WO2017199412A1 - 遮断器 - Google Patents

遮断器 Download PDF

Info

Publication number
WO2017199412A1
WO2017199412A1 PCT/JP2016/064972 JP2016064972W WO2017199412A1 WO 2017199412 A1 WO2017199412 A1 WO 2017199412A1 JP 2016064972 W JP2016064972 W JP 2016064972W WO 2017199412 A1 WO2017199412 A1 WO 2017199412A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
signal
output
current
microcomputer
Prior art date
Application number
PCT/JP2016/064972
Other languages
English (en)
French (fr)
Inventor
和久 松田
明宏 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16902431.2A priority Critical patent/EP3460932B1/en
Priority to JP2018518031A priority patent/JP6452895B2/ja
Priority to PCT/JP2016/064972 priority patent/WO2017199412A1/ja
Priority to CN201680085777.XA priority patent/CN109155517B/zh
Priority to KR1020187032821A priority patent/KR102085770B1/ko
Publication of WO2017199412A1 publication Critical patent/WO2017199412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/083Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for three-phase systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/027Details with automatic disconnection after a predetermined time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/044Checking correct functioning of protective arrangements, e.g. by simulating a fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • H02H3/0935Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means the timing being determined by numerical means

Definitions

  • This invention relates to a circuit breaker connected to an AC circuit, and more particularly to a circuit breaker incorporating an overcurrent tripping device operated by a microcomputer.
  • An overcurrent tripping device built in this type of circuit breaker calculates an overcurrent with a microcomputer (hereinafter referred to as a microcomputer) and performs tripping as necessary.
  • the current flowing in each phase of the circuit breaker is transformed by a current transformer and full-wave rectified for each phase by the rectifier.
  • the current after rectification is converted by the peak conversion and effective value conversion circuit, etc.
  • each timing circuit operates according to the current value, the trigger circuit outputs a trigger signal, excites the trip coil, and operates the switching mechanism.
  • the circuit breaker shown in Patent Document 1 is configured such that a current flowing through an electric circuit is detected by a current detection means, and a microcomputer generates a trip signal in accordance with the detected current value.
  • a current flowing through an electric circuit is detected by a current detection means, and a microcomputer generates a trip signal in accordance with the detected current value.
  • the microcomputer when the power supply voltage supplied to the microcomputer is low, the microcomputer becomes unstable as a technical problem, and when the power supply voltage exceeds a predetermined value, the microcomputer is reset to start. To make it work correctly.
  • the present invention has been made to solve the above-described problems.
  • an abnormal state of the microcomputer is detected and the microcomputer becomes a runaway state, the state is detected, and an erroneous trip due to a malfunction of the microcomputer is detected.
  • the purpose is to avoid trip inability.
  • the purpose is to avoid erroneous trips and inability to trip due to malfunction of microcomputer by duplicating current detection.
  • the first current detection circuit that detects the load current by the microcomputer according to the signal output from the current detection coil, and the second current that detects the load current from the output current of the power source CT.
  • the present invention adds a function to detect the load current from the power supply CT without detecting the current only with the current sensor and the microcomputer, thereby detecting the microcomputer's runaway state and erroneously tripping due to the microcomputer's abnormal alarm output or disturbance noise. And trip inability can be prevented.
  • FIG. 5 is a characteristic diagram showing characteristics of a dial set value and a reference voltage value in the first embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing characteristics of a dial set value and a reference voltage value when the power supply CT has saturation characteristics according to the first embodiment of the present invention.
  • FIG. 1 is an overall connection diagram of a reference voltage conversion circuit and an equivalent circuit of a dial setting output according to Embodiment 1 of the present invention. It is an internal circuit figure at the time of adding the reset function of a microcomputer to the tripping apparatus which has the function to detect the electric current in Embodiment 2 of this invention twice. It is an internal circuit figure in the case of having double the function which detects the overcurrent in Embodiment 3 of this invention.
  • FIG. 1 is a circuit diagram having double the function of detecting current of the overcurrent tripping device according to Embodiment 1 of the present invention.
  • the secondary output of the power supply CT1 is connected to the power supply circuit 4 and the current detection resistor 7 via the rectifier circuit 3.
  • the constant voltage generated by the power supply circuit 4 is a driving power supply for the signal conversion circuit 5 for transmitting the information of the load current detected by the current detection coil 2 (Rogowski coil), which is a current sensor, to the microcomputer 6, the microcomputer 6 Is supplied as a drive power source for the trip coil 28 having a function of opening the circuit breaker contact 29 for opening and closing the load current flowing in the electric circuit and turning off the circuit breaker body (not shown).
  • the microcomputer 6 receives the current signal from the signal conversion circuit 5 and determines the energization current of the breaker body.
  • the microcomputer 6 has terminals for outputting a microcomputer activation signal M1, a 60% energization detection signal M2, an LTD trip signal M3, an STD trip signal M4, and an INST trip signal M5.
  • the signals M1 to M5 at the respective terminals of the microcomputer 6 are When the energizing current reaches the current that can start the microcomputer 6, the signal M1 of the microcomputer starting signal terminal becomes Hi, and it is determined that the energizing current has reached 60% of the breaker rated current. In this case, the signal of the 60% energization detection signal M2 is set to Hi.
  • the operation time is divided into three regions of LTD (long time trip), STD (short time trip), and INST (instant trip) according to the magnitude of the energization current.
  • the detection current threshold values in the long time limit LTD, the short time limit STD, and the instantaneous INST region have a relationship of long time limit LTD ⁇ short time limit STD ⁇ instantaneous INST, and the characteristic setting unit 8 can vary the detection threshold value.
  • the time from when the microcomputer 6 outputs the long time LTD trip signal M3 to the instantaneous INST trip signal M5 after the detection threshold is exceeded is the longest time LTD, and the long time LTD> short time STD> instantaneous INST.
  • the operation time can be varied by the characteristic setting unit 8.
  • the reference voltage conversion circuit 9 determines whether the current value detected by the current detection resistor 7 exceeds 40% of the rated current of the breaker body, the current in the long time LTD region, the current in the short time STD region, the current INST region A reference voltage for determining whether a current is flowing is generated, and the threshold value can be varied by the characteristic setting unit 8 in the same manner as the threshold value of the detection current of the microcomputer 6.
  • the 40% energization signal K1 of the output signal of the 40% energization detection circuit 13 is Low at the start of energization, but the detected voltage of the current detection resistor 7 is the voltage V1 of the 40% energization reference voltage terminal of the reference voltage conversion circuit 9. If it exceeds, it becomes Hi.
  • the long time LTD energization signal K2 of the output signal of the long time LTD detection circuit 12 is obtained when the detection voltage of the current detection resistor 7 exceeds the voltage V2 of the long time LTD reference voltage terminal of the reference voltage conversion circuit 9. Becomes Hi.
