WO2017200418A1 - Use of (1s,3ar,4r,7as)-n-(2,2,4,7a-tetramethyloctahydro-1,4-ethanoindene-3a-yl)-acetamide as an inhibitor of influenza virus reproduction - Google Patents

Use of (1s,3ar,4r,7as)-n-(2,2,4,7a-tetramethyloctahydro-1,4-ethanoindene-3a-yl)-acetamide as an inhibitor of influenza virus reproduction Download PDF

Info

Publication number
WO2017200418A1
WO2017200418A1 PCT/RU2017/000281 RU2017000281W WO2017200418A1 WO 2017200418 A1 WO2017200418 A1 WO 2017200418A1 RU 2017000281 W RU2017000281 W RU 2017000281W WO 2017200418 A1 WO2017200418 A1 WO 2017200418A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
influenza virus
influenza
virus
inhibitor
Prior art date
Application number
PCT/RU2017/000281
Other languages
French (fr)
Russian (ru)
Inventor
Ольга Ивановна ЯРОВАЯ
Анна Андреевна ШТРО
Яна Рафаэлевна ОРШАНСКАЯ
Владимир Викторович ЗАРУБАЕВ
Вениамин Абрамович ХАЗАНОВ
Нариман Фаридович САЛАХУТДИНОВ
Original Assignee
Общество С Ограниченной Ответственностью "Дакор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Дакор" filed Critical Общество С Ограниченной Ответственностью "Дакор"
Publication of WO2017200418A1 publication Critical patent/WO2017200418A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions

Definitions

  • the invention relates to chemistry and medicine, namely to medicines, in particular, to the known compound (l S, 3aR, 4R, 7aS) -N- (2,2,4,7- tetramethyl octahydro-1, 4-ethanoinden-Za- il) -acetamide of the formula I (including its spatial isomes, including optically active forms):
  • Influenza is an acute infectious disease of the respiratory tract caused by an RNA-containing virus of high epidemiological and clinical significance with a high incidence of complications among high-risk individuals.
  • Influenza viruses and other acute respiratory viral infections cause massive outbreaks of disease, which take on an epidemic almost every year. From 27 to 41 million cases of these diseases are registered annually, in particular, from 5 to 15% of the Russian population is ill with the flu annually. Influenza and SARS remain virtually uncontrolled diseases due to the high variability of the antigenic structure of circulating influenza viruses and the heterogeneity of the SARS pathogens. In addition, influenza viruses and other acute respiratory viral infections are able to change their properties and pathogenicity. The latest example of such changes is the HlNlpdm09 influenza pathogen that circulates in the 2009–2010 epidemic season. It is called “swine flu,” the same strain of the virus caused an epidemic in the 2015–2016 season.
  • Antiviral agents for treating influenza are an extremely limited group of drugs, and most of them are known to have resistance to viruses.
  • the creation of antiviral drugs is the immediate prospect of the development of medical science in the field of the development of means for the treatment and prevention of viral infections [Eropkin M.Yu., Zarubaev V.V. The current state of development of new antiviral drugs against influenza and SARS // Pharmaceutical Bulletin. - 2012. N2I. - C 68].
  • the antigenic structure of the virus is highly susceptible to changes as a result of the selective pressure of the host’s immune system.
  • viral neuraminidase inhibitors prevent the virions from accessing target cells by blocking the neuraminidase cleavage of mucopolysaccharides of the mucus of the upper respiratory tract. The practice of using neuraminidase inhibitors in the treatment of influenza has shown that the high effectiveness of this group of drugs is limited by the early stage of the disease.
  • Anti-influenza drugs of a different mechanism of action are also known, for example, the drug Remantadine ( ⁇ -methyl-1-adamantylmethylamine hydrochloride) and Amantadine (1-aminoadamantane) [Davies, WL; Grunert, RR; Haff, RF; McGahen, JW; Neumayer, EM; Paulshock, M .; Watts, JC; Wood, TR; Hermann, EC; Hoffmann, CE Antiviral Activity of 1 - Adamantanamine (Amantadine) // Science. - 1964. - V. 144. P. 862].
  • Adamantane preparations are significantly cheaper and easier to manufacture than commercially available neuraminidase inhibitors, which makes them more affordable for the treatment and prevention of influenza in the population.
  • their antiviral properties against influenza A viruses have been significantly lost.
  • scaffolds remain attractive as the basis for the design of antiviral drugs. So, it is known a tool based on deutiforin (2- (G-aminoethyl) bicyclo [2.2.1] heptane, which is one of the most interesting drugs based on natural bicyclic framework compounds - bornanes [Patent RU 2448692 C2, op. 27.04.2012].
  • the closest prototype to the claimed compound is remantadine, which is methyl tricyclo hydrochloride [3.3.1.1 /. 7 decane-1-methanamine of formula II.
  • a disadvantage of the known compound is its low antiviral activity, caused by the resistance of the vast majority of influenza strains to this drug.
  • the objective of the invention is to identify a new effective inhibitor of reproduction of influenza virus, which can be synthesized from available reagents.
  • Compound I is described in [O. I. Yarovaya, D.V. Korchagina, T.V. Rybalova, Yu.V. Gatilov, M.P. Half, V.A. Barkhash. Interaction of karyofillen, isocariophilen and their epoxy derivatives with acetonitrile under the conditions of the Ritter reaction ⁇ ZhOKh 2004, 40, 1 1, 1641 -1646].
  • the proposed compound can be obtained as follows:
  • Isocariophyllene is used as the starting material for the synthesis of the target compound I. It was shown that the dissolution of isocariophilen in the acetonitrile-sulfuric acid system, followed by treatment with an aqueous solution of sodium carbonate, leads to the formation of the optically active compound (I) as the main product. The structure of the obtained compound was established by x-ray diffraction analysis. The reaction proceeds with a fairly good yield, the isolation of the target compound I occurs by crystallization from a solvent, it is sufficient to wash with hexane to purify the target compound.
  • Isocariophyllene a natural sesquiterpenoid found in many essential oils and larch bark, is a stable cis isomer of karyofillen, the more common sesquiterpenic hydrocarbon in nature.
  • Karyofillen is found in many essential oils: buds and stems of cloves, copaib balsam. Ceylon cinnamon, West Indian sandalwood, catnip (14%), as well as lavender, thyme, pepper, pimento.
  • Karyofillen is obtained as a by-product of the separation of eugenol from clove oil
  • isocaryophyllene is obtained by isomerization of caryophyllene.
  • the backbone of compound I coincides with the backbone of the natural ginsenol alcohol isolated from Panax ginseng ginseng root (Iwabuchi, H.; Yoshikura, M .; Kamisako, W. Studies on the sesquiterpenoids of Panax ginseng CA Meyer. II. Isolation and structure determination of insenol, a novel sesquiterpene alcohol Chem. Pharm. Bull. 1988, 36, 2447).
  • the obtained quantitative indicators of inhibition confirm the high activity in suppressing the replication of influenza virus in the MDCK cell culture by compound I, which is 120 times or more higher than that of the reference standards amantadine and remantadine.
  • the use of adamantane derivatives as comparison preparations is due to the similarity of structures: the presence of frame structural fragments in both compound I and comparison standards.
  • the LD50 of compound I exceeds 5000 mg / kg body weight, which confirms the low toxicity of these compounds.
  • MDCK cells were seeded in 96-well plates and cultured at 37 ° C in MEM medium supplemented with 10% cattle serum in an atmosphere of 5% CO2 (in a Sanyo-175 gas flow incubator) to a monolayer state.
  • a stock solution of a concentration of 10 mg / ml in dimethyl sulfoxide was prepared from the test compound, after which a series of twofold dilutions of the preparations in MEM medium from 1000 to 3.75 mg / ml was prepared. The dissolved preparation was added to the wells of the plates and incubated for 2 days at 37 ° C.
  • the cells were washed 2 times for 5 minutes with phosphate-buffered saline, and the number of living cells was estimated using a microtetrazolium test (MTT).
  • MTT microtetrazolium test
  • 100 ⁇ l of a solution (5 mg / ml) of 3- (4,5-dimethylthiazolyl-2) 2,5-diphenyltetrazolium bromide (ICN Biochemicals Inc., Aurora, Ohio) in physiological saline was added to the wells of the plates. Cells were incubated at 37 ° C in an atmosphere of 5% CO2 for 2 hours and washed 5 minutes with phosphate-buffered saline.
  • the precipitate was dissolved in 100 ⁇ l per well of DMSO, after which the absorbance in the wells of the plates was measured on a Victor 1420 multifunction reader (Perkin Elmer, Finland) at a wavelength of 535 nm. According to the test results, a 50% cytotoxic dose (CTD50) was determined for each product, i.e. the concentration of the compound that causes the death of 50% of the cells in the culture. The results are shown in the table.
  • Example 3 The study of the antiviral activity of drugs on two types of viruses.
  • MDCK in 96 well cell culture plates The compound was dissolved in a supporting medium for cells, introduced into the wells of the panels with a cell monolayer and incubated for 1 hour at 36 ° C in an atmosphere of 5% CO2.
  • a series of ten-fold dilutions from 10-1 to 10-7 were prepared added to the wells with the preparations and incubated at 36 ° C for 48 hours in an atmosphere of 5% CO2.
  • 100 ⁇ l of culture fluid was mixed with an equal volume of 1% chicken red blood cells in separate round-bottom plates. Analysis was carried out after 60 minutes of incubation at 20 ° C.
  • titer of the virus For the titer of the virus, the reciprocal of the decimal logarithm of the highest dilution of the original virus, capable of inducing a positive hemagglutination reaction in the well, was taken and expressed in the amount of 50% of infectious doses (ID50). Virus-inhibitory effect of the studied compounds was evaluated by reducing the titer of the virus in the experiment compared with the control. Based on the data obtained, a 50% inhibitory dose of ED50 was calculated, that is, the concentration of the drug that halves the level of viral replication (by 0.3 log ID50), and the chemotherapeutic index, or selectivity index (SI), which is the ratio of CTD50 to ED50.
  • SI selectivity index

