WO2017195396A1 - 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法 - Google Patents

光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法 Download PDF

Info

Publication number
WO2017195396A1
WO2017195396A1 PCT/JP2016/086308 JP2016086308W WO2017195396A1 WO 2017195396 A1 WO2017195396 A1 WO 2017195396A1 JP 2016086308 W JP2016086308 W JP 2016086308W WO 2017195396 A1 WO2017195396 A1 WO 2017195396A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
photoreactive
ring
carbon atoms
Prior art date
Application number
PCT/JP2016/086308
Other languages
English (en)
French (fr)
Inventor
喜弘 川月
悟志 南
瑞穂 近藤
耕平 後藤
友之 佐々木
小野 浩司
Original Assignee
公立大学法人兵庫県立大学
国立大学法人長岡技術科学大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人兵庫県立大学, 国立大学法人長岡技術科学大学, 日産化学工業株式会社 filed Critical 公立大学法人兵庫県立大学
Priority to JP2018516338A priority Critical patent/JP6897936B6/ja
Priority to KR1020187035458A priority patent/KR20190005942A/ko
Publication of WO2017195396A1 publication Critical patent/WO2017195396A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a photoreactive liquid crystal composition, a display element and an optical element formed with the photoreactive liquid crystal composition, and a method for manufacturing the display element and the optical element.
  • the current liquid crystal display element uses a liquid crystal alignment film that has been subjected to an alignment treatment to uniformly align the liquid crystal, except for some elements such as polymer dispersed liquid crystal (PDLC) ( Non-patent document 1).
  • the alignment treatment of the liquid crystal alignment film is a method called rubbing treatment, which is generally called rubbing treatment after the liquid crystal alignment film is applied. Therefore, there is a problem that the display performance of the liquid crystal display element is deteriorated due to scratches and scraps caused by rubbing.
  • this alignment process requires a number of processes including a liquid crystal alignment film forming process, a liquid crystal alignment process process, and a liquid crystal alignment film cleaning process, which complicates the manufacturing process. For this reason, if a liquid crystal cell capable of controlling the orientation of the liquid crystal without using the liquid crystal alignment film can be produced, there are significant advantages in terms of process and cost.
  • Patent Document 1 discloses a photoreactive liquid crystal composition that can provide an optical element and a display element without using a liquid crystal alignment film.
  • the photoreactive liquid crystal composition disclosed in Patent Document 1 has a photoreactive side chain that generates at least one reaction selected from the group consisting of (A) (A-1) photocrosslinking and (A-2) photoisomerization. And (B) a low molecular liquid crystal.
  • A A-1) photocrosslinking and (A-2) photoisomerization.
  • B a low molecular liquid crystal.
  • an object of the present invention is to provide an element, specifically a display element and an optical element, obtained by controlling the alignment of liquid crystal in a liquid crystal bulk without using a liquid crystal alignment film, and / or It is providing the photoreactive liquid crystal composition for producing an element.
  • an object of the present invention is to provide a photoreactive liquid crystal composition using (B) a compound having a high uniform mixing property with a low molecular liquid crystal used in the photoreactive liquid crystal composition.
  • An object of the present invention is to provide an element, specifically a display element and an optical element, obtained by controlling the orientation of liquid crystal in a liquid crystal bulk without using a liquid crystal alignment film.
  • the object of the present invention is to provide a photoreactive liquid crystal composition using (B) a compound having high uniform mixing with a low molecular liquid crystal used in the photoreactive liquid crystal composition.
  • An object of the present invention is to provide a method for producing an element, specifically a display element and an optical element, obtained by controlling the orientation of liquid crystal in a liquid crystal bulk without using a liquid crystal alignment film.
  • a photoreactive compound having a siloxane skeleton and having a photoreactive group (A) a photoreactive compound having a siloxane skeleton and having a photoreactive group; and (B) a low molecular liquid crystal;
  • a photoreactive liquid crystal composition comprising:
  • an element obtained by controlling the alignment of liquid crystal within a liquid crystal bulk without using a liquid crystal alignment film specifically, a display element and an optical element is provided and / or the element is manufactured.
  • a photoreactive liquid crystal composition can be provided.
  • the composition can provide an element, specifically a display element and an optical element, obtained by controlling the orientation of liquid crystal in the liquid crystal bulk without using a liquid crystal alignment film.
  • a method for producing an element, specifically a display element and an optical element obtained by controlling the alignment of liquid crystal within the liquid crystal bulk without using a liquid crystal alignment film.
  • FIG. 1 It is a figure which shows the polarization microscope image of the orientation state of the low molecular liquid crystal in room temperature about liquid crystal cell A2 obtained in Example 1.
  • FIG. It is a figure which shows the polarization microscope image of the orientation state of the low molecular liquid crystal in room temperature about liquid crystal cell A4 obtained by the comparative example 3.
  • FIG. 1 It is a figure which shows the polarization microscope image of the orientation state of the low molecular liquid crystal in room temperature about liquid crystal cell A4 obtained by the comparative example 3.
  • the present application relates to an element obtained by controlling the alignment of liquid crystal in a liquid crystal bulk without using a liquid crystal alignment film, specifically a display element and an optical element, and / or photoreactivity for producing the element.
  • a liquid crystal composition is provided.
  • the present application provides a photoreactive liquid crystal composition that uses a compound (B) that is used in the photoreactive liquid crystal composition and has a high uniform mixing property with a low-molecular liquid crystal.
  • this application provides the method of manufacturing the element obtained by controlling the orientation of a liquid crystal within a liquid crystal bulk, without using a liquid crystal aligning film.
  • the present application provides a method for producing the above-described element by using a photoreactive liquid crystal composition using (B) a compound having a high uniform mixing property with a low molecular liquid crystal used in the photoreactive liquid crystal composition.
  • a photoreactive liquid crystal composition, a device obtained by the composition, and a method for manufacturing the device will be described.
  • the photoreactive liquid crystal composition of the present invention has (A) a photoreactive compound having a siloxane skeleton and having a photoreactive group; and (B) a low molecular liquid crystal.
  • the photoreactive liquid crystal composition of the present invention comprises (A) a photoreactive compound; and (B) a low-molecular liquid crystal; and other components that do not change the properties of (A) and (B). It may consist essentially only of (A) and (B) having components.
  • the photoreactive liquid crystal composition of the present invention may have other components in addition to (A) or (B).
  • (B) Low molecular liquid crystal As the low molecular liquid crystal (B) contained in the photoreactive liquid crystal composition of the present invention, nematic liquid crystal, ferroelectric liquid crystal and the like conventionally used for liquid crystal display elements can be used as they are. Specifically, (B) as low-molecular liquid crystals, cyanobiphenyls such as 4-cyano-4′-n-pentylbiphenyl and 4-cyano-4′-n-heptyloxybiphenyl; cholesteryl acetate, cholesteryl benzoate, etc.
  • cyanobiphenyls such as 4-cyano-4′-n-pentylbiphenyl and 4-cyano-4′-n-heptyloxybiphenyl
  • cholesteryl acetate, cholesteryl benzoate etc.
  • the (A) photoreactive compound used in the present invention (hereinafter, the (A) photoreactive compound may be simply abbreviated as “(A) component”) has a siloxane skeleton and has a photoreactive group.
  • photoreactivity means any one of (A-1) photocrosslinking, (A-2) photoisomerization, (A-3) photolysis, and (A-4) phototransition. Reaction; and any combination of these;
  • the photoreactive group is at least one reaction selected from the group consisting of (A-1) photocrosslinking, (A-2) photoisomerization, (A-3) photolysis, and (A-4) phototransition.
  • At least one reaction selected from the group consisting of (A-1) photocrosslinking and (A-2) photoisomerization is generated, and more preferably (A-1) A photocrosslinking reaction should occur.
  • the photoreactive group include the following structures and derivatives thereof, but are not limited thereto.
  • the component (A) is preferably i) a compound that exhibits liquid crystallinity in a predetermined temperature range, and a compound having a photoreactive group.
  • the component (A) preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 50 to 300 ° C.
  • the component (A) preferably has a photoreactive group that reacts to light in the wavelength range of 250 nm to 400 nm, particularly polarized ultraviolet rays.
  • the photoreactive group of component (A) preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of iv) 50 to 300 ° C.
  • the component (A) is preferably at least one selected from the group consisting of the following formulas (A) -1 to (A) -4.
  • R 101 to R 108 each independently represents a monovalent organic group.
  • R 103 to R 105 in the following formula (A) -1 are defined depending on the value of m4. Details will be described later.
  • the monovalent organic group is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, substituted or unsubstituted A group consisting of a phenyl group, a vinyl group, a mercapto group, a (meth) acryl group, and a combination thereof (a hydrogen atom bonded to a carbon atom may be substituted with a halogen atom or a hydroxyl group.
  • the carbon atom may be substituted with —O—, —CO—O—, —O—CO—, —NH—CO—O—, —O—CO—NH—, —NH—CO—NH—
  • Q 1 to Q 4 and Q 8 each independently represents a photoreactive group.
  • Q 5 to Q 7 may each independently be a photoreactive group or a monovalent organic group as in R 101 to R 108 .
  • Q 5 to Q 7 are each independently a monovalent organic group, the group has the same definition as R 101 to R 108 .
  • P 1 is a linear or branched alkylene group having 1 to 10 carbon atoms (the hydrogen atom bonded to the carbon atom may be substituted with a monovalent organic group, and is not adjacent to the alkylene group)
  • the carbon atom may be substituted with —O—, —CO—O—, —O—CO—, —NH—CO—O—, —O—CO—NH— or —NH—CO—NH—.
  • P 1 is a linear alkylene group having 1 to 10 carbon atoms.
  • n11, n12, and n14 each independently represents an integer of 1 to 20, preferably 1 to 10, more preferably 1 to 4, and n13 is 3 to 20, preferably 3 to 10, more preferably 3 to 5. Represents an integer.
  • m4 represents an integer of 1 to 4.
  • R 103 to R 105 in the following formula (A) -1 depend on the value of m4.
  • all of R 103 to R 105 are preferably groups shown in parentheses for m4.
  • the weight ratio of (A) photoreactive compound to (B) low molecular liquid crystal is 0.2. : 99.8 to 20:80, preferably 1:99 to 15:85, more preferably 2:98 to 10:90.
  • the component (A) has a photoreactive group having photoreactivity as described above.
  • the structure of the group is not particularly limited, but any one or two or more reactions among the above (A-1) to (A-4) may occur, and preferably (A-1) and The reaction shown in (A-2) is preferably caused, and more preferably (A-1) the photocrosslinking reaction is caused.
  • (A-1) A structure that causes a photocrosslinking reaction is preferable in that the orientation of the component (A) can be stably maintained for a long time even if the structure after the reaction is exposed to external stress such as heat.
  • the mesogenic component examples include, but are not limited to, a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group.
  • the mesogenic group the following structure is preferable.
  • the photoreactive group of the component (A) is preferably a group consisting of at least one of the following formulas (1) to (6).
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the photoreactive group may be any one selected from the group consisting of the following formulas (7) to (10).
  • the photoreactive group may be any one selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m1 and R have the same definition as above.
  • the photoreactive group may be a group represented by the following formula (14) or (15).
  • A, Y 1 , l, m1 and m2 have the same definition as above.
  • the photoreactive group may be a group represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the photoreactive group is preferably a group represented by the following formula (20).
  • A, Y 1 , X, l and m have the same definition as above.
  • Example of component (A) includes, but are not limited to, the following compounds.
  • the photoreactive liquid crystal composition of the present invention may have other components in addition to the component (A) or the component (B).
  • antioxidants such as hindered amines and hindered phenols
  • photopolymerization or photopolymerization at one or more terminals examples thereof include a polymerizable compound having a crosslinkable group.
  • the polymerizable compound include the following compounds (wherein V is represented by a single bond or —R 8 O—, preferably —R 8 O—, and R 8 has 1 to 10 carbon atoms, Preferably, it represents a linear or branched alkylene group having 2 to 6 carbon atoms, W is represented by a single bond or —OR 9 —, preferably —OR 9 —, and R 9 has 1 to 10 carbon atoms, preferably Represents a linear or branched alkylene group having 2 to 6 carbon atoms, and V and W may be the same or different, but can be easily synthesized if they are the same R 7 represents H or a carbon number 1 to 4 alkyl groups), but is not limited thereto.
  • the present application also provides an element obtained by the above-described photoreactive liquid crystal composition and a method for producing the element.
  • the element of the present invention is formed having a liquid crystal cell having the above-described photoreactive liquid crystal composition.
  • Examples of the element include display elements; and optical elements such as diffraction gratings, lenses, and mirrors.
  • the element of the present invention specifically, a display element or an optical element can be formed by filling a cell with the above-mentioned photoreactive liquid crystal composition.
