WO2017195760A1 - 電池状態推定装置 - Google Patents

電池状態推定装置 Download PDF

Info

Publication number
WO2017195760A1
WO2017195760A1 PCT/JP2017/017486 JP2017017486W WO2017195760A1 WO 2017195760 A1 WO2017195760 A1 WO 2017195760A1 JP 2017017486 W JP2017017486 W JP 2017017486W WO 2017195760 A1 WO2017195760 A1 WO 2017195760A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery
estimation device
calculation unit
charge
Prior art date
Application number
PCT/JP2017/017486
Other languages
English (en)
French (fr)
Inventor
大川 圭一朗
亮平 中尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112017001422.0T priority Critical patent/DE112017001422B4/de
Priority to JP2018517023A priority patent/JP6580784B2/ja
Publication of WO2017195760A1 publication Critical patent/WO2017195760A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery state estimation device.
  • Examples of devices using power storage means such as lithium secondary batteries, nickel metal hydride batteries, lead batteries, and electric double layer capacitors include battery systems, distributed power storage devices, and electric vehicles.
  • a state detection device that detects the state of the power storage means is used in order to use the power storage means safely and effectively.
  • the state of the storage means is a state of charge (State of Charge: hereinafter referred to as SOC) indicating how much the battery is charged or how much charge can be discharged.
  • SOC state of charge
  • SOH health state
  • the SOC in battery systems for portable devices and electric vehicles integrates the discharge current from full charge, and the amount of charge remaining in the storage means (remaining capacity) relative to the maximum charge amount (total capacity) Can be detected by calculating the ratio.
  • the SOC thus obtained will be referred to as SOCi.
  • the relationship between the voltage across the battery (open circuit voltage) and the remaining capacity of the battery is defined in advance in a data table or the like, and the current remaining capacity can be calculated by referring to this. it can.
  • the SOC thus obtained will be referred to as SOCv.
  • the state of charge can also be obtained by combining these methods.
  • Patent Document 1 describes that when SOCi and SOCv are combined, these weightings are determined according to the usage status of the power storage means.
  • the open circuit voltage of a battery can be obtained by measuring when the battery has been in a stable state after a lapse of charge / discharge.
  • IR drop current ⁇ DC component internal resistance
  • polarization voltage generated by charging and discharging are generated during the operation of the battery system. Therefore, the IR drop and the polarization voltage are estimated based on the measured state quantities such as the voltage (closed circuit voltage) during operation of the battery system, the current flowing through the battery, and the temperature of the battery.
  • a general method is to calculate the state of charge by obtaining the open circuit voltage by subtracting the IR drop and polarization voltage thus obtained from the closed circuit voltage.
  • the characteristics of the IR drop and the polarization voltage change remarkably depending on the temperature of the battery.
  • the temperature may not be uniform and a distribution may occur, or the battery system may be charged and discharged during operation to change the temperature distribution. If the temperature of the battery is not uniform, the temperature of the battery cannot be determined uniquely. If the temperature difference is large, it is difficult to accurately estimate the IR drop and the polarization voltage. In this case, since a correct open circuit voltage cannot be obtained, an error may occur in the calculation of the state of charge.
  • the battery state estimation device calculates the second charge state by integrating the first calculation unit that calculates the first charge state using the both-end voltage of the battery and the current flowing through the battery.
  • a plurality of temperatures at which the measurement positions of the batteries are different, and a second calculation unit that calculates the battery charge state by weighted addition of the first charge state and the second charge state A temperature processing unit that sets a first temperature and a second temperature based on the plurality of temperatures, and the third calculation unit has a magnitude of an absolute value of a difference between the first temperature and the second temperature. The weight of the second state of charge is changed in association with the height.
  • FIG. 1 is a block diagram showing the configuration of the battery system.
  • FIG. 2 is a functional block diagram showing details of the battery state estimation device.
  • FIG. 3 is a diagram showing an equivalent circuit of the battery.
  • FIG. 4 is a diagram illustrating the relationship between OCV and SOC.
  • FIG. 5 is a diagram showing the relationship between the internal resistance of the battery and the battery temperature.
  • FIG. 6 is a diagram illustrating an example of the correction coefficient.
  • FIG. 7 is a diagram for explaining a correction coefficient setting method according to the second embodiment.
  • FIG. 8 is a diagram for explaining a correction coefficient setting method according to the third embodiment.
  • FIG. 9 is a diagram for explaining a correction coefficient setting method according to the fourth embodiment.
  • FIG. 10 is a diagram for explaining the fifth embodiment.
  • FIG. 1 is a block diagram showing the configuration of the battery system.
  • FIG. 2 is a functional block diagram showing details of the battery state estimation device.
  • FIG. 3 is a diagram showing an equivalent circuit of the battery.
  • FIG. 11 is a diagram illustrating a modification of the fifth embodiment.
  • FIG. 12 is a diagram illustrating a first temperature calculation unit and a second temperature calculation unit according to the sixth embodiment.
  • FIG. 13 is a diagram illustrating an example of a measurement position.
  • FIG. 14 is a diagram illustrating another example of the first temperature calculation unit and the second temperature calculation unit.
  • FIG. 1 is a diagram showing a first embodiment of the present invention, and is a block diagram showing a configuration of a battery system 1000.
  • the battery system 1000 is a system that supplies the electric charge accumulated in the battery 400 as electric power to an external device, and includes a battery control device 100, a measurement unit 200, and an output unit 300.
  • a battery control device 100 As an object to which the battery system 1000 supplies power, for example, an electric vehicle, a hybrid vehicle, a train, and the like can be considered.
  • the battery 400 is a rechargeable battery such as a lithium ion secondary battery.
  • the present invention can be applied to devices having a power storage function, such as nickel metal hydride batteries, lead batteries, and electric double layer capacitors.
  • the battery 400 may be a single battery cell or a module structure in which a plurality of single battery cells are combined.
  • the measuring unit 200 is a functional unit that measures the physical characteristics of the battery 400, such as the voltage V across the battery 400, the current (battery current) I flowing through the battery 400, the temperatures t1 and t2 of the battery 400, and measures each value. Sensor, necessary electric circuit, etc.
  • measurement unit 200 can measure temperatures at two different positions of battery 400, t1 is a temperature detected at the first measurement position, and t2 is a temperature detected at the second measurement position. It is.
  • the internal resistance R of the battery 400 is also required for estimation of the battery state, but in the present embodiment, the battery state estimation device 110 uses other measurement parameters to calculate.
  • the output unit 300 is a functional unit that outputs the output of the battery control device 100 to an external device (for example, a host device such as a vehicle control device provided in an electric vehicle).
  • an external device for example, a host device such as a vehicle control device provided in an electric vehicle.
  • the battery control device 100 is a device that controls the operation of the battery 400, and includes a battery state estimation device 110 and a storage unit 120.
  • the battery state estimation device 110 uses the voltage V of the both ends, the battery current I, the battery temperatures t1 and t2 measured by the measuring unit 200, and the characteristic information of the battery 400 stored in the storage unit 120. Calculate the SOC. Details of the SOC calculation method will be described later.
  • the storage unit 120 stores characteristic information of the battery 400 that can be known in advance, such as the internal resistance R, the polarization voltage Vp, the charging efficiency, the allowable current, and the total capacity of the battery 400.
  • This characteristic information may be stored individually for each charge / discharge operation, or may be stored separately for each state of the battery 400, such as the state of charge and temperature. One value common to all 400 states may be stored.
  • the battery control device 100 and the battery state estimation device 110 can be configured using hardware such as a circuit device that realizes the function. Moreover, it is also possible to configure the software in which the function is implemented by executing an arithmetic device such as a CPU (Central Processing Unit). In the latter case, the software is stored in the storage unit 120, for example.
  • an arithmetic device such as a CPU (Central Processing Unit).
  • the software is stored in the storage unit 120, for example.
  • the storage unit 120 is configured using a storage device such as a flash memory, an EEPROM (Electrically-Erasable-Programmable-Read-Only Memory), or a magnetic disk.
  • the storage unit 120 may be provided outside the battery state estimation device 110, or may be realized as a memory device provided inside the battery state estimation device 110.
  • the storage unit 120 may be removable. When the storage unit 120 is removable, the characteristic information and software can be easily changed by replacing the storage unit 120. Further, by storing a plurality of storage units 120 and storing the characteristic information and software in the replaceable storage unit 120, the characteristic information and software can be updated for each small unit.
  • FIG. 2 is a functional block diagram showing details of the battery state estimation device 110.
  • Battery state estimation device 110 includes SOCv calculation unit 111, SOCi calculation unit 112, IR calculation unit 113, weight calculation unit 114, first temperature calculation unit 115, and second temperature calculation unit 116, and estimates the state of charge of battery 400.
  • the state of charge SOCw that is the result of this is output.
  • Other arithmetic units will be described later.
  • the SOCv calculation unit 111 calculates the SOC of the battery 400 using the voltage V across the battery 400 measured by the measurement unit 200.