  • the short time STD energization signal K3 of the output signal of the short time STD detection circuit 11 is obtained when the detection voltage of the current detection resistor 7 exceeds the voltage V3 of the short time STD reference voltage terminal of the reference voltage conversion circuit 9. Hi. Further, the instantaneous INST energization signal K4 of the output signal of the instantaneous INST detection circuit 10 becomes Hi when the detection voltage of the current detection resistor 7 exceeds the voltage V4 of the instantaneous INST reference voltage terminal of the reference voltage conversion circuit 9. .
  • the power supply CT 40% energization detection monitoring circuit 18 sets the output signal H1 to Hi when the 40% energization signal K1 of the output signal of the 40% energization detection circuit 13 is Hi and the microcomputer activation signal M1 is Low, and otherwise. Let's say Low.
  • the microcomputer 60% energization detection circuit 17 sets the output signal H2 to Hi when the 60% energization detection signal M2 is Hi and the 40% energization signal K1 of the output signal of the 40% energization detection circuit 13 becomes Low, Otherwise, it is Low.
  • the long time LTD alarm circuit 16 sets the output signal H3 to Hi when the long time LTD trip signal M3 is Hi and the long time LTD energization signal K2 of the output signal of the long time LTD detection circuit 12 is Low. Let it be Low.
  • the short time STD alarm circuit 15 sets the output signal H4 to Hi when the short time STD trip signal M4 is Hi and the short time STD energization signal K3 of the output signal of the short time STD detection circuit 11 is Low, otherwise Is Low.
  • the instantaneous INST alarm circuit 14 sets the output signal H5 to Hi when the instantaneous INST trip signal M5 is Hi and the instantaneous INST energization signal K4 of the output signal of the instantaneous INST detection circuit 10 is Low. .
  • the INST trip circuit 19 sets the output signal T4 to Hi when the instantaneous INST trip signal M5 and the instantaneous INST energization signal K4 are both Hi, and otherwise sets it Low.
  • the short time STD trip circuit 20 sets the output signal T3 to Hi when both the short time STD trip signal M4 and the short time STD energization signal K3 are Hi, and Low otherwise.
  • the long time LTD trip circuit 21 sets the output signal T2 to Hi when both the long time LTD trip signal M3 and the long time LTD energization signal K2 are Hi, and Low otherwise.
  • the first OR circuit 25 sets the output signal TR to Hi when any of the input signals T1, T2, T3, and T4 becomes Hi, and sets it to Low otherwise.
  • the trigger circuit 27 applies an exciting current to the trip coil 28 when the output signal TR of the first OR circuit 25 becomes Hi, turns off the breaker body, and when the output signal TR is Low, the trigger coil 27 28 excitation current does not flow.
  • the output selection circuit 24 is set to the alarm side in the operation switch 23. In this case, when the output signal H6 is set to Hi and set to the trip side, the output signal T1 of the output selection circuit 24 is set to Hi, and otherwise it is set to Low.
  • the second OR circuit 22 sets the output signal AL to Hi when any of the input signals H3, H4, H5, and H6 becomes Hi, and sets it to Low otherwise.
  • the alarm circuit 26 outputs an alarm when the output signal AL of the OR circuit 22 becomes Hi, and does not issue an alarm when the signal AL is Low.
  • the relationship between the current detection threshold value for outputting the output signals M1 to M5 from the microcomputer 6 and the current detection threshold value of the output signals K1 to K4 based on the detection voltage of the current detection resistor 7 is M1 ⁇ K1 ⁇ M2 ⁇ K2 ⁇ . If M3 ⁇ K3 ⁇ M4 ⁇ K4 ⁇ M5, the state of each signal according to the difference in the energization state of the circuit breaker body is as shown in Tables 1 and 2.
  • Table 1 is a table showing the state of each signal depending on the circuit breaker body energization state when the operation changeover switch 23 in Embodiment 1 of the present invention is set to the trip side and the overcurrent tripping device is normal. is there.
  • Table 2 is a table showing the state of each signal according to the difference in the circuit breaker body energization state when the operation changeover switch 23 in the first embodiment of the present invention is set to the alarm side and the overcurrent tripping device is normal. is there. If the microcomputer starts up at 10% of the rated current, the signal M1 becomes Hi when the circuit breaker body is energized by 10%, but the alarm output is also shut off by excitation of the trip coil 28 while the signals AL and TR remain low. The vessel will not turn off.
  • Table 3 shows the state of each signal depending on the difference in energization state of the circuit breaker 23 body when the operation changeover switch 23 in the first embodiment of the present invention is set to the trip side and the overcurrent tripping device is abnormal. It is a table.
  • Table 4 shows the state of each signal depending on the difference in energization state of the circuit breaker body when the operation changeover switch in Embodiment 1 of the present invention is set to the alarm side and the overcurrent tripping device is abnormal. It is a table. If the microcomputer 6 is abnormal even though the circuit breaker main body is 40% energized and the signal M1 remains low, that is, if the start signal is not output from the microcomputer 6, the operation selector switch 23 in Table 3 is set. When set to the trip side, the signal TR becomes Hi, turns off the breaker body, and notifies the abnormality. When the operation changeover switch 23 in Table 4 is set to the alarm side, the signal AL becomes Hi and an alarm is output to notify the abnormality.
  • the operation changeover switch 23 in Table 3 is set to the trip side.
  • the signal TR becomes Hi the circuit breaker body is turned off to notify the abnormality, and the operation switch 23 in Table 4 is set to the alarm side, the signal AL becomes Hi, and an alarm is output to notify the abnormality.
  • the operation switch 23 in Table 3 is set to the trip side when the signal M3, M4, M5 becomes Hi due to the abnormality of the microcomputer 6 despite the 60% energization of the breaker body, Even when set to the alarm side in Table 4, the signal AL becomes Hi and an alarm is output to notify the abnormality.
  • the operation selector switch 23 in Table 3 is set to the trip side. In this case, even if the alarm side in Table 4 is set, the signal TR becomes Hi and the circuit breaker main body is turned off. At the same time, the signal AL becomes Hi and an alarm is output to notify the abnormality.
  • the signal M5 becomes Hi due to an abnormality of the microcomputer 6 despite the energization of the short time STD region, even if the operation changeover switch 23 in Table 3 is set to the trip side, the alarm side in Table 4 is set. Even when the setting is made, the signal TR becomes Hi and the circuit breaker body is turned off.
  • FIG. 2 is an example of the appearance of an overcurrent tripping device incorporating a circuit having a double function of detecting the current of FIG.
  • the RUN LED 31 starts energizing the breaker body and lights up when the microcomputer 6 is activated.
  • the ERR LED 32 is lit when an alarm is output in conjunction with the alarm circuit 26 to notify an abnormality.
  • the switch 33 indicates the operation changeover switch 23 so that it is possible to select whether to output an alarm or turn off the circuit breaker body from the outside when the microcomputer malfunctions.
  • the first rotary switch 35 is a switch for setting a rated current from the outside, and is a switch for setting a current detection threshold value in the long time limited LTD region.
  • the second rotary switch 37 is a switch for setting a current detection threshold value in the short time STD region.
  • the third rotary switch 36 is a switch for setting a current detection threshold value in the instantaneous INST region.
  • the fourth rotary switch 38 is a switch for setting an operation time when the current detection threshold value of the long time limit LTD region is exceeded.
  • the fifth rotary switch 39 is a switch for setting an operation time when the current detection threshold value in the short time STD region is exceeded.
