WO2017197859A1 - 一种摩擦发电机及其制备方法 - Google Patents
一种摩擦发电机及其制备方法 Download PDFInfo
- Publication number
- WO2017197859A1 WO2017197859A1 PCT/CN2016/106240 CN2016106240W WO2017197859A1 WO 2017197859 A1 WO2017197859 A1 WO 2017197859A1 CN 2016106240 W CN2016106240 W CN 2016106240W WO 2017197859 A1 WO2017197859 A1 WO 2017197859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mold
- electrode layer
- layer
- friction
- liquid silicone
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
Definitions
- the invention relates to the technical field of power generation, in particular to a friction generator and a preparation method thereof.
- a stretchable energy device that can collect energy from the surrounding environment has important significance as a power supply device for stretchable electronic devices and wearable electronic devices, and a friction generator is used as a new type of power generation device, which utilizes friction.
- the friction generator can be a good quality power supply device for stretchable electronic devices and wearable electronic devices.
- the friction generator having the tensile property generally can only collect energy in a form of motion, thereby reducing the applicability of the friction generator, and the existing friction generator is not waterproof.
- the present invention provides a friction generator and a method of fabricating the same that is adaptable and waterproof.
- a friction generator including a power generating unit and a flexible cladding layer
- the power generating unit includes a first electrode layer, a friction layer, and a second electrode layer, wherein the first electrode layer, The friction layer and the second electrode layer are prepared from a stretchable material having an air layer between the friction layer and the second electrode layer, and the first electrode layer is formed on the friction layer facing away from the second electrode layer One side surface
- the flexible coating layer is made of a stretchable material, and the flexible coating layer is coated on the outside of the power generating unit.
- the preparation material of the first electrode layer and the second electrode layer is a stretchable conductive composite material obtained by mixing and curing a carbon black material and a liquid silicone material, and the mass ratio of the carbon black material to the silica gel material It is 1:5 to 1:15.
- the mass ratio of the carbon black material to the silica gel material is 1:12.
- the flexible coating layer is a flexible coating layer prepared from a silica gel material, and the first electrode layer is bonded to the flexible coating layer, the second electrode layer and the flexible coating layer Bonding.
- the power generating unit has a rectangular parallelepiped structure, and the first electrode layer, the friction layer, and the second electrode layer are sequentially arranged along a thickness direction of the power generating unit.
- the power generating unit has a cylindrical structure
- the second electrode layer has a cylindrical structure
- the friction layer is a cylindrical structure disposed outside the second electrode layer and coaxially disposed with the second electrode layer.
- the first electrode layer is a cylindrical structure located outside the friction layer and coaxial with the second electrode layer.
- the friction layer has a nano or micro structure on a surface of the second electrode layer; and/or the second electrode layer has a nano or micro structure toward the surface of the friction layer.
- the material of the second electrode layer and the friction layer has a friction electrode sequence difference.
- the flexible cladding seals the power generating unit.
- a method of manufacturing a friction generator includes: forming a structural member using a stretchable material, wherein the structural member includes a first electrode layer, a friction layer, and a second electrode layer a flexible covering structure, the first electrode layer is formed on a side surface of the friction layer facing away from the second electrode layer, and an air layer is disposed between the friction layer and the second electrode layer, and the flexible covering structure is only provided at one end An opening; the structural member is suspended in an opening mold having an opening at one end, wherein the opening of the flexible covering structure faces the bottom wall of the sealing mold, and any surface of the structural member and the inner wall and the bottom wall of the sealing mold Maintaining a certain distance therebetween; casting a stretchable material into the sealing mold through the opening of the sealing die to block the opening of the flexible covering structure, and after the stretchable material is solidified, the product is taken out from the sealing die to obtain a friction generator .
- the method further comprises: mixing the carbon black material and the liquid silicone material to form a stretchable material for preparing the first electrode and the second electrode.
- the forming a structural member by using the stretchable material comprises: coating a first surface of the first mold having a plate-like structure with carbon black a viscous material obtained by mixing a material with a liquid silicone material to obtain a second electrode layer after curing, and attaching a thin wire to one edge of the viscous substance; on the first surface of the second mold having a plate-like structure Applying a layer of liquid silica gel; coating a surface of the cured silica gel with a viscous material obtained by mixing a carbon black material with a liquid silica gel material to form a first electrode layer after curing, and at the edge of the viscous material a fine wire; a first mold having a second electrode layer and a second mold having a first electrode layer are placed in a casting cavity of the third mold, and the casting cavity of the third mold has a rectangular parallelepiped structure with one end open, wherein a first surface of a mold faces
- the forming a structural member by using the stretchable material comprises: coating a first surface of the first mold having a plate-like structure with a carbon black material and a liquid silicone a viscous material obtained by mixing the materials to obtain a second electrode layer after curing, and attaching a thin wire to one edge of the viscous substance; coating a first surface of the second mold having a plate-like structure a viscous material obtained by mixing a carbon black material with a liquid silicone material to form a first electrode layer after curing, and attaching a thin wire to one edge of the viscous substance; coated on the first surface of the second mold The surface of the viscous substance is coated with a liquid silicone gel; the viscous substance formed on the first surface of the second mold and the liquid silicone gel are solidified, and the cured hierarchical structure is removed from the first surface of the second mold And flipping, and then bonding the inverted layer structure to the first surface of the second mold through the
- the first surface of the first mold and the first surface of the second mold are each provided with A meter-scale microstructure or a micro-scale microstructure such that the second electrode layer and the friction layer have a nano or micro structure.
- the forming a structural member by using the stretchable material comprises: coating a first surface of the fourth mold having a plate-like structure with a carbon black material and a liquid silicone a viscous material obtained by mixing the materials to obtain a second electrode layer after curing, and attaching a thin wire to one edge of the viscous substance; and coating a liquid silicone on the second surface of the fourth mold to After curing, a friction layer is formed, and a viscous substance obtained by mixing a carbon black material and a liquid silicone material is coated on the liquid silica gel to form a first electrode layer after curing, and is attached to one edge of the viscous substance.
- the fourth mold having the second electrode layer, the first electrode layer, and the friction layer is suspended in a casting cavity of the fifth mold, the fifth mold
- the casting cavity has a rectangular parallelepiped structure with one end open, and the first electrode layer, the second electrode layer, the friction layer and the respective sides and the bottom surface of the fourth mold are spaced apart from the inner wall and the bottom wall of the casting cavity. Distance; pouring liquid silicone cast to the mold cavity and curing the fifth; removal of the fourth and the fifth mold die to obtain the structural member.
- the first surface and the second surface of the fourth mold are each provided with a nano-scale microstructure or a micro-scale microstructure such that the second electrode layer and the friction layer have a nano or micro structure.
- the forming a structural member by using the stretchable material comprises: filling a sixth mold having a hollow cylindrical structure with a carbon black material and a liquid silicone material.
- the viscous material obtained is obtained after curing to obtain a second electrode layer, and a thin wire is attached to one edge of the viscous material; and the inner surface of the seventh mold having a hollow cylindrical structure having an opening at one end is coated a layer of liquid silicone, and the seventh mold has a hollow inner diameter larger than the outer diameter of the sixth mold; after the liquid silicone is solidified, the surface of the cured silica gel is coated with a layer of carbon black material mixed with the liquid silicone material.
- a thick material to obtain a first electrode layer after curing, and a thin wire attached to one edge of the viscous material
- the axis line of the sixth mold coincides with the hollow axis line of the seventh mold, and any side of the sixth mold and the second electrode layer does not contact the seventh mold and the first electrode layer,
- the bottom surface of the sixth mold and the second electrode layer is separated from the bottom of the seventh mold hollow; the liquid silicone is poured into the hollow of the seventh mold through the opening of the seventh mold and solidified; and the sixth mold and the seventh mold are removed. Obtaining the structure Pieces.