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to the field of medicine and concerns a (1S,3aR,4R,7aS)-N-(2,2,4,7a-tetramethyloctahydro-1,4-ethanoindene-3a-yl)-acetamide compound of formula I, including spatial isomers thereof, including optically active forms. Proposed is the use of the indicated compound as an inhibitor of influenza virus reproduction. Technical result: the compound of formula I inhibits the replication of rimantidine-resistant A/California/07/09 (H1N1)pdm09 and A/Puerto Rico/8/34 (H1N1) influenza virus; the chemotherapeutic index of the compound significantly exceeds that of comparator drugs; the compound provides improved suppression of influenza virus replication and broadens the range of influenza virus reproduction inhibitors available to overcome drug resistance in modern viral strains.

Description

ПРИМЕНЕНИЕ (18,За ,4К,7а8)-^(2,2,4,7а-ТЕТРАМЕТИЛОКТАГИДРО-1,4- ЭТАНОИНДЕН-За-ИЛ)-АЦЕТАМИДА В КАЧЕСТВЕ ИНГИБИТОРА  APPLICATION (18, Za, 4K, 7a8) - ^ (2,2,4,7a-TETRAMETHYL-HYDRO-1,4-ETHANOINDEN-ZA-IL) -ATSETAMIDE AS AN INHIBITOR
РЕПРОДУКЦИИ ВИРУСА ГРИППА  REPRODUCTION OF VIRUS INFLUENZA
Область техники, к которой относится изобретение FIELD OF THE INVENTION
Изобретение относится к химии и медицине, а именно к лекарственным средствам, конкретно, к известному соединению (l S,3aR,4R,7aS)-N-(2,2,4,7a- тетраметилоктагидро-1 ,4-этаноинден-За-ил)-ацетамиду формулы I (включая его пространственные изоме ы, в том числе оптически активные формы):  The invention relates to chemistry and medicine, namely to medicines, in particular, to the known compound (l S, 3aR, 4R, 7aS) -N- (2,2,4,7- tetramethyl octahydro-1, 4-ethanoinden-Za- il) -acetamide of the formula I (including its spatial isomes, including optically active forms):
Figure imgf000003_0001
у которого выявлена биологическая активность, заключающаяся в ингибировании репродукции вируса гриппа.
Figure imgf000003_0001
in which the biological activity of inhibiting the reproduction of the influenza virus has been identified.
Предшествующий уровень техники  State of the art
Грипп - острое инфекционное заболевание дыхательных путей, вызываемое РНК-содержащим вирусом, имеющим высокую эпидемиологическую и клиническую значимость с высокой частотой осложнений среди лиц повышенного уровня риска.  Influenza is an acute infectious disease of the respiratory tract caused by an RNA-containing virus of high epidemiological and clinical significance with a high incidence of complications among high-risk individuals.
Вирусы гриппа и других острых респираторных вирусных инфекций (ОРВИ) вызывают массовые вспышки заболеваний, принимающие почти ежегодно характер эпидемий. Ежегодно регистрируется от 27 до 41 млн. случаев этих заболеваний, в частности гриппом переболевает от 5 до 15% населения России в год. Грипп и ОРВИ остаются практически неконтролируемыми заболеваниями из-за высокой изменчивости антигенной структуры циркулирующих вирусов гриппа и гетерогенности возбудителей ОРВИ. Кроме того, вирусы гриппа и других ОРВИ способны изменять свои свойства и патогенность. Последним примером таких изменений является возбудитель гриппа HlNlpdm09, циркулирующий в эпидемический сезон 2009-2010 гг.. получивший название «свиной грипп», этот же штамм вируса вызвал эпидемию в сезон 2015-2016 гг.  Influenza viruses and other acute respiratory viral infections (SARS) cause massive outbreaks of disease, which take on an epidemic almost every year. From 27 to 41 million cases of these diseases are registered annually, in particular, from 5 to 15% of the Russian population is ill with the flu annually. Influenza and SARS remain virtually uncontrolled diseases due to the high variability of the antigenic structure of circulating influenza viruses and the heterogeneity of the SARS pathogens. In addition, influenza viruses and other acute respiratory viral infections are able to change their properties and pathogenicity. The latest example of such changes is the HlNlpdm09 influenza pathogen that circulates in the 2009–2010 epidemic season. It is called “swine flu,” the same strain of the virus caused an epidemic in the 2015–2016 season.
Противовирусные средства для лечения гриппа представляют собой крайне ограниченную группу лекарственных препаратов, причем для большинства из них известна резистентность к ним вирусов. Создание противовирусных препаратов - это ближайшая перспектива развития медицинской науки в области создания средств лечения и профилактики вирусных инфекций [Еропкин М.Ю., Зарубаев В. В. Современное состояние разработок новых антивирусных препаратов против гриппа и ОРВИ // Фармацевтический бюллетень. - 2012. N2I . - С 68]. Благодаря особенностям организации генома (отсутствие механизма коррекции ошибок репликации) и короткому жизненному циклу вирус гриппа обладает высокой скоростью мутаций. Как результат, антигенная структура вируса в высокой степени подвержена изменениям в результате селективного давления иммунной системы организма-хозяина. Кроме того, применение химиопрепаратов воспринимается вирусом как фактор селекции, в результате чего также происходит формирование устойчивых штаммов. Эти два процесса приводят к появлению вариантов вирусов, способных избегать как активности нейтрализующих антител, и тем самым ускользать от иммунного ответа организма, так и преодолевать действие химиопрепаратов, направленных на определенный этап репродукции вируса. При этом каждый тип вируса имеет свой механизм приспособления к химическому препарату [Ison M.G. Antivirals and resistance: influenza virus // Current Opinion in Virology - 201 1 , - V 1. P. 563-573]. Antiviral agents for treating influenza are an extremely limited group of drugs, and most of them are known to have resistance to viruses. The creation of antiviral drugs is the immediate prospect of the development of medical science in the field of the development of means for the treatment and prevention of viral infections [Eropkin M.Yu., Zarubaev V.V. The current state of development of new antiviral drugs against influenza and SARS // Pharmaceutical Bulletin. - 2012. N2I. - C 68]. Due to the features of the genome organization (lack of a mechanism for correcting replication errors) and the short life cycle, the influenza virus has a high mutation rate. As a result, the antigenic structure of the virus is highly susceptible to changes as a result of the selective pressure of the host’s immune system. In addition, the use of chemotherapy is perceived by the virus as a selection factor, as a result of which the formation of resistant strains also occurs. These two processes lead to the appearance of variants of viruses that can avoid both the activity of neutralizing antibodies, and thereby escape from the body's immune response, and overcome the effect of chemotherapy drugs aimed at a certain stage of virus reproduction. Moreover, each type of virus has its own mechanism of adaptation to a chemical preparation [Ison MG Antivirals and resistance: influenza virus // Current Opinion in Virology - 201 1, - V 1. P. 563-573].
