart of step S306 in Figure 3;
  • FIG. 6 is a schematic diagram of a correspondence relationship between temperature data and a charging current in an alternative embodiment of a charging control method according to an embodiment of the present invention.
  • the first embodiment of the present invention provides a terminal device, and the charging process of the terminal device can be dynamically controlled.
  • the terminal device may be a mobile terminal, a smart phone, a notebook computer, a digital broadcast receiver, a PDA (Personal Digital Assistant), a PAD (Tablet PC), or the like.
  • the terminal device includes a charging control device 100, a plurality of charging modules 101, a plurality of temperature sensors 102, a battery 103, and a charging interface 104.
  • the charging interface 104 is configured to connect an external charger to receive externally input electrical energy.
  • the battery 103 is arranged to supply power to the entire terminal device and to store electrical energy from external charging.
  • the charging module 101 is configured to implement a basic charging function and is capable of receiving control of the charging control device 100 to change the charging current in real time.
  • Each charging module 101 on the terminal device can charge the power conversion output input on the charger to the battery 103. It is worth noting that the plurality of charging modules 101 are dispersed in different positions on the terminal device to disperse the area where heat is generated during charging, thereby avoiding heat superposition.
  • the terminal device further includes a plurality of temperature sensors 102, each of which is disposed in the vicinity of each charging module 101, and is configured to monitor the change of the ambient temperature in real time, and feed back the temperature data around the corresponding charging module 101.
  • Charge control device 100 the spatial distance between each temperature sensor 102 and the corresponding charging module 101 is as close as possible without affecting other functions of the terminal device, so that the corresponding charging module can be more accurately reflected. Temperature conditions around 101.
  • the charging control device 100 is configured to receive temperature data around each charging module 101 transmitted by each temperature sensor 102, and determine a temperature rise change of the terminal device according to the temperature data, and control the operation of the charging module 101 at each position. , generally maintaining the charging current of the terminal device at The setting status remains unchanged.
  • the function of the charging control device 100 will be described in detail in FIG. 2 below, and details are not described herein again.
  • Each charging module 101 is connected to the charging control device 100 via a control bus and receives a control signal from the charging control device 100.
  • Each temperature sensor 102 is connected to the charging control device 100 via a control bus, and feeds back real-time temperature data to the charging control device 100.
  • the charging interface 104 is connected to the input of each charging module 101 such that each charging module 101 can receive external electrical energy.
  • the output of each charging module 101 is ultimately collectively connected to the battery 103 to charge the battery 103.
  • a second embodiment of the present invention provides a charging control apparatus configured to dynamically control a charging process of a terminal device.
  • the terminal device further includes a plurality of charging modules 101, a plurality of temperature sensors 102, a battery 103, and a charging interface 104.
  • the charging interface 104 is connected to the charger, and the battery 103 of the terminal device is charged by the charging module 101.
  • Each charging module 101 on the terminal device can charge the power conversion output input on the charger to the battery 103. It should be noted that a plurality of charging modules 101 are dispersedly arranged on the terminal device to disperse the area where heat is generated during charging, and heat accumulation is avoided.
  • Each temperature sensor 102 is disposed in the vicinity of each charging module 101, and is configured to monitor the change of the ambient temperature in real time, and feed back the temperature data around the corresponding charging module 101 to the charging control device 100.
  • the charging control device 100 includes a startup module 201, a receiving module 202, a determining module 203, and a control module 204.
  • the startup module 201 is configured to activate the charging control function when it is detected that the charging interface 104 is connected to the charger.
  • the charging interface 104 When a charger is inserted into the charging interface 104, the charging interface 104 sends a notification message to the charging control device 100, and the activation module 201 initiates dynamic control of the charging process for the terminal device based on the notification message.
  • each charging module 101 starts to charge the electric energy conversion output input on the charger to the battery 103 with a set current, and each temperature sensor 102 starts to monitor the temperature around the corresponding charging module 101 in real time. The data is sent to the charging control device 100.
  • the receiving module 202 is configured to receive the corresponding charging module 101 transmitted by each temperature sensor 102. Temperature data around.
  • the receiving module 202 can receive the temperature data in real time, or can receive the temperature data once every predetermined time.
  • the determining module 203 is configured to compare the received temperature data with a preset threshold to determine a heat generation condition around the corresponding temperature sensor 102.
  • the preset threshold includes a preset upper temperature threshold and a preset lower temperature threshold, such as a temperature upper limit T1 and a lower temperature limit T2.
  • the determining module 203 is further configured to determine that the working module in the preset range of the corresponding temperature sensor 102 has a higher heat generation when the temperature data is greater than the upper temperature limit T1, thereby causing the temperature of the area to rise.
  • the determining module 203 is further configured to determine that the working module within the preset range of the corresponding temperature sensor 102 has a low heat generation when the temperature data is less than the lower temperature limit T2. At this time, it may be possible to change the working module with higher heat generation adjacent to the temperature sensor 102 to stop working, and the ambient temperature near the position is gradually decreasing.
  • the determining module 203 is further configured to determine that the temperature data is within a preset range of the corresponding temperature sensor 102 when the temperature data is between the upper temperature limit T1 and the lower temperature limit T2 (less than or equal to the upper temperature limit T1 and greater than or equal to the lower temperature limit T2) The working module is currently hot.
  • the control module 204 is configured to control the charging current of each of the charging modules 101 according to the determined heating condition.
  • control module 204 is further configured to control the corresponding charging module 101 to reduce the charging current when the working module in the preset range of the temperature sensor 102 is currently hot, until the charging module 102 stops working.
  • the charging module 101 can be controlled to reduce the degree of charging current according to the level of the temperature data. For example, when the temperature data is greater than the upper limit of the temperature T1 by 1 ° C (degrees Celsius), the charging current of the corresponding charging module 101 is controlled to be lowered by 25 mA (milliamps).
  • the degree to which the charging module 101 reduces the charging current may be controlled according to a predetermined ratio. For example, when the temperature data is greater than the upper temperature limit T1, the charging current of the corresponding charging module 101 is controlled to be reduced by 50%.
  • the control module 204 is further configured to temporarily heat up the working module adjacent to the temperature sensor 102. When higher, the corresponding charging module 101 is controlled to start working or to increase the charging current.
  • the degree to which the charging module 101 raises the charging current can be controlled according to the level of the temperature data. For example, when the difference between the temperature data and the lower temperature limit T2 is 1 ⁇ C, the charging current of the corresponding charging module 101 is controlled to increase by 25 mA. In addition, the degree to which the charging module 101 raises the charging current may also be controlled according to a predetermined ratio. For example, when the temperature data is less than the lower temperature limit T2, the charging current of the corresponding charging module 101 is controlled to increase by 50%.
  • the control module 204 is further configured to control the corresponding charging module 101 to continue charging according to the original charging current when the working module within the preset range of the temperature sensor 102 is currently hot.
  • the preset threshold may further include a plurality of upper temperature limits and a plurality of lower temperature limits
  • the determining module 203 determines the corresponding temperature sensor 102 according to the temperature data and the plurality of upper temperature limits and the plurality of lower temperature limits.
  • the heat generation condition can be further subdivided into a plurality of stages.
  • the control module 204 controls the charging current of each of the charging modules 101 according to the heat generation conditions of the plurality of stages.
  • the preset threshold may further include an upper temperature limit T3, T4 and a lower temperature limit T5, T6, where T3>T4>T5>T6.
  • T3>T4>T5>T6 the determining module 203 determines that the working module adjacent to the temperature sensor 102 is currently very hot, and the control module 204 directly controls the corresponding charging module 101 to stop working.
  • the determining module 203 determines that the working module in the preset range of the corresponding temperature sensor 102 has a relatively high heat generation, and the control module 204 controls the charging current of the corresponding charging module 101 to decrease by 50. %.
  • the determining module 203 determines that the working module adjacent to the temperature sensor 102 is currently hot, and the control module 204 controls the corresponding charging module 101 to maintain the original charging current.
  • the determining module 203 determines that the current working module of the corresponding temperature sensor 102 is relatively low in heat, and the control module 204 controls the charging current of the corresponding charging module 101 to increase by 50%.