  • the setting unit 34 in which the first to fifth rotary switches 35 to 39 are combined corresponds to the characteristic setting unit 8 shown in FIG.
  • the threshold value of the detection current is determined so that the long time limit LTD ⁇ short time STD ⁇ instantaneous INST and the operation time until the circuit breaker is turned off are long time LTD> short time STD> instantaneous INST. Yes. Note that the setting dial is not prepared for the operation time in the instantaneous INST area because the circuit breaker is turned off immediately after detection.
  • Table 5 shows the output pattern of the reference voltage conversion circuit according to the first embodiment of the present invention by using the first to fifth rotary switches 35 to 39 and the contact arrangement of the switch 101 shown in FIG.
  • Table 5 is a table showing an output pattern of the reference voltage conversion circuit according to the first embodiment of the present invention. If the terminals 1 to 4 of the switch 101 are connected to the signal power source by resistors 97 to 100 as shown in FIG. 3 using the gray code switch having the conduction characteristics shown in Table 5, the microcomputer can detect the Hi, Low of the four terminals. The set position of the rotary switch can be determined based on the information. If the terminals 1 to 4 of the switch 101 are connected to a reference voltage conversion circuit as shown in FIG. 4, the FETs 52 to 55 are turned on and off according to the Hi and Low of the terminals 1 to 4, and the voltage dividing resistor 60 to 65 changes the output voltage Vout. The Zener diodes 56 to 59 are for gate overvoltage protection of the FETs 52 to 55. Table 6 is a table showing an example of dial setting output patterns and output voltages of the reference voltage conversion circuit according to the first embodiment of the present invention.
  • Table 6 shows an example of the dial setting output pattern and output voltage of the reference voltage conversion circuit when the saturation characteristic of the power supply CT in the first embodiment of the present invention is given.
  • the Vout does not increase in proportion to the dial setting as shown in the characteristic diagram 109 of the relationship between the dial setting value and the reference voltage shown in FIG.
  • the Vout value simulating a CT output having saturation characteristics like the power supply CT1 can be obtained.
  • a circuit in which the switch circuit of FIG. 3 and the reference voltage conversion circuit of FIG. 4 are connected via buffer circuits 67 and 68 is used as the reference voltage conversion circuit 9, a constant current In by a rotary switch is obtained. If a reference voltage corresponding to the setting position of the setting dial 35 is output to V2, and V2 is passed through the 0.4 times circuit 51, the V1 signal can be output.
  • the instantaneous INST reference voltage generation circuit 48 and the short time STD reference voltage generation circuit 49 that are linked to the instantaneous INST pickup value setting dial 36 and the short time STD pick-up setting dial 37 by the rotary switch include a voltage V10 applied to the voltage dividing resistor, Since V11 is a voltage having the same potential as V2, voltages V3 and V4 linked to the rated current setting of the constant current In setting dial 35 can be output.
  • the trip signal is erroneously output from the microcomputer by detecting the secondary output level of the power supply CT and comparing the output level with the operation signal of the microcomputer. If the microcomputer does not start up, the microcomputer error display or the circuit breaker can be turned off to determine whether the microcomputer is operating normally or abnormally.
  • FIG. 8 is a circuit in which a microcomputer reset signal output circuit 147 is added to the circuit having a double function of detecting the current shown in FIG. 1, and there is an abnormality in the microcomputer 6 or 40% energization detection circuit 13, and the signal T1.
  • the signal becomes Hi, or when the alarm signal AL becomes Hi from the OR circuit 22, the signal Re to the microcomputer reset signal input terminal is set to Hi to reset the microcomputer 6 and prompt the return from the abnormal state.
  • the second embodiment of the present invention there is an effect that it is possible to attempt a return from an error display by transmitting a reset signal to the microcomputer when the microcomputer malfunctions.
  • FIG. 9 is a circuit in which the individual determinations of the overcurrent areas of the long time limit LTD, the short time limit STD, and the instantaneous INST are combined into one, and the trip signals M3 to M5 of the microcomputer 6 in FIG. 1 are integrated into one of the signals M6. is doing. Further, the instantaneous INST alarm circuit 14, the short time STD alarm circuit 15, and the long time LTD alarm circuit 16 are integrated into the overcurrent alarm circuit 148, and the instantaneous INST trip circuit 19, the short time STD trip circuit 20, and the long time LTD trip circuit 21. Are integrated into an overcurrent trip circuit 149. As in the circuit of FIG. 1, the state of each signal according to the difference in the main body energization state is as shown in Tables 8 and 9.
  • Table 8 is a table showing the state of each signal according to the difference in the main body energization state when the operation changeover switch 23 in the third embodiment of the present invention is set to the trip side and the overcurrent tripping device is normal.
  • Table 9 is a table showing the state of each signal according to the difference in the main body energization state when the operation switch 23 in the third embodiment of the present invention is set to the alarm side and the overcurrent tripping device is normal. is there. If the microcomputer starts up at 10% of the rated current, the signal M1 becomes Hi when the main body is energized 10%, but both the signals AL and TR remain low and the alarm output is also off by the excitation of the trip coil 28. Also does not happen.
  • the signal M1 and the signal K1 become Hi when the main body 40% is energized, but both the signal AL and the signal TR remain low, the alarm output and the circuit breaker OFF due to the excitation of the trip coil 28 do not occur, and the main body 60% When energized, the signal M1, the signal K1, and the signal M2 become Hi, but both the signal AL and the signal TR remain Low, and neither the alarm output nor the circuit breaker off due to the excitation of the trip coil 28 occurs.
  • Tables 10 and 11 show the states of the signals depending on the difference in the main body energization state when there is an abnormality in the microcomputer 6 or the 40% energization detection circuit 13.
  • Table 10 shows the state of each signal due to the difference in the energization state of the circuit breaker body when the operation changeover switch 23 in Embodiment 3 of the present invention is set to the trip side and the overcurrent tripping device is abnormal. It is a table.
  • Table 11 is a table showing the state of each signal according to the difference in the energization state of the main body when the operation changeover switch according to Embodiment 3 of the present invention is set to the alarm side and the overcurrent tripping device is abnormal. .
  • the signal TR becomes Hi when the operation changeover switch 23 in Table 10 is set to the trip side, and the breaker main body Is turned off, the abnormality is notified, and when the operation selector switch 23 in Table 11 is set to the alarm side, the signal AL becomes Hi and an alarm is output to notify the abnormality.
  • the signal TR is set when the operation changeover switch 23 in Table 10 is set to the trip side. When it becomes Hi, the circuit breaker body is turned off to notify the abnormality, and when the operation switch 23 in Table 11 is set to the alarm side, the signal AL becomes Hi and an alarm is output to notify the abnormality.
  • the signal M6 becomes Hi due to an abnormality of the microcomputer 6 despite the 60% energization of the main body, even when the operation changeover switch 23 in Table 10 is set to the trip side, it is set to the alarm side in Table 11. In this case, the AL signal becomes Hi and an alarm is output to notify the abnormality.
  • the circuit configuration can be simplified by integrating the trip signal levels of the microcomputer without dividing them.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