  • SOCv The SOCi calculation unit 112 calculates the SOC of the battery 400 by integrating the battery current I of the battery 400 measured by the measurement unit 200.
  • SOCi The calculation method of SOCv and SOCi will be described later.
  • the IR calculation unit 113 multiplies the battery current I by the internal resistance R. Although a method for obtaining the internal resistance R will be described later, the internal resistance R is acquired from the resistance table based on the first temperature T1 input from the first temperature calculation unit 115.
  • the SOCv calculation unit 111 and the IR calculation unit 113 are configured to execute the respective processes using the first temperature T1 input from the first temperature calculation unit 115 as temperature information.
  • the temperature T1 instead of the temperature T1, for example, an average temperature of the first temperature T1 and the second temperature T2 may be used, or the second temperature T2 may be used.
  • the weight calculation unit 114 is based on two types of temperatures related to the battery 400, that is, based on the first temperature T1 output from the first temperature calculation unit 115 and the second temperature T2 output from the second temperature calculation unit 116. And a weight W for weighting and adding SOCi are calculated. A method for calculating W will be described later.
  • the first temperature calculation unit 115 outputs the temperature t1 detected at the first measurement position of the battery 400 as the first temperature T1.
  • the second temperature calculation unit 116 outputs the temperature t2 detected at the second measurement position of the battery 400 as the second temperature T2.
  • Multiplier MP1 multiplies SOCv and weight W to obtain W ⁇ SOCv.
  • the subtractor DF obtains (1-W).
  • Multiplier MP2 multiplies SOCi and (1-W) to obtain (1-W) ⁇ SOCi.
  • the adder AD adds these to obtain SOCw. That is, SOCw is expressed by the following equation (1).
  • SOCw W ⁇ SOCv + (1 ⁇ W) ⁇ SOCi (1)
  • FIG. 3 is an equivalent circuit diagram of the battery 400.
  • the battery 400 can be represented by a parallel connection pair of an impedance Z and a capacitance component C, an internal resistance R, and an open circuit voltage OCV connected in series.
  • the closed circuit voltage CCV that is the voltage between the terminals of the battery 400 is expressed by the following equation (2).
  • Vp is a polarization voltage and corresponds to the voltage across the parallel connection pair of the impedance Z and the capacitance component C.
  • CCV OCV + I ⁇ R + Vp (2)
  • the open circuit voltage OCV is used to calculate the SOCv, but cannot be directly measured while the battery 400 is being charged / discharged. Therefore, the SOCv calculation unit 111 obtains the open circuit voltage OCV by subtracting the IR drop and the polarization voltage Vp from the closed circuit voltage CCV as shown in the following equation (3).
  • OCV CCV-IR-Vp (3)
  • the internal resistance R and the polarization voltage Vp are stored as characteristic information in the storage unit 120 in advance. Since the internal resistance R and the polarization voltage Vp differ depending on the state of charge of the battery 400, the temperature, etc., individual values are stored in the storage unit 120 for each of these combinations.
  • characteristic information that defines the correspondence between the internal resistance R and the battery temperature T is stored as a resistance table. As illustrated in FIG. 2, the SOCv calculation unit 111 acquires the internal resistance R from the resistance table based on the first temperature T1 input from the first temperature calculation unit 115.
  • FIG. 4 is a diagram showing the relationship between the open circuit voltage OCV and the SOC of the battery 400. This correspondence is determined by the characteristics of the battery 400, and data defining the correspondence is stored in advance in the storage unit 120 as an SOC table.
  • the SOCv computing unit 111 can calculate the SOCv of the battery 400 by calculating the open circuit voltage OCV using the above-described equation (3) and referring to the SOC table using this as a key.
  • the SOCi calculation unit 112 calculates the SOCi of the battery 400 by accumulating the battery current I charged and discharged by the battery 400 according to the following equation (4).
  • Qmax is the full charge capacity of the battery 400 and is stored in the storage unit 120 in advance.
  • SOCold is a value of SOCw calculated by the equation (1) in the previous calculation cycle.
  • SOCi SOCold + 100 ⁇ ⁇ I / Qmax (4)
  • FIG. 5 is a diagram showing the relationship between the internal resistance R of the battery 400 and the battery temperature T.
  • the battery 400 has a high internal resistance R in a low SOC state and a large value of the internal resistance R in a low temperature state. Therefore, in such a case, it is considered desirable to use SOCi instead of SOCv that is easily affected by the error of the internal resistance R. Further, when the absolute value of the battery current I is small, it is influenced by a slight measurement error of the current sensor, so it is considered desirable to use SOCv instead of SOCi.
  • the weight calculation unit 114 calculates the SOCw mainly using the SOCv when the absolute value of the battery current I is small, and calculates the SOCw mainly using the SOCi when the absolute value of the battery current I is large.
  • the weight W is set.
  • the SOC W is calculated mainly using the SOCv
  • the weight W is set so that the SOCw is calculated mainly using the SOCi.
  • the weight W is set more appropriately in consideration of temperature variations in the battery 400.
  • the internal resistance R of the battery 400 varies with the battery temperature T. Further, as described in the operation of the SOCv calculation unit 111, the internal resistance R is calculated from the battery temperature T using a resistance table.
  • the difference between the first temperature T1 at the first measurement position of the battery 400 and the second temperature T2 at the second measurement position is large.
  • the internal resistance calculated using the first temperature T1 and the resistance table is defined as an internal resistance R1
  • the internal resistance calculated using the second temperature T2 and the resistance table is defined as an internal resistance R2. If the difference between the first temperature T1 and the second temperature T2 is large, the difference between the internal resistance R1 and the internal resistance R2 may increase. In that case, the true internal resistance R of the battery 400 may be close to the result of either the internal resistance R1 or the internal resistance R2, or may be a composite value of the two, or may be a value different from either of the two. .
  • the first temperature T1 is input to the SOCv calculation unit 111.
  • the difference between the first temperature T1 and the second temperature T2 is large as described above, the true value of the battery 400 is increased. It is difficult to accurately calculate the internal resistance R, and the calculation error of the internal resistance R becomes large.
  • the open circuit voltage OCV calculated by the equation (3) also becomes an inaccurate value, and the calculation accuracy of the SOCv deteriorates. Further, the SOCw calculated by the equation (1) is also calculated. The accuracy may deteriorate.
  • the weight W is set as in the following equation (5) using the correction coefficient Ktdiff set according to The correction coefficient Ktdiff is set to a value from 0 to 1.
  • the correction coefficient Ktdiff As a policy for setting the correction coefficient Ktdiff, in order to avoid deterioration in the accuracy of calculation of SOCw due to the calculation error of the internal resistance R, when the absolute value Tdiff of the temperature difference is greater than or equal to a predetermined threshold Tdth, The correction coefficient Ktdiff is set to be smaller so that the SOCi weight is larger than when the absolute value Tdiff is smaller than the predetermined threshold Tdth.
  • W Ktdiff ⁇ 1 / (1 + R ⁇
  • FIG. 6 is a diagram illustrating an example of the correction coefficient Ktdiff, and the horizontal axis represents the absolute value Tdiff of the difference between the first temperature T1 and the second temperature T2.
  • Ktdiff 1
  • Tdiff ⁇ Tdth Ktdiff is set to substantially zero.
  • SOCi does not include the internal resistance R as apparent from the equation (4), even if the difference between the first temperature T1 and the second temperature T2 is large and the calculation error of the internal resistance R is large, It will not be affected. Therefore, by introducing the correction coefficient Ktdiff as shown in FIG. 6, when the difference between the first temperature T1 and the second temperature T2 is large, the SOCi is used instead of the SOCv that may deteriorate the calculation accuracy. SOCw is calculated. As a result, it is possible to prevent deterioration in the calculation accuracy of SOCw.
  • the correction coefficient Ktdiff is set to substantially zero above the predetermined threshold Tdth.
  • the setting value is such that the specific gravity of SOCi is large so that the calculation accuracy of SOCw is not deteriorated, it is not substantially zero.
  • it may be a variable value instead of a fixed value.
  • the SOCw calculated by weighting the SOCv calculated by the SOCv calculation unit and the SOCi calculated by the SOCi calculation unit is calculated, the first temperature T1 and the second temperature T2 The SOCi weighting is changed in association with the magnitude of the absolute value Tdiff of the difference.
  • the weight W is constant even when the temperature distribution occurs in the battery and the calculation error of the SOCv increases, so the calculation error of the SOCw also increases according to the calculation error of the SOCv. turn into.
  • the SOCi weight when a temperature difference occurs in the battery, the SOCi weight is changed in association with the magnitude of the absolute value Tdiff of the temperature difference.
  • the SOCi weighting is performed more than when the absolute value Tdiff is less than the predetermined threshold Tdth.
  • Tdiff is substantially zero when Tdiff ⁇ Tdth where the influence of the SOCv error becomes significant, SOCw becomes SOCw ⁇ SOCi, which is almost equivalent to the case where the calculation is performed with SOCi.
  • the SOCw is calculated using the SOCi instead of the SOCv that may deteriorate the calculation accuracy, so that the deterioration of the calculation accuracy of the SOCw is prevented. it can.
  • FIG. 7 is a diagram for explaining a method for setting the correction coefficient Ktdiff in the second embodiment.
  • the correction coefficient Ktdiff changes depending on the absolute value Tdiff of the temperature difference.
  • the correction coefficient Ktdiff depends not only on the absolute value Tdiff of the temperature difference but also on the temperature Tlow.