  • the determining module 203 determines that the working module adjacent to the temperature sensor 102 is currently very low in heat, and the control module 204 controls the corresponding charging module 101.
  • the charging current is increased by 100%.
  • control module 204 is further configured to: after the partial charging module 101 (such as the target charging module) lowers or raises the charging current, controls the other charging module 101 to compensate the reduced or increased charging current, so that the terminal The overall charging current of the device is maintained at the original rated state.
  • partial charging module 101 such as the target charging module
  • the control module 204 controls another charging module 101 with a lower ambient temperature to increase the charging current by 50 mA; or control another ambient temperature.
  • the charging module 101 which is low and not currently operating, starts to operate, and the charging current is 50 mA; or a group of charging modules 101 having a lower ambient temperature is raised to raise the charging current, and the sum of the charging currents of the group of charging modules 101 is 50 mA.
  • control module 204 can control another one or a group of charging modules 101 to compensate for the reduced or increased charging current of the target charging module.
  • the compensated charging current may be evenly distributed, or may be based on the distance of each charging module 101 of the group from the target charging module or each charging module. Conditions such as temperature data around 102 are assigned a compensated charging current in a predetermined ratio.
  • the control module 204 controls a group of charging modules 101 having a lower ambient temperature to raise the charging current. It is assumed that the charging module 101 includes two charging modules B and C, wherein the charging module B is closer to the charging module A, and the charging module C is far away from the charging module A.
  • the control module 204 controls the charging module B to increase the charging current by 20 mA, and controls the charging module C to increase the charging current by 40 mA.
  • the control module 204 controls the charging module B to increase the charging current by 20 mA, and controls the charging module C to increase the charging current by 40 mA.
  • control module 204 can also take other manners to maintain the overall charging current of the terminal device in the original rated state according to the setting and the current situation.
  • the charging control device provided in this embodiment can dynamically control the charging process of the terminal device according to the real-time temperature condition of each position in the terminal device, and reduce the charging current of the corresponding charging module when the temperature rises to reduce the heating of the charging module.
  • the charging control device can also pass current between the plurality of charging modules The compensation ensures that the overall charging current of the terminal device maintains the original rated state, thereby avoiding affecting the charging speed of the terminal device.
  • a third embodiment of the present invention provides a charging control method, which is applied to a terminal device for dynamically controlling a charging process of a terminal device.
  • the terminal device may be a mobile terminal, a smart phone, a notebook computer, a digital broadcast receiver, a PDA, a PAD, or the like.
  • the terminal device includes a charging control device, a plurality of charging modules, a plurality of temperature sensors, a battery, and a charging interface.
  • the method can also be applied to the charging control device.
  • the charging interface is connected to the charger, and the battery of the terminal device is charged by the charging module.
  • Each charging module on the terminal device can charge the power conversion output input on the charger to the battery, and can receive the control of the charging control device to change the charging current in real time. It is worth noting that the plurality of charging modules are dispersedly arranged at different positions on the terminal device to disperse the heat-generating area during charging to avoid heat superposition. Each temperature sensor is respectively arranged in the vicinity of each charging module for real-time monitoring of the change of the ambient temperature, and the temperature data around the corresponding charging module is fed back to the charging control device.
  • the spatial distance between each temperature sensor and the corresponding charging module is as close as possible, so that the surrounding of the corresponding charging module can be more accurately reflected. Temperature condition.
  • the method includes steps S300-S303:
  • each charging module starts to charge the electric energy conversion output input on the charger to the battery with a set current
  • each temperature sensor starts to monitor the temperature data around the corresponding charging module in real time, and sends the data.
  • the charging control device can receive the temperature data in real time, or can receive the temperature data once every predetermined time.
  • S302 Compare the received temperature data with a preset threshold to determine a heat condition around the corresponding temperature sensor.
  • the preset threshold includes a preset upper temperature threshold and a preset lower temperature threshold, such as a temperature upper limit T1 and a lower temperature limit T2.
  • the fever condition includes higher fever, lower fever, and normal fever.
  • the charging control device determines that the current module in the preset range of the corresponding temperature sensor has a higher heat generation, causing the temperature of the region to rise.
  • the charging control device determines that the working module within the preset range of the corresponding temperature sensor has lower heating current. At this time, it may be possible to change the working module with higher heat generation near the temperature sensor to stop working, and the ambient temperature near this position is gradually decreasing.
  • the charging control device determines that the working module adjacent to the temperature sensor is currently hot. normal.
  • the controlling the charging current includes increasing the charging current, lowering the charging current, and maintaining the original charging current.
  • step S303 in FIG. 4 it is the first flow chart of step S303 in FIG.
  • the controlling the charging current of each charging module according to the determined heating condition includes steps S401-S403:
  • the degree of charging current can be controlled by the charging module according to the level of the temperature data. For example, when the difference between the temperature data and the upper temperature limit T1 is 1 ⁇ C, the charging current of the corresponding charging module is controlled to be reduced by 25 mA.
  • the degree of charging current can be controlled by the charging module according to a predetermined ratio. For example, when the temperature data is greater than the upper temperature limit T1, the charging current of the corresponding charging module is controlled to be reduced by 50%.
  • the degree to which the charging module raises the charging current can be controlled according to the level of the temperature data. For example, when the temperature data is less than the lower limit of the temperature T2, the charging current of the corresponding charging module is increased by 25 mA.
  • the degree to which the charging module raises the charging current may also be controlled according to a predetermined ratio. For example, when the temperature data is less than the lower temperature limit T2, the charging current of the corresponding charging module is controlled to increase by 50%.
  • the preset threshold may further include a plurality of upper temperature limits and a plurality of lower temperature limits
  • the charging control device determines the corresponding temperature sensor according to the temperature data and the plurality of upper temperature limits and the plurality of lower temperature limits.
  • the surrounding fever At this time, the heat generation condition can be further subdivided into a plurality of stages.
  • the charging current of each charging module is then controlled based on the heating conditions of the plurality of stages.
  • the preset threshold may further include an upper temperature limit T3, T4 and a lower temperature limit T5, T6, where T3>T4>T5>T6.
  • T3>T4>T5>T6 the charging control device determines that the current working module of the corresponding temperature sensor is currently very hot, and directly controls the corresponding charging module to stop working.
  • the charging control device determines that the current heating module of the corresponding temperature sensor is relatively hot, and controls the charging current of the corresponding charging module to decrease by 50%.
  • the charging control device determines that the working module adjacent to the temperature sensor is currently hot, and controls the corresponding charging module 102 to maintain the original charging current.
  • the charging control device determines that the current heating module of the corresponding temperature sensor is lower in heat, and controls the charging current of the corresponding charging module to increase by 50%.
  • the charging control device determines that the current heating module of the corresponding temperature sensor is currently very low in heat, and controls the charging current of the corresponding charging module to increase by 100%.
  • the charging control method provided in this embodiment can dynamically control the charging process of the terminal device according to the real-time temperature condition of each position in the terminal device, and reduce the charging current of the corresponding charging module when the temperature rises to reduce the heating of the charging module.
  • the charging current of the corresponding charging module is raised to restore normal charging, so that the terminal device does not have a local temperature excessively high while charging.
  • steps S501-S503 are similar to steps S401-S403 in FIG. 4, except that this embodiment further includes step S504.
  • the target charging module controls the other charging module to compensate the reduced or raised charging current, so that the overall charging current of the terminal device maintains the original rated state.
  • the charging control device controls another charging module with a lower ambient temperature to increase the charging current by 50 mA; or control another ambient temperature.
  • the charging module that is low and currently not working starts to work the charging current is 50mA; or a group of charging modules with lower ambient temperature is used to raise the charging current.
  • the sum of the charging currents of the group of charging modules is 50mA.
  • the charging control device may control another one or a group of charging modules to compensate for a reduced or increased charging current of the target charging module.
  • the compensated charging current may be evenly distributed, or may be based on the distance between each charging module and the target charging module in the group or around each charging module. Conditions such as temperature data are assigned a compensated charging current in a predetermined ratio.