過電流を検出して引き外しを行う遮断器において、電流検出コイルにより出力される信号に応じてマイクロコンピュータにて負荷電流を検出する第1の電流検出回路と、電源CTの出力電流により負荷電流を検出する第2の電流検出回路と、前記第1の電流検出回路の出力信号と前記第2の電流検出回路の出力信号を比較する比較手段を備え、前記マイクロコンピュータの動作が正常であるか異常であるかを判別するようにした。

Description

遮断器
 この発明は、交流電路に接続される遮断器に関するもので、特に、マイクロコンピュータによって動作する過電流引きはずし装置を内蔵する遮断器に関するものである。
 この種の遮断器に内蔵される過電流引きはずし装置は、マイクロコンピュータ(以下、マイコン)にて過電流を演算し、必要に応じて引きはずしを行うものである。
 遮断器の各相に流れる電流は、変流器によって変成され、整流器で相毎に全波整流され、整流後の電流は、ピーク変換および実効値変換回路等で、それぞれ変換され電流の最大相を選択し、過電流または大電流が流れると、その電流値に応じて各時限回路が動作し、トリガー回路がトリガー信号を出力して、トリップコイルを励磁して、開閉機構を作動させる。
 例えば、特許文献1に示す遮断器では、電路を流れる電流を電流検出手段によって検出し、この検出した電流値に応じてマイコンが引きはずし信号を発生させるように構成されている。
 特に、特許文献1の遮断器では、マイコンに供給される電源電圧が低い場合に、マイコンが不安定になることを技術課題として取り上げ、電源電圧が所定値以上になった時に、マイコンをリセットスタートして正しく動作させるようにすることを提案している。
特開平6-245362
 特許文献1のように負荷電流を検出し、マイコンにて電流値を演算する場合、過電流検出を行うマイコン自体が外乱ノイズ等により暴走状態となれば、電流検出が正しくできず誤ってトリップを行う可能性があり、また逆に、必要な時にトリップを行わない状態になる可能性があるという問題がある。
 この発明は、前述のような問題を解決するためになされたもので、マイコンの異常状態を検出し、マイコンが暴走状態となった場合に、その状態を検知し、マイコンの誤動作による誤トリップやトリップ不能を避ける事を目的とするものである。
電流検出を二重化することによりマイコンの誤動作による誤トリップやトリップ不能を避ける事を目的とするものである。
 この発明に係る遮断器においては、電流検出コイルにより出力される信号に応じてマイコンにて負荷電流を検出する第1の電流検出回路と、電源CTの出力電流により負荷電流を検出する第2の電流検出回路と、前記第1の電流検出回路の出力信号と前記第2の電流検出回路の出力信号を比較する比較手段を備え、前記マイコンの動作が正常であるか異常であるかを判別するようにしたものである。
 この発明は、電流検出を電流センサとマイコンのみで行わず、電源CTによる負荷電流を検出する機能を追加したことにより、マイコンの暴走状態を検出し、マイコンの異常アラーム出力または外乱ノイズによる誤トリップやトリップ不能を防止することができる。
この発明の実施の形態1における過電流引きはずし装置の電流を検出する機能を二重に持つ回路図である。 この発明の実施の形態1における気中遮断器の引きはずしリレー部を示す外観図である。 この発明の実施の形態1におけるダイヤル設定出力の等価回路図である。 この発明の実施の形態1における基準電圧変換回路の接続図である。 この発明の実施の形態1におけるダイヤル設定値と基準電圧値の特性を示した特性図である。 この発明の実施の形態1における電源CTの飽和特性を持たせた場合のダイヤル設定値と基準電圧値の特性を示した特性図である。 この発明の実施の形態1における基準電圧変換回路およびダイヤル設定出力の等価回路の全体の接続図である。 この発明の実施の形態2における電流を検出する機能を二重に持つ引きはずし装置にマイコンのリセット機能を追加した場合の内部回路図である。 この発明の実施の形態3における過電流を検出する機能を二重に持つ場合の内部回路図である。
実施の形態1
 図1は、この発明の実施の形態1における過電流引きはずし装置の、電流を検出する機能を二重に持つ回路図である。電源CT1の二次側出力は、整流回路3を介して電源回路4と電流検出抵抗7に接続されている。
 電源回路4で生成された定電圧は、電流センサである電流検出コイル2(ロゴスキーコイル)で検出された負荷電流の情報をマイコン6へ伝達するための信号変換回路5の駆動電源、マイコン6の駆動電源、電路に流れる負荷電流を開閉する遮断器接点29を開き遮断器本体(図示せず)をオフさせる機能を持つトリップコイル28の駆動電源として供給される。
 マイコン6は、信号変換回路5からの電流信号を受けて、遮断器本体の通電電流の判定を行う。マイコン6は、マイコン起動信号M1、60%通電検出信号M2、LTDトリップ信号M3、STDトリップ信号M4、INSTトリップ信号M5を出力する端子を備えており、マイコン6の各端子の信号M1~M5は、Lowの状態であるが、通電電流がマイコン6の起動可能な電流に達した場合は、マイコン起動信号端子の信号M1がHiとなり、通電電流が遮断器定格電流の60%に達したと判定した場合は、60%通電検出信号M2の信号をHiとする。
 また、遮断器本体の通電電流が定格電流を上回り過電流状態となった場合は、特性設定部8によって設定された動作時間に応じて遮断器をオフさせるためのLTDトリップ信号M3~INSTトリップ信号M5を出力させるが、動作時間は、通電電流の大きさに応じたLTD(長限時引き外し)、STD(短限時引き外し)、INST(瞬時引き外し)の3つの領域に分かれている。長限時LTD,短限時STD,瞬時INST領域の検出電流の閾値は、長限時LTD<短限時STD<瞬時INSTの関係となっており、特性設定部8によって検出閾値を可変させることができる。
 また、検出閾値を超えた後にマイコン6から長限時LTDトリップ信号M3~瞬時INSTトリップ信号M5を出力するまでの時間は、長限時LTDが一番長く、長限時LTD>短限時STD>瞬時INSTの関係となり、特性設定部8によって動作時間を可変させることができる。
 基準電圧変換回路9は、電流検出抵抗7により検出した電流値が遮断器本体の定格電流の40%を超えているか、長限時LTD領域の電流、短限時STDの領域の電流、瞬時INST領域の電流が流れているかを判定するための基準電圧を生成するもので、マイコン6の検出電流の閾値と同様に、特性設定部8によって閾値を可変することができる。
 40%通電検出回路13の出力信号の40%通電信号K1は、通電開始時はLowであるが、電流検出抵抗7の検出電圧が、基準電圧変換回路9の40%通電基準電圧端子の電圧V1を上回った場合にはHiとなる。
 同様に、長限時LTD検出回路12の出力信号の長限時LTD通電信号K2は、電流検出抵抗7の検出電圧が、基準電圧変換回路9の長限時LTD基準電圧端子の電圧V2を上回った場合には、Hiとなる。
 また、短限時STD検出回路11の出力信号の短限時STD通電信号K3は、電流検出抵抗7の検出電圧が、基準電圧変換回路9の短限時STD基準電圧端子の電圧V3を上回った場合にはHiとなる。
 また、瞬時INST検出回路10の出力信号の瞬時INST通電信号K4は、電流検出抵抗7の検出電圧が、基準電圧変換回路9の瞬時INST基準電圧端子の電圧V4を上回った場合にはHiとなる。
 電源CT40%通電検出監視回路18は、40%通電検出回路13の出力信号の40%通電信号K1がHiでマイコン起動信号M1がLowとなった場合には、出力信号H1をHiとし、それ以外ではLowとする。
 マイコン60%通電検出回路17は、60%通電検出信号M2がHiで、40%通電検出回路13の出力信号の40%通電信号K1がLowとなった場合には、出力信号H2をHiとし、それ以外はLowとする。
 長限時LTDアラーム回路16は、長限時LTDトリップ信号M3がHiで長限時LTD検出回路12の出力信号の長限時LTD通電信号K2がLowの場合には、出力信号H3をHiとし、それ以外をLowとする。