  • the horizontal axis represents the absolute value Tdiff of the temperature difference
  • the horizontal axis represents the temperature Tlow.
  • the temperature Tlow is the lower one of the first temperature T1 and the second temperature T2.
  • Ktdiff 1 is set regardless of the absolute value Tdiff of the temperature difference between 0 ° C. and 20 ° C.
  • the internal resistance R of the battery 400 varies depending on the battery temperature T, and the value of the internal resistance R is large when the temperature is low, but the value of the internal resistance R is small when the battery temperature T is high. . Therefore, even when the difference between the first temperature T1 and the second temperature T2 is large when the battery temperature T is high, the calculation error of the internal resistance R of the battery 400 is small compared to when the battery temperature T is low. From this, the weight W can be determined more appropriately by setting the correction coefficient Ktdiff with the temperature Tlow as an additional condition regarding the battery temperature.
  • the lower one of the first temperature T1 and the second temperature T2 (that is, Tlow) is equal to or smaller than the predetermined threshold Tth, and the absolute value Tdiff of the difference between the first temperature T1 and the second temperature T2 is equal to or larger than the predetermined threshold Tdth.
  • the correction coefficient Ktdiff is set to 0 so as to increase the weight of SOCi
  • the correction coefficient Ktdiff is set to 1, and SOCw is calculated with the weight W according to the conventional equation (6). Therefore, it is possible to prevent the deterioration of the calculation accuracy of SOCw.
  • the vertical axis is the temperature Tlow, but it may be the internal resistance Rhigh.
  • the internal resistance Rhigh in this case is the larger of the internal resistance R1 calculated using the first temperature T1 and the resistance table, the second temperature T2 and the internal resistance R2 calculated using the resistance table.
  • Ktdiff 0 is set.
  • FIG. 8 is a diagram for explaining a method of setting the correction coefficient Ktdiff in the third embodiment.
  • the correction coefficient Ktdiff is changed according to the absolute value Tdiff of the difference between the first temperature T1 and the second temperature T2. I made it.
  • Tdiff shown by the line L0 in FIG. 8
  • Ktdiff 1 is set when the absolute value Tdiff of the temperature difference is substantially zero, Ktdiff is decreased as Tdiff becomes larger, and is made almost zero when the threshold value Tdth is exceeded. .
  • the correction coefficient Ktdiff (that is, the weight W) is set according to the magnitude of the absolute value Tdiff of the temperature difference.
  • the correction coefficient Ktdiff is set so that the specific gravity of the SOCi increases as the absolute value Tdiff of the temperature difference increases.
  • the absolute value Tdiff of the temperature difference is substantially zero when the threshold value Tdth is equal to or greater than the predetermined threshold value Tdth, but Ktdiff asymptotically approaches zero as Tdiff increases as in the line L1. May be set.
  • FIG. 9 is a diagram for explaining a method for setting the correction coefficient Ktdiff in the fourth embodiment.
  • the predetermined threshold Tdth for the correction coefficient Ktdiff shown in FIGS. 6 to 8 is changed according to the deterioration degree SOH of the battery 400.
  • the predetermined threshold value Tdth is set so as to decrease as the deterioration degree SOH of the battery 400 increases.
  • the predetermined threshold Tdth is set to be smaller as the deterioration degree SOH of the battery 400 is larger in order to prevent deterioration of the SOCw calculation accuracy due to the deterioration degree SOH. Therefore, when the degree of deterioration SOH increases from SOH ⁇ SOH1 as shown in FIG. 9 and the calculation error of the internal resistance R increases, the predetermined threshold Tdth is changed to Tdth1, for example, the line L0 shown in FIG. It becomes like L2.
  • the predetermined threshold Tdth is set smaller. As a result, even when the absolute value Tdiff of the temperature difference is small, the predetermined coefficient Ttth is exceeded and the correction coefficient Ktdiff becomes substantially zero. Therefore, the weight W becomes substantially zero, and SOCw is calculated using SOCi instead of SOCv, which may deteriorate the calculation accuracy, so that the deterioration of the calculation accuracy of SOCw can be prevented.
  • the deterioration degree SOH of the battery 400 may be calculated by providing a deterioration degree calculation unit in the battery state estimation device 110, or may receive a deterioration degree information signal from another device connected to the battery state estimation device 110. It is also possible to use a combination method of both.
  • FIG. 10 is a diagram for explaining the fifth embodiment.
  • FIG. 10 shows the first temperature calculation unit 115 and the second temperature calculation unit 116 of the battery state estimation device 110.
  • there are three temperature measurement positions of the battery 400 and the temperature t1 at the first measurement position, the temperature t2 at the second measurement position, and the temperature t3 at the third measurement position are changed from the measuring unit 200 to the battery state Input to the estimation device 110.
  • the temperatures t1 to t3 are input to the first temperature calculation unit 115 and the second temperature calculation unit 116, respectively.
  • the first temperature calculation unit 115 selects the highest temperature from the temperature t1, the temperature t2, and the temperature t3, and outputs the temperature as the first temperature T1.
  • the second temperature calculation unit 116 selects the lowest temperature from the temperature t1, the temperature t2, and the temperature t3, and outputs the temperature as the second temperature T2.
  • the weight calculator 114 sets the weight of the SOCv based on the absolute value Tdiff of the difference between the output maximum temperature (first temperature T1) and minimum temperature (second temperature T2).
  • the temperature distribution is not uniform depending on the shape and material of the battery 400, or the temperature distribution changes due to charging / discharging during operation of the battery system 1000.
  • the SOCw is calculated using the SOCi instead of the SOCv that may deteriorate the calculation accuracy, so that the deterioration of the calculation accuracy of the SOCw can be prevented. it can.
  • FIG. 11 is a diagram illustrating a modification of the fifth embodiment.
  • the first temperature calculation unit 115 outputs the highest temperature among the temperature t1, the temperature t2, and the temperature t3 as the first temperature T1.
  • the average temperature of the temperature t1, the temperature t2, and the temperature t3 is calculated, and the average temperature is output as the first temperature T1.
  • the first temperature T1 is the average temperature and the second temperature T2 is the minimum temperature. Since the average temperature is the midpoint between the maximum temperature and the minimum temperature, the average temperature and the minimum temperature are used. Even with this method, the characteristics of the battery 400 can be detected appropriately as in the case shown in FIG.
  • the number of temperature measurement positions of the battery 400 is three, but the number of measurement positions is not limited as long as it is two or more. The same effect can be obtained by selecting the maximum temperature in the second temperature calculation unit 116 of FIG.
  • -Sixth embodiment- 12 to 14 are diagrams showing a sixth embodiment.
  • the first temperature calculation unit 115 selects the highest temperature from the temperature t1, the temperature t2, and the temperature t3, and outputs the temperature as the first temperature T1.
  • the second temperature calculation unit 116 selects the lowest temperature from the temperatures t4 and t5, and outputs the temperature as the second temperature T2.
  • FIG. 13 is a diagram illustrating an example of measurement positions of temperatures t1 to t5. Adjacent to the battery 400, a cooling plate 401 that is a member that exchanges heat with the battery 400 is provided.
  • the temperatures detected at the three measurement positions of the battery 400 were defined as temperature t1, temperature t2, and temperature t3, respectively, and the temperatures detected at the two measurement positions of the cooling plate 401 were defined as temperature t4 and temperature t5, respectively.
  • the internal resistance R of the battery 400 varies with the battery temperature T.
  • a member cooling plate 401 adjacent to the battery 400
  • temperature distribution occurs in the battery 400 due to heat exchange with the member, and the internal resistance R of the battery 400 is affected by the temperature of the adjacent member.
  • the internal resistance R of the battery 400 may not be obtained appropriately.
  • a cooling plate 401 to the battery 400 as shown in FIG. .
  • the cooling plate 401 is provided with piping for flowing cooling water, and the cooling water is circulated, whereby the temperature of the battery 400 can be lowered.
  • the temperature of the cooling plate 401 is lower than the temperature of the battery 400, the temperature of the cooling plate 401 is transmitted to the place where the battery 400 is in contact with the cooling plate 401, and the temperature of the battery 400 is lowered. ing. However, when the measurement positions of the temperature t1, the temperature t2, and the temperature t3 of the battery 400 are away from the place in contact with the cooling plate 401, the influence of the cooling plate 401 on the temperature of the battery 400 cannot be detected.
  • the lowest temperature is selected from the temperatures t4 and t5 of the cooling plate 401 and output as the second temperature T2, thereby appropriately detecting the characteristics of the battery 400. be able to.
  • the SOCw is calculated using SOCi instead of SOCv that may deteriorate the calculation accuracy. Therefore, it is possible to prevent deterioration in the calculation accuracy of SOCw.
  • the member that exchanges heat with the battery 400 is the cooling plate 401.
  • any member that exchanges heat with the battery 400 adjacent to the battery 400 may be used. It may be a member or a cover of a battery unit in which the battery 400 is provided.
  • the temperature of the fluid that performs heat transfer with the battery 400 may be used.
  • the temperature of air blown from the cooling fan or the warm-up fan may be detected.
  • the first temperature calculation unit 115 selects the highest temperature from the temperature t1, the temperature t2, the temperature t3, the temperature t4, and the temperature t5, and the second temperature calculation unit 116 sets the temperature t1.
  • the minimum temperature may be selected from among temperature t2, temperature t3, temperature t4, and temperature t5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