Известны ингибиторы нейраминидазы, зарегистрированные в России: Known neuraminidase inhibitors registered in Russia:
Озельтамивир (Тамифлю) и Занамивир (Реленза), а также используемые в США: Перамивир (Рапиакта) и Ланинамивир (Инавир), которые действуют на этапе почкования вновь синтезированных вирионов гриппа из оболочки клетки, блокируя отщепление частиц вирусного потомства от поверхности клеток [Ison M.G. Clinical use of approved influenza antivirals: therapy and prophylaxis. // Influenza Other Respi Viruses. 2013;7 Suppl 1 : 7-13]. Кроме того, ингибиторы вирусной нейраминидазы препятствуют доступу вирионов к клеткам-мишеням, блокируя нейраминидазное расщепление мукополисахаридов слизи верхних дыхательных путей. Практика применения ингибиторов нейраминидазы в лечении гриппа показала, что высокая эффективность этой группы препаратов ограничена ранней стадией заболевания. Oseltamivir (Tamiflu) and Zanamivir (Relenza), as well as those used in the USA: Peramivir (Rapiakta) and Laninamivir (Inavir), which act at the stage of budding newly synthesized influenza virions from the cell membrane, blocking the cleavage of particles of viral offspring from the cell surface [Ison M.G. Clinical use of approved influenza antivirals: therapy and prophylaxis. // Influenza Other Respi Viruses. 2013; 7 Suppl 1: 7-13]. In addition, viral neuraminidase inhibitors prevent the virions from accessing target cells by blocking the neuraminidase cleavage of mucopolysaccharides of the mucus of the upper respiratory tract. The practice of using neuraminidase inhibitors in the treatment of influenza has shown that the high effectiveness of this group of drugs is limited by the early stage of the disease.
Известны также противогриппозные препараты другого механизма действия, например препарат Ремантадин (α-метил- 1 -адамантилметиламина гидрохлорид) и Амантадин (1-аминоадамантан) [Davies, W.L.; Grunert, R.R.; Haff, R.F.; McGahen, J.W.; Neumayer, E.M; Paulshock, M.; Watts, J.C; Wood, T.R.; Hermann, E.C; Hoffmann, C.E. Antiviral Activity of 1 - Adamantanamine (Amantadine) // Science. - 1964. - V. 144. P. 862]. Данные соединения блокируют белок М2 вируса гриппа, препятствуя тем самым процессу расщепления гемагглютинина, слиянию мембран вируса и лизосомальной вакуоли и процессу «раздевания» вируса [Scholtissek С, Quack G., Klenk H.D., Webster R.G. // Antiviral Res. 1998, V. 37, P. 83-95]. Механизм действия этих препаратов изучен достаточно полно [Cady S.D., Schmidt-Rohr К., Wang J., Soto C.S., DeGrado W.F., Hong M.H. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers // Nature. 2010. Vol. 463. P. 689-692]. Адамантановые препараты значительно дешевле и проще в производстве, чем коммерчески доступные ингибиторы нейраминидазы, что делает их более доступными для лечения и профилактики гриппа среди населения. Однако в настоящее время в результате широкого использования адамантановых препаратов значительно утрачены их противовирусные свойства в отношении вирусов гриппа А. Тем не менее, каркасные соединения остаются привлекательными в качестве основы для дизайна противовирусных препаратов. Так, известно средство на основе дейтифорина (2-(Г-аминоэтил)бицикло[2.2.1 ]гептана, являющееся одним из наиболее интересных препаратов на основе природных бициклических каркасных соединений - борнанов [Патент RU 2448692 С2, оп. 27.04.2012]. Anti-influenza drugs of a different mechanism of action are also known, for example, the drug Remantadine (α-methyl-1-adamantylmethylamine hydrochloride) and Amantadine (1-aminoadamantane) [Davies, WL; Grunert, RR; Haff, RF; McGahen, JW; Neumayer, EM; Paulshock, M .; Watts, JC; Wood, TR; Hermann, EC; Hoffmann, CE Antiviral Activity of 1 - Adamantanamine (Amantadine) // Science. - 1964. - V. 144. P. 862]. These compounds block the influenza virus M2 protein, thereby inhibiting the process of hemagglutinin cleavage, fusion of the virus and lysosomal vacuole membranes and the virus “undressing process” [Scholtissek C, Quack G., Klenk HD, Webster RG // Antiviral Res. 1998, V. 37, P. 83-95]. The mechanism of action of these drugs has been studied quite fully [Cady SD, Schmidt-Rohr K., Wang J., Soto CS, DeGrado WF, Hong MH Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers // Nature. 2010. Vol. 463. P. 689-692]. Adamantane preparations are significantly cheaper and easier to manufacture than commercially available neuraminidase inhibitors, which makes them more affordable for the treatment and prevention of influenza in the population. However, currently, as a result of the widespread use of adamantane preparations, their antiviral properties against influenza A viruses have been significantly lost. However, scaffolds remain attractive as the basis for the design of antiviral drugs. So, it is known a tool based on deutiforin (2- (G-aminoethyl) bicyclo [2.2.1] heptane, which is one of the most interesting drugs based on natural bicyclic framework compounds - bornanes [Patent RU 2448692 C2, op. 27.04.2012].
Наиболее близким к заявляемому соединению прототипом является ремантадин, представляющий собой гидрохлорид метилтрицикло[3.3.1.1 /.7]декан-1 -метанамина формулы II.  The closest prototype to the claimed compound is remantadine, which is methyl tricyclo hydrochloride [3.3.1.1 /. 7 decane-1-methanamine of formula II.
Figure imgf000005_0001
Figure imgf000005_0001
Недостатком известного соединения является невысокая противовирусная активность, вызванная резистентностью подавляющего большинства штаммов гриппа к этому препарату. A disadvantage of the known compound is its low antiviral activity, caused by the resistance of the vast majority of influenza strains to this drug.