  • the device of the present invention can be manufactured by the following steps. [I] Two transparent substrates in which a photoreactive liquid crystal composition having (A) a photoreactive compound having a siloxane group and having a photoreactive group; and (B) a low-molecular liquid crystal; A step of filling a space formed therebetween to form a liquid crystal cell; and [II] irradiating the liquid crystal cell obtained in [I] with polarized ultraviolet rays from one of the two transparent substrates. Process; By having The element of the present invention can be formed. Specifically, an element in which (B) a low molecular liquid crystal has a predetermined orientation is formed in a liquid crystal cell.
  • the step [I] is a step of forming a liquid crystal cell by filling the above-mentioned photoreactive liquid crystal composition in a space formed between transparent substrates at least on the side irradiated with ultraviolet rays arranged in parallel and spaced apart. is there.
  • the liquid crystal cell is formed by forming a space by arranging two transparent substrates apart from each other in parallel and filling the space with the photoreactive composition described above.
  • the substrate for example, glass; plastic such as acrylic or polycarbonate, etc. can be used.
  • the substrate may have flexibility depending on the element to be formed.
  • the substrate is formed with various films on the space side, such as films formed from polyvinyl alcohol, polyether, polyethylene, PET, polyamide, polyimide, acrylic, polycarbonate, polyurea, etc. Also good.
  • membrane used here is good to show
  • the photoreactive compound is enclosed in a liquid crystal cell as a composition with (B) a low-molecular liquid crystal
  • (A) the molecular long axis of the photoreactive compound is positioned horizontally in the substrate plane.
  • (B) the low-molecular liquid crystal is preferably positioned horizontally within the substrate surface as well. Therefore, the above-described film should be one in which the molecular long axis of the photoreactive composition can be positioned horizontally within the substrate surface, and any material can be used as long as it is such a film.
  • the step [II] is a step of irradiating the liquid crystal cell obtained in [I] with polarized ultraviolet rays. Since the polarized ultraviolet rays are irradiated from the outside of one of the two transparent substrates, the transparent substrate is a substrate that transmits the polarized ultraviolet rays as described above. Although polarized ultraviolet rays depend on the element to be formed, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
  • ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the polarized ultraviolet light is 15 ° C. from the isotropic phase transition temperature of the low molecular liquid crystal in order to suppress the decrease in the degree of polarization of the irradiated polarized ultraviolet light and the scattering of the polarized ultraviolet light.
  • Irradiation is preferably performed at a low temperature or higher, and more preferably, irradiation is performed at an isotropic phase transition temperature or higher. If it is this temperature range, the dichroism by the polarization photoreaction of (A) photoreactive compound is maintained, (B) It is preferable at the point from which the orientation of a low molecular liquid crystal becomes uniform.
  • the low molecular liquid crystal By irradiating different polarized ultraviolet rays to the first position of the optical element and the second position different from the first position, (B) the low molecular liquid crystal at the first position and the second position.
  • Elements having different orientations for example, optical elements can be formed.
  • the first position is irradiated with polarized ultraviolet light having a first polarization axis
  • the second position is irradiated with polarized ultraviolet light having a second polarization axis different from the first polarization axis.
  • an element having different orientations in the low molecular liquid crystal can be formed at the first and second positions of the optical element.
  • the element to be formed is a diffraction grating
  • an alignment distribution with different orientations at the position of the element is obtained by interference exposure of polarized ultraviolet rays to the liquid crystal cell.
  • a diffraction grating which is an optical element having a property distribution can be formed.
  • the following mechanism occurs in the liquid crystal cell when irradiated with polarized ultraviolet rays. That is, the (A) photoreactive compound in the liquid crystal cell has an orientation according to the polarized ultraviolet light. Further, (B) the low molecular liquid crystal is aligned according to the alignment of (A) the photoreactive compound. Thereby, (A) a photoreactive compound and (B) low molecular liquid crystal will have orientation according to polarized ultraviolet rays. For example, as described above, by subjecting polarized ultraviolet rays to a liquid crystal cell by interference exposure, (A) a photoreactive compound has different orientations at the element position, and (B) a low molecular liquid crystal However, it has different orientation depending on the position of the element.
  • a diffraction grating which is an optical element having an orientation distribution with different orientations at the position of the element, specifically, an orientation distribution with periodically different orientations, is formed by interference exposure of polarized ultraviolet rays to the liquid crystal cell. can do.
  • DIAD diisopropyl azodicarboxylate
  • the reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was washed with ethyl acetate / distilled water, and the aqueous layer was removed by a liquid separation operation. The organic layer was further washed twice with distilled water, and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave a crude product of the compound [M]. The obtained crude product was purified by silica gel column chromatography to obtain 15.2 g of compound [M] (yield 95%).
  • Example 1 5 parts by weight of the photoreactive compound represented by Si-4 synthesized in Synthesis Example 4 was added to 95 parts by weight of low-molecular liquid crystal ZLI-4792 (manufactured by Merck & Co., Inc.), and stirred at room temperature for 30 minutes. Reactive liquid crystal composition A1 was obtained. After stirring, the photoreactive liquid crystal composition was confirmed to be uniformly mixed with no precipitation of Si-4 on ZLI-4792 (Table 2). The photoreactive polymer liquid crystal represented by Si-4 exhibited liquid crystallinity at 118 ° C. or higher. The results are shown in Table 1.
  • C is a crystal phase (crystal state before becoming a liquid crystal)
  • N is a nematic phase (one type of liquid crystal phase)
  • I is an isotropic phase. It shows that there is.
  • the numerical value between “C” and “N” indicates the temperature at which the crystal phase changes to the nematic phase
  • the photoreactive liquid crystal composition is injected into the empty cell by a capillary method, and then linearly polarized using a high-pressure mercury lamp in a state heated to 110 ° C. which is higher than the isotropic phase temperature of the photoreactive liquid crystal composition.
  • a liquid crystal cell A2 subjected to alignment treatment was obtained by irradiating with ultraviolet rays.
  • the wavelength of the linearly polarized ultraviolet light used for the alignment treatment was 315 nm (50 mW / cm 2 ), and the exposure amount was 500 mJ / cm 2 .
  • Example 2 A photoreactive liquid crystal composition B1 was obtained in the same manner as in Example 1 except that the amount of Si-4 added to the photoreactive liquid crystal composition was changed to 2 parts by weight and the amount of the low molecular liquid crystal was changed to 98 parts by weight. It was. It was confirmed that the photoreactive liquid crystal composition B1 was uniformly mixed with no precipitation of Si-4 on ZLI-4792. The results are shown in Table 2. Next, after producing the liquid crystal cell B2 in which the photoreactive liquid crystal composition was encapsulated in the same manner as in Example 1, the alignment state of the low-molecular liquid crystals at room temperature was confirmed by observation with a polarizing microscope. The results are shown in Table 3. In Table 3, “good” means “alignment was uniform”, and “alignment possible” means “alignment of liquid crystal can be induced, but alignment defects such as defects are partially observed. The orientation is not uniform ”.
  • Example 3 A photoreactive liquid crystal composition C1 was obtained in the same manner as in Example 1 except that Si-4 added to the photoreactive liquid crystal composition was changed to Si-5. The photoreactive liquid crystal composition C1 was confirmed to be uniformly mixed with no precipitation of Si-5 with respect to ZLI-4792. The results are shown in Table 2. Next, after producing the liquid crystal cell C2 in which the photoreactive liquid crystal composition was encapsulated in the same manner as in Example 1 except that the exposure amount of the linearly polarized ultraviolet light to be irradiated was 1000 mJ / cm 2 , The alignment state of the low-molecular liquid crystal at room temperature was confirmed. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 4 A photoreactive liquid crystal composition D1 was obtained in the same manner as in Example 1 except that Si-4 added to the photoreactive liquid crystal composition was changed to Si-6. It was confirmed that the photoreactive liquid crystal composition D1 was uniformly mixed with no precipitation of Si-5 with respect to ZLI-4792. The results are shown in Table 2. Next, after producing the liquid crystal cell D2 in which the photoreactive liquid crystal composition was encapsulated in the same manner as in Example 3, the alignment state of the low molecular liquid crystals at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 5 A photoreactive liquid crystal composition E1 was obtained in the same manner as in Example 1, except that the low molecular liquid crystal used in Example 1: ZLI-4792 (Merck) was changed to E7 (Merck).
  • a photoreactive liquid crystal composition F1 was obtained in the same manner as in Example 1 except that Si-4 added to the photoreactive liquid crystal composition was changed to Si-1. It was confirmed that the photoreactive liquid crystal composition F1 was uniformly mixed with no precipitation of Si-1 with respect to ZLI-4792. The results are shown in Table 2.
  • the alignment state of the low molecular liquid crystals at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 7 A photoreactive liquid crystal composition G1 was obtained in the same manner as in Example 6 except that the amount of Si-1 added to the photoreactive liquid crystal composition was changed to 10 parts by weight. It was confirmed that the photoreactive liquid crystal composition G1 was uniformly mixed with no precipitation of Si-4 on ZLI-4792. The results are shown in Table 2. Next, after producing the liquid crystal cell G2 in which the photoreactive liquid crystal composition was sealed in the same manner as in Example 1, the alignment state of the low molecular liquid crystals at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 8 A photoreactive liquid crystal composition H1 was obtained in the same manner as in Example 1, except that Si-4 added to the photoreactive liquid crystal composition was changed to Si-1 and the addition amount was changed to 1 part by weight.
  • the photoreactive liquid crystal composition H1 was confirmed to be uniformly mixed with no precipitation of Si-1 with respect to ZLI-4792.
  • the results are shown in Table 2.
  • the alignment state of the low-molecular liquid crystal at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 9 A photoreactive liquid crystal composition I1 was obtained in the same manner as in Example 7 except that Si-4 added to the photoreactive liquid crystal composition was changed to Si-2. The photoreactive liquid crystal composition I1 was confirmed to be uniformly mixed with no precipitation of Si-2 against ZLI-4792. The results are shown in Table 2. Next, after producing the liquid crystal cell I2 in which the photoreactive liquid crystal composition was encapsulated in the same manner as in Example 1, the alignment state of the low molecular liquid crystals at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 10 A liquid crystal cell A3 encapsulating the photoreactive liquid crystal composition A1 was prepared in the same manner as in Example 1 except that the exposure amount of the linearly polarized ultraviolet light to be irradiated was changed to 1000 mJ / cm 2 . The alignment state of the low-molecular liquid crystal at room temperature was confirmed. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 11 In Example 4, after producing the liquid crystal cell D3 encapsulating the photoreactive liquid crystal composition D1 in the same manner as in Example 4 except that the exposure amount of the linearly polarized ultraviolet light to be irradiated was changed to 1500 mJ / cm 2 , The alignment state of the low-molecular liquid crystal at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 1 (see Table 3).
  • Example 12 the photoreactive liquid crystal was prepared in the same manner as in Example 4 except that the amount of Si-6 added to the photoreactive liquid crystal composition was changed to 10 parts by weight and the amount of the low molecular liquid crystal was changed to 90 parts by weight.
  • Composition J1 was obtained.
  • the photoreactive liquid crystal composition was confirmed to be uniformly mixed with no precipitation of Si-6 on ZLI-4792. The results are shown in Table 2.
  • liquid crystal cell J2 in which the photoreactive liquid crystal composition was encapsulated in the same manner as in Example 4 the alignment state of the low molecular liquid crystals at room temperature was confirmed by observation with a polarizing microscope. As a result, although not shown, it was confirmed that the low-molecular liquid crystal in the liquid crystal cell was uniaxially aligned and the alignment uniformity was good as in Example 4 (see Table 3).
  • Example 3 A liquid crystal cell A4 in which the photoreactive liquid crystal composition A1 was encapsulated was obtained in the same manner as in Example 1 except that the temperature at which the polarized ultraviolet light was irradiated was 45 degrees. Then, the alignment state of the low molecular liquid crystal at room temperature was confirmed by polarizing microscope observation. The results are shown in FIG. The following can be understood from the results of FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本発明は、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子の提供、及び該素子を作製するための光反応性液晶組成物を提供する。特に、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる、光反応性液晶組成物を提供する。該組成物により、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子を提供する。 本発明は、(A)シロキサン骨格を備え且つ光反応性基を有する光反応性化合物;及び(B)低分子液晶;を有する光反応性液晶組成物を提供する。