 短限時STDアラーム回路15は、短限時STDトリップ信号M4がHiで、短限時STD検出回路11の出力信号の短限時STD通電信号K3がLowの場合には、出力信号H4をHiとし、それ以外はLowとする。
 瞬時INSTアラーム回路14は、瞬時INSTトリップ信号M5がHiで、瞬時INST検出回路10の出力信号の瞬時INST通電信号K4がLowの場合には、出力信号H5をHiとし、それ以外はLowとする。
 INSTトリップ回路19は、瞬時INSTトリップ信号M5と瞬時INST通電信号K4が共にHiの場合に出力信号T4をHiとし、それ以外はLowとする。
 短限時STDトリップ回路20は、短限時STDトリップ信号M4と短限時STD通電信号K3が共にHiの場合に出力信号T3をHiとし、それ以外はLowとする。
 長限時LTDトリップ回路21は、長限時LTDトリップ信号M3と長限時LTD通電信号K2が共にHiの場合に出力信号T2をHiとし、それ以外はLowとする。
 第1のOR回路25は、入力される信号T1、T2、T3、T4のいずれかがHiとなった場合に出力信号TRをHiとし、それ以外はLowとする。
 トリガー回路27は、第1のOR回路25の出力信号TRがHiとなった場合にトリップコイル28に励磁電流を流し、遮断器本体をオフし、出力信号TRがLowの場合には、トリップコイル28の励磁電流を流さない。
 出力選択回路24は、電源CT40%通電検出監視回路18の出力信号H1またはマイコン60%通電検出回路17の出力信号H2のどちらかがHiとなった場合、動作切替スイッチ23において、アラーム側に設定した場合には、出力信号H6をHiに、トリップ側に設定した場合には、出力選択回路24の出力信号T1をHiとし、それ以外はLowとする。
 第2のOR回路22は、入力される信号H3、H4、H5、H6のいずれかがHiとなった場合に出力信号ALをHiとし、それ以外はLowとする。
 アラーム回路26は、OR回路22の出力信号ALがHiとなった場合にアラームを出力し、信号ALがLowの場合はアラームを出さない。
 マイコン6からの出力信号M1~M5を出力するための電流検出閾値と、電流検出抵抗7の検出電圧を元に出す出力信号K1~K4の電流検出閾値の関係をM1<K1<M2<K2<M3<K3<M4<K4<M5とすれば、遮断器本体の通電状態の違いによる各信号の状態は表1、表2のようになる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1は、この発明の実施の形態1における動作切替スイッチ23をトリップ側に設定し、過電流引きはずし装置が正常な時の遮断器本体通電状態の違いによる各信号の状態を示した表である。
 表2は、この発明の実施の形態1における動作切替スイッチ23をアラーム側に設定し、過電流引きはずし装置が正常な時の遮断器本体通電状態の違いによる各信号の状態を示した表である。仮にマイコンが定格電流の10%で起動するとすれば、遮断器本体に10%通電で信号M1はHiとなるが、信号AL、信号TR共にLowのままでアラーム出力もトリップコイル28の励磁による遮断器オフも起こらない。同様に、遮断器本体に40%通電で信号M1、K1はHiとなるが、信号AL、信号TRは共にLowのままで、アラーム出力もトリップコイル28の励磁による遮断器オフも起こらない。
 遮断器本体に60%通電で信号M1、K1、M2はHiとなるが、信号AL、信号TR共にLowのままでアラーム出力もトリップコイル28の励磁による遮断器オフも起こらない。
 長限時LTD領域の過電流が流れた場合は、信号M1、K1、M2、K2、M3がHiとなって、第1のOR回路25の出力信号TRがHiとなり、トリップコイル28を励磁して遮断器をオフとするが、信号ALはLowのままのためアラーム出力はされない。
 同様に、短限時STD領域の過電流が流れた場合は、信号M1、K1、M2、K2、M3、K3、M4がHiとなって、信号TRがHiとなりトリップコイル28を励磁して遮断器をオフするが、信号ALはLowのままのためアラーム出力はされず、瞬時INST領域の過電流が流れた場合は、信号M1、K1、M2、K2、M3、K3、M4、K4、M5がHiとなって、信号TRがHiとなりトリップコイル28を励磁して遮断器をオフにするが、信号ALはLowのままのため、アラーム出力はされない。
 次にマイコン6または40%通電検出回路13に異常があった場合の本体通電状態の違いによる各信号の状態を表3、表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3は、この発明の実施の形態1における動作切替スイッチ23をトリップ側に設定し、過電流引きはずし装置が異常な時の遮断器23本体の通電状態の違いによる各信号の状態を示した表である。また、表4は、この発明の実施の形態1における動作切替スイッチをアラーム側に設定し、過電流引きはずし装置が異常な時の遮断器本体の通電状態の違いによる各信号の状態を示した表である。
 遮断器本体の40%通電にもかかわらずマイコン6の異常で、信号M1がLowのままの場合、すなわち、マイコン6から起動信号が出力されていない場合には、表3の動作切替スイッチ23をトリップ側に設定した場合には、信号TRがHiとなり、遮断器本体をオフさせ、異常を知らせる。また、表4の動作切替スイッチ23をアラーム側に設定した場合には、信号ALがHiとなりアラーム出力させ異常を知らせる。
 また、遮断器本体の60%通電にもかかわらず40%通電検出回路13の異常で、信号K1がLowのままの場合には、表3の動作切替スイッチ23をトリップ側に設定した場合には、信号TRがHiとなり、遮断器本体をオフさせ異常を知らせ、表4の動作切替スイッチ23をアラーム側に設定した場合には、信号ALがHiとなり、アラーム出力させ異常を知らせる。その他、遮断器本体の60%通電にもかかわらずマイコン6の異常で、信号M3、M4、M5がHiとなった場合には、表3の動作切替スイッチ23をトリップ側に設定した場合でも、表4のアラーム側に設定した場合でも、信号ALがHiとなりアラーム出力させ異常を知らせる。
 過電流領域での異常については、長限時LTD領域の通電にもかかわらずマイコン6の異常で、信号M4、M5がHiとなった場合は、表3の動作切替スイッチ23をトリップ側に設定した場合でも、表4のアラーム側に設定した場合でも、信号TRがHiとなり、遮断器本体をオフさせると同時に信号ALがHiとなり、アラーム出力させ異常を知らせる。
 また、短限時STD領域の通電にもかかわらずマイコン6の異常で、信号M5がHiとなった場合は、表3の動作切替スイッチ23をトリップ側に設定した場合でも、表4のアラーム側に設定した場合でも、信号TRがHiとなり、遮断器本体をオフさせると同時に信号ALがHiとなりアラーム出力させ異常を知らせる。
 図2は、図1の電流を検出する機能を二重に持つ回路を内蔵した過電流引きはずし装置の外観の一例である。RUN LED31は、遮断器本体への通電を開始し、マイコン6が起動した際に点灯する。ERR LED32は、アラーム回路26と連動してアラーム出力時に点灯し異常を知らせる。また、スイッチ33は、動作切替スイッチ23を示しており、外部からマイコン異常時にアラーム出力させるか遮断器本体をオフするかを選択できるようにしている。また、第1のロータリースイッチ35は、定格電流を外部から設定するスイッチで、長限時LTD領域の電流検出閾値を設定するスイッチである。第2のロータリースイッチ37は、短限時STD領域の電流検出閾値を設定するスイッチである。第3のロータリースイッチ36は、瞬時INST領域の電流検出閾値を設定するスイッチである。また、第4のロータリースイッチ38は、長限時LTD領域の電流検出閾値を超えた場合の動作時間を設定するスイッチである。第5のロータリースイッチ39は、短限時STD領域の電流検出閾値を超えた場合の動作時間を設定するスイッチである。