電池充電状態の演算精度の悪化を防ぐことができる電池状態推定装置の提供。電池状態推定装置110は、電池の両端電圧を用いてSOCvを算出するSOCv演算部111と、電池に流れる電流を積算してSOCiを算出するSOCi演算部112と、電池の計測位置が異なる複数の温度が入力され、前記複数の温度に基づく第1温度T1および第2温度T2を設定する第1および第2温度算出部115,116と、を備え、SOCvとSOCiとを重み付け加算してSOCwを算出する。そして、第1温度T1と第2温度T2との差の絶対値の大きさに関連づけて、SOCiの重み付けを変化させるようにした。

Description

電池状態推定装置
 本発明は、電池状態推定装置に関する。
 リチウムニ次電池、ニッケル水素電池、鉛電池、電気二重層キャパシタなどの蓄電手段を用いた装置には、例えば、電池システム、分散型電力貯蔵装置、電気自動車等がある。それらの装置では、蓄電手段を安全かつ有効に使用するために、蓄電手段の状態を検知する状態検知装置が用いられている。蓄電手段の状態としては、どの程度まで充電されているか、あるいはどの程度放電可能な電荷量が残っているのかを示す充電状態(State of Charge:以下ではSOCと称す)、どの程度まで劣化しているのかを示す健康状態(State of Health:以下ではSOHと称す)などがある。
 携帯機器用や電気自動車等の電池システムにおけるSOCは、満充電からの放電電流を積算し、最大限充電可能な電荷量(全容量)に対し、蓄電手段に残っている電荷量(残存容量)の比を算出することにより検出することができる。このようにして求められるSOCをSOCiと呼ぶことにする。また、SOCiとは別に、電池の両端電圧(開回路電圧)と電池の残存容量の関係をあらかじめデータテーブルなどに定義しておき、これを参照することにより、現在の残存容量を算出することもできる。このようにして求められるSOCをSOCvと呼ぶことにする。さらには、これら手法を組み合わせて充電状態を求めることもできる。例えば、特許文献1には、SOCiとSOCvとを組み合わせる際に、蓄電手段の使用状況に応じてこれらの重み付けを決定することが記載されている。
 電池の開回路電圧は、電池の充放電停止から時間が経過して安定した状態となっている場合に測定することで得られる。しかし、電池システムの動作中は充放電によって発生したIRドロップ(電流×直流成分内部抵抗)や分極電圧が発生しているため、開回路電圧を直接測定することは困難である。したがって、IRドロップと分極電圧を、電池システムの動作中の電圧(閉回路電圧)や電池に流れる電流、電池の温度などの状態量を計測して、これに基づいて推定するようにしている。こうして得られたIRドロップと分極電圧を閉回路電圧から減算することにより開回路電圧を求めて、充電状態を算出する方式が一般的である。
特開2010-256323号公報
 ところで、IRドロップと分極電圧は、電池の温度によってその特性が顕著に変化することが知られている。電池の形状や材質によって温度が均一でなく分布が発生したり、また、電池システムが動作中に充放電されることで温度分布が変化したりすることがある。電池の温度が均一でない場合には電池の温度は一意に求めることができず、その温度差が大きいとIRドロップと分極電圧を正確に推定することが困難となる。その場合、正しい開回路電圧が求められないため、充電状態の算出に誤差が生じる恐れがある。
 本発明の態様によると、電池状態推定装置は、電池の両端電圧を用いて第1の充電状態を算出する第1演算部と、前記電池に流れる電流を積算して第2の充電状態を算出する第2演算部と、前記第1の充電状態と前記第2の充電状態とを重み付け加算して電池充電状態を算出する第3演算部と、前記電池の計測位置が異なる複数の温度が入力され、前記複数の温度に基づく第1温度および第2温度を設定する温度処理部と、を備え、前記第3演算部は、前記第1温度と前記第2温度との差の絶対値の大きさに関連づけて、前記第2の充電状態の重み付けを変化させる。
 本発明によれば、電池充電状態の演算精度の悪化を防ぐことができる。
図1は、電池システムの構成を示すブロック図である。 図2は、電池状態推定装置の詳細を示す機能ブロック図である。 図3は、電池の等価回路を示す図である。 図4は、OCVとSOCとの関係を示す図である。 図5は、電池の内部抵抗と電池温度との関係を示す図である。 図6は、補正係数の一例を示す図である。 図7は、第2の実施の形態における補正係数の設定方法を説明する図である。 図8は、第3の実施の形態における補正係数の設定方法を説明する図である。 図9は、第4の実施の形態における補正係数の設定方法を説明する図である。 図10は、第5の実施の形態を説明する図である。 図11は、第5の実施の形態の変形例を示す図である。 図12は、第6の実施の形態における第1温度算出部および第2温度算出部を示す図である。 図13は、計測位置の一例を示す図である。 図14は、第1温度算出部および第2温度算出部の他の例を示す図である。
-第1の実施の形態-
 図1は本発明の第1の実施の形態を示す図であり、電池システム1000の構成を示すブロック図である。電池システム1000は、電池400が蓄積している電荷を外部装置に電力として供給するシステムであり、電池制御装置100、計測部200、出力部300を備えている。電池システム1000が電力を供給する対象としては、例えば電気自動車やハイブリッド自動車、電車などが考えられる。
 電池400は、例えばリチウムイオン2次電池などの充電可能な電池である。その他、ニッケル水素電池、鉛電池、電気2重層キャパシタなどの電力貯蔵機能を有するデバイスに対しても、本発明を適用することができる。電池400は、単電池セルであっても良いし、単電池セルを複数組み合わせたモジュール構造でも良い。
 計測部200は、電池400の物理特性、例えば電池400の両端電圧V、電池400に流れる電流(電池電流)I、電池400の温度t1,t2などを計測する機能部であり、各値を計測するセンサ、必要な電気回路などによって構成されている。本実施の形態では、計測部200は、電池400の異なる2つの位置における温度を計測することができ、t1は第1計測位置で検出した温度であり、t2は第2計測位置で検出した温度である。なお、後述するように電池状態の推定には電池400の内部抵抗Rも必要であるが、本実施の形態では、電池状態推定装置110において、その他の計測パラメータを用いて算出する。
 出力部300は、電池制御装置100の出力を外部装置(例えば、電気自動車が備える車両制御装置などの上位装置)に対して出力する機能部である。
 電池制御装置100は、電池400の動作を制御する装置であり、電池状態推定装置110と記憶部120とを備える。
 電池状態推定装置110は、計測部200により計測された両端電圧V、電池電流I、電池温度t1,t2と、記憶部120に格納されている電池400の特性情報とに基づいて、電池400のSOCを算出する。SOCの算出手法の詳細については後述する。
 記憶部120は、電池400の内部抵抗R、分極電圧Vp、充電効率、許容電流、全容量などの、あらかじめ知ることができる電池400の特性情報を記憶している。この特性情報は、充電・放電の動作別に値を個別に記憶するようにしてもよいし、充電状態や温度など、電池400の状態毎に値を個別に記憶するようにしてもよいし、電池400のあらゆる状態に共通した1つの値を記憶するようにしてもよい。
 電池制御装置100および電池状態推定装置110は、その機能を実現する回路デバイスなどのハードウェアを用いて構成することができる。また、その機能を実装したソフトウェアを、CPU(Central Processing Unit)などの演算装置が実行することによって構成することもできる。後者の場合は、当該ソフトウェアは例えば記憶部120に格納される。
 記憶部120は、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read-Only Memory)、磁気ディスクなどの記憶装置を用いて構成される。記憶部120は、電池状態推定装置110の外部に設けてもよいし、電池状態推定装置110の内部に備えるメモリ装置として実現してもよい。記憶部120は、取り外し可能にしてもよい。取り外し可能にした場合、記憶部120を取り替えることによって、特性情報とソフトウェアを簡単に変更することができる。また、記憶部120を複数有し、特性情報とソフトウェアを取り替え可能な記憶部120に分散させて格納することにより、特性情報とソフトウェアを小単位毎に更新することができる。