Description

光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法
 本発明は、光反応性液晶組成物、該光反応性液晶組成物を有して形成される表示素子及び光学素子、並びに表示素子及び光学素子の製造方法に関する。
 現在の液晶表示素子は、高分子分散型液晶(Polymer Dispersed Liquid Crystal、PDLC)などの一部の素子を除いて、液晶を均一配向させるために配向処理を施した液晶配向膜を用いている(非特許文献1)。液晶配向膜の配向処理は液晶配向膜を塗布した後に、一般的にはラビング処理と呼ばれる、布を巻きつけたローラーで膜表面を擦る手法がとられているが、該手法は膜表面を物理的に擦る手法であるため、ラビングによる傷や削れカスが液晶表示素子の表示性能を低下させる問題点がある。さらに、この配向処理には、液晶配向膜形成工程、液晶配向処理工程、液晶配向膜の洗浄工程と数多くの工程を経る必要があり、製造工程を煩雑化していた。
 そのため、該液晶配向膜を用いずに、液晶の配向性が制御できる液晶セルが作製できるとプロセス面及びコスト面で大きなメリットとなる。
 実際に、液晶配向膜を用いずに、光学素子及び表示素子を提供できる光反応性液晶組成物を、特許文献1は開示する。特許文献1開示の光反応性液晶組成物は、(A)(A-1)光架橋及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じる光反応性側鎖を有する光反応性高分子液晶;及び(B)低分子液晶;を有する。該組成物をセルに注入し、偏光紫外線を照射することにより、(A)光反応性高分子液晶及び(B)低分子液晶が配向性を示し、光学素子及び/又は表示素子を提供することができる。
 しかしながら、特許文献1開示の光反応性液晶組成物は、(A)光反応性高分子液晶と(B)低分子液晶との均一混合性が良好ではない場合が生じる。特に、(A)光反応性高分子液晶の量を多くすると、(B)低分子液晶との均一混合性が低下し、光反応性液晶組成物自体が製造できないという問題、ひいては光学素子及び/又は表示素子が提供できないという問題が生じる。
WO2015/114864A1号公報。
 そこで、本発明の目的は、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子を提供すること、及び/又は該素子を作製するための光反応性液晶組成物を提供することにある。
 特に、本発明の目的は、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる、光反応性液晶組成物を提供することにあり、加えて、該組成物により、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子を提供することにある。
 特に、上記目的に加えて、又は上記目的以外に、本発明の目的は、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる、光反応性液晶組成物により、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子を製造する方法を提供することにある。
 本発明者らは、以下の発明を見出した。
<1> (A)シロキサン骨格を備え且つ光反応性基を有する光反応性化合物;及び
 (B)低分子液晶;
を有する光反応性液晶組成物。
 本発明により、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子を提供すること、及び/又は該素子を作製するための光反応性液晶組成物を提供することができる。
 特に、本発明により、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる、光反応性液晶組成物を提供することができる。また、該組成物により、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子を提供することができる。
 特に、本発明により、上記効果に加えて、又は上記効果以外に、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる、光反応性液晶組成物により、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子を製造する方法を提供することができる。
実施例1で得られた液晶セルA2について、室温における低分子液晶の配向状態の偏光顕微鏡像を示す図である。 比較例3で得られた液晶セルA4について、室温における低分子液晶の配向状態の偏光顕微鏡像を示す図である。
 本願は、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子、具体的には表示素子及び光学素子、及び/又は該素子を作製するための光反応性液晶組成物を提供する。特に、本願は、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる、光反応性液晶組成物を提供する。
 また、本願は、液晶配向膜を用いずに、液晶の配向性を液晶バルク内で制御して得られる素子を製造する方法を提供する。特に、本願は、光反応性液晶組成物に用いる(B)低分子液晶との均一混合性が高い化合物を用いる光反応性液晶組成物により、上記素子を製造する方法を提供する。
 以下、光反応性液晶組成物、該組成物によって得られる素子、素子の製造方法を説明する。
<光反応性液晶組成物>
 本発明の光反応性液晶組成物は、(A)シロキサン骨格を備え且つ光反応性基を有する光反応性化合物;及び(B)低分子液晶;を有する。
 本発明の光反応性液晶組成物は、(A)光反応性化合物;及び(B)低分子液晶;のみからなっても、該(A)及び(B)の性質が変化しない程度のその他の成分を有する(A)及び(B)のみから本質的になってもよい。また、本発明の光反応性液晶組成物は、(A)又は(B)以外に、その他の成分を有してもよい。 
<<(B)低分子液晶>>
 本発明の光反応性液晶組成物に含まれる(B)低分子液晶は、従来、液晶表示素子などに用いられているネマチック液晶や強誘電性液晶などをそのまま用いることができる。
 具体的には、(B)低分子液晶として、4-シアノ-4’-n-ペンチルビフェニル、4-シアノ-4’-n-へプチルオキシビフェニル等のシアノビフェニル類;コレステリルアセテート、コレステリルベンゾエート等のコレステリルエステル類;4-カ ルボキシフェニルエチルカーボネート、4-カルボキシフェニル-n-ブチルカーボネート等の炭酸エステル類;安息香酸フェニルエステル、フタル酸ビフェニ ルエステル等のフェニルエステル類;ベンジリデン-2-ナフチルアミン、4’-n-ブトキシベンジリデン-4-アセチルアニリン等のシッフ塩基類;N,N’-ビスベンジリデンベンジジン、p-ジアニスアルベンジジン等のベンジジン類;4,4’-アゾキシジアニソール、4,4’-ジ-n-ブトキシ アゾキシベンゼン等のアゾキシベンゼン類;以下に具体的に示すフェニルシクロヘキシル系、ターフェニル系、フェニルビシクロヘキシル系などの液晶;などを挙げることができるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
<<(A)光反応性化合物>>
 本発明に用いる(A)光反応性化合物(以下、(A)光反応性化合物を単に「(A)成分」と略記する場合がある)は、シロキサン骨格を備え且つ光反応性基を有する。
 本明細書において光反応性とは、(A-1)光架橋、(A-2)光異性化、(A-3)光分解、及び(A-4)光転移、のうちのいずれかの反応;及びこれらの任意に組合せの反応;を生じる性質をいう。
 光反応性基は、(A-1)光架橋、(A-2)光異性化、(A-3)光分解、及び(A-4)光転移からなる群から選ばれる少なくとも1種の反応を生じるのがよく、好ましくは(A-1)光架橋、及び(A-2)光異性化からなる群から選ばれる少なくとも1種の反応を生じるのがよく、より好ましくは(A-1)光架橋反応を生じるのがよい。
 光反応性基として、下記構造及びその誘導体を挙げることができるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000013
 (A)成分は、i)所定の温度範囲で液晶性を発現する化合物であって、光反応性基を有する化合物であるのが好ましい。
 (A)成分は、ii)250nm~400nmの波長範囲の光で反応し、かつ50~300℃の温度範囲で液晶性を示すのがよい。
 (A)成分は、iii)250nm~400nmの波長範囲の光、特に偏光紫外線に反応する光反応性基を有することが好ましい。
 (A)成分の光反応性基は、iv)50~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
 (A)成分は、下記式(A)-1~(A)-4からなる群から選ばれる少なくとも1種であるのがよい。
 なお、式(A)-1~(A)-4中、R101~R108は各々独立に、1価の有機基を表す。ただし、下記式(A)-1のR103~R105は、m4の値に依存して定義される。詳細は後述する。
 ここで、1価の有機基は、水素原子であるか又は直鎖または分岐鎖の炭素数1~6のアルキル基、直鎖または分岐鎖の炭素数1~6のアルコキシ基、置換または非置換のフェニル基、ビニル基、メルカプト基、(メタ)アクリル基、およびその組み合わせからなる基(炭素原子に結合している水素原子がハロゲン原子、水酸基で置換されていてもよい。また、隣り合わない炭素原子が-O-、-CO-O-、-O-CO-、-NH-CO-O-、-O-CO-NH-、-NH-CO-NH-で置換されていてもよい)から選ばれる基であるのがよい。
 Q~Q、及びQは各々独立に、光反応性基を表す。
 Q~Qは各々独立に、光反応性基であっても、R101~R108と同様に1価の有機基であってもよい。Q~Qが各々独立に1価の有機基である場合、該基はR101~R108と同様の定義を有する。
 Pは炭素数1~10の直鎖または分岐鎖のアルキレン基(炭素原子に結合している水素原子は1価の有機基で置換されていてもよい。また、アルキレン基中、隣り合わない炭素原子が-O-、-CO-O-、-O-CO-、-NH-CO-O-、-O-CO-NH-、-NH-CO-NH-で置換されていてもよい。好ましくは、Pは炭素数1~10の直鎖のアルキレン基であるのがよい。