 これらの第1~第5のロータリースイッチ35~39をまとめた設定部34は、図1の特性設定部8に相当する。検出電流の閾値は、長限時LTD<短限時STD<瞬時INSTの関係、遮断器オフまでの動作時間の関係は長限時LTD>短限時STD>瞬時INSTとなるようにダイヤル設定値が決められている。なお、瞬時INST領域の動作時間については、検出後直ちに遮断器をオフさせるため、設定ダイヤルは用意していない。
 第1~第5のロータリースイッチ35~39によって、図3に示すスイッチ101の接点配置によって、この発明の実施の形態1における基準電圧変換回路の出力パターンを表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5は、この発明の実施の形態1における基準電圧変換回路の出力パターンを示した表である。この表5の導通特性を持つグレイコードスイッチを用いて、図3のようにスイッチ101の端子1~4を抵抗97~100により信号電源に接続すれば、マイコンは、4つの端子のHi、Low情報を元にロータリースイッチの設定位置を判別することができる。また、スイッチ101の端子1~4を、図4のような基準電圧変換回路に接続すれば、端子1~4のHi,Lowに応じてFET52~55が導通,非導通状態となり、分圧抵抗60~65により出力電圧Voutが変化する。なお、ツェナーダイオード56~59は、FET52~55のゲート過電圧保護用である。
 表6は、この発明の実施の形態1における基準電圧変換回路のダイヤル設定出力パターンと出力電圧の一例を示した表である。
Figure JPOXMLDOC01-appb-T000006
 ここで、分圧抵抗60~65の値を表6のように選定すれば、図5に示すダイヤル設定値と基準電圧の関係107の特性図のように、ダイヤル設定に応じてVoutの値が比例して大きくなる。
 また、表7は、この発明の実施の形態1における電源CTの飽和特性を持たせた場合の基準電圧変換回路のダイヤル設定出力パターンと出力電圧の一例を示している。
Figure JPOXMLDOC01-appb-T000007
 この表7のように選定すれば、図6に示すダイヤル設定値と基準電圧の関係109の特性図のようにVoutがダイヤル設定に比例して大きくなるのではなく、基準電圧を長時限LTDピックアップの特性設定ダイヤルと連動して増減でき、電源CT1のように飽和特性を持ったCT出力を模擬したVout値を得ることができる。
 図7に示すように、図3のスイッチ回路と図4の基準電圧変換回路を、バッファ回路67、68を介して接続した回路を基準電圧変換回路9として使用すれば、ロータリースイッチによる定電流In設定ダイヤル35の設定位置に応じた基準電圧をV2へ出力し、V2を、0.4倍回路51を通過させればV1信号を出力できる。また、ロータリースイッチによる瞬時INSTピックアップ値設定ダイヤル36および短限時STDピックアップ設定ダイヤル37に連動する瞬時INST基準電圧生成回路48および短限時STD基準電圧生成回路49は、分圧抵抗に印加する電圧V10、V11がV2と同電位の電圧となるため、定電流In設定ダイヤル35の定格電流設定に連動した電圧V3、V4を出力できる。
 以上のようにこの発明の実施の形態1によれば、電源CTの二次側出力レベルを検出し、その出力レベルとマイコンの動作信号を比較することによりマイコンからトリップ信号が誤って出力されてもトリップさせないようにでき、またマイコンが立ち上っていない場合にはマイコンのエラー表示もしくは遮断器をオフすることができ、マイコンの動作が正常であるか異常であるのかを判別できる。
実施の形態2
 図8は、図1に示した電流を検出する機能を二重に持つ回路にマイコンリセット信号出力回路147を追加した回路であり、マイコン6または40%通電検出回路13に異常があり、信号T1がHiとなった場合またはOR回路22よりアラーム信号ALがHiとなった場合に、マイコンリセット信号入力端子への信号ReをHiとしてマイコン6をリセットさせ、異常状態からの復帰を促す。
 以上のようにこの発明の実施の形態2によれば、マイコンが誤動作した際にマイコンへリセット信号を送信することによってエラー表示からの復帰を試みることができるという効果がある。
実施の形態3
 図9は、長限時LTD,短限時STD,瞬時INSTの過電流領域の個別の判定を一つにまとめた回路であり、図1のマイコン6のトリップ信号M3~M5を信号M6のひとつに集約している。また、瞬時INSTアラーム回路14、短限時STDアラーム回路15、長限時LTDアラーム回路16を過電流アラーム回路148に集約し、瞬時INSTトリップ回路19、短限時STDトリップ回路20、長限時LTDトリップ回路21を過電流トリップ回路149に集約している。
 図1の回路と同様に本体通電状態の違いによる各信号の状態は、表8、表9のようになる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8は、この発明の実施の形態3における動作切替スイッチ23をトリップ側に設定し、過電流引きはずし装置が正常な時の本体通電状態の違いによる各信号の状態を示した表である。
 また、表9は、この発明の実施の形態3における動作切替スイッチ23をアラーム側に設定し、過電流引きはずし装置が正常な時の本体通電状態の違いによる各信号の状態を示した表である。仮にマイコンが定格電流の10%で起動するとすれば、本体10%通電で信号M1はHiとなるが、信号AL、信号TRは共にLowのままでアラーム出力もトリップコイル28の励磁による遮断器オフも起こらない。
 同様に、本体40%通電で信号M1および信号K1はHiとなるが、信号ALおよび信号TRは共にLowのままで、アラーム出力もトリップコイル28の励磁による遮断器オフも起こらず、本体60%通電で信号M1、信号K1および信号M2はHiとなるが、信号AL、信号TRは共にLowのままで、アラーム出力もトリップコイル28の励磁による遮断器オフも起こらない。長限時LTD,短限時STD,瞬時INST領域の過電流が流れた場合は、信号M1、信号K1、信号M2、信号K2、および信号M6がHiとなって、信号TRがHiとなり、トリップコイル28を励磁して遮断器をオフにするが、信号ALはLowのままのため、アラーム出力はされない。
 次に、マイコン6または40%通電検出回路13に異常があった場合の本体通電状態の違いによる各信号の状態を表10,表11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10は、この発明の実施の形態3における動作切替スイッチ23をトリップ側に設定し、過電流引きはずし装置が異常な時の、遮断器本体の通電状態の違いによる各信号の状態を示した表である。
 また、表11は、この発明の実施の形態3における動作切替スイッチをアラーム側に設定し、過電流引きはずし装置が異常な時の本体通電状態の違いによる各信号の状態を示した表である。
 本体40%通電にもかかわらずマイコン6の異常で、信号M1がLowのままの場合は、表10の動作切替スイッチ23をトリップ側に設定した場合には、信号TRがHiとなり、遮断器本体をオフにさせ、異常を知らせ、表11の動作切替スイッチ23をアラーム側に設定した場合には、信号ALがHiとなりアラーム出力させ異常を知らせる。
 また、本体60%通電にもかかわらず40%通電検出回路13の異常で、信号K1がLowのままの場合は、表10の動作切替スイッチ23をトリップ側に設定した場合には、信号TRがHiとなり遮断器本体をオフにさせ、異常を知らせ、表11の動作切替スイッチ23をアラーム側に設定した場合は、信号ALがHiとなりアラーム出力させ異常を知らせる。
 その他、本体60%通電にもかかわらずマイコン6の異常で、信号M6がHiとなった場合には、表10の動作切替スイッチ23をトリップ側に設定した場合も表11のアラーム側に設定した場合もAL信号がHiとなりアラーム出力させ異常を知らせる。
 以上のようにこの発明の実施の形態3によれば、マイコンのトリップ信号のレベルを分けずに一括化することにより回路構成を簡略化することができるという効果がある。
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。