Сущность изобретения  SUMMARY OF THE INVENTION
Задачей изобретения является выявление нового эффективного ингибитора репродукции вируса гриппа, которое может быть синтезировано из доступных реагентов.  The objective of the invention is to identify a new effective inhibitor of reproduction of influenza virus, which can be synthesized from available reagents.
Технический результат: повышение эффективности подавления репродукции вируса гриппа и расширение ассортимента ингибиторов репродукции вируса гриппа для преодоления лекарственной устойчивости современных вирусных штаммов.  Effect: increasing the efficiency of suppressing reproduction of the influenza virus and expanding the range of inhibitors of reproduction of the influenza virus to overcome the drug resistance of modern viral strains.
Поставленная задача решается применением известного соединения, представляющего собой (18,ЗаК,4 ,7а8)- -(2,2,4,7а-тетраметилоктагидро-1 ,4- этаноинден-За-ил)-ацетамида I (включая его пространственные изомеры, в том числе оптически активные формы):
Figure imgf000006_0001
The problem is solved by the use of the known compound, which is (18, ZaK, 4, 7a8) - - (2,2,4,7a-tetramethyl octahydro-1, 4-ethanoinden-Za-yl) -acetamide I (including its spatial isomers, including optically active forms):
Figure imgf000006_0001
t  t
у которого выявлена новая биологическая активность, заключающаяся в ингибирующем действии на репродукцию вируса гриппа.  which revealed a new biological activity, consisting in the inhibitory effect on the reproduction of influenza virus.
Соединение I описано в работе [О. И. Яровая, Д.В. Корчагина, Т. В. Рыбалова, Ю.В. Гатилов, М.П. Половинка, В.А.Бархаш. Взаимодействие кариофиллена, изокариофиллена и их эпоксипроизводных с ацетонитрилом в условиях реакции Риттера \\ ЖОрХ 2004, 40, 1 1 , 1641 -1646].  Compound I is described in [O. I. Yarovaya, D.V. Korchagina, T.V. Rybalova, Yu.V. Gatilov, M.P. Half, V.A. Barkhash. Interaction of karyofillen, isocariophilen and their epoxy derivatives with acetonitrile under the conditions of the Ritter reaction \\ ZhOKh 2004, 40, 1 1, 1641 -1646].
Предлагаемое соединение может быть получено следующим образом:  The proposed compound can be obtained as follows:
В качестве исходного для синтеза целевого соединения I используют изокариофиллен. Было показано, что растворение изокариофиллена в системе ацетонитрил-серная кислота, с последующей обработкой водным раствором углекислого натрия приводит к образованию в качестве основного продукта оптически активного соединения (I). Структура полученного соединения была установлена методом рентгеноструктурного анализа. Реакция идет с достаточно хорошим выходом, выделение целевого соединения I происходит путем выкристаллизации из растворителя, для очистки целевого соединения достаточно провести промывку гексаном.  Isocariophyllene is used as the starting material for the synthesis of the target compound I. It was shown that the dissolution of isocariophilen in the acetonitrile-sulfuric acid system, followed by treatment with an aqueous solution of sodium carbonate, leads to the formation of the optically active compound (I) as the main product. The structure of the obtained compound was established by x-ray diffraction analysis. The reaction proceeds with a fairly good yield, the isolation of the target compound I occurs by crystallization from a solvent, it is sufficient to wash with hexane to purify the target compound.
Figure imgf000006_0002
Figure imgf000006_0002
изокариофиллен  isocariophilen
Изокариофиллен - природный сесквитерпеноид, обнаруженный во многих эфирных маслах и коре лиственницы, является устойчивым цис-изомером кариофиллена - более распространенного в природе сесквитерпенового углеводорода. Кариофиллен обнаружен во многих эфирных маслах: бутонов и стеблей гвоздики, бальзама копаиба. цейлонской корицы, западно-индийского сандалового дерева, котовника (14%), а также лаванды, чабреца, перца, пименты. Кариофиллен получают как побочный продукт при выделении эвгенола из гвоздичного масла, изокариофиллен получают изомеризацией кариофиллена. Остов соединения I совпадает с остовом природного спирта гинсенола, выделенного из корня женьшеня Panax ginseng (Iwabuchi, Н.; Yoshikura, М.; Kamisako, W. Studies on the sesquiterpenoids of Panax ginseng C.A. Meyer. II. Isolation and structure determination of insenol, a novel sesquiterpene alcohol Chem. Pharm. Bull. 1988, 36, 2447). Isocariophyllene, a natural sesquiterpenoid found in many essential oils and larch bark, is a stable cis isomer of karyofillen, the more common sesquiterpenic hydrocarbon in nature. Karyofillen is found in many essential oils: buds and stems of cloves, copaib balsam. Ceylon cinnamon, West Indian sandalwood, catnip (14%), as well as lavender, thyme, pepper, pimento. Karyofillen is obtained as a by-product of the separation of eugenol from clove oil, and isocaryophyllene is obtained by isomerization of caryophyllene. The backbone of compound I coincides with the backbone of the natural ginsenol alcohol isolated from Panax ginseng ginseng root (Iwabuchi, H.; Yoshikura, M .; Kamisako, W. Studies on the sesquiterpenoids of Panax ginseng CA Meyer. II. Isolation and structure determination of insenol, a novel sesquiterpene alcohol Chem. Pharm. Bull. 1988, 36, 2447).
Figure imgf000007_0001
Figure imgf000007_0001
Glnsenol  Glnsenol
Исследования биологической активности соединения I, проведенные в отношении вируса гриппа, показали крайне высокую эффективность данного вещества как ингибитора репродукции этого вируса. Studies of the biological activity of compound I in relation to the influenza virus have shown the extremely high effectiveness of this substance as an inhibitor of the reproduction of this virus.
Полученные количественные показатели ингибирования подтверждают высокую активность при подавлении репликации вируса гриппа в культуре клеток MDCK соединением I, превышающую тот же показатель у эталонов сравнения - амантадина и ремантадина в 120 и более раз. Использование в качестве препаратов сравнения адамантановых производных обусловлено сходством структур: наличием каркасных структурных фрагментов как в соединении I, так и в эталонах сравнения.  The obtained quantitative indicators of inhibition confirm the high activity in suppressing the replication of influenza virus in the MDCK cell culture by compound I, which is 120 times or more higher than that of the reference standards amantadine and remantadine. The use of adamantane derivatives as comparison preparations is due to the similarity of structures: the presence of frame structural fragments in both compound I and comparison standards.
