WO2017193680A1 - 一种用于激光干涉仪测量导轨直线度的光学系统 - Google Patents
一种用于激光干涉仪测量导轨直线度的光学系统 Download PDFInfo
- Publication number
- WO2017193680A1 WO2017193680A1 PCT/CN2017/075817 CN2017075817W WO2017193680A1 WO 2017193680 A1 WO2017193680 A1 WO 2017193680A1 CN 2017075817 W CN2017075817 W CN 2017075817W WO 2017193680 A1 WO2017193680 A1 WO 2017193680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- laser
- straightness
- optical system
- measuring
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
Definitions
- the present invention relates to an optical system, and more particularly to an optical system for measuring the straightness of a guide rail by a laser interferometer.
- the laser interferometer measures the straightness of the guide rail as shown in FIG. 2 and FIG. 3.
- the laser light is emitted from the laser head, and is divided into two horizontal beams at the Wollaston prism. The two beams pass through the mirror and are reflected back to the Wollaston prism, where they are combined into a beam and returned to the laser.
- moving mirror or Wollaston prism can be used.
- the measuring axis and the optical axis have a relative deviation during the movement, it can be recorded by the electronic system inside the laser head to obtain the change value, and then the change value is obtained.
- the straightness information of the measured rail is obtained; when the measuring mirror moves along X, the straightness data in the Y direction can be measured; if it is to move along the X direction, the straightness data in the Z-axis direction is measured, so that It is necessary to rotate the entire laser interferometer system including the main unit by 90°, which makes the measurement extremely inconvenient.
- the reference source was not found. Measuring principle and error! The reference source was not found. Similarly, just turning the double right-angle mirror into a bi-planar mirror, the error is caused by the exit of the laser head and the incident hole position are not coincident! The reference source was not found.
- the measurement method requires a return light component to be added to the signal light return to ensure that the signal light can enter the laser head. However, due to the return component, some of the light enters the laser interferometer, which may cause the stability of the laser system, and even the situation that the frequency cannot be stabilized, especially for the single-frequency laser interferometer. Ways.
- the technical problem to be solved by the present invention is to provide a simple and convenient measurement, simplifying the setting and steps of straightness measurement in the vertical direction, simplifying the optical component, and facilitating retroreflection back when measuring the straightness of the guide rail on the XZ plane and the YZ plane.
- the present invention provides an optical system for measuring the straightness of a guide rail for a laser interferometer, comprising: a detecting optical component, an optical turning mirror, a rotatable laser head, and an external optical path assembly, wherein the light beam realizes two channels through the detecting optical component Optical detection, the optical turning mirror is used to achieve the downward movement and steering of the light beam to adapt to the detection light
- the detection requirement of the component is that the rotatable laser head is a rotatable returning member disposed between the detecting optical component and the external optical path component, and the external optical path component is for measuring an external optical path of the optical system.
- a further improvement of the present invention is that the detecting optical component comprises a depolarizing beam splitting prism and two polarization beam splitting prisms, and the two polarizing beam splitting prisms are respectively disposed on mutually perpendicular sides of the depolarizing beam splitting prism, the light beam The retroreflected light passes through the depolarization beam splitting prism to reach the two polarization beam splitting prisms, respectively.
- each of the polarization beam splitting prisms is provided with two detectors, and the retroreflected light of the light beams respectively reaches the detector of the polarization beam splitting prism through the depolarization beam splitting prism.
- optical turning mirror is a three-dimensional optical turning mirror for translating the incident beam downward and the emitted beam is turned by 90° compared to the incident beam.
- a further improvement of the present invention is that the light beam is incident from the upper portion of the optical turning mirror, and is shifted downward by the first reflection, the main surface of the light beam is the XZ plane, and the propagation direction of the light beam changes from the x-axis direction to the z-axis direction; In the second reflection, the main surface of the beam propagation is the YZ plane, and when the beam passes through the second reflection surface, the propagation direction of the beam changes from the z-axis direction to the y-axis direction.
- a further improvement of the present invention is that the rotatable laser head includes a rotating return member and a 1/2 wave plate mounted at a rear end of the rotary return member.
- a further improvement of the present invention is that the rotatable laser head has a laser exit aperture disposed at a center of the rotatable laser head.