 n11、n12、及びn14は各々独立に、1~20、好ましくは1~10、より好ましくは1~4の整数を表し、n13は3~20、好ましくは3~10、より好ましくは3~5の整数を表す。
 m4は1~4の整数を表す。上述したとおり、下記式(A)-1のR103~R105は、m4の値に依存する。m4=1の場合、R103~R105は、上述の1価の有機基を表す。m4=2の場合、R103~R105のうち、いずれか2つが上述の1価の有機基であり、残りの1つがm4の括弧内で示された基であるのがよい。また、m4=3の場合、R103~R105のうち、いずれか1つが上述の1価の有機基であり、残りの2つがm4の括弧内で示された基であるのがよい。さらに、m4=4の場合、R103~R105の全てが、m4の括弧内で示された基であるのがよい。
Figure JPOXMLDOC01-appb-C000014
 本発明の光反応性液晶組成物において、(A)光反応性化合物と(B)低分子液晶との重量比((A)光反応性化合物:(B)低分子液晶)は、0.2:99.8~20:80、好ましくは1:99~15:85、より好ましくは2:98~10:90であるのがよい。
 (A)成分は、上述のように、光反応性を有する光反応性基を有する。該基の構造は、特に限定されないが、上記(A-1)~(A-4)のうちいずれか1種又は2種以上の反応を生じるのがよく、好ましくは上記(A-1)及び/又は(A-2)に示す反応を生じるのがよく、より好ましくは(A-1)光架橋反応を生じるのがよい。(A-1)光架橋反応を生じる構造は、その反応後の構造が、熱などの外部ストレスに曝されたとしても、(A)成分の配向性を長期間安定に保持できる点で好ましい。
 (A)成分の光反応性基の構造は、剛直なメソゲン成分を有する方が、液晶の配向が安定するため、好ましい。(A)成分が剛直なメソゲン成分を有し且つ液晶性を示すと、(B)成分の低分子液晶との相溶性が向上するため好ましい。
 メソゲン成分として、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などを挙げることができるがこれらに限定されない。
 メソゲン基としては下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000015
 (A)成分の光反応性基として、下記式(1)~(6)の少なくとも1種からなる基であるのが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
 光反応性基は、下記式(7)~(10)からなる群から選ばれるいずれか1種であるのがよい。
 式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す。
Figure JPOXMLDOC01-appb-C000017
 光反応性基は、下記式(11)~(13)からなる群から選ばれるいずれか1種であるのがよい。
 式中、A、X、l、m、m1及びRは、上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000018
 光反応性基は、下記式(14)又は(15)で表される基であるのがよい。
 式中、A、Y、l、m1及びm2は上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000019
 光反応性基は、下記式(16)又は(17)で表される基であるのがよい。
 式中、A、X、l及びmは、上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000020
 光反応性基は、下記式(20)で表される基であるのがよい。
 式中、A、Y、X、l及びmは上記と同じ定義を有する。
Figure JPOXMLDOC01-appb-C000021
<<(A)成分の例>> 
 (A)成分として、具体的には、次のような化合物を挙げることができるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 本発明の光反応性液晶組成物は、上述したように、(A)成分又は(B)成分以外に、その他の成分を有してもよい。
 その他の成分として、用いる(A)成分及び(B)成分の用途などに依存するが、例えば、ヒンダートアミン類やヒンダートフェノール類などの酸化防止剤や1つ以上の末端に光重合または光架橋する基を有する重合性化合物などを挙げることができる。
 重合性化合物の具体的な例として、以下に示す化合物(式中、Vは、単結合又は-RO-、好ましくは-RO-で表され、Rは炭素数1~10、好ましくは炭素数2~6の直鎖又は分岐鎖のアルキレン基を示す。Wは、単結合又は-OR-、好ましくは-OR-で表され、Rは炭素数1~10、好ましくは炭素数2~6の直鎖又は分岐鎖のアルキレン基を示す。V及びWは同一の構造でも異なっていてもよいが、同一であると合成が容易である。RはHまたは炭素数1~4のアルキル基を示す)を挙げることができるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000025
<光反応性液晶組成物によって得られる素子及びその製造方法>
 本願は、上記の光反応性液晶組成物によって得られる素子、及び該素子の製造方法も提供する。
 本発明の素子は、上記の光反応性液晶組成物を有する液晶セルを有して形成される。
 素子として、表示素子;及び回折格子、レンズ、ミラーなどの光学素子;などを挙げることができる。
 本発明の素子、具体的には表示素子又は光学素子は、セルに上記の光反応性液晶組成物を充填して形成することができる。
 具体的には、本発明の素子は、次の工程により製造することができる。
 [I] (A)シロキサン基を備え且つ光反応性基を有する光反応性化合物;及び(B)低分子液晶;を有する光反応性液晶組成物を、平行離間配置された2枚の透明基体間に形成される空間に充填して液晶セルを形成する工程;及び
 [II] [I]で得られた液晶セルに、前記2枚の透明基体のいずれか一方から、偏光した紫外線を照射する工程;
を有することにより、
本発明の素子を形成することができ、具体的には、液晶セル内で(B)低分子液晶が所定の配向性を有する素子が形成される。
 [I]工程は、上述の光反応性液晶組成物を、平行離間配置された少なくとも紫外線を照射する側の基体が透明な基体間に形成される空間に充填して液晶セルを形成する工程である。
 液晶セルは、2枚の透明基体をある程度離間させて平行配置することにより空間を形成し、該空間に上述の光反応性組成物を充填して形成される。
 基体は、例えば、ガラス;アクリルやポリカーボネート等のプラスチック等;を用いることができる。基体は、形成する素子に依存して、可撓性を有してもよい。
 基体は、形成する素子に依存して、空間側に、種々の膜、例えば、ポリビニルアルコール、ポリエーテル、ポリエチレン、PET、ポリアミド、ポリイミド、アクリル、ポリカーボネート、ポリウレアなどから形成される膜を形成してもよい。なお、ここで用いる膜は、例えば、次のような作用を奏するのがよい。即ち、後述の[II]工程において、(A)光反応性化合物の光反応を誘起するためには、(A)光反応性化合物の分子長軸が偏光を吸収するように、基板面内に水平に位置するのがよい。一方、(A)光反応性化合物は(B)低分子液晶との組成物として液晶セル中に封入されるため、(A)光反応性化合物の分子長軸が基板面内に水平に位置するためには(B)低分子液晶も同様に基板面内に水平に位置するのがよい。したがって、上述の膜は、光反応性組成物の分子長軸が基板面内に水平に位置できるものであるのがよく、そのような膜であれば材料に限定されない。
 [II]工程は、[I]で得られた液晶セルに偏光した紫外線を照射する工程である。偏光した紫外線は、2枚の透明基体のいずれか一方の外側から照射するため、透明基体は、上述したように、偏光した紫外線を透過する基体である。
 偏光した紫外線は、形成する素子に依存するが、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
 偏光した紫外線を照射する工程では、照射される偏光紫外線の偏光度の低下や、偏光紫外線の散乱を抑制するため、偏光された紫外線は(B)低分子液晶の等方相転移温度より15℃低い温度以上で照射するのが良く、より好ましくは等方相転移温度以上で照射するのが良い。この温度範囲であれば、(A)光反応性化合物の偏光光反応による二色性が維持され、(B)低分子液晶の配向が均一となる点で好ましい。
 光学素子の第1の位置、該第1の位置とは異なる第2の位置に対して、異なる偏光紫外線を照射することにより、該第1の位置と第2の位置において(B)低分子液晶が異なる配向性を有する素子、例えば光学素子を形成することができる。
 具体的には、第1の位置に対して第1の偏光軸とする偏光紫外線を照射し、第2の位置に対して第1の偏光軸とは異なる第2の偏光軸とする偏光紫外線を照射することにより、光学素子の第1及び第2の位置において(B)低分子液晶が異なる配向性を有する素子を形成することができる。
 また、例えば、形成する素子が、回折格子の場合、偏光紫外線を液晶セルに干渉露光させることにより、素子の位置において配向性が異なる配向性分布、具体的には周期的に配向性が異なる配向性分布を有する光学素子である回折格子を形成することができる。
 偏光紫外線を照射すると、液晶セル内で、次のようなメカニズムが生じるものと考えられる。即ち、液晶セル内の(A)光反応性化合物は、該偏光紫外線に応じた配向性を有することとなる。
 また、(B)低分子液晶は、(A)光反応性化合物の配向性にしたがって、配向する。
 これにより、(A)光反応性化合物及び(B)低分子液晶は、偏光紫外線に応じて、配向性を有することとなる。
 例えば、上述のように、偏光紫外線を液晶セルに干渉露光することにより、素子の位置において、(A)光反応性化合物が、異なる配向性を有し、これにしたがって、(B)低分子液晶も、素子の位置によって異なる配向性を有することとなる。よって、偏光紫外線を液晶セルに干渉露光することにより、素子の位置において配向性が異なる配向性分布、具体的には周期的に配向性が異なる配向性分布を有する光学素子である回折格子を形成することができる。
<合成例1:光反応性化合物Si-1の合成>
Figure JPOXMLDOC01-appb-C000026
<<化合物Cの合成>>