Для соединения I проведено изучение токсичности in vivo. Было показано, что For compound I, an in vivo toxicity study was performed. It has been shown that
LD50 соединения I превышает 5000 мг/кг веса, что подтверждает низкую токсичность данных соединений. The LD50 of compound I exceeds 5000 mg / kg body weight, which confirms the low toxicity of these compounds.
Изобретение иллюстрируется следующими примерами:  The invention is illustrated by the following examples:
Пример 1. Получение 1 ,7,7-триметилбицикло[2.2.1]гептан-2-илиден- аминоэтанола.  Example 1. Preparation of 1, 7,7-trimethylbicyclo [2.2.1] heptan-2-ylidene-aminoethanol.
Превращение изокариофиллена в системе ацетонитрил-серная кислота. К раствору 0.5 г изокариофиллена в 10 мл ацетонитрила при перемешивании добавляли 0.2 мл серной кислоты, перемешивали 5 мин, реакционную смесь нейтрализовали насыщенным раствором Na2C03. Из органического слоя при стоянии выпадают белые игольчатые кристаллы соединения (I) (т. пл. 213-214°С). Продукт реакции отфильтровали, промыли гексаном, масса выкристаллизовавшегося соединения (I) 0.38 г, масса органического экстракта, содержащего, по данным ГХ/МС, 71% амида (I) - 0.18 г. The conversion of isocaryophylline in the acetonitrile-sulfuric acid system. To a solution of 0.5 g of isocariophyllene in 10 ml of acetonitrile, 0.2 ml of sulfuric acid was added with stirring, stirred for 5 min, the reaction mixture was neutralized with a saturated solution of Na 2 C0 3 . White needle crystals of compound (I) precipitate from the organic layer upon standing (mp 213-214 ° С). The reaction product was filtered, washed with hexane, the mass of the crystallized compound (I) 0.38 g, the mass of the organic extract containing, according to GC / MS, 71% amide (I) - 0.18 g.
(15,ЗаК,4К,7а5)-К-(2,2,4,7а-тетраметилоктагидро-1 ,4-этаноинден-За-ил)- ацетамид (I). Спектр ЯМ? 1 н (δ, м. д., J, Гц): 0.80 с (С 12НЗ), 1.03 с и 1.19 с (С 13НЗ, С14НЗ), 1.10 с (С15НЗ), 1.12 м (НИ ), 1.24-1.35 м (2Н, Н2, Н9), 1.37 д.д (Н4, J4,3'3.5, J4.3 2.5), 1.41-1.64 м (4H, HI , НЗ, НИ ', Η2'), 1.75-1.93 м (ЗН, ΗΙ Ο', Н9*, НЗ'), 1.94 с (С18НЗ), 2.28 д и 2.36 д (2Н6, J6,6'15) - система АВ, 5.45 ш.с (HI 6). Спектр ЯМР 13С (δ. м. д.): 40.15 с (С1), 33.62 т (С2), 25.86 т (СЗ), 56.08 д (С4), 36.41 с (С5), 45.05 т (С6), 68.07 с (С7), 45.83 с (С8), 33.68 т (С9), 21.43 т (С Ю), 34.88 т (C I 1 ), 26.85 к (С 12), 28.16 к и 34.07 к (С13, С14), 30.52 к (С15), 169.48 с (С17), 24.26 к (С18). Элементный состав. Найдено, m/z: 263.22516 [М]+. C17H29NO. Вычислено: 263.22490. ИК-спектр v (СС14, см-1): 1670.1 (С=0), 3440.8 (N-H). (15, ZaK, 4K, 7a5) -K- (2,2,4,7a-tetramethyl octahydro-1, 4-ethanoinden-Za-yl) - acetamide (I). NM spectrum? 1 n (δ, ppm, J, Hz): 0.80 s (С 12НЗ), 1.03 s and 1.19 s (С 13НЗ, С14НЗ), 1.10 s (С15НЗ), 1.12 m (NI), 1.24-1.35 m (2H, H2, H9), 1.37 dd (H4, J4.3'3.5, J4.3 2.5), 1.41-1.64 m (4H, HI, NZ, NI ', Η2'), 1.75-1.93 m (ZN, ΗΙ Ο ', N9 * , NZ'), 1.94 s (S18NZ), 2.28 d and 2.36 d (2H6, J6.6'15) - system AB, 5.45 bs (HI 6). 13C NMR spectrum (δ ppm): 40.15 s (C1), 33.62 t (C2), 25.86 t (C3), 56.08 d (C4), 36.41 s (C5), 45.05 t (C6), 68.07 s (C7), 45.83 s (C8), 33.68 t (C9), 21.43 t (C Yu), 34.88 t (CI 1), 26.85 k (C 12), 28.16 k and 34.07 k (C13, C14), 30.52 k (C15), 169.48 s (C17), 24.26 k (C18). Elemental composition. Found, m / z: 263.22516 [M] +. C17H29NO. Calculated: 263.22490. IR spectrum v (CC14, cm -1): 1670.1 (C = 0), 3440.8 (NH).
Пример 2. Изучение токсичности заявленного соединения I.  Example 2. The study of the toxicity of the claimed compound I.
Токсичность агентов была изучена в отношении клеток MDC . Клетки MDCK сеяли в 96-луночные планшеты и культивировали при 37°С в среде MEM с добавлением 10% сыворотки крупного рогатого скота в атмосфере 5% С02 (в газопроточном инкубаторе Sanyo- 175) до состояния монослоя. Из исследуемого соединения готовили маточный раствор концентрации 10 мг/мл в диметилсульфоксиде, после чего готовили серию двукратных разведений препаратов в среде MEM от 1000 до 3,75 мг/мл. Растворенный препарат вносили в лунки планшетов и инкубировали 2 суток при 37°С. По истечении этого срока клетки промывали 2 раза по 5 минут фосфатно- солевым буфером, и количество живых клеток оценивали при помощи микротетразолиевого теста (МТТ). С этой целью в лунки планшетов добавляли по 100 мкл раствора (5 мг/мл) 3-(4,5-диметилтиазолил-2) 2,5-дифенилтетразолия бромида (ICN Biochemicals Inc., Aurora, Ohio) на физиологическом растворе. Клетки инкубировали при 37°С в атмосфере 5% С02 в течение 2 часов и промывали 5 минут фосфатно-солевым буфером. Осадок растворяли в 100 мкл на лунку ДМСО, после чего оптическую плотность в лунках планшетов измеряли на многофункциональном ридере Victor 1420 (Perkin Elmer, Finland) при длине волны 535 нм. По результатам теста для каждого продукта определяли 50% цитотоксическую дозу (CTD50), т.е. концентрацию соединения, вызывающую гибель 50% клеток в культуре. Результаты приведены в таблице.  The toxicity of the agents has been studied for MDC cells. MDCK cells were seeded in 96-well plates and cultured at 37 ° C in MEM medium supplemented with 10% cattle serum in an atmosphere of 5% CO2 (in a Sanyo-175 gas flow incubator) to a monolayer state. A stock solution of a concentration of 10 mg / ml in dimethyl sulfoxide was prepared from the test compound, after which a series of twofold dilutions of the preparations in MEM medium from 1000 to 3.75 mg / ml was prepared. The dissolved preparation was added to the wells of the plates and incubated for 2 days at 37 ° C. At the end of this period, the cells were washed 2 times for 5 minutes with phosphate-buffered saline, and the number of living cells was estimated using a microtetrazolium test (MTT). For this purpose, 100 μl of a solution (5 mg / ml) of 3- (4,5-dimethylthiazolyl-2) 2,5-diphenyltetrazolium bromide (ICN Biochemicals Inc., Aurora, Ohio) in physiological saline was added to the wells of the plates. Cells were incubated at 37 ° C in an atmosphere of 5% CO2 for 2 hours and washed 5 minutes with phosphate-buffered saline. The precipitate was dissolved in 100 μl per well of DMSO, after which the absorbance in the wells of the plates was measured on a Victor 1420 multifunction reader (Perkin Elmer, Finland) at a wavelength of 535 nm. According to the test results, a 50% cytotoxic dose (CTD50) was determined for each product, i.e. the concentration of the compound that causes the death of 50% of the cells in the culture. The results are shown in the table.