  • the charging control device controls a group of charging modules having a lower ambient temperature to increase the charging current. It is assumed that the charging module includes two charging modules B and C, wherein the charging module B is closer to the charging module A, and the charging module C is far away from the charging module A.
  • the charging control device controls the charging module B to increase the charging current by 20 mA, and controls the charging module C to increase the charging current by 40 mA.
  • the charging control device controls the charging module B to increase the charging current by 20 mA, and controls the charging module C to increase the charging current by 40 mA.
  • the charging control device can also take other reasonable manners to maintain the overall charging current of the terminal device in the original rated state according to the setting and the current situation.
  • the charging control method provided in this embodiment can maintain the original rated state of the terminal device by maintaining current compensation between the plurality of charging modules, thereby avoiding affecting the charging speed of the terminal device.
  • Figure 6 is a graph showing the correspondence between temperature data and charging current in this alternative embodiment.
  • the horizontal axis represents the charging current (unit: mA), and the vertical axis represents the temperature data (unit: °C).
  • the process of the method includes the following steps:
  • each charging module When the charger is connected to the charging interface, the charging control function is activated. Assuming that the set charging current of each charging module is 1000 mA, three charging modules are used in the entire terminal device. At this time, each charging module starts to charge the electric energy conversion output input on the charger to the battery with a setting charging current of 1000 mA, and each temperature sensor starts to monitor the temperature data around the corresponding charging module in real time, and sends it to the charging control device. .
  • the charging current of the first charging module is reduced by 50%, that is, only Provides 500mA of charging current. Then, if the temperature around the other two charging modules does not exceed the first upper temperature limit T4, the 500 mA charging current reduced by the first charging module is evenly distributed to the other two charging modules.
  • the charging current of the first charging module is 500 mA
  • the charging current of the second charging module and the third charging module is 1250 mA.
  • the temperature around each charging module is continuously monitored. If the temperature T around the first charging module continues to rise and exceeds the second upper temperature limit T3 (T>T3), this The first charging module is controlled to stop working. Then, if the temperature around the other two charging modules does not exceed the first upper temperature limit T4, the reduced 500 mA charging current of the first charging module is redistributed to the other two charging modules. That is, the charging current of the second charging module and the third charging module is 1500 mA at this time.
  • each charging module is then monitored at intervals t. This is constantly monitored and the charge current is redistributed. It does not increase until the charging current on a charging module reaches the maximum charging current it can support. At this time, the heating condition of the entire terminal device is already serious, so the partial charging current is reduced to reduce the risk of overheating of the whole device.
  • the sum of the previously added charging currents on the other two charging modules is 50%, re-added to the first charging module. That is, the charging current of the first charging module is 500 mA at this time, and the charging current of the second charging module and the third charging module is 1250 mA.
  • the temperature around each of the charging modules is then monitored after a fixed time interval t.
  • T ⁇ T6 the second lower temperature limit
  • all the previously added charging currents on the other two charging modules are re-added to the first charging module. That is, at this time, the charging currents of the three charging modules are both 1000 mA, and the state of initial charging is restored.
  • the user normally charges a terminal device (such as a mobile phone), and the charging control device of the mobile phone starts the charging control function.
  • a terminal device such as a mobile phone
  • the charging control device of the mobile phone starts the charging control function.
  • Each charging module starts to charge the electric energy conversion output input on the charger to the battery with a set current
  • each temperature sensor starts to monitor the temperature data around the corresponding charging module in real time and sends it to the charging control device.
  • the temperature around each charging module of the mobile phone is basically below a preset threshold, and can work normally.