 2L四つ口フラスコに、化合物[B](90.8g、412mmol)、トリフェニルホスフィン(以下、PPhと記載)(130.0g、495mmol)、テトラヒドロフラン(以下、THFと記載)(700g)を加え、窒素置換して溶液を0℃に冷却した。その後、アゾジカルボン酸ジイソプロピル(以下、DIADと記載)(49.5g、496mol)のTHF(100g)溶液を徐々に加え、その後、化合物[A](49.5g、496mol)のTHF(100g)溶液をさらに加えた後、23℃でさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を酢酸エチル/ブラインで洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状の粗物を得た。得られた粗物にヘキサン(1L)を加え、-20℃で冷却撹拌し、結晶化した固体をろ過で除去し、ろ液をシリカゲルカラムクロマトグラフィーにて精製し黄色固体として、化合物[C]を110.3g得た(収率98%)。
 1H-NMR(400MHz, CDCl3, δppm):7.54(1H, d), 7.44(2H, d), 6.87(2H, d), 5.86-5.78(1H, m), 5.87-5.78(1H, m), 5.10-4.97(2H, m), 3.99(2H, t), 2.22-2.09(2H, m), 1.84-1.76(2H,m), 1.61-1.52(2H, m), 1.43(9H, s).
Figure JPOXMLDOC01-appb-C000027
<<化合物Eの合成>>
 300mL四つ口フラスコに、化合物[D](29.43g、198mmol)、化合物[C](30.00g、99.2mmol)、Karstedt触媒(1mmol)、トルエン(160g)を加え、窒素置換後、加熱還流を行った。HPLCにて反応追跡を行い、反応終了後、反応溶液をエバポレーターで濃縮し、シリカゲルカラムクロマトグラフィーにて精製し、オイル状の化合物[E]を29.4g得た(収率66%)。
 1H-NMR(400MHz, CDCl3, δppm):7.50(1H, d), 7.41(2H, d), 6.84(2H, d), 6.19(1H,d), 3.94(2H, t), 1.83-1.71(2H, m), 1.42(9H, s), 1.40-1.17(4H, m), 0.54-0.42(2H, m), 0.07-0.03(15H, m).
Figure JPOXMLDOC01-appb-C000028
<<光反応性化合物Si-1の合成>>
 300mL四つ口フラスコに、化合物[E](29.48g、65.4mmol)とギ酸(120g)を加え、40℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了後、蒸留水(800g)に反応液を注ぎ、ヘキサン/酢酸エチルで分液した。有機層を蒸留水で3回洗浄し有機層をエバポレーターで濃縮後、シリカゲルカラムクロマトグラフィーにて精製し、白色固体の光反応性化合物Si-1を10.5g得た(収率41%)
 1H-NMR(400MHz, CDCl3, δppm):7.74(1H, d), 7.49(2H, d), 6.90(2H, d), 6.31(1H,d), 4.12(2H, t), 1.83-1.74(2H, m), 1.48-1.31(6H, m), 0.54-0.50(2H, m), 0.07-0.03(15H, m).
<合成例2:光反応性化合物Si-2の合成>
Figure JPOXMLDOC01-appb-C000029
 化合物[D]を化合物[F]に変更した以外、合成例1と同様な手法を用いて光反応性化合物Si-2を17.2g得た(収率56%)
 1H-NMR(400MHz, CDCl3, δppm):7.74(1H, d), 7.49(2H, d), 6.89(2H, d), 6.31(1H,d), 4.00-3.95(2H, m), 1.81-1.74(2H, m), 1.46-1.33(6H, m), 0.54-0.50(2H, m), 0.16-0.03(21H, m).
<合成例3:光反応性化合物Si-3の合成>
Figure JPOXMLDOC01-appb-C000030
 化合物[D]を化合物[H]に変更した以外、合成例1と同様な手法を用いて光反応性化合物Si-3を13.5g得た(収率89%)
 1H-NMR(400MHz, CDCl3, δppm):7.73(1H, d), 7.48(2H, d), 6.82(2H, d), 6.31(1H,d), 3.97-3.91(2H, m), 1.79-1.74(2H, m), 1.43-1.33(6H, m), 0.54-0.50(2H, m), 0.16-0.03(21H, m).
<合成例4:光反応性化合物Si-4の合成>
Figure JPOXMLDOC01-appb-C000031
<<化合物Kの合成>>
 2L四つ口フラスコに、化合物[J](84.0g、451mmol)、トリフェニルホスフィン(以下、PPhと記載)(130.0g、495mmol)、THF(700g)を加え、窒素置換して溶液を0℃に冷却した。その後、DIAD(49.5g、496mol)のTHF(100g)溶液を徐々に加え、その後、化合物[A] (49.5g、496mol)のTHF(100g)溶液をさらに加えた後、23℃でさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を酢酸エチル/ブラインで洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[K]の粗物を得た。得られた粗物をシリカゲルカラムクロマトグラフィーにて精製し化合物[K]を56.7g得た(収率47%)。
 1H-NMR(400MHz, CDCl3, δppm):9.70(1H, s), 7.64-7.62(2H, m), 7.44-7.41(2H, m), 7.01-6.98(2H, m), 6.85-6.82(2H, m), 5.88-5.79(1H, m), 5.10-4.97(2H, m), 3.99(2H, t), 2.22-2.09(2H, m), 1.84-1.76(2H,m), 1.61-1.52(2H, m).
<<化合物Mの合成>>
Figure JPOXMLDOC01-appb-C000032
 300mL四つ口フラスコに、化合物[K](10.00g、37.3mmol)、化合物[L](6.65g、37.3mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(以下、EDCと記載)(6.95g、44.8mmol)、N,N’-ジメチルアミノピリジン(以下、DMAPと記載)(0.46、3.73mmol)、THF(150g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を酢酸エチル/蒸留水で洗浄、分液操作にて水層を除去した。有機層をさらに蒸留水で2回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[M]の粗物を得た。得られた粗物をシリカゲルカラムクロマトグラフィーにて精製し化合物[M]を15.2g得た(収率95%)。
 1H-NMR(400MHz, CDCl3, δppm):7.83(1H, d), 7.68-7.67(2H, m), 7.58-7.56(2H, m), 7.55-7.48(2H, m), 7.23-7.19(2H, m), 7.06-7.05(2H, m), 6.89-6.93(2H, m), 6.30(1H, d), 5.87-5.80(1H, m), 5.11-4.99(2H, m), 3.98(2H, t), 3,85 (3H, s), 2.23-2.10(2H, m), 1.83-1.77(2H,m), 1.62-1.52(2H, m).
<<光反応性化合物Si-4の合成>>
Figure JPOXMLDOC01-appb-C000033
 300mL四つ口フラスコに、化合物[D](0.8g、5.2mmol)、化合物[M](1.5g、3.5mmol)、Karstedt触媒(0.1mmol)、トルエン(80g)を加え、窒素置換後、室温で22時間撹拌した。HPLCにて反応追跡を行い、反応終了後、反応溶液をエバポレーターで濃縮し、シリカゲルカラムクロマトグラフィーにて精製し、光反応性化合物[Si-4]を0.6g得た(収率38%)。
 1H-NMR(400MHz, CDCl3, δppm):7.85(1H, d), 7.68-7.67 (2H, m), 7.47-7.55(4H, m), 7.2(2H, d), 6.92-6.96(4H, m), 6.48-6.52(1H, d), 4.00(2H, t), 3,85 (3H, s), 1.35-1.80(8H, m), 0.51-0.53(2H, t), 0.02-0.05(15H, m).
<合成例5:光反応性化合物Si-5の合成>
Figure JPOXMLDOC01-appb-C000034
 化合物[F]を化合物[N]に変更し、化合物[N]に対して、化合物[M]の仕込比を2倍にした以外、合成例4と同様な手法を用いて光反応性化合物Si-5を0.2g得た(収率11%)
 1H-NMR(400MHz, CDCl3, δppm):7.85(2H, d), 7.68-7.67(4H, m), 7.58-7.56(4H, m), 7.55-7.48(4H, m), 7.23-7.19(4H, m), 7.06-7.05(4H, m), 6.89-6.93(4H, m), 6.50(2H, d), 4.02-3.97(4H, m), 3.85 (3H, s), 1.81-1.74(4H, m), 1.46-1.33(12H, m), 0.51-0.53(4H, m), 0.02-0.05(12H, m).
<合成例6:光反応性化合物Si-6の合成>
Figure JPOXMLDOC01-appb-C000035
 化合物[F]を化合物[H]に変更した以外、合成例4と同様な手法を用いて光反応性化合物Si-5を11.4g得た(収率82%)
 1H-NMR(400MHz, CDCl3, δppm):7.82(1H, d), 7.67-7.68(2H, m), 7.60-7.58(2H, m), 7.54-7.49(2H, m), 7.24-7.18(2H, m), 7.05-7.05(2H, m), 6.89-6.93(2H, m), 6.30(1H, d), 4.02-3.97(2H, m), 3,85 (3H, s), 1.82-1.73(2H, m), 1.44-1.31(6H, m), 0.54-0.50(2H, m), 0.17-0.04(21H, m).