Пример 3. Изучение противовирусной активности препаратов на двух типах вирусов.  Example 3. The study of the antiviral activity of drugs on two types of viruses.
Определение противовирусной активности препарата проводили на клетках Determination of antiviral activity of the drug was performed on cells
MDCK в 96-луночных планшетах для клеточных культур. Соединение растворяли в поддерживающей среде для клеток, вносили в лунки панелей с клеточным монослоем и инкубировали в течение 1 часа при 36°С в атмосфере 5% С02. MDCK in 96 well cell culture plates. The compound was dissolved in a supporting medium for cells, introduced into the wells of the panels with a cell monolayer and incubated for 1 hour at 36 ° C in an atmosphere of 5% CO2.
Из вируссодержащей жидкости (штаммы A/Califprnia/07/09 (HlN l )pdm09 и A/Puerto Rico/8/34 (H1N1)) готовили серию десятикратных разведений от 10-1 до 10-7, добавляли в лунки с препаратами и инкубировали при 36°С в течение 48 часов в атмосфере 5% С02. По окончании срока инкубации 100 мкл культуральной жидкости смешивали с равным объемом 1 % куриных эритроцитов в отдельных планшетах с круглым дном. Учет результатов проводили через 60 минут инкубации при 20°С. За титр вируса принимали величину, обратную десятичному логарифму наибольшего разведения исходного вируса, способного вызвать положительную реакцию гемагглютинации в лунке, и выражали в количестве 50% инфекционных доз (ID50). Вирусингибирующее действие исследуемых соединений оценивали по снижению титра вируса в опыте по сравнению с контролем. На основании полученных данных рассчитывали 50% ингибирующую дозу ED50, то есть концентрацию препарата, снижающую уровень вирусной репликации вдвое (на 0.3 lg ID50), и химиотерапевтический индекс, или индекс селективности (SI), представляющий собой отношение CTD50 к ED50. From a virus-containing fluid (strains A / Califprnia / 07/09 (HlN l) pdm09 and A / Puerto Rico / 8/34 (H1N1)) a series of ten-fold dilutions from 10-1 to 10-7 were prepared added to the wells with the preparations and incubated at 36 ° C for 48 hours in an atmosphere of 5% CO2. At the end of the incubation period, 100 μl of culture fluid was mixed with an equal volume of 1% chicken red blood cells in separate round-bottom plates. Analysis was carried out after 60 minutes of incubation at 20 ° C. For the titer of the virus, the reciprocal of the decimal logarithm of the highest dilution of the original virus, capable of inducing a positive hemagglutination reaction in the well, was taken and expressed in the amount of 50% of infectious doses (ID50). Virus-inhibitory effect of the studied compounds was evaluated by reducing the titer of the virus in the experiment compared with the control. Based on the data obtained, a 50% inhibitory dose of ED50 was calculated, that is, the concentration of the drug that halves the level of viral replication (by 0.3 log ID50), and the chemotherapeutic index, or selectivity index (SI), which is the ratio of CTD50 to ED50.
В процессе исследования ингибирования репродукции вируса гриппа соединением I и эталонами сравнения (амантадином, ремантадином и дейтифорином) были получены результаты, приведенные в таблице.  In the study of the inhibition of reproduction of influenza virus by compound I and reference standards (amantadine, remantadine and deuteriforin), the results are shown in the table.
Таблица.  Table.
Figure imgf000009_0001
Figure imgf000009_0001
Из таблицы видно, что соединение I проявляет выраженную противовирусную активность наряду с низкой токсичностью. Химиотерапевтический индекс соединения I значительно превышает таковой у препаратов сравнения. Преимуществом данного соединения является его активность в отношении ремантадин-устойчивого штамма вируса гриппа A/California/07/09 (HlNl )pdm09. что свидетельствует о перспективности применения его для терапии современных эпидемически актуальных вирусов, подавляющее большинство которых устойчивы к ремантадину. The table shows that compound I exhibits a pronounced antiviral activity along with low toxicity. The chemotherapeutic index of compound I significantly exceeds that of comparison drugs. An advantage of this compound is its activity against the rimantadine-resistant strain of influenza virus A / California / 07/09 (HlNl) pdm09. which indicates the prospects its use for the treatment of modern epidemiologically relevant viruses, the vast majority of which are resistant to remantadine.
Пример 4.  Example 4
Исследования острой токсичности соединения выполнены на аутбредных мышах стока CD-I СПФ статуса. Исследуемое вещество в дозах 5000 мг/кг (6 мышей), 1000 мг/кг (6 мышей), 500 мг/кг (6 мышей) вводили в объеме 1 мл внутрижелудочно однократно в виде суспензии, носителем являлся водный 0,5% раствор карбоксиметилцеллюлозы. Во всех группах, получавших вещество, гибели животных не зафиксировано. В группе, получавшей максимальную дозу, погибло 1 животное. Таким образом, по результатам исследования можно говорить о том, что максимально переносимая доза составляет не менее 5000 мг/кг, a LD50 превышает 5000 мг/кг (per os, мыши, самки).  Studies of acute toxicity of the compound were performed on outbred mice of runoff CD-I SPF status. The test substance in doses of 5000 mg / kg (6 mice), 1000 mg / kg (6 mice), 500 mg / kg (6 mice) was administered in a volume of 1 ml intragastrically once in suspension, the carrier was an aqueous 0.5% solution of carboxymethyl cellulose . In all groups treated with the substance, the death of animals was not recorded. In the group receiving the maximum dose, 1 animal died. Thus, according to the results of the study, we can say that the maximum tolerated dose is at least 5000 mg / kg, and the LD50 exceeds 5000 mg / kg (per os, mice, females).