- a further improvement of the present invention is that when the optical system is in normal operation, the laser light return hole of the rotatable laser head is disposed below the laser exit hole; the optical system measures the straightness of the guide rail on the XZ plane and the YZ plane At the time, the laser return hole and the laser exit hole are located at the same horizontal plane by rotation.
- a further improvement of the present invention is that the optical system is positioned such that the laser return aperture and the laser exit aperture are in the same horizontal plane by measuring 90° when measuring the straightness of the guide rail on the XZ plane and the YZ plane.
- the outer optical path assembly comprises a Wollaston prism and a double right angle mirror, the Wollaston prism being disposed between the rotatable laser head and the double right angle mirror.
- the invention has the beneficial effects that the setting and the steps of the vertical straightness measurement are greatly simplified by the three-dimensional optical turning mirror; the detecting optical component realizes the optical detection of the two channels, and simplifies the optical of the optical system.
- the components simplify the design of the mechanical structure and maximize the use of optical components to save space in the design of the instrument.
- the laser return hole of the rotatable laser head is designed more rationally, making full use of the existing holes. Bits without the need to add other holes, making the mechanical structure simpler and reducing optical components The use of reduced hole positions also helps prevent the effects of dust on the life of the instrument.
- FIG. 1 is a schematic view showing the structure of an overall optical path according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a prior art overall optical path structure
- FIG. 3 is a schematic diagram of another prior art overall optical path structure
- FIG. 4 is a schematic plan view showing a planar structure of a detecting optical component according to an embodiment of the present invention.
- FIG. 5 is a schematic perspective structural view of a detecting optical component and an optical turning mirror according to an embodiment of the present invention
- FIG. 6 is a perspective structural view of an optical turning mirror according to an embodiment of the present invention.
- Figure 7 is a plan view showing the structure of a rotatable laser head according to an embodiment of the present invention.
- Figure 8 is a perspective view showing the structure of a rotatable laser head according to an embodiment of the present invention.
- the present embodiment provides an optical system for measuring the straightness of a guide rail for a laser interferometer, comprising: a detecting optical component 1, an optical turning mirror 2, a rotatable laser head 3, and an external optical path assembly, through which the light beam passes
- the detecting optical component 1 realizes two-channel optical detection for realizing the downward shifting and steering of the light beam to accommodate the detecting requirement of the detecting optical component 1, the rotatable laser head 3 being disposed in the A rotatable return member between the optical assembly 1 and the outer optical path assembly is used, the outer optical path assembly for measuring an external optical path of the optical system.
- the laser interferometer is an optical measuring instrument for measuring linear displacement by using light wave interference technology.
- the laser is divided into two beams, one beam is a stationary reference light, and the other beam is a moving measuring light, and this example will be moving.
- the measuring light is simply referred to as a light beam, and by recording the phase difference between the measuring light and the reference light, the moving distance of the moving measuring light is obtained by an electron and an algorithm.
- the detecting optical component 1 of the present example includes a depolarizing beam splitting prism 5 and two polarization beam splitting prisms 6, and the two polarization beam splitting prisms 6 are respectively disposed on the depolarizing beam splitting prism 5.
- the mutually perpendicular sides the retroreflected light of the light beam reaches the two polarization beam splitting prisms 6 through the depolarization beam splitting prism 5; each of the polarization beam splitting prisms 6 is provided with two detectors, and the light beam is returned
- the light beams are respectively passed through the depolarization beam splitting prism 5 to reach the detector of the polarization beam splitting prism 6, and the detectors are arranged in FIG. 4, A, B, The location of C and D.
- the retroreflected light can be returned to the four detectors through the solid optical path of 4, and back to the four detectors by the dotted line.
- the optical interface of the detecting optical component 1 is expanded, so that the signal light passing through the three-dimensional optical turning mirror can reach the electronic detecting system, thereby obtaining the measured data.
- This example is incident from the other end of the depolarizing beam splitting prism 5, as shown in Fig. 4, which not only reduces the size of the mechanical structure, but also reduces the use of the optical element, and also makes the structure of the entire detecting optical unit 1 more compact.