Claims (10)

  1.  電流検出コイルにより出力される信号に応じてマイクロコンピュータにて負荷電流を検出する第1の電流検出回路と、電源CTの出力電流により負荷電流を検出する第2の電流検出回路と、前記第1の電流検出回路の出力信号と前記第2の電流検出回路の出力信号を比較する比較手段を備え、前記マイクロコンピュータの動作が正常であるか異常であるかを判別するようにしたことを特徴とする遮断器。
  2.  前記マイクロコンピュータは、過電流検出時に設定された時限時間後にトリップ信号を出力し、前記第2の電流検出回路が過電流判定信号を出力している場合のみ遮断を行うことを特徴とする請求項1に記載の遮断器。
  3.  前記マイクロコンピュータは、検出電流の大きさに応じて、長限時LTD領域の場合には長限時LTDトリップ信号を所定の時限時間後に出力し、短限時STD領域の場合には前記長限時LTDトリップ信号と短限時STDトリップ信号を所定の時限時間後に出力し、瞬時INST領域の場合には前記長限時LTDトリップ信号と前記短限時STDトリップ信号と瞬時INSTトリップ信号を所定の時限時間後に出力するように設定され、前記第2の電流検出回路の検出した電流値が長時限LTD領域にあると判定していない状態で、前記マイクロコンピュータが長限時LTDトリップ信号、短限時STDトリップ信号、瞬時INSTトリップ信号のいずれかを出力した場合には、アラームを出力することを特徴とする請求項2に記載の遮断器。
  4.  前記マイクロコンピュータは、検出電流の大きさに応じて、長限時LTD領域の場合には長限時LTDトリップ信号を所定の時限時間後に出力し、短限時STD領域の場合には前記長限時LTDトリップ信号と短限時STDトリップ信号を所定の時限時間後に出力し、瞬時INST領域の場合には前記長限時LTDトリップ信号と前記短限時STDトリップ信号と瞬時INSTトリップ信号を所定の時限時間後に出力するように設定され、前記第2の電流検出回路の検出した電流値が短時限STD領域にあると判定している状態で、前記マイクロコンピュータが瞬時INSTトリップ信号を出力した場合には、遮断を行うと同時にアラームを出力することを特徴とする請求項2に記載の遮断器。
  5.  前記マイクロコンピュータは、検出電流の大きさに応じて、長限時LTD領域の場合には長限時LTDトリップ信号を所定の時限時間後に出力し、短限時STD領域の場合には前記長限時LTDトリップ信号と短限時STDトリップ信号を所定の時限時間後に出力し、瞬時INST領域の場合には前記長限時LTDトリップ信号と前記短限時STDトリップ信号と瞬時INSTトリップ信号を所定の時限時間後に出力するように設定され、前記第2の電流検出回路の検出した電流値が長時限LTD領域にあると判定している状態で、前記マイクロコンピュータが前記短限時STDトリップ信号または前記瞬時INSTトリップ信号を出力した場合には、遮断を行うと同時にアラームを出力することを特徴とする請求項2に記載の遮断器。
  6.  前記第2の電流検出回路が、前記マイクロコンピュータの起動可能な電流を検出し、前記マイクロコンピュータから起動信号が出力されていない場合には、アラームの出力または遮断の動作を選択し得る動作切替スイッチを備えたことを特徴とする請求項2に記載の遮断器。
  7.  前記マイクロコンピュータが、定格電流に近い電流が通電されていることを検出し、前記第2の電流検出回路が、定格電流の40%の電流を検出していない場合には、アラームの出力または遮断の動作を選択し得る動作切替スイッチを備えたことを特徴とする請求項2に記載の遮断器。
  8.  前記第2の電流検出回路の通電電流判定の為の基準電圧を、長限時LTDピックアップの特性設定ダイヤルと連動して増減でき、基準電圧は電源CTの飽和特性を加味した値にし得ることを特徴とする請求項2に記載の遮断器。
  9.  前記第2の電流検出回路の通電電流判定の為の基準電圧を、長限時LTDピックアップ値設定ダイヤル、短限時STDピックアップ値設定ダイヤルあるいは瞬時INSTピックアップ値特性ダイヤルと連動して増減でき、基準電圧は電源CTの飽和特性を加味した値にし得ることを特徴とする請求項2に記載の遮断器。
  10.  前記第1の電流検出回路の出力信号と、前記第2の電流検出回路の出力信号とが異なる場合に、前記第1の電流検出回路の前記マイクロコンピュータをリセットさせて異常な状態から復帰できるようにしたことを特徴とする請求項2に記載の遮断器。
PCT/JP2016/064972 2016-05-20 2016-05-20 遮断器 WO2017199412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16902431.2A EP3460932B1 (en) 2016-05-20 2016-05-20 Circuit breaker
JP2018518031A JP6452895B2 (ja) 2016-05-20 2016-05-20 遮断器
PCT/JP2016/064972 WO2017199412A1 (ja) 2016-05-20 2016-05-20 遮断器
CN201680085777.XA CN109155517B (zh) 2016-05-20 2016-05-20 断路器
KR1020187032821A KR102085770B1 (ko) 2016-05-20 2016-05-20 차단기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064972 WO2017199412A1 (ja) 2016-05-20 2016-05-20 遮断器