Claims

Формула изобретения Claim
Применение (18,ЗаК,4К,7а8)-Н-(2,2,4,7а-тетраметилоктагидро-1,4-этаноинден- )-ацетамида ормулы I: The use of (18, ZaK, 4K, 7a8) -H- (2,2,4,7a-tetramethyl octahydro-1,4-ethanoinden-) -acetamide of formula I:
Figure imgf000011_0001
в качестве ингибитора репродукции вируса гриппа.
Figure imgf000011_0001
as an inhibitor of the reproduction of influenza virus.
PCT/RU2017/000281 2016-05-16 2017-05-02 Use of (1s,3ar,4r,7as)-n-(2,2,4,7a-tetramethyloctahydro-1,4-ethanoindene-3a-yl)-acetamide as an inhibitor of influenza virus reproduction WO2017200418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2016118952A RU2616255C1 (en) 2016-05-16 2016-05-16 (1S,3aR,4R,7aS)-N-(2,2,4,7a-TETRAMETHYLOCTAHYDRO-1,4-ETHANOINDENE-3a-YL)-ACETAMIDE APPLICATION AS A INFLUENZA VIRUS REPRODUCTION INHIBITOR
RU2016118952 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017200418A1 true WO2017200418A1 (en) 2017-11-23

Family

ID=58642581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/000281 WO2017200418A1 (en) 2016-05-16 2017-05-02 Use of (1s,3ar,4r,7as)-n-(2,2,4,7a-tetramethyloctahydro-1,4-ethanoindene-3a-yl)-acetamide as an inhibitor of influenza virus reproduction

Country Status (2)