  • the user uses the wireless Internet function of the mobile phone to browse the webpage, and the radio frequency transmitting module of the mobile phone starts working.
  • the RF transmitting module consumes a large current during operation, so that the module itself generates heat and drives the ambient temperature around the module to gradually increase.
  • the temperature sensor adjacent to the RF transmitting module transmits the temperature data to the charging control device.
  • the charging control device controls the charging module near the radio frequency transmitting module to gradually reduce the charging current to reduce the heating of the charging module until the charging module is turned off. In this way, the external temperature of the mobile phone does not cause the local temperature to be too high because the RF transmitting module and the charging module work simultaneously.
  • the charging control device appropriately raises the charging current of the other charging modules away from the radio frequency transmitting module, keeps the overall charging current from decreasing, maintains the original rated state, and makes the charging speed of the mobile phone unaffected.
  • the radio frequency transmitting module stops working, and the ambient temperature gradually decreases.
  • a temperature sensor adjacent to the RF transmitting module feeds back a state of temperature reduction to the charging control device.
  • the charging control device then gradually increases the charging current of the charging module near the RF transmitting module to a normal charging state.
  • the charging current of other charging modules far away from the RF transmitting module is synchronously reduced, and the overall charging current is maintained.
  • the charging control device can dynamically control the charging process of the mobile phone according to the real-time temperature condition, so that the mobile phone does not have a local temperature excessively high.
  • the current charging current of the mobile phone can be maintained to maintain the original rated state by mutual current compensation between the plurality of charging modules to avoid affecting the charging speed of the mobile phone.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and can also be implemented by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the method described in the embodiments of the present invention.
  • the charging control method and device of the terminal device and the terminal device according to the present application can dynamically control the charging process of the terminal device according to the real-time temperature condition of each location in the terminal device, and reduce the corresponding charging module when the temperature rises.
  • the charging current reduces the heating of the charging module, and when the temperature is lowered, the charging current of the corresponding charging module is raised to restore the normal charging, so that the terminal device does not have a local temperature excessively while charging.
  • the overall charging current of the terminal device is maintained to maintain the original rated state, thereby avoiding affecting the charging speed of the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种终端设备的充电控制方法、装置及终端设备,该方法包括:当监测到终端设备的充电接口连接上充电器时,启动充电控制功能;接收每个温度传感器传送的对应充电模块周围的温度数据;将接收到的温度数据与预设阈值进行对比,判断对应温度传感器周围的发热状况;根据判断出的发热状况控制每个充电模块的充电电流。

Description

一种终端设备的充电控制方法、装置及终端设备 技术领域
本申请涉及但不限于通讯技术领域,尤其涉及一种终端设备的充电控制方法、装置及终端设备。
背景技术
终端产品的主板上器件布局一般比较密集,这使得充电模块一般都会跟其他某个或某几个功能模块靠的比较近,比如中央处理器CPU、射频功放、无线保真wifi模块、发光二极管LCD背光驱动、摄像头模组等。终端产品在使用中一般都会遇到充电时做其他操作,比如通过移动网络上网,玩游戏等。这些操作会导致终端产品发热比较严重的情况,特别是局部发热严重。这主要是该终端产品的充电模块和其他模块同时工作,同时产生大量热量,而两个模块之间的空间距离又比较近,造成了热量的叠加,使得局部发热明显。
相关的终端产品或者方案,充电模块一般只有一个,使用中如果遇到局部温升较为严重的情况,一般通过降低充电电流来降低温度,从而减少充电发热带来的影响。但这样轻则影响用户的使用体验,重则造成用户误认为终端出现异常故障。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例的目的在于提供一种终端设备的充电控制方法、装置及终端设备,解决了终端设备在充电过程中局部温度过高的问题。
一种终端设备的充电控制方法,该方法包括:当监测到终端设备的充电接口连接上充电器时,启动充电控制功能;接收每个温度传感器传送的对应充电模块预设范围内的温度数据;将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况;根据判断出的发热状况控制每个充电模块的充电电流。
可选地,所述将接收到的温度数据与预设阈值进行对比,判断对应温度 传感器预设范围内的发热状况包括:当所述温度数据大于或等于预设的温度上限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较高;当所述温度数据小于或等于预设的温度下限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较低;当所述温度数据介于所述温度上限阈值及所述温度下限阈值之间时,判定对应温度传感器预设范围内的工作模块当前发热正常。
可选地,所述根据判断出的发热状况控制每个充电模块的充电电流包括:当所述温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到所述充电模块停止工作;当所述温度传感器预设范围内的工作模块当前发热较低时,控制对应的充电模块开始工作或者升高充电电流;当所述温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流。
可选地,所述根据判断出的发热状况控制每个充电模块的充电电流还包括:当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿,保持所述终端设备总体充电电流维持原额定的状态。
可选地,所述当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿包括:当目标充电模块降低或升高充电电流后,控制所述目标充电模块以外的一个或一组充电模块对所述目标充电模块降低或升高的充电电流进行补偿;
所述控制一组充电模块对所述降低或升高的充电电流进行补偿包括:
在所述一组充电模块中平均分配补偿的充电电流;或者,
根据所述一组充电模块中每个充电模块与所述目标充电模块的距离或根据每个充电模块预设范围内的温度数据按照预定比例分配补偿的充电电流。
可选地,所述多个充电模块分散布局在所述终端设备上的不同位置,所述多个温度传感器分别对应布局在每个充电模块的预设范围内,实时监测对应充电模块周围的温度数据。
一种充电控制装置,应用于包括多个充电模块和多个温度传感器的移动 终端中,该装置包括:启动模块、接收模块、判断模块和控制模块。