- the friction generator of the present invention has various deformation modes, and can generate power (pressing, stretching, bending, twisting, etc.) by using various types of motion energy, thereby improving the applicability of the friction generator; and passing the flexible coating layer Sealed power generation unit, friction generator has good waterproofness.
- FIG. 1 is a schematic structural view of a friction generator according to an embodiment of the present invention.
- FIG. 2 is a schematic structural view of a friction generator according to another embodiment of the present invention.
- 3a is a schematic view showing the working principle of the friction generator of the structure shown in FIG. 1 when subjected to pressing motion energy;
- Figure 3b is a schematic view showing the working principle of the friction generator of the structure shown in Figure 1 when subjected to tensile kinetic energy;
- Figure 3c is a schematic view showing the working principle of the friction generator of the structure shown in Figure 1 when subjected to bending motion energy;
- 3d is a schematic view showing the working principle of the friction generator of the structure shown in FIG. 1 when subjected to the twisting motion energy;
- FIG. 4 is a flow chart of a method for preparing a friction generator according to an embodiment of the present invention.
- FIG. 5 is a flow chart of forming a structural member in a method for manufacturing a friction generator according to an embodiment of the present invention
- FIG. 6 is a flow chart of forming a structural member in a method for manufacturing a friction generator according to another embodiment of the present invention.
- FIG. 7 is a flow chart of forming a structural member in a method for fabricating a friction generator according to another embodiment of the present invention.
- FIG. 8 is a flow chart of forming a structural member in a method for manufacturing a friction generator according to another embodiment of the present invention.
- An embodiment of the present invention provides a friction generator, as shown in FIGS. 1 and 2, the friction generator includes a power generating unit 1 and a flexible cladding layer 2, wherein:
- the power generating unit 1 includes a first electrode layer 11, a friction layer 12, and a second electrode layer 13, wherein the first electrode layer 11, the friction layer 12, and the second electrode layer 13 are made of a stretchable material, and the friction layer 12 and the second electrode There is an air layer 3 between the layers 13, and the first electrode layer 11 is formed on a side surface of the friction layer 12 facing away from the second electrode layer 13;
- the flexible cover layer 2 is prepared from a stretchable material, and the flexible cover layer 2 is wrapped around the outside of the power generating unit 1 to seal the power generating unit 1.
- the first electrode layer 11, the second electrode layer 13, and the friction layer 13 in the power generating unit 1 are each made of a stretchable material, and the flexible coating layer 2 coated on the outer side of the power generating unit 1 It is also prepared from a stretchable material. Therefore, the above-mentioned friction generator can perform arbitrary deformation such as pressing, stretching, bending, twisting, etc., and when the friction generator is subjected to pressing, stretching, bending, twisting, etc., the corresponding kinetic energy occurs.
- FIG. 3a to FIG. 3d wherein FIG. 3a is a schematic diagram of the working principle of the friction generator of the structure shown in FIG. 1 when subjected to the pressing motion energy, and FIG.
- FIG. 3b is the friction of the structure shown in FIG. Schematic diagram of the working principle of the generator when subjected to tensile kinetic energy.
- Fig. 3c is a schematic view showing the working principle of the friction generator of the structure shown in Fig. 1 under the action of bending kinetic energy, and
- Fig. 3d is the friction generator of the structure shown in Fig. 1.
- the material of the second electrode layer 13 and the friction layer 12 has a difference in friction electrode order, that is, the ability to obtain electron loss from the surface after contact with each other is different.
- the power generating unit 1 converts extremely minute mechanical energy into electric energy by using a friction effect between the second electrode layer 13 and the friction layer 12 and an electrostatic induction effect, and the above-described friction generator has various deformation modes. Therefore, the friction generator has a variety of force modes as long as the friction generator can be deformed. Therefore, the friction generator can utilize various types of motion energy, and the applicability is good. And, the outer side of the power generating unit 1 is covered with a stretchable material The flexible coating layer 2 prepared by the material can further seal the entire power generating unit 1, and the friction generator has better water repellency.
- the above friction generator has good applicability and is excellent in water repellency.
- the preparation materials of the first electrode layer 11 and the second electrode layer 13 may be a stretchable material obtained by mixing and solidifying a carbon black material and a liquid silicone material, and the carbon black material and the silica gel.
- the mass ratio of the materials is 1:5 to 1:15, such as 1:5, 1:5.5, 1:6, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, etc.
- the viscous material obtained by mixing the carbon black material and the liquid silicone material in the above ratio obtains a stretchable material after curing, which has good electrical conductivity and good tensile properties, and therefore can satisfy the first
- the electrode layer 11 and the second electrode layer 13 have a need for electrical conductivity and tensile properties.
- the mass ratio of the carbon black material to the silica gel material is 1:12.
- the flexible coating layer 2 may be
- the flexible cover layer 2 is made of a silica gel material, and the first electrode layer 11 is bonded to the flexible cover layer 2, and the second electrode layer 13 is bonded to the flexible cover layer 2.
- the preparation materials of the first electrode layer 11 and the second electrode layer 13 are a stretchable material obtained by mixing and solidifying a carbon black material and a liquid silicone material, when the flexible coating layer 2 is made of a silicone material, the first The stability of the connection between the electrode layer 11 and the second electrode layer 13 and the flexible cladding layer 2 is high.
- the shape of the above friction generator can also be designed in various ways, such as:
- the power generating unit 1 in the friction generator may have a rectangular parallelepiped structure, and the first electrode layer 11, the friction layer 12, and the second electrode layer 13 are sequentially arranged in the thickness direction of the power generating unit 1.
- the power generating unit 1 in the friction generator may further have a cylindrical structure.
- the second electrode layer 13 has a cylindrical structure
- the friction layer 12 is located outside the second electrode layer 13 and is second.
- the electrode layer 13 is coaxially disposed in a cylindrical structure
- the first electrode layer 11 is a cylindrical structure located outside the friction layer 12 and coaxial with the second electrode layer 13.
- a nano or micro structure can be prepared on the friction generator friction layer and the surface of the second electrode layer, that is, the friction layer 12 has a nano or micro structure on the surface of the second electrode layer 13 .
- the surface of the second electrode layer 13 facing the friction layer 12 is also provided with a nano or micro structure, and the nano or micro structure of these surfaces is advantageous for increasing the output current of the friction generator.
- the embodiment of the present invention further provides a method for preparing a friction generator provided in the above embodiment.
- the preparation method includes:
- Step S102 forming a structural member by using a stretchable material, wherein the structural member comprises a first electrode layer, a friction layer, a second electrode layer, and a flexible covering structure, the first electrode layer being formed on the friction layer facing away from the second electrode layer a side surface, and an air layer between the friction layer and the second electrode layer, and the flexible covering structure is provided with an opening at only one end;
- Step S103 the structural member is suspended in an opening mold which is open at one end, wherein the opening of the flexible covering structure faces the bottom wall of the sealing mold, and the surface of any surface of the structural member is maintained between the inner wall of the sealing mold and the bottom wall. a certain distance
- Step S104 casting a stretchable material into the sealing mold through the opening of the sealing die to block the opening of the flexible covering structure, and after the stretchable material is solidified, the product is taken out from the sealing die to obtain a friction generator.
- the preparation materials of the first electrode layer 11 and the second electrode layer 13 in the power generation unit 1 are a stretchable material obtained by mixing a carbon black material and a liquid silica gel material, due to the carbon black material and the liquid silicone resin
- the stretchable material obtained by curing the material after mixing is automatically solidified for a certain period of time. Therefore, the materials for forming the first electrode layer 11 and the second electrode layer 13 need to be prepared on site, and therefore, as shown in FIG. 4, Before the step S102 forms a structural member using the stretchable material, the above preparation method further includes
- Step S101 mixing a carbon black material and a liquid silicone material to form a stretchable material for preparing the first electrode and the second electrode, wherein the quality of the carbon black material and the liquid silicone material is as described in the foregoing embodiment, and is not Let me repeat.