(実施例1)
合成例4で合成されたSi-4で表される光反応性化合物5重量部を、低分子液晶ZLI-4792(メルク社製)95重量部に添加した後、室温で30分間撹拌し、光反応性液晶組成物A1を得た。撹拌後、該光反応性液晶組成物はZLI-4792に対するSi-4の析出も見られず、均一に混合されていることを確認した(表2)。なお、Si-4で表される光反応性高分子液晶は、118℃以上で液晶性を発現した。結果を表1に示す。なお、表1において、「C」は結晶相(液晶になる前の結晶状態)であること、「N」はネマティック相(液晶相の1種)であること、「I」は等方相であることを示す。また、「C」と「N」との間の数値は、結晶相からネマティック相に転移する温度を示し、「N」と「I」との数値は、ネマティック相から等方相へと転移する温度を示す。より具体的には、表1の「Si-4」の熱特性は、118℃で結晶相からネマティック相に転移し、198℃でネマティック相から等方相へと転移することを示している。
 別途、基板の両面にITOを備える2枚のガラス基板をITOが向かい合うように張り合わせ、10μmギャップの並行平板の空セルを得た。この空セルに該光反応性液晶組成物をキャピラリー法により注入した後、該光反応性液晶組成物の等方相温度以上である110℃に加熱した状態で、高圧水銀ランプを用いて直線偏光紫外線を照射することにより配向処理が施された液晶セルA2を得た。配向処理に用いた直線偏光紫外線の波長は315nm(50mW/cm)で、露光量は500mJ/cmであった。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
<光反応性液晶組成物の配向状態>
 A2作製後、偏光顕微鏡観察によって、室温における低分子液晶の配向状態を確認した。結果を図1、及び表3に示す。図1の結果から次のことが分かる。即ち、液晶セルの光学軸が偏光子と検光子に対して45度傾いた場合に明状態となり、偏光子と検光子のいずれかに対して、0度か90度に配置された場合に暗状態となることから、液晶セル内の低分子液晶が一軸に配向していることが分かる。
Figure JPOXMLDOC01-appb-T000038
(実施例2)
 光反応性液晶組成物に添加するSi-4の量を2重量部及び低分子液晶の量を98重量部に変更した以外、実施例1と同様な手法で光反応性液晶組成物B1を得た。
 該光反応性液晶組成物B1はZLI-4792に対するSi-4の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例1と同様に該光反応性液晶組成物が封入された液晶セルB2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。結果を表3に示す。なお、表3中、「良好」とは、「配向が均一」であったことを示し、「配向可能」とは、「液晶の配向は誘起できるが、欠陥などの配向不良が一部に見られ、配向が均一でない」ことを示している。
(実施例3)
 光反応性液晶組成物に添加するSi-4をSi-5に変更した以外、実施例1と同様な手法で光反応性液晶組成物C1を得た。
 該光反応性液晶組成物C1はZLI-4792に対するSi-5の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、照射する直線偏光紫外線の露光量を1000mJ/cmとした以外、実施例1と同様に該光反応性液晶組成物が封入された液晶セルC2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例4)
 光反応性液晶組成物に添加するSi-4をSi-6に変更した以外、実施例1と同様な手法で光反応性液晶組成物D1を得た。該光反応性液晶組成物D1はZLI-4792に対するSi-5の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例3と同様に該光反応性液晶組成物が封入された液晶セルD2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例5)
 実施例1で用いた低分子液晶:ZLI-4792(メルク社製)をE7(メルク社製)に変更した以外、実施例1と同様な手法で光反応性液晶組成物E1を得た。
Figure JPOXMLDOC01-appb-C000039
 該光反応性液晶組成物E1はE7に対するSi-4の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例1と同様に該光反応性液晶組成物が封入された液晶セルE2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
 光反応性液晶組成物に添加するSi-4をSi-1に変更した以外、実施例1と同様な手法で光反応性液晶組成物F1を得た。
 該光反応性液晶組成物F1はZLI-4792に対するSi-1の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例1と同様に該光反応性液晶組成物が封入された液晶セルF2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例7)
 光反応性液晶組成物に添加するSi-1の量を10重量部に変更した以外は、実施例6と同様な手法で光反応性液晶組成物G1を得た。
 該光反応性液晶組成物G1はZLI-4792に対するSi-4の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例1と同様に該光反応性液晶組成物が封入された液晶セルG2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例8)
 光反応性液晶組成物に添加するSi-4をSi-1とし、添加量を1重量部に変更した以外、実施例1と同様な手法で光反応性液晶組成物H1を得た。
 該光反応性液晶組成物H1はZLI-4792に対するSi-1の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例1と同様に該光反応性液晶組成物が封入された液晶セルH2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例9)
 光反応性液晶組成物に添加するSi-4をSi-2に変更した以外、実施例7と同様な手法で光反応性液晶組成物I1を得た。
 該光反応性液晶組成物I1はZLI-4792に対するSi-2の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例1と同様に該光反応性液晶組成物が封入された液晶セルI2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例10)
 照射する直線偏光紫外線の露光量を1000mJ/cmへと変更した以外、実施例1と同様に該光反応性液晶組成物A1が封入された液晶セルA3を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例11)
 実施例4において、照射する直線偏光紫外線の露光量を1500mJ/cmへと変更した以外、実施例4と同様に該光反応性液晶組成物D1が封入された液晶セルD3を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例1と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(実施例12)
 実施例4において、光反応性液晶組成物に添加するSi-6の量を10重量部及び低分子液晶の量を90重量部に変更した以外、実施例4と同様な手法で光反応性液晶組成物J1を得た。該光反応性液晶組成物はZLI-4792に対するSi-6の析出も見られず、均一に混合されていることを確認した。結果を表2に示す。
 次に、実施例4と同様に該光反応性液晶組成物が封入された液晶セルJ2を作成した後、偏光顕微鏡観察により、室温における低分子液晶の配向状態を確認した。その結果、図示しないが、実施例4と同様に、液晶セル内の低分子液晶が一軸に配向し、配向均一性が良好であることを確認した(表3を参照のこと)。
(比較例1)
 下記式M6CBで表される光反応性液晶モノマー10重量部を、低分子液晶ZLI-4792(メルク社製)95重量部に添加した後、室温で30分間撹拌し、光反応性液晶組成物K1を得た。しかしながら、該光反応性液晶組成物K1は、上記式M6CBで表される化合物のZLI-4792に対する溶解性が悪く、均一な混合ができなかった。結果を表2に示す。
 組成物が均一混合できなかったため、液晶セルが作成できなかった。
Figure JPOXMLDOC01-appb-C000040
(比較例2)
 下記式P6CBで表される光反応性高分子液晶5重量部を、低分子液晶ZLI-4792(メルク社製)95重量部に添加した後、室温で30分間撹拌し、光反応性液晶組成物L1を得た。しかしながら、該光反応性液晶組成物L1は、上記式P6CBで表される高分子液晶のZLI-4792に対する溶解性が悪く、均一な混合ができなかった。結果を表2に示す。
 組成物が均一混合できなかったため、液晶セルが作成できなかった。
Figure JPOXMLDOC01-appb-C000041
(比較例3)
 偏光紫外線を照射する温度を45度とした以外、実施例1と同様な手法で光反応性液晶組成物A1が封入された液晶セルA4を得た。その後、偏光顕微鏡観察によって、室温における低分子液晶の配向状態を確認した。結果を図2、及び表3に示す。
 図2の結果から次のことが分かる。即ち、液晶セルの光学軸が偏光子と検光子に対して45度傾いた場合と、偏光子と検光子のいずれかに対して0度か90度に配置された場合のいずれにおいても、明暗が確認されなかったことから、液晶セル内の低分子液晶は配向していないことが分かる。
 実施例1~12及び比較例1~3から、本出願で開示された光反応性化合物は低分子液晶への溶解性が高く、光反応性液晶組成物の作成が容易であることが分かる。
 また、該光反応性化合物を封入した液晶セルに直線偏光紫外線を照射することで、液晶配向膜を用いずとも均一に液晶が配向した液晶セルが作成できることが分かった。