启动模块,设置为当监测到终端设备的充电接口连接上充电器时,启动充电控制功能;接收模块,设置为接收每个温度传感器传送的对应充电模块预设范围内的温度数据;判断模块,设置为将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况;控制模块,设置为根据判断出的发热状况控制每个充电模块的充电电流。
可选地,其中,所述判断模块将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况包括:当所述温度数据大于或等于预设的温度上限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较高;当所述温度数据小于或等于预设的温度下限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较低;当所述温度数据介于所述温度上限阈值及所述温度下限阈值之间时,判定对应温度传感器预设范围内的工作模块当前发热正常。
可选地,所述控制模块根据判断出的发热状况控制每个充电模块的充电电流包括:当所述温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到所述充电模块停止工作;当所述温度传感器预设范围内的工作模块当前发热较低时,控制对应的充电模块开始工作或者升高充电电流;当所述温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流。
可选地,所述控制模块根据判断出的发热状况控制每个充电模块的充电电流还包括:当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿,保持所述终端设备总体充电电流维持原额定的状态。
可选地,所述当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿包括:当目标充电模块降低或升高充电电流后,控制所述目标充电模块以外的一个或一组充电模块对所述目标充电模块降低或升高的充电电流进行补偿;
所述控制一组充电模块对所述降低或升高的充电电流进行补偿包括:
在所述一组充电模块中平均分配补偿的充电电流;或者,
根据所述一组充电模块中每个充电模块与所述目标充电模块的距离或根据每个充电模块预设范围内的温度数据按照预定比例分配补偿的充电电流。
一种终端设备,包括电池和充电接口,该终端设备还包括:多个充电模块、多个温度传感器和充电控制装置。
多个充电模块,设置为将通过充电接口接收的充电器上输入的电能转换输出充入到所述电池,并接收充电控制装置的控制,实时改变充电电流;多个温度传感器,设置为实时监测对应的充电模块周围的温度数据,并发送给充电控制装置;所述充电控制装置,设置为当监测到所述充电接口连接上充电器时,启动充电控制功能,接收每个温度传感器传送的对应充电模块预设范围内的温度数据,将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况,并根据判断出的发热状况控制每个充电模块的充电电流。
可选地,所述充电控制装置将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况包括:当所述温度数据大于或等于预设的温度上限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较高;当所述温度数据小于或等于预设的温度下限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较低;当所述温度数据介于所述温度上限阈值及所述温度下限阈值之间时,判定对应温度传感器预设范围内的工作模块当前发热正常。
可选地,所述充电控制装置根据判断出的发热状况控制每个充电模块的充电电流包括:当所述温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到所述充电模块停止工作;当所述温度传感器预设范围内的工作模块当前发热较低时,控制对应的充电模块开始工作或者升高充电电流;当所述温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流。
可选地,所述充电控制装置根据判断出的发热状况控制每个充电模块的充电电流还包括:当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿,保持所述 终端设备总体充电电流维持原额定的状态。
可选地,所述当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿包括:当目标充电模块降低或升高充电电流后,控制除所述目标充电模块以外的一个或一组充电模块对所述目标充电模块降低或升高的充电电流进行补偿。
所述控制一组充电模块对所述降低或升高的充电电流进行补偿包括:
在所述一组充电模块中平均分配补偿的充电电流;或者,
根据所述一组充电模块中每个充电模块与所述目标充电模块的距离或根据每个充电模块预设范围内的温度数据按照预定比例分配补偿的充电电流。
可选地,所述多个充电模块分散布局在所述终端设备上的不同位置,所述多个温度传感器分别对应布局在每个充电模块的预设范围内。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现终端设备的充电控制方法。
本申请提出的终端设备的充电控制方法、装置及该终端设备,可以根据该终端设备中每个位置的实时温度状况动态地控制该终端设备的充电过程,在温度升高时降低对应充电模块的充电电流以降低该充电模块发热,在温度降低时升高对应充电模块的充电电流以恢复正常充电,使得该终端设备在充电的同时不会出现局部温度过高的情况。另外,还可以通过控制多个充电模块之间相互的电流补偿,保持该终端设备的总体充电电流维持原额定的状态,从而避免影响该终端设备的充电速度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明第一实施例提出的一种终端设备的模块示意图;
图2为本发明第二实施例提出的一种充电控制装置的模块示意图;
图3为本发明第三实施例提出的一种充电控制方法的流程图;
图4为图3中步骤S306的第一种具体流程图;
图5为图3中步骤S306的第二种具体流程图;
图6为本发明实施例提出的充电控制方法的一个可选实施例中温度数据和充电电流之间的对应关系曲线示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。此处所描述的实施例仅仅用以解释本发明实施例,并不用于限定本发明实施例。
如图1所示,本发明第一实施例提出一种终端设备,该终端设备的充电过程可以动态控制。在本实施例中,所述终端设备可以是移动电话、智能电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)等移动终端。
所述终端设备包括充电控制装置100、多个充电模块101、多个温度传感器102、电池103及充电接口104。
充电接口104设置为连接外部充电器,接收外部输入的电能。
电池103设置为给整个终端设备提供电能,并存储来自外部充入的电能。
充电模块101设置为实现基本的充电功能,并能够接收充电控制装置100的控制,实时改变充电电流。该终端设备上的每个充电模块101均能将充电器上输入的电能转换输出充入到电池103上。值得注意的是,多个充电模块101分散布局在该终端设备上的不同位置,以分散充电时发热的区域,避免热量叠加。
该终端设备上还包括多个温度传感器102,每个温度传感器102分别对应布局在每个充电模块101附近,设置为实时监测环境温度的变化,并将对应的充电模块101周围的温度数据反馈给充电控制装置100。在本实施例中,在不影响终端设备其他功能的条件下,每个温度传感器102与对应的充电模块101之间的空间距离越近越好,这样能够更准确地反映出该对应的充电模块101周围的温度情况。
充电控制装置100设置为接收每个温度传感器102传送的每个充电模块101周围的温度数据,并根据该温度数据判断终端设备的温升变化,对每个位置的充电模块101的工作情况进行控制,总体保持该终端设备充电电流在 设定状态不变。该充电控制装置100的功能将在下述图2中详细描述,在此不再赘述。
每个充电模块101通过控制总线与充电控制装置100连接,并接收来自充电控制装置100的控制信号。每个温度传感器102通过控制总线与充电控制装置100连接,向充电控制装置100反馈实时的温度数据。充电接口104与每个充电模块101的输入端连接,使得每个充电模块101都可以接收到外部的电能。每个充电模块101输出端最终汇总连接到电池103,为电池103充电。
如图2所示,本发明第二实施例提出一种充电控制装置,设置为对终端设备的充电过程进行动态控制。
所述终端设备中除了该充电控制装置100,还包括多个充电模块101、多个温度传感器102、电池103及充电接口104。其中,充电接口104连接充电器,通过充电模块101对该终端设备的电池103进行充电。
该终端设备上的每个充电模块101均能将充电器上输入的电能转换输出充入到电池103上。值得注意的是,多个充电模块101分散布局在该终端设备上,以分散充电时发热的区域,避免热量叠加。每个温度传感器102分别对应布局在每个充电模块101附近,设置为实时监测环境温度的变化,并将对应的充电模块101周围的温度数据反馈给充电控制装置100。
充电控制装置100包括启动模块201、接收模块202、判断模块203及控制模块204。
启动模块201设置为当监测到充电接口104连接上充电器时,启动充电控制功能。
当有充电器插入到充电接口104时,该充电接口104向充电控制装置100发送通知消息,启动模块201根据该通知消息启动对该终端设备的充电过程的动态控制。在本实施例中,此时每个充电模块101均开始以设定电流将充电器上输入的电能转换输出充入到电池103上,每个温度传感器102开始实时监测对应充电模块101周围的温度数据,并发送给该充电控制装置100。
接收模块202设置为接收每个温度传感器102传送的对应充电模块101 周围的温度数据。
该接收模块202可以实时接收该温度数据,也可以每隔预定时间接收一次该温度数据。
判断模块203设置为将接收到的温度数据与预设阈值进行对比,判断对应温度传感器102周围的发热状况。
所述预设阈值包括预设的温度上限阈值和预设的温度下限阈值,如温度上限T1和温度下限T2。
可选地,该判断模块203还设置为当该温度数据大于该温度上限T1时,判断对应温度传感器102预设范围内的工作模块当前发热较高,造成此区域温度升高。
该判断模块203还设置为当该温度数据小于该温度下限T2时,判断对应温度传感器102预设范围内的工作模块当前发热较低。此时可能改温度传感器102临近的发热较高的工作模块已经停止工作,此位置附近环境温度正在逐步降低。
该判断模块203还设置为当该温度数据介于该温度上限T1及温度下限T2(小于或等于温度上限T1且大于或等于温度下限T2)之间时,判断对应温度传感器102预设范围内的工作模块当前发热正常。
控制模块204设置为根据判断出的发热状况控制每个充电模块101的充电电流。
可选地,该控制模块204还设置为当该温度传感器102预设范围内的工作模块当前发热较高时,控制对应的充电模块101降低充电电流,直到该充电模块102停止工作。
在本实施例中,可以根据该温度数据的高低控制该充电模块101降低充电电流的程度。例如,当该温度数据大于该温度上限T1的差值为1℃(摄氏度)时,控制对应充电模块101的充电电流降低25mA(毫安)。另外,也可以根据预定比例控制该充电模块101降低充电电流的程度。例如,当该温度数据大于该温度上限T1时,控制对应充电模块101的充电电流降低50%。
该控制模块204还设置为当该温度传感器102临近的工作模块当前发热 较高时,控制对应的充电模块101开始工作或者升高充电电流。