- step S102 the specific operation method of step S102 can be performed in different manners according to the shape of the friction generator, such as:
- the forming of the structural member by using the stretchable material in the above step S102 may specifically include:
- Step S201 coating a first surface of the first mold having a plate-like structure with a viscous substance obtained by mixing a carbon black material and a liquid silicone material to obtain a second electrode layer after curing, and being viscous
- a viscous substance obtained by mixing a carbon black material and a liquid silicone material to obtain a second electrode layer after curing, and being viscous
- One edge of the substance is attached to a thin wire; this step is on one edge of the viscous material
- the upper connecting thin wire is used for connecting the second electrode layer and the external circuit of the friction generator;
- Step S202 coating a first surface of the second mold having a plate-like structure with a liquid silicone gel; the liquid silica gel in the step is formed into a flexible coating layer 2 for bonding with the first electrode layer 11 after curing.
- Step S203 coating a surface of the cured silica gel with a viscous substance obtained by mixing a carbon black material and a liquid silicone material to form a first electrode layer after curing, and attaching a thin wire to one edge of the viscous substance. a thin wire connected to one edge of the viscous substance in this step for connecting an external circuit of the first electrode layer and the friction generator;
- Step S204 the first mold having the second electrode layer and the second mold having the first electrode layer are placed in the casting cavity of the third mold, and the casting cavity of the third mold has a rectangular parallelepiped structure with one end open, wherein The first surface of the mold faces away from the second mold, and the first surface of the second mold faces the first mold, and the first mold is suspended so that the respective sides and the bottom surface of the first mold and the second electrode layer and the inner wall of the casting cavity The bottom walls are spaced apart by a certain distance, and the surface of the second mold facing away from the first mold is adhered to the side wall of the casting cavity;
- Step S205 pouring liquid silicone into the casting cavity of the third mold and solidifying; when pouring liquid silicone into the casting cavity of the third mold, the gap between the first mold and the second mold is filled with silica gel, and is formed after solidification.
- the friction layer 12 of the power generating unit 1 and at the same time, the silica gel at the gap between the first mold and the bottom wall of the casting cavity forms a side wall of the flexible coating shell 2 after solidification; the side faces of the first mold and the second electrode layer
- the silica gel at the void between the inner walls of the casting cavity forms the other three side walls of the flexible cladding shell 2 after solidification.
- step S206 only the portion corresponding to the opening of the casting cavity of the third mold is opened in the member obtained by removing the first mold, the second mold, and the third mold, thereby obtaining a structural member having only one end open.
- the forming the structural member by using the stretchable material in the step S102 may further include:
- Step S301 coating a first surface of the first mold having a plate-like structure with a viscous substance obtained by mixing a carbon black material and a liquid silicone material to obtain a second electrode layer after curing, and being viscous One edge of the substance is connected to the thin wire; the thin wire connected to one edge of the viscous substance in this step is used for connecting the second electrode layer and the external circuit of the friction generator;
- Step S302 coating a first surface of the second mold having a plate-like structure with a carbon black material a viscous material obtained by mixing with a liquid silicone material to form a first electrode layer after curing, and attaching a thin wire to one edge of the viscous substance; in this step, it is connected on one edge of the viscous substance a thin wire is used for connecting an external circuit of the first electrode layer and the friction generator;
- Step S303 coating a surface of the viscous substance coated on the first surface of the second mold with a layer of liquid silica gel; in the step, the liquid silicone layer coated in the step is formed into a flexible coating layer 2 for curing. a sidewall to which the first electrode layer 11 is bonded;
- Step S304 curing the viscous substance formed on the first surface of the second mold and the liquid silicone, and removing the solidified layer structure from the first surface of the second mold and inverting, and then turning the level after the inversion The structure is adhered to the first surface of the second mold by liquid silica gel;
- Step S305 the first mold having the second electrode layer and the second mold having the first electrode layer are placed in the casting cavity of the third mold, and the casting cavity of the third mold has a rectangular parallelepiped structure with one end open, wherein The first surface of the mold faces away from the second mold, and the first surface of the second mold faces the first mold, and the first mold is suspended so that the respective sides and the bottom surface of the first mold and the second electrode layer and the inner wall of the casting cavity The bottom walls are spaced apart by a certain distance, and the surface of the second mold facing away from the first mold is adhered to the side wall of the casting cavity;
- Step S306 pouring liquid silicone into the casting cavity of the third mold and curing
- Step S307 the first mold, the second mold, and the third mold are removed to obtain a structural member.
- the first surface of the first mold and the first surface of the second mold are each provided with a nano-scale microstructure or a micro-scale microstructure such that the second electrode layer and the friction layer have a nano or micro structure.
- the forming of the structural member by using the stretchable material in the above step S102 may further include:
- Step S401 coating a first surface of the fourth mold having a plate-like structure with a viscous substance obtained by mixing a carbon black material and a liquid silicone material to obtain a second electrode layer after curing, and being viscous a thin wire is attached to one edge of the material; and a layer of liquid silica gel is coated on the second surface of the fourth mold to form a friction layer after solidification, and a layer of carbon black material and liquid silicone material are mixed on the liquid silica gel to obtain a viscous material to form a first electrode layer after curing, and to attach a thin wire to one edge of the viscous material; wherein the first surface and the second surface are parallel to each other;
- Step S402 the fourth mold having the second electrode layer, the first electrode layer and the friction layer is suspended in the casting cavity of the fifth mold, and the casting cavity of the fifth mold has a rectangular parallelepiped opening at one end.
- the first electrode layer, the second electrode layer, the friction layer and the respective sides and the bottom surface of the fourth mold are spaced apart from the inner wall and the bottom wall of the casting cavity by a certain distance;
- Step S403 pouring liquid silicone into the casting cavity of the fifth mold and curing
- Step S404 the fourth mold and the fifth mold are removed to obtain a structural member.
- first surface and the second surface of the fourth mold used in the above preparation method are each provided with a nano-scale microstructure or a micro-scale microstructure, so that the second electrode layer and the friction layer have a nano or micro structure.
- step S102 when the power generating unit 1 in the friction generator has a cylindrical structure, forming the structural member by using the stretchable material in the above step S102 may include:
- Step S501 filling a sixth mold having a hollow cylindrical structure with a viscous substance obtained by mixing a carbon black material and a liquid silicone material to obtain a second electrode layer after curing, and in a viscous substance.
- a thin wire is attached to the edge; the thin wire connected to one edge of the viscous substance in this step is used for connecting the second electrode layer and the external circuit of the friction generator;
- Step S502 coating a liquid silicone gel on the inner surface of a seventh mold having a hollow cylindrical structure with one end open, and the seventh mold has a hollow inner diameter larger than the outer diameter of the sixth mold; the liquid silicone in the step a wall for forming a flexible coating 2 after curing;
- Step S503 after the liquid silicone gel is solidified, a surface of the cured silica gel is coated with a viscous substance obtained by mixing a carbon black material and a liquid silica gel material to obtain a first electrode layer after curing, and is viscous. One edge of the substance is connected to the thin wire; the thin wire connected to one edge of the viscous substance in this step is used for connecting the first electrode layer and the external circuit of the friction generator;
- Step S504 the sixth mold with the second electrode layer is suspended in the seventh mold with the first electrode layer, and the axis line of the sixth mold coincides with the hollow axis line of the seventh mold, and the The six molds and any side of the second electrode layer are not in contact with the seventh mold and the first electrode layer, and the bottom surfaces of the sixth mold and the second electrode layer are separated from the bottom of the seventh mold hollow;
- Step S505 the liquid silicone gel is poured into the hollow of the seventh mold through the opening of the seventh mold and solidified; the liquid silica gel in the step is solidified to form a friction layer and a bottom wall connected to the silica gel in the step S502;
- Step S506 the sixth mold and the seventh mold are removed to obtain a structural member.