Country Link
RU (1) RU2616255C1 (en)
WO (1) WO2017200418A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057364A (en) * 1997-04-10 2000-05-02 Pfizer Inc Fluoro-substituted adamantane derivatives
RU2401263C2 (en) * 2008-09-10 2010-10-10 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Adamantane amino-derivatives having influenza virus inhibiting activity
WO2012065384A1 (en) * 2009-06-11 2012-05-24 辽宁利锋科技开发有限公司 Tromantadine compounds with adamantane structure, derivatives and analogs thereof, and their uses as anti-tumor pharmaceuticals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845124A (en) * 1968-07-10 1974-10-29 Ayerst Mckenna & Harrison Methyltricyclo(4.4.0.03.8)decan-1-methylamine
RU2281297C2 (en) * 2004-08-23 2006-08-10 Государственное учреждение Научно-исследовательский институт вирусологии им. Д.И. Ивановского Российской академии медицинских наук Polyanionic norbornan derivatives, method for production thereof and reproduction inhibitors of human immunogenicity virus based on the same
RU2448692C2 (en) * 2009-11-09 2012-04-27 Федеральное государственное бюджетное учреждение "Научно-исследовательский Институт гриппа" Министерства здравоохранения и социального развития Российской Федерации (ФГБУ "НИИ гриппа" Минздравсоцразвития России) Pharmaceutical salts of aminobicyclo[2,2,1]heptane as nf-kb transcription factor inhibitors with antiviral activity (versions) and using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057364A (en) * 1997-04-10 2000-05-02 Pfizer Inc Fluoro-substituted adamantane derivatives
RU2401263C2 (en) * 2008-09-10 2010-10-10 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Adamantane amino-derivatives having influenza virus inhibiting activity
WO2012065384A1 (en) * 2009-06-11 2012-05-24 辽宁利锋科技开发有限公司 Tromantadine compounds with adamantane structure, derivatives and analogs thereof, and their uses as anti-tumor pharmaceuticals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIBNEV V. A. ET AL.: "Nekotorye puti preodolenia rezistentnosti virusov grippa k preparatam adamantanovogo riada", KHIMIKO-FARMATSEVTICHESKY ZHURNAL, vol. 46, no. l, 2012, pages 3 - 7 *
YAROVAYA O.I. ET AL.: "Vzaimodeistvie ariofillena, izokariofillena i ikh epoksiproizvodnykh s atsetonitrilom v usloviyakh reaktsii Rittera", ZHURNAL ORGANICHESKOI KHIMII, vol. 40, no. 11, 2004, pages 1641 - 1646 *

Also Published As

Publication number Publication date
RU2616255C1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Shie et al. Development of effective anti-influenza drugs: congeners and conjugates–a review
Hossan et al. Antiviral activity of Embelia ribes Burm. f. against influenza virus in vitro
EP2128125B1 (en) Caffeoyl quinic acid derivatives containing nitrogen, and preparation method, pharmaceutically composition and usage thereof
Zoidis et al. Design and synthesis of bioactive adamantanaminoalcohols and adamantanamines
CN108473493B (en) Functionalized valeric acids for influenza virus infection
Teplov et al. Synthesis of new compounds combining adamantanamine and monoterpene fragments and their antiviral activity against influenza virus A (H1N1) pdm09
JP2021514967A (en) Crystal type, salt type and method for producing the pyridinoimidazole compound
WO2008153779A1 (en) Spiro and other derivatives of diamondoids possessing therapeutic activity in the treatment of viral disorders
RU2554934C1 (en) IMINE COMPOUNDS OF CAMPHOR - EFFECTIVE INHIBITORS OF REPRODUCTION OF FLU VIRUS (A/California/07/09 (H1N1)pdm09 STRAIN)
JP2022515570A (en) Treatment of influenza with substituted polycyclic pyridone derivatives and prodrugs thereof in subjects with influenza and complication risk factors
Mulongo et al. In silico screening of natural compounds from Jatropha curcas (Euphorbiaceae, Linn) and Jatropha gossypifolia (Euphorbiaceae, Linn) against SARS-CoV2, a COVID-19 main protease, using molecular docking approach
RU2520967C1 (en) SYMMETRIC DIIMINES BASED ON CAMPHOR - INHIBITORS OF REPRODUCTION OF INFLUENZA VIRUS (STRAIN A/California/07/09 (H1N1)pdm09)
RU2616255C1 (en) (1S,3aR,4R,7aS)-N-(2,2,4,7a-TETRAMETHYLOCTAHYDRO-1,4-ETHANOINDENE-3a-YL)-ACETAMIDE APPLICATION AS A INFLUENZA VIRUS REPRODUCTION INHIBITOR
RU2607451C1 (en) IMINE DERIVATIVES OF CAMPHOR, CONTAINING AROMATIC OR HETEROAROMATIC FRAGMENT - INHIBITORS OF REPRODUCTION OF FLU VIRUS (STRAIN A/CALIFORNIA/07/09(H1N1)pdm09)
JP2013512222A (en) Siarochimeric compounds
RU2530554C1 (en) Using 1,7,7-trimethylbicyclo[2,2,1]heptan-2-ylidene-aminoethanol as influenza virus reproduction inhibitor
TW201442719A (en) Use of Anisomeles indica (L.) Kuntze extract and purified products thereof against influenza virus
WO2017202113A1 (en) Use of rosmarinic acid-4-o-β-d-glucoside in preparing drug for preventing and treating influenza
CN107226810B (en) Indole derivatives, process for producing the same and anti-influenza virus effect thereof
RU2401263C2 (en) Adamantane amino-derivatives having influenza virus inhibiting activity
RU2649406C1 (en) 3-n-substituted bornyl propionates used as marburg virus inhibitors
RU2664331C1 (en) 6,13,13-trimethyl-6,8,9,12-tetrahydro-6,9-methanosepino[2,1-b]hinazolin-10(7h)-one as the inhibitor of influenza viruses
RU2568849C9 (en) Agent representing glycyrrhizic acid amide with 5-aminouracil showing antiviral activity on a/h1n1 influenza virus
RU2756587C9 (en) Derivatives of 2-acetamido-6-hydroxy-benzothiophene and their pharmacologically acceptable salts with antiviral activity
RU2697716C1 (en) Hydrochloride 1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 3-(piperidin-1-yl)propionate used as an ebola virus inhibitor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799741

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799741

Country of ref document: EP

Kind code of ref document: A1