- the optical turning mirror 2 is a three-dimensional optical turning mirror 2 for shifting an incident beam downward for a period of time, and the emitted beam is turned compared to the incident beam. 90°, which in turn ensures that the signal light energy is detected by the detector when measuring the straightness of the XZ plane and the YZ plane.
- 6 is a schematic view showing the optical structure of the three-dimensional optical turning mirror. The beam propagation path is as shown in FIG. 6. The light beam is incident from the upper portion of the optical turning mirror 2, and is shifted downward by the first reflection. The main surface of the beam propagation is XZ.
- the direction of propagation of the beam changes from the x-axis direction to the z-axis direction; in the second reflection, the main surface of the beam propagation is the YZ plane, and when the beam passes through the second reflection surface, the direction of propagation of the beam from the z-axis direction It changes to the y-axis direction.
- the turning mirror can move the beam down to the horizontal position of the measuring XY plane straightness signal light, which can solve the problem that the interference spot cannot return to the detector when measuring the straightness of the XZ plane and the YZ plane, and pass the rotatable laser head
- the 3-phase matched optical path design makes it possible to measure the straightness signal of the XZ plane and the YZ plane and the straightness signal of the measuring XY plane with the optical path.
- the rotatable laser head 3 of this example includes a rotating returning member and a 1/2 wave plate, and the 1/2 wave plate is mounted at a rear end of the rotating returning member.
- the rotating laser head 3 is disposed at a center position of the rotatable laser head 3; when the optical system is normally operated, the laser return hole 8 of the rotatable laser head 3 is disposed below the laser exit hole 7.
- the laser return aperture 8 and the laser exit aperture 7 are located at the same horizontal plane by rotation.
- the optical system of this example is such that when the straightness of the guide rail on the XZ plane and the YZ plane is measured, the laser return aperture 8 and the laser exit aperture 7 are located at the same horizontal plane by rotating by 90°.
- the laser exit hole 7 is disposed at the center of the entire rotatable laser head 3 to ensure that the rotatable laser head 3 is rotating.
- the laser can be smoothly emitted, and the laser return hole 8 is placed under the laser exit hole 7 in the normal mode.
- the design of the rotatable laser head 3 and the beam returning optical path makes the measurement convenient and concise; at the same time, the design of the laser return hole 8 of the rotatable laser head 3 enables the single-frequency laser interferometer to be used well.
- kind of structure
- the outer optical path assembly of this example includes a Wollaston prism 4 and a double right angle mirror 9, which is disposed between the rotatable laser head 3 and the double right angle mirror 9.
- the rotatable laser head 3 of this example rotates with the laser exit hole 7 as the center of the rotatable laser head 3, and can fully utilize the laser exit hole 7 and the laser return hole 8 of the rotatable laser head 3, thereby eliminating unnecessary
- the hole position can also prevent the influence of dust on the laser interferometer when it is used for a long time; the design of the optical turning mirror 2 can easily convert the axial direction of the measurement, greatly facilitating the measurement of the straightness in the vertical direction, and
- the universal measurement method shares a 1/2 wave plate, which reduces the use of optical components.
- the detection optical component 1 constitutes a two-channel optical detection system, which reduces the use of optical components, making the detection system simpler and more compact, while maximizing The existing optical system is utilized; it is worth mentioning that this example increases the measurement dimension without increasing the laser head hole position.