Landscapes
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Electrotherapy Devices (AREA)
Abstract
一种摩擦发电机及其制备方法,摩擦发电机包括发电单元(1)和柔性包覆层(2),发电单元包括第一电极层(11)、摩擦层(12)、第二电极层(13),第一电极层(11)、摩擦层(12)、第二电极层(13)由可拉伸材料制备,摩擦层(12)与第二电极层(13)之间具有空气层(3);柔性包覆层(2)由可拉伸材料制备,且柔性包覆层(2)包覆于发电单元(1)外侧以将发电单元(1)密封。该摩擦发电机能够进行任意扭曲、拉伸等变形,该摩擦发电机的受力方式也是多种多样的,可以利用多种运动形式的能量,其适用性较好。并且,发电单元(1)的外侧包覆有由可拉伸材料制备的柔性包覆层(2),进而能够将整个发电单元(1)密封,其防水性较好。
Description
本发明涉及发电技术领域,特别涉及一种摩擦发电机及其制备方法。
目前,随着可拉伸电子器件和可穿戴电子器件的飞速发展,人们急需一种用于可拉伸电子器件和可穿戴电子器件的供能器件,并且,随着能源问题和环境问题的日益突出,一种可以收集周围环境能量的可拉伸能源器件作为可拉伸电子器件和可穿戴电子器件的供能器件有着重要的意义,而摩擦发电机作为一种新型的发电装置,其利用摩擦效应和静电感应效应能够将及其微小的机械能转换为能够利用的电能,如水的运动、风的运动、日常生活中物体的运动、人体的运动等等都可以成为摩擦电发电机的动力源,因此,摩擦发电机能够成为用于可拉伸电子器件和可穿戴电子器件的一种品质优良的供能器件。
但是,目前的摩擦发电机中,具备可拉伸性能的摩擦发电机通常只能收集一种运动形式的能量,进而降低了摩擦发电机的适用性,并且,现有摩擦发电机并不防水。
因此,如何提供一种能够防水并且适用性好的摩擦发电机是本领域技术人员亟需解决的技术问题之一。
发明内容
(一)要解决的技术问题
本发明提供了一种摩擦发电机及其制备方法,该摩擦发电机适用性好并且能够防水。
(二)技术方案
根据本发明的一个方面,提供了一种摩擦发电机,包括发电单元和柔性包覆层,其中:发电单元包括第一电极层、摩擦层、第二电极层,其中所述第一电极层、摩擦层、第二电极层由可拉伸材料制备,所述摩擦层与第二电极层之间具有空气层,且所述第一电极层形成于所述摩擦层背离所述第二电极层的一侧表面;所述柔性包覆层由可拉伸材料制备,且所述柔性包覆层包覆于所述发电单元外侧。
优选地,所述第一电极层和第二电极层的制备材料为由碳黑材料和液态的硅胶材料混合后固化得到的可拉伸导电复合材料,且,碳黑材料与硅胶材料的质量比为1∶5~1∶15。
优选地,所述导电复合材料中,碳黑材料与硅胶材料的质量比为1∶12。
优选地,所述柔性包覆层为由硅胶材料制备的柔性包覆层,且所述第一电极层与所述柔性包覆层粘结,所述第二电极层与所述柔性包覆层粘接。
优选地,所述发电单元具有长方体结构,且沿所述发电单元的厚度方向,所述第一电极层、摩擦层、第二电极层依次排列。
优选地,所述发电单元具有圆柱体结构,所述第二电极层为圆柱状结构,且所述摩擦层为位于第二电极层外侧且与所述第二电极层同轴设置的圆筒结构,所述第一电极层为位于摩擦层外侧且与所述第二电极层同轴的圆筒状结构。
优选地,所述摩擦层朝向第二电极层的表面上具备纳米或微米结构;和/或所述第二电极层朝向摩擦层的表面具备纳米或微米结构。
优选地,所述第二电极层与摩擦层的材料具有摩擦电极序差异。
优选地,所述柔性包覆层将所述发电单元密封。
根据本发明的另一个方面,提供了一种摩擦发电机的制备方法,包括:采用可拉伸材料形成一结构件,其中,所述结构件包括第一电极层、摩擦层、第二电极层、柔性包覆结构,所述第一电极层形成于摩擦层背离第二电极层的一侧表面,且摩擦层与第二电极层之间具有空气层,且所述柔性包覆结构仅一端设有开口;将结构件悬空放入一个一端开口的封口模具中,其中,所述柔性包覆结构的开口朝向封口模具的底壁,且使结构件的任意表面与封口模具的内壁以及底壁之间保持一定距离;通过封口模具的开口向封口模具内浇注可拉伸材料以封堵所述柔性包覆结构的开口,待可拉伸材料固化后将产品自封口模具内取出以得到摩擦发电机。
优选地,在所述采用可拉伸材料形成一结构件之前,还包括:将碳黑材料和液态硅胶材料混合形成用于制备所述第一电极和第二电极的可拉伸材料。
优选地,当所述发电单元具有长方体结构时,所述采用可拉伸材料形成一结构件,包括:在具有板状结构的第一模具的第一表面涂一层由碳黑
材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;在具有板状结构的第二模具的第一表面涂一层液态硅胶;在固化的硅胶表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;将具有第二电极层的第一模具和具有第一电极层的第二模具放入第三模具的浇注腔内,第三模具的浇注腔具有一端开口的长方体结构,其中,第一模具的第一表面背离所述第二模具,且第二模具的第一表面朝向第一模具,且第一模具悬空设置以使第一模具以及第二电极层的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离,第二模具背离第一模具的表面与浇注腔的侧壁贴合;向第三模具的浇注腔内浇注液态硅胶并固化;将第一模具、第二模具以及第三模具拆除以得到所述结构件。
优选地,当所述发电单元具有长方体结构时,所述采用可拉伸材料形成一结构件,包括:在具有板状结构的第一模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;在具有板状结构的第二模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;在第二模具的第一表面涂覆的粘稠状物质的表面涂一层液态硅胶;将第二模具的第一表面上形成的粘稠状物质以及液态硅胶固化,并且将固化后的层级结构自第二模具的第一表面上取下并翻转,然后将翻转后的层级结构通过液态硅胶粘到第二模具的第一表面;将具有第二电极层的第一模具和具有第一电极层的第二模具放入第三模具的浇注腔内,第三模具的浇注腔具有一端开口的长方体结构,其中,第一模具的第一表面背离所述第二模具,且第二模具的第一表面朝向第一模具,且第一模具悬空设置以使第一模具以及第二电极层的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离,第二模具背离第一模具的表面与浇注腔的侧壁贴合;向第三模具的浇注腔内浇注液态硅胶并固化;拆除所述第一模具、第二模具以及第三模具以得到所述结构件。
优选地,所述第一模具的第一表面以及第二模具的第一表面均设有纳
米级的微结构或微米级的微结构,以使所述第二电极层以及摩擦层具备纳米或微米结构。
优选地,当所述发电单元具有长方体结构时,所述采用可拉伸材料形成一结构件,包括:在具有板状结构的第四模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;并且在第四模具的第二表面上涂一层液态硅胶以在固化后形成摩擦层,在液态硅胶上涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;其中,所述第一表面和第二表面相互平行;将具有第二电极层、第一电极层以及摩擦层的第四模具悬空放入第五模具的浇注腔内,第五模具的浇注腔具有一端开口的长方体结构,且第一电极层、第二电极层、摩擦层以及第四模具的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离;向第五模具的浇注腔内浇注液态硅胶并固化;拆除所述第四模具以及第五模具以得到所述结构件。
优选地,所述第四模具的第一表面以及第二表面均设有纳米级的微结构或微米级的微结构,以使所述第二电极层以及摩擦层具备纳米或微米结构。
优选地,当所述发电单元具有圆柱体结构时,所述采用可拉伸材料形成一结构件,包括:在一个具有空心圆柱形结构的第六模具内填充由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,且在粘稠状物质的一个边缘接上细导线;在一个具有一端开口的空心圆柱形结构的第七模具的内表面涂一层液态硅胶,且第七模具具有的空心的内径大于第六模具的外径;待液态硅胶固化后,在固化后的硅胶的表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第一电极层,并在粘稠状物质的一个边缘接上细导线;将带有第二电极层的第六模具悬空放入带有第一电极层的第七模具中,第六模具的轴心线与第七模具的空心的轴心线重合,且第六模具以及第二电极层的任何侧面与第七模具以及第一电极层不接触,且第六模具以及第二电极层的底面离第七模具空心的底部一定距离;通过第七模具的开口向第七模具的空心内浇注液态硅胶并固化;拆除所述第六模具以及第七模具以得到所述结构
件。
(三)有益效果