Publications (1)

Publication Number Publication Date
WO2017199412A1 true WO2017199412A1 (ja) 2017-11-23

Family

ID=60325064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064972 WO2017199412A1 (ja) 2016-05-20 2016-05-20 遮断器

Country Status (5)

Country Link
EP (1) EP3460932B1 (ja)
JP (1) JP6452895B2 (ja)
KR (1) KR102085770B1 (ja)
CN (1) CN109155517B (ja)
WO (1) WO2017199412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020100241A1 (ja) * 2018-11-14 2021-04-08 三菱電機株式会社 電圧引き外し装置および遮断器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240632A1 (ja) * 2019-05-24 2020-12-03 三菱電機株式会社 遮断器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291817A (ja) * 1990-04-10 1991-12-24 Omron Corp 電圧調整継電器
JPH06245362A (ja) 1993-02-16 1994-09-02 Mitsubishi Electric Corp 回路遮断器
JPH11299083A (ja) * 1998-04-17 1999-10-29 Toshiba Corp ディジタル保護装置
JP2014124057A (ja) * 2012-12-21 2014-07-03 Mitsubishi Electric Corp 保護制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173923A (ja) * 1986-01-27 1987-07-30 三菱電機株式会社 回路しや断器
JPH03270631A (ja) * 1990-03-16 1991-12-02 Mitsubishi Electric Corp 4極回路遮断器
JPH09161626A (ja) * 1995-12-05 1997-06-20 Meidensha Corp 直流遮断器の過電流引き外し装置
JP5322545B2 (ja) * 2008-09-11 2013-10-23 三菱電機株式会社 回路遮断器
CN103208776A (zh) * 2013-01-23 2013-07-17 陈泽 具有故障自检功能的断路器电路
CN103490373B (zh) * 2013-09-06 2016-08-17 常熟开关制造有限公司(原常熟开关厂) 一种防止断路器误动作的方法及一种断路器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291817A (ja) * 1990-04-10 1991-12-24 Omron Corp 電圧調整継電器
JPH06245362A (ja) 1993-02-16 1994-09-02 Mitsubishi Electric Corp 回路遮断器
JPH11299083A (ja) * 1998-04-17 1999-10-29 Toshiba Corp ディジタル保護装置
JP2014124057A (ja) * 2012-12-21 2014-07-03 Mitsubishi Electric Corp 保護制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020100241A1 (ja) * 2018-11-14 2021-04-08 三菱電機株式会社 電圧引き外し装置および遮断器
JP7012872B2 (ja) 2018-11-14 2022-01-28 三菱電機株式会社 電圧引き外し装置および遮断器

Also Published As

Publication number Publication date
KR102085770B1 (ko) 2020-03-06
CN109155517A (zh) 2019-01-04
EP3460932B1 (en) 2020-11-04
JP6452895B2 (ja) 2019-01-16
EP3460932A4 (en) 2019-05-22
KR20180134979A (ko) 2018-12-19
JPWO2017199412A1 (ja) 2018-08-09
EP3460932A1 (en) 2019-03-27
CN109155517B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
JP6126137B2 (ja) 電源装置付き安全開閉装置
JP4742232B2 (ja) 漏電遮断器
JP6173118B2 (ja) 漏電遮断器
US10571526B2 (en) Ground fault circuit interrupter
US9640978B2 (en) Protection circuit for an inverter as well as inverter system
JP6748935B2 (ja) 電流センス付き半導体スイッチの保護回路
WO2007104733A3 (de) Elektronische auslöseeinheit für einen motorschutzschalter eines elektromotors
JP2003088100A (ja) スイッチング電源装置
JP6452895B2 (ja) 遮断器
JP6930336B2 (ja) 電源回路および音響機器
US8681516B2 (en) Inverter with short circuit protection
JPWO2019021397A1 (ja) 空気調和機
JP2018007401A (ja) 保護回路及び配線器具
JP2008141823A (ja) モータ保護継電器
JP4939954B2 (ja) 電力制限器
JP2006211854A (ja) 直流電源装置
US9515481B2 (en) Printed circuit board for compressor housing
US7199539B2 (en) Motor soft start controller
JP2011253744A (ja) 接触不良を検出可能な回路遮断器
EP2597571B1 (en) Safety-related communication device
KR20220120925A (ko) 전원 장치 및 그 제어 방법
JP5443430B2 (ja) 超電導マグネット用の励磁電源
JP7012872B2 (ja) 電圧引き外し装置および遮断器
JP2005130593A (ja) 降圧型チョッパ回路
WO2018158793A1 (ja) 電子式回路遮断器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518031

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032821

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016902431

Country of ref document: EP

Effective date: 20181220