- This example greatly simplifies the setting and the steps of the vertical straightness measurement by the three-dimensional optical turning mirror 2; the detecting optical component 1 realizes the optical detection of the two channels, simplifies the optical components of the optical system, and simplifies the design of the mechanical structure, and Maximizing the use of optical components, saving space in the design of the instrument; at the same time, the laser return hole 8 of the rotatable laser head 3 is designed more rationally, making full use of the existing hole position without adding other holes
- the mechanical structure is simpler, the use of optical components can be reduced, and the reduction of the hole position is also beneficial to prevent the influence of dust on the life of the instrument.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
一种用于激光干涉仪测量导轨直线度的光学系统,包括:探测光学组件(1)、光学转向镜(2)、可旋转激光头(3)和外光路组件,光束通过探测光学组件(1)实现双通道的光学探测,光学转向镜(2)用于实现光束的下移和转向以适应探测光学组件的探测需求,可旋转激光头(3)为设置于探测光学组件(1)和外光路组件之间的可旋转回光部件,外光路组件用于测量光学系统的外光路。通过光学转向镜(2)大大简化了垂直方向直线度测量的设置和步骤,探测光学组件(1)实现双通道的光学探测,简化了光学系统的光学元件,最大化的利用了光学元件,节约仪器设计的空间;同时,可旋转激光头(3)的激光回光孔设计得更为合理,充分利用了现有的孔位。
Description
本发明涉及一种光学系统,尤其涉及一种用于激光干涉仪测量导轨直线度的光学系统。
现有技术中,激光干涉仪测量导轨直线度采用如图2和图3所示的方式,在图2中,激光从激光头出射,在渥拉斯顿棱镜处分成水平方向上的两束,两束光通过反射镜后反射回渥拉斯顿棱镜处,通过渥拉斯顿棱镜合束成一束返回到激光器。测量时,移动反射镜或者渥拉斯顿棱镜都可,当运动过程中测量轴和光轴有一个相对的偏差,这时就可以通过激光头里面的电子系统记录下来,得到这一变化值,继而得出被测导轨的直线度信息;测量镜沿着X运动时,可以测量出Y方向的直线度的数据;若要沿着X方向移动,测量出Z轴方向上的直线度数据,这样就得让整个激光干涉仪系统包括主机都需要旋转90°,这样会使得测量极为不便。
错误!未找到引用源。的测量原理与错误!未找到引用源。类似,只是将双直角反射镜变为了双平面反射镜,由于激光头的出射和入射孔位不重合,所以错误!未找到引用源。的测量方法需要在信号光回光处加上一个回光组件,以保证让信号光能够进入激光头。但是这种方式由于回光组件的原因,有部分光进入到激光干涉仪,这样会引起激光系统的稳定性,甚至出现不能稳频的情况,尤其是对单频激光干涉仪,基本不能使用这种方法。
发明内容
本发明所要解决的技术问题是需要提供一种测量方便简单,简化垂直方向直线度测量的设置和步骤,简化光学元件,并在测量XZ平面和YZ平面上导轨直线度时能够便于回射光回到探测器的用于激光干涉仪测量导轨直线度的光学系统。
对此,本发明提供一种用于激光干涉仪测量导轨直线度的光学系统,包括:探测光学组件、光学转向镜、可旋转激光头和外光路组件,光束通过所述探测光学组件实现双通道的光学探测,所述光学转向镜用于实现光束的下移和转向以适应所述探测光
学组件的探测需求,所述可旋转激光头为设置于所述探测光学组件和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。
本发明的进一步改进在于,所述探测光学组件包括一个消偏振分光棱镜和两个偏振分光棱镜,所述两个偏振分光棱镜分别设置于所述消偏振分光棱镜的相互垂直的两侧,光束的回射光经过所述消偏振分光棱镜分别达到所述两个偏振分光棱镜。
本发明的进一步改进在于,每一个偏振分光棱镜上均设置有两个探测器,所述光束的回射光经过所述消偏振分光棱镜分别达到所述偏振分光棱镜的探测器。