本发明的摩擦发电机的变形方式多种多样,可以利用多种运动形式的能量进行发电(按压、拉伸、弯曲、扭曲等),提高了摩擦发电机的适用性;并且通过柔性包覆层密封发电单元,摩擦发电机的具有良好的防水性。
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明一种实施例提供的摩擦发电机的结构示意图;
图2为本发明另一种实施例提供的摩擦发电机的结构示意图;
图3a为图1所示结构的摩擦发电机受按压运动能量作用时的工作原理示意图;
图3b为图1所示结构的摩擦发电机受拉伸运动能量作用时的工作原理示意图;
图3c为图1所示结构的摩擦发电机受弯曲运动能量作用时的工作原理示意图;
图3d为图1所示结构的摩擦发电机受扭曲运动能量作用时的工作原理示意图;
图4为本发明一种实施例提供的摩擦发电机的制备方法的流程图;
图5为本发明一种实施例提供的摩擦发电机的制备方法中形成结构件的流程图;
图6为本发明另一种实施例提供的摩擦发电机的制备方法中形成结构件的流程图;
图7为本发明另一种实施例提供的摩擦发电机的制备方法中形成结构件的流程图;
图8为本发明另一种实施例提供的摩擦发电机的制备方法中形成结构件的流程图。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实
施例,并参照附图,对本发明进一步详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种摩擦发电机,如图1和图2所示,该摩擦发电机包括发电单元1和柔性包覆层2,其中:
发电单元1包括第一电极层11、摩擦层12、第二电极层13,其中第一电极层11、摩擦层12、第二电极层13由可拉伸材料制备,摩擦层12与第二电极层13之间具有空气层3,且第一电极层11形成于摩擦层12背离第二电极层13的一侧表面;
柔性包覆层2由可拉伸材料制备,且柔性包覆层2包覆于发电单元1外侧以将发电单元1密封。
上述摩擦发电机中,发电单元1中的第一电极层11、第二电极层13、摩擦层13均由可拉伸的材料制备,并且,包覆在发电单元1外侧的柔性包覆层2也由可拉伸材料制备,因此,上述摩擦发电机能够进行任意变形,如按压、拉伸、弯曲、扭曲等,且当摩擦发电机受到按压、拉伸、弯曲、扭曲等运动能量发生相应的变形时,其工作原理如图3a~图3d所示,其中,图3a为图1所示结构的摩擦发电机受按压运动能量作用时的工作原理示意图,图3b为图1所示结构的摩擦发电机受拉伸运动能量作用时的工作原理示意图,图3c为图1所示结构的摩擦发电机受弯曲运动能量作用时的工作原理示意图,图3d为图1所示结构的摩擦发电机受扭曲运动能量作用时的工作原理示意图。第二电极层13与摩擦层12的材料具有摩擦电极序差异,即互相接触分离后表面得失电子能力不同。当摩擦发电机发生变形时,发电单元1利用第二电极层13与摩擦层12之间的摩擦效应以及静电感应效应等把极其微小的机械能转化为电能,上述摩擦发电机的变形方式多种多样,因此上述摩擦发电机的受力方式也是多种多样的,只要能够使摩擦发电机发生变形即可,因此,上述摩擦发电机可以利用多种运动形式的能量,其适用性较好。并且,发电单元1的外侧包覆有由可拉伸材
料制备的柔性包覆层2,进而能够将整个发电单元1密封,进而上述摩擦发电机的防水性较好。
因此,上述摩擦发电机的适用性较好,并且,其防水性较好。
具体地,发电单元1中,第一电极层11和第二电极层13的制备材料可以为由碳黑材料和液态的硅胶材料混合后固化得到的可拉伸材料,且,碳黑材料与硅胶材料的质量比为1∶5~1∶15,如1∶5、1∶5.5、1:6、1∶8、1∶9、1∶10、1∶11、1∶12、1∶13、1∶14、1∶15等。
碳黑材料和液态硅胶材料按照上述比例混合后获得的粘稠状物质在固化之后获得可拉伸材料,其既具有良好的导电性,同时具有良好的可拉伸性能,因此,可以满足第一电极层11和第二电极层13具有导电性能以及可拉伸性能的需要。
优选地,上述导电复合材料中,碳黑材料与硅胶材料的质量比为1∶12。
本发明实施例对于柔性包覆层2的材料没有特殊的要求,当然,为了能够提高柔性包覆层2与发电单元1之间相关结构之间配合的稳定性,上述柔性包覆层2可以为由硅胶材料制备的柔性包覆层2,且第一电极层11与柔性包覆层2粘结,第二电极层13与柔性包覆层2粘接。
由于第一电极层11和第二电极层13的制备材料为由碳黑材料和液态的硅胶材料混合后固化得到的可拉伸材料,因此,当柔性包覆层2选用硅胶材料时,第一电极层11和第二电极层13与柔性包覆层2之间连接的稳定性较高。
当然,上述摩擦发电机的形状也可以有多种设计方式,如:
如图1所示,摩擦发电机中的发电单元1可以具有长方体结构,且沿发电单元1的厚度方向,第一电极层11、摩擦层12、第二电极层13依次排列。
如图2所示,摩擦发电机中的发电单元1还可以具有圆柱体结构,具体地,第二电极层13为圆柱状结构,且摩擦层12为位于第二电极层13外侧且与第二电极层13同轴设置的圆筒结构,第一电极层11为位于摩擦层12外侧且与第二电极层13同轴的圆筒状结构。
当然,可以在摩擦发电机摩擦层和第二电极层表面制备出纳米或者微米结构,即,摩擦层12朝向第二电极层13的表面上具备纳米或微米结构,
且第二电极层13朝向摩擦层12的表面也具备纳米或微米结构,这些表面的纳米或者微米结构有利于提高摩擦发电机的输出电流。
另外,本发明实施例还提供了一种上述实施例中提供的任意一种摩擦发电机的制备方法,如图4所示,该制备方法包括:
步骤S102,采用可拉伸材料形成一结构件,其中,结构件包括第一电极层、摩擦层、第二电极层、柔性包覆结构,第一电极层形成于摩擦层背离第二电极层的一侧表面,且摩擦层与第二电极层之间具有空气层,且柔性包覆结构仅一端设有开口;
步骤S103,将结构件悬空放入一个一端开口的封口模具中,其中,柔性包覆结构的开口朝向封口模具的底壁,且使结构件的任意表面与封口模具的内壁以及底壁之间保持一定距离;
步骤S104,通过封口模具的开口向封口模具内浇注可拉伸材料以封堵柔性包覆结构的开口,待可拉伸材料固化后将产品自封口模具内取出以得到摩擦发电机。
当发电单元1中的第一电极层11和第二电极层13的制备材料为由碳黑材料和液态的硅胶材料混合后固化得到的可拉伸材料时,由于由碳黑材料和液态的硅胶材料混合后固化得到的可拉伸材料在一定时间内会自动固化,因此,用于形成第一电极层11和第二电极层13的材料需要现场制备,因此,如图4所示,在上述步骤S102采用可拉伸材料形成一结构件之前,上述制备方法还包括
步骤S101,将碳黑材料和液态硅胶材料混合形成用于制备第一电极和第二电极的可拉伸材料,其中,碳黑材料和液态硅胶材料的质量比如前面实施例中所述,这里不再赘述。
上述制备方法中,步骤S102的具体操作方法可以根据摩擦发电机形状的不同采用不同的方式进行,如:
如图5所示,当发电单元具有长方体结构时,上述步骤S102中的采用可拉伸材料形成一结构件具体可以包括:
步骤S201,在具有板状结构的第一模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;该步骤中在粘稠状物质的一个边缘
上连接的细导线用于连接第二电极层与摩擦发电机的外接电路;
步骤S202,在具有板状结构的第二模具的第一表面涂一层液态硅胶;该步骤中的液态硅胶在固化之后形成的是柔性包覆层2中用于与第一电极层11粘接的侧壁;
步骤S203,在固化的硅胶表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;该步骤中在粘稠状物质的一个边缘上连接的细导线用于连接第一电极层与摩擦发电机的外接电路;
步骤S204,将具有第二电极层的第一模具和具有第一电极层的第二模具放入第三模具的浇注腔内,第三模具的浇注腔具有一端开口的长方体结构,其中,第一模具的第一表面背离第二模具,且第二模具的第一表面朝向第一模具,且第一模具悬空设置以使第一模具以及第二电极层的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离,第二模具背离第一模具的表面与浇注腔的侧壁贴合;
步骤S205,向第三模具的浇注腔内浇注液态硅胶并固化;当向第三模具的浇注腔内浇注液态硅胶时,第一模具与第二模具之间的间隙被浇满硅胶,固化后形成发电单元1的摩擦层12,同时,第一模具与浇注腔底壁之间的空隙部位的硅胶在固化后形成柔性包覆壳2的一个侧壁;第一模具和第二电极层的侧面与浇注腔内壁之间的空隙部位的硅胶在固化后形成柔性包覆壳2的另外三个侧壁。
步骤S206,将第一模具、第二模具以及第三模具拆除后得到的部件中只有与第三模具的浇注腔的开口对应的部位开口,进而得到仅一端开口的结构件。
如图6所示,当发电单元具有长方体结构时,上述步骤S102中的采用可拉伸材料形成一结构件还可以包括:
步骤S301,在具有板状结构的第一模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;该步骤中在粘稠状物质的一个边缘上连接的细导线用于连接第二电极层与摩擦发电机的外接电路;