 図2は、電池状態推定装置110の詳細を示す機能ブロック図である。電池状態推定装置110は、SOCv演算部111、SOCi演算部112、IR演算部113、重み演算部114、第1温度算出部115および第2温度算出部116を備え、電池400の充電状態を推定した結果である充電状態SOCwを出力する。その他の演算器については後述する。
 SOCv演算部111は、計測部200が計測した電池400の両端電圧Vを用いて、電池400のSOCを算出する。以下ではこれをSOCvと称する。SOCi演算部112は、計測部200が計測した電池400の電池電流Iを積算することにより、電池400のSOCを算出する。以下ではこれをSOCiと称する。SOCvとSOCiの算出方法については後述する。IR演算部113は、電池電流Iと内部抵抗Rを乗算する。内部抵抗Rを求める方法については後述するが、第1温度算出部115から入力される第1温度T1に基づいて、抵抗テーブルから内部抵抗Rを取得する。
 なお、本実施の形態では、SOCv演算部111およびIR演算部113は、第1温度算出部115から入力される第1温度T1を温度情報としてそれぞれの処理を実行する構成としたが、第1温度T1に代えて、例えば、第1温度T1と第2温度T2との平均温度を用いても良いし、第2温度T2を用いても良い。
 重み演算部114は、電池400に関する2種類の温度、すなわち、第1温度算出部115から出力される第1温度T1および第2温度算出部116から出力される第2温度T2に基づいて、SOCvとSOCiを重み付け加算するための重みWを算出する。Wの算出方法については後述する。第1温度算出部115は、電池400の第1計測位置で検出した温度t1を、第1温度T1として出力する。第2温度算出部116は、電池400の第2計測位置で検出した温度t2を、第2温度T2として出力する。
 乗算器MP1は、SOCvと重みWを乗算してW×SOCvを求める。減算器DFは、(1-W)を求める。乗算器MP2は、SOCiと(1-W)を乗算して(1-W)×SOCiを求める。加算器ADは、これらを足し合わせてSOCwを求める。すなわち、SOCwは次式(1)によって表される。
  SOCw=W×SOCv+(1-W)×SOCi ・・・(1)
[SOCv演算部111の動作]
 次に、SOCv演算部111の動作について説明する。図3は、電池400の等価回路図である。電池400は、インピーダンスZとキャパシタンス成分Cの並列接続対、内部抵抗R、開回路電圧OCVの直列接続によって表すことができる。電池400に電池電流Iを印加すると、電池400の端子間電圧である閉回路電圧CCVは次式(2)で表される。式(2)において、Vpは分極電圧であり、インピーダンスZとキャパシタンス成分Cの並列接続対の両端電圧に相当する。
  CCV=OCV+I・R+Vp ・・・(2)
 SOCvの算出には開回路電圧OCVが用いられるが、電池400が充放電している間は直接測定することができない。そこで、SOCv演算部111は、次式(3)のように閉回路電圧CCVからIRドロップと分極電圧Vpを差し引くことにより、開回路電圧OCVを求める。
  OCV=CCV-IR-Vp ・・・(3)
 内部抵抗Rと分極電圧Vpは、記憶部120にあらかじめ特性情報として格納されている。内部抵抗Rと分極電圧Vpは、電池400の充電状態や温度などに応じて異なるので、これらの組合せ毎に個別の値が記憶部120に格納されている。本実施の形態では、内部抵抗Rと電池温度Tとの対応関係を定義する特性情報が抵抗テーブルとして格納されている。図2に示すように、SOCv演算部111は、第1温度算出部115から入力される第1温度T1に基づいて、抵抗テーブルから内部抵抗Rを取得する。
 図4は、電池400の開回路電圧OCVとSOCとの関係を示す図である。この対応関係は電池400の特性によって定まるものであり、記憶部120には、その対応関係を定義するデータがSOCテーブルとして予め格納されている。SOCv演算部111は、上述の式(3)を用いて開回路電圧OCVを算出し、これをキーにしてSOCテーブルを参照することにより、電池400のSOCvを算出することができる。
[SOCi演算部112の動作]
 次いで、SOCi演算部112の動作について説明する。SOCi演算部112は、電池400が充放電する電池電流Iを次式(4)にしたがって積算することにより、電池400のSOCiを求める。式(4)において、Qmaxは電池400の満充電容量であり、予め記憶部120に格納されている。SOColdは、前回演算周期において式(1)により算出されたSOCwの値である。
  SOCi=SOCold+100×∫I/Qmax ・・・(4)
[重み演算部114の動作]
 図5は、電池400の内部抵抗Rと電池温度Tとの関係を示す図である。一般的に、電池400は、図5に示すように低SOC状態では内部抵抗Rが高く、低温状態のときに内部抵抗Rの値が大きい。したがって、そのような場合には、内部抵抗Rの誤差の影響を受け易いSOCvではなくSOCiを用いることが望ましいと考えられる。また、電池電流Iの絶対値が小さいときは電流センサの僅かな計測誤差によって影響を受けるので、SOCiではなくSOCvを用いることが望ましいと考えられる。
 以上に基づき、重み演算部114は、電池電流Iの絶対値が小さいときはSOCvを主に用いてSOCwを算出し、電池電流Iの絶対値が大きいときはSOCiを主に用いてSOCwを算出するように、重みWを設定する。同様に、内部抵抗Rが小さいときはSOCvを主に用いてSOCwを算出し、内部抵抗Rが大きいときはSOCiを主に用いてSOCwを算出するように、重みWを設定する。
 さらに、本実施の形態では、電池400における温度バラツキも考慮して、重みWをより適切に設定するようにした。
 図5に示したように、電池400の内部抵抗Rは電池温度Tによって変化する。また、SOCv演算部111の動作で記述したように、内部抵抗Rは抵抗テーブルを用いて電池温度Tから算出するようにしている。
 ここで、電池400の第1計測位置における第1温度T1と、第2計測位置における第2温度T2との差が大きい場合を考える。第1温度T1と抵抗テーブルを用いて算出した内部抵抗を内部抵抗R1とし、第2温度T2と抵抗テーブルを用いて算出した内部抵抗を内部抵抗R2とする。第1温度T1と第2温度T2との差が大きいと、内部抵抗R1と内部抵抗R2との差が大きくなる可能性がある。その場合、電池400の真の内部抵抗Rは、内部抵抗R1あるいは内部抵抗R2のいずれかの結果に近いかもしれないし、あるいは両者の合成値かもしれないし、あるいは両者のいずれとも異なる値かもしれない。
 図2に示す例では第1温度T1がSOCv演算部111に入力される構成となっているが、上述のように第1温度T1と第2温度T2との差が大きいと、電池400の真の内部抵抗Rを正確に算出することは難しく、内部抵抗Rの算出誤差が大きくなる。内部抵抗Rの算出誤差が大きくなると、式(3)により算出される開回路電圧OCVも不正確な値となりSOCvの演算精度が悪化し、さらに、式(1)により算出されるSOCwについても演算精度が悪化するおそれがある。
 そこで、本実施の形態では、第1温度T1と第2温度T2とを重み演算部114に入力し、第1温度T1と第2温度T2との差の絶対値Tdiff(=|T1-T2|)に応じて設定される補正係数Ktdiffを用いて、重みWを次式(5)のように設定する。なお、補正係数Ktdiffは0から1の値に設定される。補正係数Ktdiffの設定方針としては、内部抵抗Rの算出誤差によるSOCwの演算精度が悪化するのを回避するために、温度差の絶対値Tdiffが所定閾値Tdth以上である場合には、温度差の絶対値Tdiffが所定閾値Tdthより小さい場合よりもSOCiの重み付けを大きくするように、補正係数Ktdiffをより小さく設定する。
  W=Ktdiff×1/(1+R・|I|) ・・・(5)
 図6は補正係数Ktdiffの一例を示す図であり、横軸は第1温度T1と第2温度T2との差の絶対値Tdiffである。図6に示す例では、所定閾値Tdthに対してTdiff<Tdthの場合にはKtdiff=1に設定し、Tdiff≧Tdthの場合にはKtdiffを略ゼロに設定する。