在本实施例中,可以根据该温度数据的高低控制该充电模块101升高充电电流的程度。例如,当该温度数据小于该温度下限T2的差值为1□C时,控制对应充电模块101的充电电流升高25mA。另外,也可以根据预定比例控制该充电模块101升高充电电流的程度。例如,当该温度数据小于该温度下限T2时,控制对应充电模块101的充电电流升高50%。
该控制模块204还设置为当该温度传感器102预设范围内的工作模块当前发热正常时,控制对应的充电模块101继续按原来的充电电流进行充电。
可以理解,在其他实施例中,所述预设阈值还可以包括多个温度上限和多个温度下限,判断模块203根据该温度数据与该多个温度上限和多个温度下限判断对应温度传感器102预设范围内的发热状况。此时所述发热状况可以再细分为多个阶段。控制模块204根据该多个阶段的发热状况控制每个充电模块101的充电电流。
例如,所述预设阈值还可以包括温度上限T3、T4和温度下限T5、T6,其中T3>T4>T5>T6。当该温度数据大于该温度上限T3时,判断模块203判断对应温度传感器102临近的工作模块当前发热非常高,控制模块204直接控制对应的充电模块101停止工作。
当该温度数据介于该温度上限T3与T4之间时,判断模块203判断对应温度传感器102预设范围内的工作模块当前发热比较高,控制模块204控制对应的充电模块101的充电电流降低50%。
当该温度数据介于该温度上限T4与温度下限T5之间时,判断模块203判断对应温度传感器102临近的工作模块当前发热正常,控制模块204控制对应的充电模块101维持原充电电流。
当该温度数据介于该温度下限T5与T6之间时,判断模块203判断对应温度传感器102临近的工作模块当前发热比较低,控制模块204控制对应的充电模块101的充电电流升高50%。
当该温度数据小于该温度下限T6时,判断模块203判断对应温度传感器102临近的工作模块当前发热非常低,控制模块204控制对应的充电模块101 的充电电流升高100%。
可选地,该控制模块204还设置为当部分充电模块101(如目标充电模块)降低或升高充电电流后,控制其他充电模块101对该降低或升高的充电电流进行补偿,使得该终端设备总体充电电流维持原额定的状态。
例如,当有一个目标充电模块因周围的温度较高而将充电电流降低50mA时,控制模块204控制另一个周围温度较低的充电模块101将充电电流升高50mA;或者控制另一个周围温度较低且当前未工作的充电模块101开始工作,充电电流为50mA;或者控制一组周围温度较低的充电模块101升高充电电流,该组充电模块101升高的充电电流总和为50mA。
在本实施例中,该控制模块204可以控制另外一个或一组充电模块101对目标充电模块降低或升高的充电电流进行补偿。当控制一组充电模块101对该降低或升高的充电电流进行补偿时,可以平均分配补偿的充电电流,也可以根据该组中每个充电模块101与目标充电模块的距离或每个充电模块102周围的温度数据等条件按照预定比例分配补偿的充电电流。
例如,当有一个充电模块A因周围的温度较高而将充电电流降低60mA时,控制模块204控制一组周围温度较低的充电模块101升高充电电流。假设该组充电模块101包括两个充电模块B和C,其中,充电模块B与该充电模块A的距离较近,而充电模块C与该充电模块A的距离较远。控制模块204控制充电模块B将充电电流升高20mA,控制充电模块C将充电电流升高40mA。或者,假定充电模块B周围的温度高于充电模块C周围的温度,控制模块204控制控制充电模块B将充电电流升高20mA,控制充电模块C将充电电流升高40mA。
可以理解,在其他实施例中,控制模块204还可以根据设定和当前状况采取其他的方式来使该终端设备总体充电电流维持原额定的状态。
本实施例提出的充电控制装置,可以根据该终端设备中每个位置的实时温度状况动态地控制该终端设备的充电过程,在温度升高时降低对应充电模块的充电电流以降低该充电模块发热,在温度降低时升高对应充电模块的充电电流以恢复正常充电,使得该终端设备在充电的同时不会出现局部温度过高的情况。另外,该充电控制装置还可以通过多个充电模块之间相互的电流 补偿,保持该终端设备的总体充电电流维持原额定的状态,从而避免影响该终端设备的充电速度。
如图3所示,本发明第三实施例提出一种充电控制方法,应用于终端设备中,用于对终端设备的充电过程进行动态控制。在本实施例中,所述终端设备可以是移动电话、智能电话、笔记本电脑、数字广播接收器、PDA、PAD等移动终端。
所述终端设备包括充电控制装置,多个充电模块,多个温度传感器,电池,及充电接口。在本实施例中,该方法还可以应用于该充电控制装置上。
该充电接口连接充电器,通过充电模块对该终端设备的电池进行充电。
该终端设备上的每个充电模块均能将充电器上输入的电能转换输出充入到电池上,并能够接收充电控制装置的控制,实时改变充电电流。值得注意的是,该多个充电模块分散布局在该终端设备上的不同位置,以分散充电时发热的区域,避免热量叠加。每个温度传感器分别对应布局在每个充电模块附近,用于实时监测环境温度的变化,并将对应的充电模块周围的温度数据反馈给该充电控制装置。
在本实施例中,在不影响终端设备其他功能的条件下,每个温度传感器与对应的充电模块之间的空间距离越近越好,这样能够更准确地反映出该对应的充电模块周围的温度情况。
该方法包括步骤S300-S303:
S300,当监测到充电接口连接上充电器时,启动充电控制功能。
当有充电器插入到充电接口时,该充电接口向充电控制装置发送通知消息,充电控制装置根据该通知消息启动对该终端设备的充电过程的动态控制。在本实施例中,此时每个充电模块均开始以设定电流将充电器上输入的电能转换输出充入到电池上,每个温度传感器开始实时监测对应充电模块周围的温度数据,并发送给该充电控制装置。
S301,接收每个温度传感器传送的对应充电模块预设范围内的温度数据。
该充电控制装置可以实时接收该温度数据,也可以每隔预定时间接收一次该温度数据。
S302,将接收到的温度数据与预设阈值进行对比,判断对应温度传感器周围的发热状况。
所述预设阈值包括预设的温度上限阈值和预设的温度下限阈值,例如温度上限T1和温度下限T2。所述发热状况包括发热较高、发热较低和发热正常。
当该温度数据大于或等于预设的温度上限阈值,如该温度上限T1时,该充电控制装置判断对应温度传感器预设范围内的工作模块当前发热较高,造成此区域温度升高。
当该温度数据小于或等于预设的温度下限阈值,如该温度下限T2时,该充电控制装置判断对应温度传感器预设范围内的工作模块当前发热较低。此时可能改温度传感器临近的发热较高的工作模块已经停止工作,此位置附近环境温度正在逐步降低。
当该温度数据介于该温度上限T1及温度下限T2(或者可以是小于或等于温度上限T1且大于或等于温度下限T2)之间时,该充电控制装置判断对应温度传感器临近的工作模块当前发热正常。
S303,根据判断出的发热状况控制每个充电模块的充电电流。
所述控制充电电流包括升高充电电流、降低充电电流和维持原充电电流。
参阅图4所示,为图3中步骤S303的第一种流程图。
所述根据判断出的发热状况控制每个充电模块的充电电流包括步骤S401-S403:
S401,当该温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到该充电模块停止工作。
在本实施例中,可以根据该温度数据的高低控制该充电模块降低充电电流的程度。例如,当该温度数据大于该温度上限T1的差值为1□C时,控制对应充电模块的充电电流降低25mA。另外,也可以根据预定比例控制该充电模块降低充电电流的程度。例如,当该温度数据大于该温度上限T1时,控制对应充电模块的充电电流降低50%。
S402,当该温度传感器临近的工作模块当前发热较高时,控制对应的充 电模块开始工作或者升高充电电流。
在本实施例中,可以根据该温度数据的高低控制该充电模块升高充电电流的程度。例如,当该温度数据小于该温度下限T2的差值为1□C时,控制对应充电模块的充电电流升高25mA。另外,也可以根据预定比例控制该充电模块升高充电电流的程度。例如,当该温度数据小于该温度下限T2时,控制对应充电模块的充电电流升高50%。
S403,当该温度传感器临近的工作模块当前发热正常时,控制对应的充电模块维持原充电电流,即继续按原来的充电电流对电池进行充电。
可以理解,在其他实施例中,所述预设阈值还可以包括多个温度上限和多个温度下限,该充电控制装置根据该温度数据与该多个温度上限和多个温度下限判断对应温度传感器周围的发热状况。此时所述发热状况可以再细分为多个阶段。然后根据该多个阶段的发热状况控制每个充电模块的充电电流。
例如,所述预设阈值还可以包括温度上限T3、T4和温度下限T5、T6,其中T3>T4>T5>T6。当该温度数据大于该温度上限T3时,该充电控制装置判断对应温度传感器临近的工作模块当前发热非常高,直接控制对应的充电模块停止工作。
当该温度数据介于该温度上限T3与T4之间时,该充电控制装置判断对应温度传感器临近的工作模块当前发热比较高,控制对应的充电模块的充电电流降低50%。
当该温度数据介于该温度上限T4与温度下限T5之间时,该充电控制装置判断对应温度传感器临近的工作模块当前发热正常,控制对应的充电模块102维持原充电电流。
当该温度数据介于该温度下限T5与T6之间时,该充电控制装置判断对应温度传感器临近的工作模块当前发热比较低,控制对应的充电模块的充电电流升高50%。
当该温度数据小于该温度下限T6时,该充电控制装置判断对应温度传感器临近的工作模块当前发热非常低,控制对应的充电模块的充电电流升高100%。
本实施例提出的充电控制方法,可以根据该终端设备中每个位置的实时温度状况动态地控制该终端设备的充电过程,在温度升高时降低对应充电模块的充电电流以降低该充电模块发热,在温度降低时升高对应充电模块的充电电流以恢复正常充电,使得该终端设备在充电的同时不会出现局部温度过高的情况。
参阅图5所示,为图3中步骤S303的第二种流程图。在本实施例中,步骤S501-S503与图4中的步骤S401-S403相类似,区别在于本实施例还包括步骤S504。
S501,当该温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到该充电模块停止工作。
S502,当该温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块开始工作或者升高充电电流。
S503,当该温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流,即继续按原来的充电电流对电池进行充电。
S504,当部分充电模块(称为目标充电模块)降低或升高充电电流后,控制其他充电模块对该降低或升高充电电流进行补偿,使得该终端设备总体充电电流维持原额定的状态。
例如,当有一个目标充电模块因周围的温度较高而将充电电流降低50mA时,该充电控制装置控制另一个周围温度较低的充电模块将充电电流升高50mA;或者控制另一个周围温度较低且当前未工作的充电模块开始工作,充电电流为50mA;或者控制一组周围温度较低的充电模块升高充电电流,该组充电模块升高的充电电流总和为50mA。
在本实施例中,该充电控制装置可以控制另外一个或一组充电模块对目标充电模块降低或升高的充电电流进行补偿。当控制一组充电模块对该降低或升高的充电电流进行补偿时,可以平均分配补偿的充电电流,也可以根据该组中每个充电模块与目标充电模块的距离或每个充电模块周围的温度数据等条件按照预定比例分配补偿的充电电流。
例如,当有一个充电模块A因周围的温度较高而将充电电流降低60mA 时,该充电控制装置控制一组周围温度较低的充电模块升高充电电流。假设该组充电模块包括两个充电模块B和C,其中,充电模块B与该充电模块A的距离较近,而充电模块C与该充电模块A的距离较远。该充电控制装置控制充电模块B将充电电流升高20mA,控制充电模块C将充电电流升高40mA。或者,假定充电模块B周围的温度高于充电模块C周围的温度,该充电控制装置控制控制充电模块B将充电电流升高20mA,控制充电模块C将充电电流升高40mA。