步骤S302,在具有板状结构的第二模具的第一表面涂一层由碳黑材料
与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;该步骤中在粘稠状物质的一个边缘上连接的细导线用于连接第一电极层与摩擦发电机的外接电路;
步骤S303,在第二模具的第一表面涂覆的粘稠状物质的表面涂一层液态硅胶;此步骤中涂的一层液态硅胶在固化之后形成的是柔性包覆层2中用于与第一电极层11粘接的侧壁;
步骤S304,将第二模具的第一表面上形成的粘稠状物质以及液态硅胶固化,并且将固化后的层级结构自第二模具的第一表面上取下并翻转,然后将翻转后的层级结构通过液态硅胶粘到第二模具的第一表面;
步骤S305,将具有第二电极层的第一模具和具有第一电极层的第二模具放入第三模具的浇注腔内,第三模具的浇注腔具有一端开口的长方体结构,其中,第一模具的第一表面背离第二模具,且第二模具的第一表面朝向第一模具,且第一模具悬空设置以使第一模具以及第二电极层的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离,第二模具背离第一模具的表面与浇注腔的侧壁贴合;
步骤S306,向第三模具的浇注腔内浇注液态硅胶并固化;
步骤S307,拆除第一模具、第二模具以及第三模具以得到结构件。
优选地,上述第一模具的第一表面以及第二模具的第一表面均设有纳米级的微结构或微米级的微结构,以使第二电极层以及摩擦层具备纳米或微米结构。
当然,如图7所示,当发电单元1具有长方体结构时,上述步骤S102中的采用可拉伸材料形成一结构件还可以包括:
步骤S401,在具有板状结构的第四模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;并且在第四模具的第二表面上涂一层液态硅胶以在固化后形成摩擦层,在液态硅胶上涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;其中,第一表面和第二表面相互平行;
步骤S402,将具有第二电极层、第一电极层以及摩擦层的第四模具悬空放入第五模具的浇注腔内,第五模具的浇注腔具有一端开口的长方体结
构,且第一电极层、第二电极层、摩擦层以及第四模具的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离;
步骤S403,向第五模具的浇注腔内浇注液态硅胶并固化;
步骤S404,拆除第四模具以及第五模具以得到结构件。
采用上述步骤进行步骤S102时采用的模具较少。
当然,上述制备方法中采用的第四模具的第一表面以及第二表面均设有纳米级的微结构或微米级的微结构,以使第二电极层以及摩擦层具备纳米或微米结构。
如图8所示,当摩擦发电机中的发电单元1具有圆柱体结构时,上述步骤S102中的采用可拉伸材料形成一结构件可以包括:
步骤S501,在一个具有空心圆柱形结构的第六模具内填充由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,且在粘稠状物质的一个边缘接上细导线;该步骤中在粘稠状物质的一个边缘上连接的细导线用于连接第二电极层与摩擦发电机的外接电路;
步骤S502,在一个具有一端开口的空心圆柱形结构的第七模具的内表面涂一层液态硅胶,且第七模具具有的空心的内径大于第六模具的外径;该步骤中图的液态硅胶在固化后用于形成柔性包覆层2的筒壁;
步骤S503,待液态硅胶固化后,在固化后的硅胶的表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第一电极层,并在粘稠状物质的一个边缘接上细导线;该步骤中在粘稠状物质的一个边缘上连接的细导线用于连接第一电极层与摩擦发电机的外接电路;
步骤S504,将带有第二电极层的第六模具悬空放入带有第一电极层的第七模具中,第六模具的轴心线与第七模具的空心的轴心线重合,且第六模具以及第二电极层的任何侧面与第七模具以及第一电极层不接触,且第六模具以及第二电极层的底面离第七模具空心的底部一定距离;
步骤S505,通过第七模具的开口向第七模具的空心内浇注液态硅胶并固化;该步骤中的液态硅胶在固化后形成摩擦层和与步骤S502中的硅胶相连的底壁等结构;
步骤S506,拆除第六模具以及第七模具以得到结构件。
以上为本发明的最优实施例,需要说明的,该最优的实施例仅用于理
解本发明,并不用于限制本发明的保护范围。并且,最优实施例中的特征,在无特别注明的情况下,均同时适用于方法实施例和装置实施例,在相同或不同实施例中出现的技术特征在不相互冲突的情况下可以组合使用。
需要说明的是,上述对各元件的定义并不仅限于实施方式中提到的各种具体结构或形状,本领域的普通技术人员可对其进行简单地熟知地替换,以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (17)
- 一种摩擦发电机,其特征在于,包括发电单元和柔性包覆层,其中:发电单元包括第一电极层、摩擦层、第二电极层,其中所述第一电极层、摩擦层、第二电极层由可拉伸材料制备,所述摩擦层与第二电极层之间具有空气层,且所述第一电极层形成于所述摩擦层背离所述第二电极层的一侧表面;所述柔性包覆层由可拉伸材料制备,且所述柔性包覆层包覆于所述发电单元外侧。
- 根据权利要求1所述的摩擦发电机,其特征在于,所述第一电极层和第二电极层的制备材料为由碳黑材料和液态的硅胶材料混合后固化得到的可拉伸导电复合材料,且,碳黑材料与硅胶材料的质量比为1∶5~1∶15。
- 根据权利要求2所述的摩擦发电机,其特征在于,所述导电复合材料中,碳黑材料与硅胶材料的质量比为1∶12。
- 根据权利要求2所述的摩擦发电机,其特征在于,所述柔性包覆层为由硅胶材料制备的柔性包覆层,且所述第一电极层与所述柔性包覆层粘结,所述第二电极层与所述柔性包覆层粘接。
- 根据权利要求1-4任一项所述的摩擦发电机,其特征在于,所述发电单元具有长方体结构,且沿所述发电单元的厚度方向,所述第一电极层、摩擦层、第二电极层依次排列。
- 根据权利要求1-4任一项所述的摩擦发电机,其特征在于,所述发电单元具有圆柱体结构,所述第二电极层为圆柱状结构,且所述摩擦层为与所述第二电极层同轴设置的圆筒结构,所述第一电极层为与所述第二电极层同轴的圆筒状结构。
- 根据权利要求1-6任一项所述的摩擦发电机,其特征在于,所述摩擦层朝向第二电极层的表面上具备纳米或微米结构;和/或所述第二电极层朝向摩擦层的表面具备纳米或微米结构。
- 根据权利要求1-7任一项所述的摩擦发电机,其特征在于,所述第二电极层与摩擦层的材料具有摩擦电极序差异。
- 根据权利要求1-8任一项所述的摩擦发电机,其特征在于,所述柔性包覆层将所述发电单元密封。
- 一种如权利要求1-9任一项所述的摩擦发电机的制备方法,其特征在于,包括:采用可拉伸材料形成一结构件,其中,所述结构件包括第一电极层、摩擦层、第二电极层、柔性包覆结构,所述第一电极层形成于摩擦层背离第二电极层的一侧表面,且摩擦层与第二电极层之间具有空气层,且所述柔性包覆结构仅一端设有开口;将结构件悬空放入一个一端开口的封口模具中,其中,所述柔性包覆结构的开口朝向封口模具的底壁,且使结构件的任意表面与封口模具的内壁以及底壁之间保持一定距离;通过封口模具的开口向封口模具内浇注可拉伸材料以封堵所述柔性包覆结构的开口,待可拉伸材料固化后将产品自封口模具内取出以得到摩擦发电机。
- 根据权利要求10所述的制备方法,其特征在于,在所述采用可拉伸材料形成一结构件之前,还包括:将碳黑材料和液态硅胶材料混合形成用于制备所述第一电极和第二电极的可拉伸材料。
- 根据权利要求11所述的摩擦发电机,其特征在于,当所述发电单元具有长方体结构时,所述采用可拉伸材料形成一结构件,包括:在具有板状结构的第一模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;在具有板状结构的第二模具的第一表面涂一层液态硅胶;在固化的硅胶表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;将具有第二电极层的第一模具和具有第一电极层的第二模具放入第三模具的浇注腔内,第三模具的浇注腔具有一端开口的长方体结构,其中,第一模具的第一表面背离所述第二模具,且第二模具的第一表面朝向第一 模具,且第一模具悬空设置以使第一模具以及第二电极层的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离,第二模具背离第一模具的表面与浇注腔的侧壁贴合;向第三模具的浇注腔内浇注液态硅胶并固化;将第一模具、第二模具以及第三模具拆除以得到所述结构件。