このように補正係数Ktdiffを設定することで、Tdiff≧Tdthのときの重みWは式(5)より略ゼロとなり、式(1)からSOCw≒SOCiとなる。すなわち、SOCiで演算される場合とほぼ等価となる。
 SOCiは式(4)から明らかなように内部抵抗Rを含んでいないので、第1温度T1と第2温度T2との差が大きくて内部抵抗Rの算出誤差が大きくなる場合であっても、その影響を受けることがない。したがって、図6に示すような補正係数Ktdiffを導入することにより、第1温度T1と第2温度T2との差が大きい場合においては、演算精度が悪化する可能性のあるSOCvではなくSOCiを用いてSOCwが演算される。その結果、SOCwの演算精度の悪化を防ぐことができる。
 さらに、温度差の絶対値Tdiffが所定閾値Tdth未満では、補正係数Ktdiffは1となり、次式(6)に示すように、特許文献1に開示されている従来の重みWと等価になる。すなわち、第1温度T1と第2温度T2との差が小さいために内部抵抗Rの算出誤差を無視できるような場合では、従来のSOCw演算が適用されるので、SOCwの挙動や演算精度が変化する恐れがない。
  W=1/(1+R・|I|) ・・・(6)
 なお、図6では補正係数Ktdiffは所定閾値Tdth以上では略ゼロに設定しているが、SOCwの演算精度が悪化しないようにSOCiの比重が大きくなるような設定値であれば略ゼロでなくてもよいし、また固定値でなく変動する値にしてもよい。
 以上のように、実施の形態では、SOCv演算部で算出されたSOCvとSOCi演算部で算出されたSOCiとを重み付け加算してSOCwが算出する際に、第1温度T1と第2温度T2との差の絶対値Tdiffの大きさに関連づけて、SOCiの重み付けを変化させるようにした。式(6)を用いた従来の電池状態算出方法では、電池に温度分布が生じてSOCvの演算誤差が大きくなっても重みWが一定なので、SOCvの演算誤差に応じてSOCwの演算誤差も大きくなってしまう。一方、本実施の形態では、電池に温度差が生じた場合には、その温度差の絶対値Tdiffの大きさに関連づけてSOCiの重み付けを変化させるようにしたので、すなわち、式(5)に示すようにTdiffの大きさに関連づけて補正係数Ktdiffを変化させて重みWを変化させているので、それによりSOCwにおけるSOCvの演算誤差の影響を低減させることが可能となる。その結果、SOCwの演算精度の悪化を防止することができる。
 例えば、図6に示すように、第1温度T1と第2温度T2との差の絶対値Tdiffが所定閾値Tdth以上の場合には、絶対値Tdiffが所定閾値Tdth未満の場合よりもSOCiの重み付けを大きくする。SOCvの誤差の影響が顕著となるTdiff≧TdthではTdiffが略ゼロとされるので、SOCwはSOCw≒SOCiとなり、SOCiで演算される場合とほぼ等価となる。これにより電池400の内部抵抗Rの算出誤差が大きくなる場合において、演算精度が悪化する可能性のあるSOCvではなくSOCiを用いてSOCwが演算されるため、SOCwの演算精度の悪化を防ぐことができる。
-第2の実施の形態-
 図7は、第2の実施の形態における補正係数Ktdiffの設定方法を説明する図である。
上述した第1の実施の形態では、補正係数Ktdiffは温度差の絶対値Tdiffに依存して変化した。一方、本実施の形態では、図7に示すように、補正係数Ktdiffは温度差の絶対値Tdiffだけでなく、温度Tlowにも依存するようにした。図7において、横軸は温度差の絶対値Tdiffであり、横軸は温度Tlowである。ここで、温度Tlowは、第1温度T1および第2温度T2の内の低い方の温度である。
 図7に示す例では、温度Tlowが0℃~-30℃では、温度差の絶対値Tdiffが10℃以上ではKtdiff=0に設定され、Tdiff<10℃ではKtdiff=1に設定される。すなわち、上述した図6において所定閾値Tdth=10℃とした場合に対応している。一方、温度Tlowが所定閾値Tth(=0℃)を上回る場合には、温度差の絶対値Tdiffが0℃~20℃のいずれであってもKtdiff=1に設定される。
 図5に示したように、電池400の内部抵抗Rは電池温度Tによって変化し、低温状態のときに内部抵抗Rの値は大きいが、電池温度Tが高いときは内部抵抗Rの値は小さい。したがって、電池温度Tが高いときに第1温度T1と第2温度T2との差が大きくても、低温状態のときと比較して電池400の内部抵抗Rの算出誤差は小さい。このことから、電池温度に関して温度Tlowを追加条件として補正係数Ktdiffを設定することで、より適切に重みWを決定することができる。
 すなわち、第1温度T1および第2温度T2の内の低い方(すなわちTlow)が所定閾値Tth以下で、かつ、第1温度T1と第2温度T2との差の絶対値Tdiffが所定閾値Tdth以上のときには、SOCiの重み付けを大きくするように補正係数Ktdiffが0とされるので、式(5)の重みWはW=0となりSOCwはSOCiで演算される。しかし、それ以外の条件では補正係数Ktdiffは1とされ、従来の式(6)による重みWでSOCwが演算される。そのため、SOCwの演算精度の悪化を防ぐことができる。
 なお、図7では補正係数Ktdiffは0または1に設定されるが、Ktdiff=0の欄については、SOCwの演算精度が悪化しないようにSOCiの比重が大きくなるような設定値であれば0でなくてもよい。また、温度Tlowや補正係数Ktdiffの値に応じてSOCwの演算精度が悪化しないような値を、補正係数Ktdiffに設定してもよい。
 また、図7では縦軸を温度Tlowとしたが、内部抵抗Rhighとしてもよい。この場合の内部抵抗Rhighは、第1温度T1と抵抗テーブルを用いて算出した内部抵抗R1と第2温度T2と抵抗テーブルを用いて算出した内部抵抗R2の内の大きい方とする。この場合、内部抵抗Rhighが所定閾値Rth以上、かつ、温度差の絶対値Tdiffが所定閾値Tdth以上の場合には、Ktdiff=0のように設定する。これにより、温度以外の要因による内部抵抗の特性変化にも適切に対応することができる。
-第3の実施形態-
 図8は、第3の実施の形態における補正係数Ktdiffの設定方法を説明する図である。本実施の形態では、温度差の絶対値Tdiffが所定閾値Tdth未満である場合には、補正係数Ktdiffを、第1温度T1と第2温度T2との差の絶対値Tdiffに応じて変化させるようにした。図8のラインL0で示すTdiffの場合には、温度差の絶対値Tdiffが略ゼロのときはKtdiff=1とし、Tdiffが大きくなるにしたがってKtdiffを減少させ、所定閾値Tdth以上では略ゼロとする。
 前述したように、第1温度T1と第2温度T2との差が大きい場合は電池400の内部抵抗Rの算出誤差が大きくなるが、第1温度T1と第2温度T2との差が小さい場合は内部抵抗Rの算出誤差は小さい(図5参照)。本実施の形態ではこの性質に着目し、温度差の絶対値Tdiffの大きさに応じて補正係数Ktdiff(すなわち、重みW)を設定するようにした。図8に示すラインL0では、温度差の絶対値Tdiffが所定閾値Tdth未満である場合には、温度差の絶対値Tdiffが大きいほどSOCiの比重が大きくなるように補正係数Ktdiffを設定する。
 その結果、電池400の内部抵抗Rの算出誤差が大きくなる場合には、演算精度が悪化する可能性のあるSOCvではなくSOCiに重点を置いてSOCwが演算される。一方、内部抵抗Rの算出誤差が小さい場合(Tdiff≒0)にはKtdiff=1と設定され、従来の重みWの式(6)によってSOCwが演算される。このように、内部抵抗Rの算出誤差の大きさに応じて適切にSOCiを用いてSOCwの演算が行われるので、SOCwの演算精度の悪化を防ぐことができる。
 なお、図8のラインL0の場合には、温度差の絶対値Tdiffが所定閾値Tdth以上では略ゼロとしたが、ラインL1のようにTdiffが大きくなるに従ってKtdiffが漸近的にゼロに近づくように設定しても良い。
-第4の実施の形態-
 図9は、第4の実施の形態における補正係数Ktdiffの設定方法を説明する図である。本実施の形態では、図6~8に示す補正係数Ktdiffに対する所定閾値Tdthを、電池400の劣化度SOHに応じて変化させるようにした。図9に示す例では、この所定閾値Tdthを、電池400の劣化度SOHが大きいほど小さくなるように設定する。