可以理解,在其他实施例中,该充电控制装置还可以根据设定和当前状况采取其他合理的方式来使该终端设备总体充电电流维持原额定的状态。
本实施例提出的充电控制方法,可以通过多个充电模块之间相互的电流补偿,保持该终端设备的总体充电电流维持原额定的状态,从而避免影响该终端设备的充电速度。
在一个可选实施例中,可以结合详细数据,针对该方法的整体流程进行说明。图6所示为该可选实施例中温度数据和充电电流之间的对应关系曲线。其中横轴表示充电电流(单位:mA),竖轴表示温度数据(单位:℃)。该方法的流程包括如下步骤:
当监测到充电接口连接上充电器时,启动充电控制功能。假定每个充电模块的设定充电电流是1000mA,整个终端设备中使用了三个充电模块。此时各个充电模块均开始以设定充电电流1000mA将充电器上输入的电能转换输出充入到电池上,每个温度传感器开始实时监测对应充电模块周围的温度数据,并发送给该充电控制装置。
当第一充电模块周围的温度T被监测到大于第一温度上限T4,但小于第二温度上限T3时(T4<T<T3),将该第一充电模块的充电电流降低50%,即只提供500mA的充电电流。然后如果其他两个充电模块周围温度没有超过第一温度上限T4,这时将第一充电模块降低的500mA充电电流,平均分配到其他两个充电模块上。这样,第一充电模块的充电电流为500mA,第二充电模块和第三充电模块的充电电流为1250mA。
经过固定时间间隔t后,继续监测每个充电模块周围的温度。如果第一充电模块周围的温度T继续上升,并且超过第二温度上限T3(T>T3),此 时控制该第一充电模块停止工作。然后如果其他两个充电模块周围温度依旧没有超过第一温度上限T4,则将第一充电模块降低的500mA充电电流再分配到其他两个充电模块上。即此时第二充电模块和第三充电模块的充电电流为1500mA。
然后继续每隔时间间隔t监测每个充电模块周围的温度。如此不断监测并对充电电流进行再分配。直到某个充电模块上的充电电流达到其可以支持的最大充电电流后,不再增加。此时整个终端设备的发热情况已经比较严重,所以减掉部分充电电流来降低整机过热的风险。
相反,如果此时监测到第一充电模块周围的温度T小于第一温度下限T5,但大于第二温度下限T6(T6<T<T5),将其他两个充电模块上之前增加的充电电流总和的50%,重新增加到第一充电模块上。即此时第一充电模块的充电电流为500mA,第二充电模块和第三充电模块的充电电流为1250mA。
然后继续在固定时间间隔t后监测各个充电模块周围的温度。当监测到第一充电模块周围的温度T小于第二温度下限T6时(T<T6),将其他两个充电模块上之前增加的充电电流全部重新增加到该第一充电模块上。即此时三个充电模块的充电电流均为1000mA,恢复到最初充电的状态。
下面再结合应用场景对该方法的一个可选实施例的整体流程进行说明。
用户将一个终端设备(如手机)正常充电,该手机的充电控制装置启动充电控制功能。每个充电模块均开始以设定电流将充电器上输入的电能转换输出充入到电池上,每个温度传感器开始实时监测对应充电模块周围的温度数据,并发送给该充电控制装置。此时该手机的每个充电模块周围的温度基本都处于预设阈值以下,可以正常工作。
而某一段时间用户使用该手机的无线上网功能浏览网页,这时该手机的射频发射模块启动工作。该射频发射模块工作中会消耗较大电流,使得模块本身发热,并带动模块周围环境温度一起逐渐提高。这时临近该射频发射模块的温度传感器将此温度数据发送给充电控制装置。充电控制装置控制该射频发射模块附近的充电模块逐步降低充电电流,以降低该充电模块的发热,直到关闭该充电模块。这样该手机的外部感受温度,就不会因为该射频发射模块和该充电模块同时工作而局部温度过高。
同时,充电控制装置将远离该射频发射模块的其他充电模块的充电电流适当升高,保持总体充电电流不降低,维持原额定的状态,使得该手机的充电速度不受影响。
当用户停止使用该手机浏览网页后,该射频发射模块停止工作,周围环境温度逐渐降低。临近该射频发射模块的温度传感器将温度降低的状态反馈给充电控制装置。该充电控制装置随即逐步提高该射频发射模块附近的充电模块的充电电流到正常充电状态。同时将远离该射频发射模块的其他充电模块的充电电流同步降低,依然保持总体充电电流不变。
因此,该充电控制装置可以根据实时温度状况动态地控制该手机的充电过程,使得该手机不会出现局部温度过高的情况。同时,还可以通过多个充电模块之间相互的电流补偿,保持该手机的总体充电电流维持原额定的状态,以避免影响该手机的充电速度。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件来实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明实施例所述的方法。
以上参照附图说明了本发明可选实施例,并非因此局限本发明实施例的权利范围。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此 处的顺序执行所示出或描述的步骤。
本领域技术人员不脱离本发明实施例的范围和实质,可以有多种变型方案实现本发明实施例,比如作为一个实施例的特征可用于另一实施例而得到又一实施例。凡在运用本发明实施例所作的任何修改、等同替换和改进,均应在本发明实施例的权利范围之内。
工业实用性
本申请提出的终端设备的充电控制方法、装置及该终端设备,可以根据该终端设备中每个位置的实时温度状况动态地控制该终端设备的充电过程,在温度升高时降低对应充电模块的充电电流以降低该充电模块发热,在温度降低时升高对应充电模块的充电电流以恢复正常充电,使得该终端设备在充电的同时不会出现局部温度过高的情况。另外,还可以通过控制多个充电模块之间相互的电流补偿,保持该终端设备的总体充电电流维持原额定的状态,从而避免影响该终端设备的充电速度。

Claims (17)

  1. 一种终端设备的充电控制方法,应用于包括多个充电模块和多个温度传感器的移动终端中,该方法包括:
    当监测到所述终端设备的充电接口连接上充电器时,启动充电控制功能;
    接收每个温度传感器传送的对应充电模块预设范围内的温度数据;
    将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况;
    根据判断出的发热状况控制每个充电模块的充电电流。
  2. 根据权利要求1所述的充电控制方法,其中,所述将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况包括:
    当所述温度数据大于或等于预设的温度上限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较高;
    当所述温度数据小于或等于预设的温度下限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较低;
    当所述温度数据介于所述温度上限阈值及所述温度下限阈值之间时,判定对应温度传感器预设范围内的工作模块当前发热正常。
  3. 根据权利要求2所述的充电控制方法,其中,所述根据判断出的发热状况控制每个充电模块的充电电流包括:
    当所述温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到所述充电模块停止工作;
    当所述温度传感器预设范围内的工作模块当前发热较低时,控制对应的充电模块开始工作或者升高充电电流;
    当所述温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流。
  4. 根据权利要求3所述的充电控制方法,其中,所述根据判断出的发热状况控制每个充电模块的充电电流还包括:
    当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一 部分充电模块对所降低或升高的充电电流进行补偿,保持所述终端设备总体充电电流维持原额定的状态。
  5. 根据权利要求4所述的充电控制方法,其中,所述当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿包括:
    当目标充电模块降低或升高充电电流后,控制所述目标充电模块以外的一个或一组充电模块对所述目标充电模块降低或升高的充电电流进行补偿;
    所述控制一组充电模块对所述降低或升高的充电电流进行补偿包括:
    在所述一组充电模块中平均分配补偿的充电电流;或者,
    根据所述一组充电模块中每个充电模块与所述目标充电模块的距离或根据每个充电模块预设范围内的温度数据按照预定比例分配补偿的充电电流。
  6. 根据权利要求1所述的充电控制方法,其中,所述多个充电模块分散布局在所述终端设备上的不同位置,所述多个温度传感器分别对应布局在每个充电模块的预设范围内,实时监测对应充电模块周围的温度数据。
  7. 一种充电控制装置,应用于包括多个充电模块和多个温度传感器的移动终端中,该装置包括:启动模块、接收模块、判断模块和控制模块;
    所述启动模块,设置为当监测到所述终端设备的充电接口连接上充电器时,启动充电控制功能;
    所述接收模块,设置为接收每个温度传感器传送的对应充电模块预设范围内的温度数据;
    所述判断模块,设置为将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况;所述控制模块,设置为根据判断出的发热状况控制每个充电模块的充电电流。
  8. 根据权利要求7所述的充电控制装置,其中,所述判断模块将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况包括:
    当所述温度数据大于或等于预设的温度上限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较高;当所述温度数据小于或等于预设的 温度下限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较低;当所述温度数据介于所述温度上限阈值及所述温度下限阈值之间时,判定对应温度传感器预设范围内的工作模块当前发热正常。
  9. 根据权利要求8所述的充电控制装置,其中,所述控制模块根据判断出的发热状况控制每个充电模块的充电电流包括:
    当所述温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到所述充电模块停止工作;当所述温度传感器预设范围内的工作模块当前发热较低时,控制对应的充电模块开始工作或者升高充电电流;当所述温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流。
  10. 根据权利要求9所述的充电控制装置,其中,所述控制模块根据判断出的发热状况控制每个充电模块的充电电流还包括:
    当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿,保持所述终端设备总体充电电流维持原额定的状态。
  11. 根据权利要求10所述的充电控制装置,其中,所述当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿包括:当目标充电模块降低或升高充电电流后,控制所述目标充电模块以外的一个或一组充电模块对所述目标充电模块降低或升高的充电电流进行补偿;
    所述控制一组充电模块对所述降低或升高的充电电流进行补偿包括:
    在所述一组充电模块中平均分配补偿的充电电流;或者,
    根据所述一组充电模块中每个充电模块与所述目标充电模块的距离或根据每个充电模块预设范围内的温度数据按照预定比例分配补偿的充电电流。
  12. 一种终端设备,包括电池和充电接口,该终端设备还包括:多个充电模块、多个温度传感器和充电控制装置;
    所述多个充电模块,设置为将通过充电接口接收的充电器上输入的电能转换输出充入到所述电池,并接收充电控制装置的控制,实时改变充电电流;