- 根据权利要求11所述的制备方法,其特征在于,当所述发电单元具有长方体结构时,所述采用可拉伸材料形成一结构件,包括:在具有板状结构的第一模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;在具有板状结构的第二模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;在第二模具的第一表面涂覆的粘稠状物质的表面涂一层液态硅胶;将第二模具的第一表面上形成的粘稠状物质以及液态硅胶固化,并且将固化后的层级结构自第二模具的第一表面上取下并翻转,然后将翻转后的层级结构通过液态硅胶粘到第二模具的第一表面;将具有第二电极层的第一模具和具有第一电极层的第二模具放入第三模具的浇注腔内,第三模具的浇注腔具有一端开口的长方体结构,其中,第一模具的第一表面背离所述第二模具,且第二模具的第一表面朝向第一模具,且第一模具悬空设置以使第一模具以及第二电极层的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离,第二模具背离第一模具的表面与浇注腔的侧壁贴合;向第三模具的浇注腔内浇注液态硅胶并固化;拆除所述第一模具、第二模具以及第三模具以得到所述结构件。
- 根据权利要求12或13所述的制备方法,其特征在于,所述第一模具的第一表面以及第二模具的第一表面均设有纳米级的微结构或微米级的微结构,以使所述第二电极层以及摩擦层具备纳米或微米结构。
- 根据权利要求11所述的制备方法,其特征在于,当所述发电单元具有长方体结构时,所述采用可拉伸材料形成一结构件,包括:在具有板状结构的第四模具的第一表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,并在粘稠状物质的一个边缘接上细导线;并且在第四模具的第二表面上涂一层液态硅胶以在固化后形成摩擦层,在液态硅胶上涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后形成第一电极层,并在粘稠状物质的一个边缘接上细导线;其中,所述第一表面和第二表面相互平行;将具有第二电极层、第一电极层以及摩擦层的第四模具悬空放入第五模具的浇注腔内,第五模具的浇注腔具有一端开口的长方体结构,且第一电极层、第二电极层、摩擦层以及第四模具的各个侧面以及底面与浇注腔的内壁以及底壁之间均间隔一定距离;向第五模具的浇注腔内浇注液态硅胶并固化;拆除所述第四模具以及第五模具以得到所述结构件。
- 根据权利要求15所述的制备方法,其特征在于,所述第四模具的第一表面以及第二表面均设有纳米级的微结构或微米级的微结构,以使所述第二电极层以及摩擦层具备纳米或微米结构。
- 根据权利要求11所述的制备方法,其特征在于,当所述发电单元具有圆柱体结构时,所述采用可拉伸材料形成一结构件,包括:在一个具有空心圆柱形结构的第六模具内填充由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第二电极层,且在粘稠状物质的一个边缘接上细导线;在一个具有一端开口的空心圆柱形结构的第七模具的内表面涂一层液态硅胶,且第七模具具有的空心的内径大于第六模具的外径;待液态硅胶固化后,在固化后的硅胶的表面涂一层由碳黑材料与液态硅胶材料混合后得到的粘稠状物质以在固化后得到第一电极层,并在粘稠状物质的一个边缘接上细导线;将带有第二电极层的第六模具悬空放入带有第一电极层的第七模具中,第六模具的轴心线与第七模具的空心的轴心线重合,且第六模具以及第二电极层的任何侧面与第七模具以及第一电极层不接触,且第六模具以及第二电极层的底面离第七模具空心的底部一定距离;通过第七模具的开口向第七模具的空心内浇注液态硅胶并固化;拆除所述第六模具以及第七模具以得到所述结构件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610339760.4A CN106602921B (zh) | 2016-05-19 | 2016-05-19 | 一种摩擦发电机及其制备方法 |
CN201610339760.4 | 2016-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017197859A1 true WO2017197859A1 (zh) | 2017-11-23 |
Family
ID=58555956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/106240 WO2017197859A1 (zh) | 2016-05-19 | 2016-11-17 | 一种摩擦发电机及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106602921B (zh) |
WO (1) | WO2017197859A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108011539A (zh) * | 2017-12-07 | 2018-05-08 | 苏州大学 | 柔性电极及其制备方法、摩擦纳米发电机及其制备方法 |
CN108494283A (zh) * | 2018-05-24 | 2018-09-04 | 忻州师范学院 | 一种柔性可拉伸气囊式摩擦发电管及制备方法 |
CN112097962A (zh) * | 2020-09-11 | 2020-12-18 | 苏州大学 | 一种摩擦电式压力传感器及其制备方法 |
CN113206610A (zh) * | 2021-05-10 | 2021-08-03 | 北华航天工业学院 | 一种可拉伸的拱形阵列摩擦纳米发电织物及其制备方法 |
CN114542365A (zh) * | 2022-02-21 | 2022-05-27 | 北京纳米能源与系统研究所 | 深海能源收集装置及系统 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107959436B (zh) * | 2017-09-30 | 2023-10-24 | 纳智源科技(唐山)有限责任公司 | 生理监测传感带及其制作方法 |
CN107733278A (zh) * | 2017-11-07 | 2018-02-23 | 东华大学 | 一种空气间隔式摩擦纳米发电机 |
CN110247577B (zh) * | 2018-03-07 | 2020-11-10 | 中国科学院物理研究所 | 摩擦纳米发电机摩擦层表面微结构的制备方法 |
CN109498300A (zh) * | 2018-12-29 | 2019-03-22 | 赵俊瑞 | 自供能健康检查仪 |
CN109712368A (zh) * | 2018-12-29 | 2019-05-03 | 赵俊瑞 | 自供能位置检查仪 |
CN111624360A (zh) * | 2020-04-19 | 2020-09-04 | 季华实验室 | 充气轮胎的转速感应装置、估算系统及估算方法 |
CN111546838B (zh) * | 2020-04-19 | 2021-12-14 | 季华实验室 | 轮辐支撑体组件、非充气轮胎的转速感应装置及估算方法 |
CN112031325A (zh) * | 2020-09-30 | 2020-12-04 | 忻州师范学院 | 一种摩擦发电地板、及其制备方法和应用 |
CN112838781A (zh) * | 2021-03-24 | 2021-05-25 | 闽江学院 | 一种可变形的高效摩擦发电装置及其发电方法 |
CN113967325A (zh) * | 2021-10-29 | 2022-01-25 | 固安翌光科技有限公司 | 理疗设备和理疗设备的制备方法 |
CN114836844A (zh) * | 2022-04-11 | 2022-08-02 | 中国科学院工程热物理研究所 | 一种功能纤维的制备方法 |
CN114747849A (zh) * | 2022-04-25 | 2022-07-15 | 浙江师范大学 | 一种基于摩擦纳米发电机的警示雨伞 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7566410B2 (en) * | 2006-01-11 | 2009-07-28 | Nanotek Instruments, Inc. | Highly conductive nano-scaled graphene plate nanocomposites |
CN103780127A (zh) * | 2013-04-15 | 2014-05-07 | 国家纳米科学中心 | 一种摩擦纳米发电机 |
CN103776567A (zh) * | 2012-10-19 | 2014-05-07 | 纳米新能源(唐山)有限责任公司 | 基于摩擦电的压力感应电缆 |
CN104426414A (zh) * | 2013-08-23 | 2015-03-18 | 纳米新能源(唐山)有限责任公司 | 发电效果改善的摩擦发电机及其制备方法 |