Claims (16)

  1.  (A)シロキサン骨格を備え且つ光反応性基を有する光反応性化合物;及び
     (B)低分子液晶;
    を有する光反応性液晶組成物。
  2.  前記光反応性基は、(A-1)光架橋、(A-2)光異性化、(A-3)光分解、及び(A-4)光転移からなる群から選ばれる少なくとも1種の反応を生じる請求項1に記載の組成物。
  3.  前記(A)光反応性化合物と(B)低分子液晶との重量比((A)光反応性化合物:(B)低分子液晶)が、0.2:99.8~20:80である請求項1又は2に記載の組成物。
  4.  前記(A)光反応性化合物が、下記式(A)-1~(A)-4
    (式中、R101~R108は各々独立に、1価の有機基を表し;
     Q~Q、及びQは各々独立に、光反応性基を表し;
     Q~Qは各々独立に、光反応性基であるか又は1価の有機基を表し;
     Pは、炭素数1~10の直鎖または分岐鎖のアルキレン基(炭素原子に結合している水素原子は1価の有機基で置換されていてもよい。また、アルキレン基中、隣り合わない炭素原子が-O-、-CO-O-、-O-CO-、-NH-CO-O-、-O-CO-NH-、-NH-CO-NH-で置換されていてもよい)を表し;
     n11、n12、及びn14は各々独立に、1~20の整数を表し;
     n13は3~20の整数を表し;
     m4は1~4の整数を表す。)
    からなる群から選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000001
  5.  前記光反応性基が、下記式(1)~(6)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     q3は0または1である;
     P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
     l1は0または1である;
     l2は0~2の整数である;
     l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
     l1が1であるときは、Tが単結合であるときはBも単結合を表す;
     H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
    からなる群から選ばれるいずれか1種を有する請求項1~4のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
  6.  前記光反応性基が、下記式(7)~(10)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表す;
     mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
     nは0~12の整数(ただしn=0のときBは単結合である)を表す;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す)
    からなる群から選ばれるいずれか1種を有する請求項1~5のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
  7.  前記光反応性基が、下記式(11)~(13)
    (式中、Aは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表し、m1は1~3の整数を表す;
     Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1~6のアルコキシ基を表す)
    からなる群から選ばれるいずれか1種を有する請求項1~5のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
  8.  前記光反応性基が、下記式(14)又は(15)
    (式中、Aはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     lは1~12の整数を表し、m1、m2は1~3の整数を表す)
    で表される光反応性側鎖を有する請求項1~5のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
  9.  前記光反応性基が、下記式(16)又は(17)(式中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表す)
    で表される基を有する請求項1~5のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
  10.  前記光反応性基が、下記式(20)(式中、Aは、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表し、mは0~2の整数を表す)で表される基を有する請求項1~5のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
  11.  請求項1~10のいずれか1項に記載の光反応性液晶組成物を有する液晶セルを有して形成される光学素子。
  12.  請求項1~10のいずれか1項に記載の光反応性液晶組成物を有する液晶セルを有して形成される表示素子。
  13.  [I] (A)シロキサン骨格を備え且つ光反応性基を有する光反応性化合物;及び(B)低分子液晶;を有する光反応性液晶組成物を、平行離間配置された2枚の透明基体間に形成される空間に充填して液晶セルを形成する工程;及び
     [II] [I]で得られた液晶セルに、前記2枚の透明基体のいずれか一方から、偏光した紫外線を照射する工程;
    を有することにより、液晶セル内で(B)低分子液晶が所定の配向性を有する光学素子が形成される、光学素子の製造方法。
  14.  [I] (A)シロキサン骨格を備え且つ光反応性基を有する光反応性化合物;及び(B)低分子液晶;を有する光反応性液晶組成物を、平行離間配置された2枚の透明基体間に形成される空間に充填して液晶セルを形成する工程;及び
     [II] [I]で得られた液晶セルに、前記2枚の透明基体のいずれか一方から、偏光した紫外線を照射する工程;
    を有することにより、液晶セル内で(B)低分子液晶が所定の配向性を有する表示素子が形成される、表示素子の製造方法。
  15.  下記式(A)-1~(A)-4
    (式中、R101~R108は各々独立に、1価の有機基を表し;
     Q~Q、及びQは各々独立に、光反応性基を表し;
     Q~Qは各々独立に、光反応性基であるか又は1価の有機基を表し;
     Pは、炭素数1~10の直鎖または分岐鎖のアルキレン基(炭素原子に結合している水素原子は1価の有機基で置換されていてもよい。また、アルキレン基中、隣り合わない炭素原子が-O-、-CO-O-、-O-CO-、-NH-CO-O-、-O-CO-NH-、-NH-CO-NH-で置換されていてもよい)を表し;
     n11、n12、及びn14は各々独立に、1~20の整数を表し;
     n13は3~20の整数を表し;
     m4は1~4の整数を表す。)
    からなる群から選ばれる少なくとも1種で表される化合物。
    Figure JPOXMLDOC01-appb-C000008
  16.  下記式(A)-1-1~(A)-1-3、(A)-2-1、(A)-3-1及び(A)-3-2(式中、Meはメチル基を表す)からなる群から選ばれるいずれか1種の式で表される化合物。
    Figure JPOXMLDOC01-appb-C000009
PCT/JP2016/086308 2016-05-09 2016-12-07 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法 WO2017195396A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018516338A JP6897936B6 (ja) 2016-05-09 2016-12-07 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法
KR1020187035458A KR20190005942A (ko) 2016-05-09 2016-12-07 광 반응성 액정 조성물, 표시 소자, 광학 소자, 표시 소자의 제조 방법, 광학 소자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-093932 2016-05-09
JP2016093932 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195396A1 true WO2017195396A1 (ja) 2017-11-16