    多个温度传感器,设置为实时监测对应的充电模块周围的温度数据,并发送给充电控制装置;
    所述充电控制装置,设置为当监测到所述充电接口连接上充电器时,启动充电控制功能,接收每个温度传感器传送的对应充电模块预设范围内的温度数据,将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况,并根据判断出的发热状况控制每个充电模块的充电电流。
  13. 根据权利要求12所述的终端设备,其中,所述充电控制装置将接收到的温度数据与预设阈值进行对比,判断对应温度传感器预设范围内的发热状况包括:
    当所述温度数据大于或等于预设的温度上限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较高;当所述温度数据小于或等于预设的温度下限阈值时,判定对应温度传感器预设范围内的工作模块当前发热较低;当所述温度数据介于所述温度上限阈值及所述温度下限阈值之间时,判定对应温度传感器预设范围内的工作模块当前发热正常。
  14. 根据权利要求13所述的终端设备,其中,所述充电控制装置根据判断出的发热状况控制每个充电模块的充电电流包括:
    当所述温度传感器预设范围内的工作模块当前发热较高时,控制对应的充电模块降低充电电流,直到所述充电模块停止工作;当所述温度传感器预设范围内的工作模块当前发热较低时,控制对应的充电模块开始工作或者升高充电电流;当所述温度传感器预设范围内的工作模块当前发热正常时,控制对应的充电模块维持原充电电流。
  15. 根据权利要求14所述的终端设备,其中,所述充电控制装置根据判断出的发热状况控制每个充电模块的充电电流还包括:
    当全部充电模块中的一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿,保持所述终端设备总体充电电流维持原额定的状态。
  16. 根据权利要求15所述的终端设备,其中,所述当全部充电模块中的 一部分充电模块降低或升高充电电流后,控制另一部分充电模块对所降低或升高的充电电流进行补偿包括:
    当目标充电模块降低或升高充电电流后,控制除所述目标充电模块以外的一个或一组充电模块对所述目标充电模块降低或升高的充电电流进行补偿;
    所述控制一组充电模块对所述降低或升高的充电电流进行补偿包括:
    在所述一组充电模块中平均分配补偿的充电电流;或者,
    根据所述一组充电模块中每个充电模块与所述目标充电模块的距离或根据每个充电模块预设范围内的温度数据按照预定比例分配补偿的充电电流。
  17. 根据权利要求12所述的终端设备,其中,所述多个充电模块分散布局在所述终端设备上的不同位置,所述多个温度传感器分别对应布局在每个充电模块的预设范围内。
PCT/CN2016/089446 2016-05-23 2016-07-08 一种终端设备的充电控制方法、装置及终端设备 WO2017201827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610346064.6 2016-05-23
CN201610346064.6A CN107425554A (zh) 2016-05-23 2016-05-23 终端设备的充电控制方法、装置及该终端设备

Publications (1)

Publication Number Publication Date
WO2017201827A1 true WO2017201827A1 (zh) 2017-11-30

Family

ID=60411666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089446 WO2017201827A1 (zh) 2016-05-23 2016-07-08 一种终端设备的充电控制方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN107425554A (zh)
WO (1) WO2017201827A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474387A (zh) * 2019-07-30 2019-11-19 Oppo广东移动通信有限公司 充电控制方法、电子设备及计算机存储介质
CN112448053A (zh) * 2019-08-30 2021-03-05 北京小米移动软件有限公司 移动终端的充电方法、装置、终端及存储介质
WO2023101941A3 (en) * 2021-11-30 2023-08-24 Dragonfly Energy Corp. Systems, methods and devices for managing energy storage devices at operating temperature limits

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447782B (zh) * 2019-01-17 2022-01-18 Oppo广东移动通信有限公司 充电系统、散热装置及其控制方法
CN113315196A (zh) * 2021-05-26 2021-08-27 闻泰通讯股份有限公司 恒流充电控制方法、装置、电子设备和存储介质
CN114465293B (zh) * 2021-07-13 2023-08-25 荣耀终端有限公司 一种折叠式电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855772A (zh) * 2014-03-18 2014-06-11 深圳市中兴移动通信有限公司 移动终端及其充电控制方法
CN104505888A (zh) * 2014-12-24 2015-04-08 广东欧珀移动通信有限公司 一种移动终端及充电装置
CN105207289A (zh) * 2015-09-14 2015-12-30 联想(北京)有限公司 一种充电模组、电子设备和充电方法
CN106208190A (zh) * 2016-07-08 2016-12-07 深圳市金立通信设备有限公司 终端及其充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855772A (zh) * 2014-03-18 2014-06-11 深圳市中兴移动通信有限公司 移动终端及其充电控制方法
CN104505888A (zh) * 2014-12-24 2015-04-08 广东欧珀移动通信有限公司 一种移动终端及充电装置
CN105207289A (zh) * 2015-09-14 2015-12-30 联想(北京)有限公司 一种充电模组、电子设备和充电方法
CN106208190A (zh) * 2016-07-08 2016-12-07 深圳市金立通信设备有限公司 终端及其充电方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474387A (zh) * 2019-07-30 2019-11-19 Oppo广东移动通信有限公司 充电控制方法、电子设备及计算机存储介质
CN110474387B (zh) * 2019-07-30 2024-01-30 Oppo广东移动通信有限公司 充电控制方法、电子设备及计算机存储介质
CN112448053A (zh) * 2019-08-30 2021-03-05 北京小米移动软件有限公司 移动终端的充电方法、装置、终端及存储介质
CN112448053B (zh) * 2019-08-30 2022-05-20 北京小米移动软件有限公司 移动终端的充电方法、装置、终端及存储介质
WO2023101941A3 (en) * 2021-11-30 2023-08-24 Dragonfly Energy Corp. Systems, methods and devices for managing energy storage devices at operating temperature limits

Also Published As

Publication number Publication date
CN107425554A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2017201827A1 (zh) 一种终端设备的充电控制方法、装置及终端设备
CN107357385B (zh) 基于频率控制温度的方法、终端及计算机可读存储介质
KR102085684B1 (ko) 충전 보호 방법 및 장치
KR102216484B1 (ko) 충전 제어 방법 및 그 장치
EP3873004B1 (en) Method for establishing classic bluetooth connection between dual-mode bluetooth devices, and dual-mode bluetooth device
WO2018126558A1 (zh) 充电电流门限调整方法、终端设备和图形用户界面
CN111313500B (zh) 充电管理方法和装置、电子设备、计算机可读存储介质
CN108121524B (zh) 电子设备图像显示预览帧率的调节方法和装置、电子设备
US9998078B2 (en) Electronic device and method for switching power amplifiers
CN109075588B (zh) 电子装置和用于对电池充电的方法
US11493967B2 (en) Thermal shutdown with hysteresis
CN103649869A (zh) 电子设备中的多级热量管理
US9510280B2 (en) Transmitting beacon frames over a wireless data link
US10959122B2 (en) Method and device for transmitting data
JP6377560B2 (ja) 情報処理装置、cpu印加電圧制御装置、情報処理装置の制御方法
KR20200132161A (ko) 전자 장치의 발열을 제어하기 위한 방법, 이를 위한 전자 장치 및 저장 매체
EP3537246A1 (en) Energy control method and control apparatus for power consumption system
US9923368B2 (en) Electronic apparatus and driving control method thereof
KR102186552B1 (ko) 통신 모듈 제어를 위한 장치 및 방법
US20200249735A1 (en) Charge control apparatus and charge control system
KR102252617B1 (ko) 데이터 전송 방법 및 이를 구현하는 장치
JP6259674B2 (ja) 携帯端末、プログラム及びダウンロードデータ消去方法
US11287873B2 (en) Sensing device and control method
CN106354236B (zh) 一种功率分配方法及终端
CN111386002B (zh) 一种无线热点装置及隔离发热器件的实现方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902815

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902815

Country of ref document: EP

Kind code of ref document: A1