CN104852625A (zh) * | 2014-02-14 | 2015-08-19 | 纳米新能源(唐山)有限责任公司 | 一种硅胶摩擦发电机 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104980058B (zh) * | 2014-04-04 | 2017-04-05 | 纳米新能源(唐山)有限责任公司 | 气囊发电机及应用气囊发电机的监测装置 |
CN105099259A (zh) * | 2015-08-20 | 2015-11-25 | 京东方科技集团股份有限公司 | 摩擦发电装置及其制作方法 |
-
2016
- 2016-05-19 CN CN201610339760.4A patent/CN106602921B/zh active Active
- 2016-11-17 WO PCT/CN2016/106240 patent/WO2017197859A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7566410B2 (en) * | 2006-01-11 | 2009-07-28 | Nanotek Instruments, Inc. | Highly conductive nano-scaled graphene plate nanocomposites |
CN103776567A (zh) * | 2012-10-19 | 2014-05-07 | 纳米新能源(唐山)有限责任公司 | 基于摩擦电的压力感应电缆 |
CN103780127A (zh) * | 2013-04-15 | 2014-05-07 | 国家纳米科学中心 | 一种摩擦纳米发电机 |
CN104426414A (zh) * | 2013-08-23 | 2015-03-18 | 纳米新能源(唐山)有限责任公司 | 发电效果改善的摩擦发电机及其制备方法 |
CN104852625A (zh) * | 2014-02-14 | 2015-08-19 | 纳米新能源(唐山)有限责任公司 | 一种硅胶摩擦发电机 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108011539A (zh) * | 2017-12-07 | 2018-05-08 | 苏州大学 | 柔性电极及其制备方法、摩擦纳米发电机及其制备方法 |
CN108011539B (zh) * | 2017-12-07 | 2019-05-17 | 苏州大学 | 柔性电极及其制备方法、摩擦纳米发电机及其制备方法 |
CN108494283A (zh) * | 2018-05-24 | 2018-09-04 | 忻州师范学院 | 一种柔性可拉伸气囊式摩擦发电管及制备方法 |
CN112097962A (zh) * | 2020-09-11 | 2020-12-18 | 苏州大学 | 一种摩擦电式压力传感器及其制备方法 |
CN112097962B (zh) * | 2020-09-11 | 2022-02-22 | 苏州慧闻纳米科技有限公司 | 一种摩擦电式压力传感器及其制备方法 |
CN113206610A (zh) * | 2021-05-10 | 2021-08-03 | 北华航天工业学院 | 一种可拉伸的拱形阵列摩擦纳米发电织物及其制备方法 |
CN113206610B (zh) * | 2021-05-10 | 2022-05-03 | 北华航天工业学院 | 一种可拉伸的拱形阵列摩擦纳米发电织物及其制备方法 |
CN114542365A (zh) * | 2022-02-21 | 2022-05-27 | 北京纳米能源与系统研究所 | 深海能源收集装置及系统 |
CN114542365B (zh) * | 2022-02-21 | 2023-12-12 | 北京纳米能源与系统研究所 | 深海能源收集装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106602921B (zh) | 2019-05-17 |
CN106602921A (zh) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017197859A1 (zh) | 一种摩擦发电机及其制备方法 | |
Teng et al. | Robust, multiscale liquid-metal patterning enabled by a sacrificial sealing layer for flexible and wearable wireless powering | |
Niu et al. | Characterizing and patterning of PDMS-based conducting composites | |
He et al. | Polymer tubes as carrier boats of thermosetting and powder materials based on 3D printing for triboelectric nanogenerator with microstructure | |
Li et al. | Functional PDMS elastomers: Bulk composites, surface engineering, and precision fabrication | |
CN105261913A (zh) | 一种电连接器的无尾罩灌封工艺及测试方法 | |
Monri et al. | Three-dimensional ceramic molding based on microstereolithography for the production of piezoelectric energy harvesters | |
CN105144322A (zh) | 烧结磁体制造用模具以及使用该烧结磁体制造用模具的烧结磁体制造方法 | |
Zhang et al. | Facile fabrication of stretchable microgroove-crack-based strain sensor with high sensitivity and low detection limit | |
CN109150012A (zh) | 一种基于风致振动的压电-电磁复合发电机 | |
CN106060702A (zh) | 多功能压电式喇叭 | |
CN202940377U (zh) | 一种高压灌封结构及使用该结构的电连接器 | |
CN103334021A (zh) | 一种微通道芯体制造工艺 | |
CN103824978A (zh) | 一种电池芯包装膜及电池 | |
ATE534778T1 (de) | Verfahren zur herstellung einer gedämmten hohlwand, die zwei betonlagen und verbinder umfasst, mit einer ultraschallvibrationsphase, sowie die entsprechende installation und die entsprechenden verbinder | |
CN209942805U (zh) | 一种多测点方形模型的高压密封装置 | |
US11874158B2 (en) | Fully soft self-powered vibration sensor and its fabrication method | |
CN201491258U (zh) | 等气压驻极体背极式双振膜电声致动器 | |
CN205840352U (zh) | 新型混凝土分层输出管 | |
CN211758413U (zh) | 一种用于制造电机壳体的浇注模 | |
CN108904222A (zh) | 一种新型适于软体驱动器逆气流法制作的阻流环 | |
CN104953226B (zh) | 基于牺牲层技术的太赫兹波导耦合器及其制备方法 | |
CN109217729A (zh) | 一种基于悬臂式mpeg的微型自供能装置 | |
Hu | Additively manufactured lead zirconate titanate–polymer composites with sheet-based triply periodic minimal surface structures | |
JP2014063963A (ja) | 電子部品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16902238 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16902238 Country of ref document: EP Kind code of ref document: A1 |