Family

ID=60267794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086308 WO2017195396A1 (ja) 2016-05-09 2016-12-07 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法

Country Status (3)

Country Link
JP (2) JP6897936B6 (ja)
KR (1) KR20190005942A (ja)
WO (1) WO2017195396A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017622A1 (ja) * 2018-07-20 2020-01-23 公立大学法人兵庫県立大学 光反応性組成物、光反応性組成物を用いた液晶セル、及び液晶セルの製造方法
WO2021235088A1 (ja) * 2020-05-21 2021-11-25 Jsr株式会社 液晶素子及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181490A (ja) * 1989-12-05 1991-08-07 Consortium Elektrochem Ind Gmbh 環状オルガノシロキサン、その製法及びこれを含有する非線形光学特性を有する組成物
JPH0862561A (ja) * 1994-08-19 1996-03-08 Ricoh Co Ltd 液晶プレポリマー組成物および該組成物を用いた液晶表示素子
JP2002520472A (ja) * 1998-07-14 2002-07-09 ロリク アーゲー 組成物
JP2002265475A (ja) * 2001-03-08 2002-09-18 Dainippon Ink & Chem Inc 重合性液晶化合物、及び光学異方体
JP2011236333A (ja) * 2010-05-11 2011-11-24 Kyoto Institute Of Technology ブロックコポリマー
WO2015114864A1 (ja) * 2014-01-30 2015-08-06 公立大学法人兵庫県立大学 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法
US20150353668A1 (en) * 2013-01-11 2015-12-10 Cheil Industries Inc. Photocurable composition, barrier layer comprising same, and encapsulated device comprising same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181490A (ja) * 1989-12-05 1991-08-07 Consortium Elektrochem Ind Gmbh 環状オルガノシロキサン、その製法及びこれを含有する非線形光学特性を有する組成物
JPH0862561A (ja) * 1994-08-19 1996-03-08 Ricoh Co Ltd 液晶プレポリマー組成物および該組成物を用いた液晶表示素子
JP2002520472A (ja) * 1998-07-14 2002-07-09 ロリク アーゲー 組成物
JP2002265475A (ja) * 2001-03-08 2002-09-18 Dainippon Ink & Chem Inc 重合性液晶化合物、及び光学異方体
JP2011236333A (ja) * 2010-05-11 2011-11-24 Kyoto Institute Of Technology ブロックコポリマー
US20150353668A1 (en) * 2013-01-11 2015-12-10 Cheil Industries Inc. Photocurable composition, barrier layer comprising same, and encapsulated device comprising same
WO2015114864A1 (ja) * 2014-01-30 2015-08-06 公立大学法人兵庫県立大学 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017622A1 (ja) * 2018-07-20 2020-01-23 公立大学法人兵庫県立大学 光反応性組成物、光反応性組成物を用いた液晶セル、及び液晶セルの製造方法
JP7471577B2 (ja) 2018-07-20 2024-04-22 兵庫県公立大学法人 光反応性組成物、光反応性組成物を用いた液晶セル、及び液晶セルの製造方法
WO2021235088A1 (ja) * 2020-05-21 2021-11-25 Jsr株式会社 液晶素子及びその製造方法

Also Published As

Publication number Publication date
JP6897936B2 (ja) 2021-07-07
JP2021102766A (ja) 2021-07-15
JP7162311B2 (ja) 2022-10-28
KR20190005942A (ko) 2019-01-16
JPWO2017195396A1 (ja) 2019-04-04
JP6897936B6 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6617216B2 (ja) 化合物、光学フィルム及び光学フィルムの製造方法
JP4725516B2 (ja) 重合性液晶化合物、液晶組成物、および光学異方性材料
JP4205195B2 (ja) 光架橋性シラン誘導体
KR101084675B1 (ko) 방사형 액정 화합물, 및 이를 포함하는 광학 필름 및 액정 디스플레이 장치
JP5220969B2 (ja) 液晶化合物
EP2130843A1 (en) Polymerizable compounds and polymerizable compositions
JP6986841B2 (ja) 重合性液晶化合物、光学フィルム用組成物およびこれらを含む光学フィルム、補償フィルム、反射防止フィルムと表示装置
JP7162311B2 (ja) 光反応性液晶組成物、表示素子、光学素子、表示素子の製造方法、光学素子の製造方法
JP5012020B2 (ja) 重合性液晶化合物、液晶組成物、光学異方性材料、および光学素子
WO2010038591A1 (ja) 重合性キラル化合物、重合性液晶組成物、液晶性高分子及び光学異方体
KR101411897B1 (ko) 중합성 화합물 및 중합성 조성물
CN113620805A (zh) 可聚合化合物、组合物及光学各向异性体
JP2011020981A (ja) 重合性化合物及び当該化合物の製造中間体
KR101039443B1 (ko) 위치 선택적인 설파이드를 곁가지에 포함하는 트리페닐렌계 반응성 메조겐의 제조방법
JP5262076B2 (ja) 重合性メントール誘導体
JP7471577B2 (ja) 光反応性組成物、光反応性組成物を用いた液晶セル、及び液晶セルの製造方法
JP5767619B2 (ja) 液晶組成物及びこれに用いられるキラル剤
TWI809275B (zh) 可聚合化合物、液晶組合物、液晶顯示元件及液晶顯示器
JP4029528B2 (ja) アクリル酸誘導体化合物、これを重合した高分子液晶および用途
KR20230101403A (ko) 삼중결합 포함 역파장분산형 반응성 메조겐 화합물 및 이의 제조 방법
JP2003064032A (ja) 重合性化合物、液晶性組成物、及びその重合体
CN116903466A (zh) 一种含炔基的可聚合化合物及其光学膜应用
KR20230101509A (ko) 이중결합 포함 역파장분산형 반응성 메조겐 화합물 및 이의 제조 방법
JP2014214137A (ja) 化合物、それを用いた強誘電性液晶組成物および液晶表示素子
JP2017154986A (ja) 重合性化合物、重合性組成物、およびフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035458

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16901741

Country of ref document: EP

Kind code of ref document: A1