 一般的には、電池の劣化度SOHが大きいと内部抵抗は高くなる。したがって、電池の劣化度SOHが大きいほど電池400の内部抵抗Rの算出誤差が大きくなり、前述した式(3)で算出される開回路電圧OCVが不正確な値となる。その結果、SOCvの演算精度が悪化し、式(1)により算出されるSOCwの演算精度が悪化するおそれがある。
 本実施の形態では、劣化度SOHによるSOCwの演算精度の悪化を防ぐために、電池400の劣化度SOHが大きいほど所定閾値Tdthを小さ設定するようにした。そのため、劣化度SOHが図9のようにSOH→SOH1と大きくなって、内部抵抗Rの算出誤差が大きくなるケースでは所定閾値TdthはTdth1に変更され、例えば、図8に示したラインL0は破線L2のようになる。
 このように、劣化度SOHが大きくなると所定閾値Tdthはより小さく設定され、その結果、温度差の絶対値Tdiffが小さい場合でも所定閾値Tdth以上となって補正係数Ktdiffが略ゼロとなる。そのため、重みWが略ゼロとなり、演算精度が悪化する可能性のあるSOCvではなくSOCiを用いてSOCwが演算されるようになり、SOCwの演算精度の悪化を防ぐことができる。
 なお、電池400の劣化度SOHについては、電池状態推定装置110に劣化度演算部を設けて演算する方式でもよいし、電池状態推定装置110に接続された他の装置から劣化度情報信号を受信する方式でもよいし、その両者の組み合わせ方式でもよい。
-第5の実施の形態-
 図10は、第5の実施の形態を説明する図である。図10は、電池状態推定装置110の第1温度算出部115および第2温度算出部116を示したものである。本実施の形態では、電池400の温度計測位置が3箇所であって、第1計測位置の温度t1、第2計測位置の温度t2および第3計測位置の温度t3が、計測部200から電池状態推定装置110に入力される。温度t1~t3は、第1温度算出部115および第2温度算出部116にそれぞれ入力される。
 第1温度算出部115は、温度t1、温度t2、温度t3の中から最高温度を選択し、その温度を第1温度T1として出力する。一方、第2温度算出部116は、温度t1、温度t2、温度t3の中から最低温度を選択し、その温度を第2温度T2として出力する。そして、重み演算部114は、出力された最高温度(第1温度T1)と最低温度(第2温度T2)との差の絶対値Tdiffの大きさに基づいて、SOCvの重み付けを設定する。
 このような構成とすることで、例えば、電池400の形状や材質によって温度が均一でなく分布が発生していたり、あるいは電池システム1000が動作中に充放電されることにより前記温度分布が変化したりすることがあっても、複数の位置の温度から最高温度を選択して第1温度T1とし、最低温度を選択して第2温度T2とするため、電池400の特性を適切に検出することができる。第1温度T1と第2温度T2との差が大きい場合は、演算精度が悪化する可能性のあるSOCvではなくSOCiを用いてSOCwが演算されるため、SOCwの演算精度の悪化を防ぐことができる。
(変形例)
 図11は、第5の実施の形態の変形例を示す図である。図10に示す例では、第1温度算出部115は、温度t1、温度t2、温度t3の内の最高温度を第1温度T1として出力した。しかし、図11に示す変形例では、温度t1、温度t2、温度t3の平均温度を算出し、その平均温度を第1温度T1として出力する。
 本実施の形態では、第1温度T1が平均温度となり、第2温度T2が最低温度となるが、平均温度は最高温度と最低温度の中点であるため、この平均温度と最低温度とを使用する方法であっても、図10に示す場合と同様に電池400の特性を適切に検出することができる。
 なお、図10,11では、電池400の温度計測位置の数を3箇所としたが、2箇所以上であれば計測位置の個数はいくつであっても良い。また、図11の第2温度算出部116において最高温度を選択するようにしても、同様の効果が得られる。
-第6の実施の形態-
 図12~14は、第6の実施の形態を示す図である。第6の実施の形態では、図12に示すように、第1温度算出部115は、温度t1、温度t2、温度t3の中から最高温度を選択し、その温度を第1温度T1として出力する。一方、第2温度算出部116は、温度t4、温度t5の中から最低温度を選択し、その温度を第2温度T2として出力する。
 図13は、温度t1~t5の計測位置の一例を示す図である。電池400に隣接して、電池400と熱授受を行う部材である冷却プレート401が設けられている。電池400の3箇所の計測位置で検出した温度をそれぞれ温度t1、温度t2、温度t3とし、冷却プレート401の2箇所の計測位置で検出した温度をそれぞれ温度t4、温度t5とした。
 前述したように電池400の内部抵抗Rは電池温度Tによって変化する。電池400に隣接する部材(冷却プレート401)がある場合、その部材との間との熱授受により電池400に温度分布が生じ、電池400の内部抵抗Rが隣接する部材の温度の影響を受ける。このような場合には、電池400の温度だけでなく、電池400と熱授受を行う部材の温度を考慮しないと、電池400の内部抵抗Rを適切に求めることができない可能性がある。
 例えば、電池400が充放電によって発熱した場合にも電池400の入出力特性の向上や、過熱による劣化や発火を防ぐために、図13に示すような電池400に冷却プレート401を取り付けることが考えられる。この冷却プレート401には冷却水を流すための配管を設置して冷却水を循環させることで、電池400の温度を下げることができる。
 このような場合、電池400の温度よりも冷却プレート401の温度が低い状態となるが、電池400が冷却プレート401と接している場所は、冷却プレート401の温度が伝わり、電池400の温度が下がっている。しかし、電池400の温度t1、温度t2、温度t3の計測位置が冷却プレート401と接している場所から離れている場合、電池400の温度に対する冷却プレート401の影響を検出できない。
 このような構成の場合、図12のように、冷却プレート401の温度t4、温度t5の中から最低温度を選択し、第2温度T2として出力することで、電池400の特性を適切に検出することができる。電池400の温度である第1温度T1と冷却プレート401の温度である第2温度T2との差が大きい場合は、演算精度が悪化する可能性のあるSOCvではなくSOCiを用いてSOCwが演算されるので、SOCwの演算精度の悪化を防ぐことができる。
 なお、図13では電池400の3箇所の計測位置で温度を検出する例を示したが、2箇所以上であれば何箇所であっても良い。また冷却プレート401の2箇所の計測位置で温度を検出する例を示したが、1箇所でもよいし、3箇所以上であってもよい。
 また、図13では電池400と熱授受を行う部材を冷却プレート401としたが、電池400に隣接して電池400と熱授受を行う部材であれば何でもよく、例えば冷却プレートでなく暖機用の部材であってもよいし、電池400が設けられている電池ユニットのカバーであってもよい。また、熱授受を行う部材(冷却プレート401や暖機用の部材)を流体で冷却したり加熱したりする構成の場合、電池400と熱授受を行う流体の温度を用いてもよい。さらにまた、冷却ファンや暖機用ファンを備える構成では、冷却ファンや暖機用ファンから送風された空気の温度を検出してもよい。
 また、図14の構成のように、第1温度算出部115は温度t1、温度t2、温度t3、温度t4、温度t5の中から最高温度を選択し、第2温度算出部116は、温度t1、温度t2、温度t3、温度t4、温度t5の中から最低温度を選択するようにしてもよい。このようにすることで、電池400と電池400に隣接する部材のいずれの温度が高い場合にも適切に最高温度および最低温度を検出することができる。すなわち隣接する部材が冷却用であっても暖機用であっても電池400の特性を適切に検出することができ、SOCwの演算精度の悪化を防ぐことができる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 100…電池制御装置、110…電池状態推定装置、111…SOCv演算部、112…SOCi演算部、113…IR演算部、114…重み演算部、115…第1温度算出部、116…第2温度算出部、120…記憶部、200…計測部、300…出力部、400…電池、401…冷却プレート、1000…電池システム。

Claims (8)

  1.  電池の両端電圧を用いて第1の充電状態を算出する第1演算部と、
     前記電池に流れる電流を積算して第2の充電状態を算出する第2演算部と、
     前記第1の充電状態と前記第2の充電状態とを重み付け加算して電池充電状態を算出する第3演算部と、
     前記電池の計測位置が異なる複数の温度が入力され、前記複数の温度に基づく第1温度および第2温度を設定する温度処理部と、を備え、
     前記第3演算部は、
     前記第1温度と前記第2温度との差の絶対値の大きさに関連づけて、前記第2の充電状態の重み付けを変化させる、電池状態推定装置。
  2.  請求項1に記載の電池状態推定装置において、
     前記第3演算部は、
     前記第1温度と前記第2温度との差の絶対値が第1閾値以上の場合には、前記絶対値が前記第1閾値未満の場合よりも前記第2の充電状態の重み付けを大きくする、電池状態推定装置。
  3.  請求項2に記載の電池状態推定装置において、
     前記第3演算部は、
     前記絶対値が前記第1閾値以上であって、かつ、前記第1温度および前記第2温度いずれか一方が第2閾値以下の場合に、前記第2の充電状態の重み付けを大きくする、電池状態推定装置。
  4.  請求項2または3に記載の電池状態推定装置において、
     前記第3演算部は、
     前記絶対値が前記第1閾値未満である場合には、前記絶対値が大きいほど前記第2の充電状態の重み付けを大きくする、電池状態推定装置。
  5.  請求項2または請求項3に記載の電池状態推定装置において、
     前記第3演算部は、前記電池の劣化度が大きいほど前記第1閾値を小さく設定する、電池状態推定装置。
  6.  請求項1から請求項3までのいずれか一項に記載の電池状態推定装置において、
     前記温度処理部は、
     前記複数の温度の内の最高温度を前記第1温度に設定すると共に、前記複数の温度の内の最低温度を前記第2温度に設定する、電池状態推定装置。
  7.  請求項1から請求項3までのいずれか一項に記載の電池状態推定装置において、
     前記温度処理部は、
     前記複数の温度の平均温度を前記第1温度として設定すると共に、前記複数の温度の内の最高温度または最低温度を前記第2温度として設定する、電池状態推定装置。
  8.  請求項1から請求項3までのいずれか一項に記載の電池状態推定装置であって、
     前記温度処理部は、
     前記電池の複数位置の温度、および前記電池と熱授受を行う部材または流体の温度が入力され、
     前記複数位置の温度の内の最高温度、最低温度および平均温度のいずれかを前記第1温度に設定すると共に、前記部材または流体に関する温度を前記第2温度に設定する、電池状態推定装置。
PCT/JP2017/017486 2016-05-12 2017-05-09 電池状態推定装置 WO2017195760A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112017001422.0T DE112017001422B4 (de) 2016-05-12 2017-05-09 Batteriezustands-Schätzvorrichtung
JP2018517023A JP6580784B2 (ja) 2016-05-12 2017-05-09 電池状態推定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-095977 2016-05-12
JP2016095977 2016-05-12

Publications (1)

Publication Number Publication Date
WO2017195760A1 true WO2017195760A1 (ja) 2017-11-16

Family

ID=60267365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017486 WO2017195760A1 (ja) 2016-05-12 2017-05-09 電池状態推定装置

Country Status (3)

Country Link
JP (1) JP6580784B2 (ja)
DE (1) DE112017001422B4 (ja)
WO (1) WO2017195760A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186088A1 (ja) * 2017-04-07 2018-10-11 日立オートモティブシステムズ株式会社 電池制御装置
CN116224091A (zh) * 2022-12-01 2023-06-06 伏瓦科技(苏州)有限公司 电池的电芯故障检测方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210046407A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 충전 상태 추정 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171685A (ja) * 2000-11-28 2002-06-14 Honda Motor Co Ltd バッテリ充電装置
JP2002221539A (ja) * 2000-11-02 2002-08-09 Matsushita Electric Ind Co Ltd 積層電圧計測装置
JP2003035755A (ja) * 2001-07-25 2003-02-07 Hitachi Ltd 電池蓄電量検出方法
JP2006038495A (ja) * 2004-07-22 2006-02-09 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
WO2013031559A1 (ja) * 2011-08-30 2013-03-07 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
JP2014044074A (ja) * 2012-08-24 2014-03-13 Hitachi Vehicle Energy Ltd 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
US20150231986A1 (en) * 2014-02-20 2015-08-20 Ford Global Technologies, Llc Battery Capacity Estimation Using State of Charge Initialization-On-The-Fly Concept

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002473A1 (de) 2000-01-21 2001-07-26 Vb Autobatterie Gmbh Verfahren zur Bestimmung des Ladezusatandes von Akkumulatoren
JP5439126B2 (ja) 2009-03-31 2014-03-12 株式会社日立製作所 電源装置用状態検知装置
JP2015137952A (ja) * 2014-01-23 2015-07-30 スズキ株式会社 蓄電装置の残存容量推定装置
JP2016024170A (ja) * 2014-07-24 2016-02-08 日立オートモティブシステムズ株式会社 電池制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221539A (ja) * 2000-11-02 2002-08-09 Matsushita Electric Ind Co Ltd 積層電圧計測装置
JP2002171685A (ja) * 2000-11-28 2002-06-14 Honda Motor Co Ltd バッテリ充電装置
JP2003035755A (ja) * 2001-07-25 2003-02-07 Hitachi Ltd 電池蓄電量検出方法
JP2006038495A (ja) * 2004-07-22 2006-02-09 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
WO2013031559A1 (ja) * 2011-08-30 2013-03-07 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
JP2014044074A (ja) * 2012-08-24 2014-03-13 Hitachi Vehicle Energy Ltd 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
US20150231986A1 (en) * 2014-02-20 2015-08-20 Ford Global Technologies, Llc Battery Capacity Estimation Using State of Charge Initialization-On-The-Fly Concept

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186088A1 (ja) * 2017-04-07 2018-10-11 日立オートモティブシステムズ株式会社 電池制御装置
CN116224091A (zh) * 2022-12-01 2023-06-06 伏瓦科技(苏州)有限公司 电池的电芯故障检测方法、装置、电子设备及存储介质
CN116224091B (zh) * 2022-12-01 2024-02-02 伏瓦科技(苏州)有限公司 电池的电芯故障检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
DE112017001422B4 (de) 2019-03-21
JPWO2017195760A1 (ja) 2019-01-24
JP6580784B2 (ja) 2019-09-25
DE112017001422T5 (de) 2018-11-29

Similar Documents

Publication Publication Date Title
JP5863603B2 (ja) 電池状態推定装置、電池制御装置、電池システム、電池状態推定方法
JP5287844B2 (ja) 二次電池の残存容量演算装置
JP6823162B2 (ja) バッテリーの充電状態をキャリブレーションするためのバッテリー管理装置及び方法
CN109664795B (zh) 电池组被动均衡方法和电池管理系统
CN108291944B (zh) 电池管理装置
JP6661024B2 (ja) 電池制御装置
JP5743367B2 (ja) バッテリー管理システムおよびバッテリー管理方法
JPWO2016038658A1 (ja) 電池パック、制御回路および制御方法
JP6298920B2 (ja) 電池制御装置
JP7338126B2 (ja) 電池管理装置および電池管理方法
JP6895541B2 (ja) 二次電池監視装置、二次電池状態演算装置および二次電池状態推定方法
US20160370431A1 (en) State estimation device and state estimation method
JP6867478B2 (ja) 電池制御装置および車両システム
JP6580784B2 (ja) 電池状態推定装置
JP2022167921A (ja) 蓄電池制御装置および制御方法
JP6827527B2 (ja) 電池制御装置
JP6889401B2 (ja) アルカリ二次電池の状態推定装置
JP6365820B2 (ja) 二次電池の異常判定装置
KR20170028183A (ko) 배터리의 잔존 에너지 추정 시스템 및 추정 방법
JP2023045804A (ja) バッテリユニット
JP6895537B2 (ja) 電池状態推定装置
KR20190102814A (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018517023

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796121

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796121

Country of ref document: EP

Kind code of ref document: A1