本发明的进一步改进在于,所述光学转向镜为三维光学转向镜,所述三维光学转向镜用于将入射的光束向下平移,并且射出的光束与入射的光束相比转向90°。
本发明的进一步改进在于,光束从光学转向镜的上部入射,经过第一次反射向下偏移,光束传播的主面为XZ平面,并且光束的传播方向从x轴方向变为z轴方向;在第二次反射时,光束传播的主面为YZ平面,光束通过第二个反射面时,光束的传播方向从z轴方向变为y轴方向。
本发明的进一步改进在于,所述可旋转激光头包括旋转回光部件和1/2波片,所述1/2波片安装在旋转回光部件的后端。
本发明的进一步改进在于,所述可旋转激光头将激光出射孔设置于该可旋转激光头的中心位置。
本发明的进一步改进在于,所述光学系统正常工作时,所述可旋转激光头的激光回光孔设置于激光出射孔的下方;所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转使得激光回光孔和激光出射孔位于同一水平面。
本发明的进一步改进在于,所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转90°使得激光回光孔和激光出射孔位于同一水平面。
本发明的进一步改进在于,所述外光路组件包括渥拉斯顿棱镜和双直角反射镜,所述渥拉斯顿棱镜设置于所述可旋转激光头和双直角反射镜之间。
与现有技术相比,本发明的有益效果在于:通过三维光学转向镜大大简化了垂直方向直线度测量的设置和步骤;所述探测光学组件实现双通道的光学探测,简化了光学系统的光学元件,精简了机械结构的设计,并且最大化的利用了光学元件,节约仪器设计的空间;同时,所述可旋转激光头的激光回光孔设计得更为合理,充分利用了现有的孔位,而无需增加其他孔位,既使得机械结构更为简单,又可以减少光学元件
的使用,减少孔位还有利于防止灰尘对仪器寿命的影响。
图1是本发明一种实施例的整体光路结构示意图;
图2是一种现有技术的整体光路结构示意图;
图3是另一种现有技术的整体光路结构示意图;
图4是本发明一种实施例的探测光学组件的平面结构示意图;
图5是本发明一种实施例的探测光学组件和光学转向镜的立体结构示意图;
图6是本发明一种实施例的光学转向镜的立体结构示意图;
图7是本发明一种实施例的可旋转激光头的平面结构示意图;
图8是本发明一种实施例的可旋转激光头的立体结构示意图。
下面结合附图,对本发明的较优的实施例作进一步的详细说明。
如图1所示,本例提供一种用于激光干涉仪测量导轨直线度的光学系统,包括:探测光学组件1、光学转向镜2、可旋转激光头3和外光路组件,光束通过所述探测光学组件1实现双通道的光学探测,所述光学转向镜2用于实现光束的下移和转向以适应所述探测光学组件1的探测需求,所述可旋转激光头3为设置于所述探测光学组件1和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。
所述激光干涉仪是用光波干涉技术测量线性位移的光学测量仪器,在测量时,激光分为两束,一束为静止的参考光,另外一束为运动的测量光,本例将运动的测量光简称为光束,通过记录测量光运动时与参考光的相位差,通过电子和算法来得到运动的测量光的移动距离。
本例在测量XY平面的直线度信息时,如图1上半部分所示,按照常规的测量方法即可;在测量XZ平面和YZ平面的直线度信息时,只需将可旋转激光头3旋转90°,如图1下半部分所示就可以得到相应的直线度的信息。
如图4和图5所示,本例所述探测光学组件1包括一个消偏振分光棱镜5和两个偏振分光棱镜6,所述两个偏振分光棱镜6分别设置于所述消偏振分光棱镜5的相互垂直的两侧,光束的回射光经过所述消偏振分光棱镜5分别达到所述两个偏振分光棱镜6;每一个偏振分光棱镜6上均设置有两个探测器,所述光束的回射光经过所述消偏振分光棱镜5分别达到所述偏振分光棱镜6的探测器,所述探测器设置在图4中A、B、
C和D的位置。回射光既可以通过4中实线光路回到四个探测器,又可以通过虚线回到四个探测器。本例通过探测光学组件1的设计,扩展探测光学组件1的光学接口,使得通过三维光学转向镜的信号光可以到达电子探测系统,进而得到测量的数据。
本例采用从消偏振分光棱镜5另外一端入射,如图4所示,不仅缩小的机械结构的尺寸,另外减少了光学元件的使用,还使得整个探测光学组件1的结构更为紧凑。
如图5和图6所示,所述光学转向镜2为三维光学转向镜,所述三维光学转向镜2用于将入射的光束向下平移一段,并且射出的光束与入射的光束相比转向90°,进而保证测量XZ平面和YZ平面的直线度时信号光能被探测器所探测到。图6是三维光学转向镜的光学结构示意图,其光束传播的路线如图6所示,光束从光学转向镜2的上部入射,经过第一次反射向下偏移,光束传播的主面为XZ平面,并且光束的传播方向从x轴方向变为z轴方向;在第二次反射时,光束传播的主面为YZ平面,光束通过第二个反射面时,光束的传播方向从z轴方向变为y轴方向。
由于内部探测系统位置已经固定,即所述探测光学组件1的位置已经固定,测量XZ平面和YZ平面直线度的光束与测量XY平面直线度的信号光位置已经发生了变化,本例通过三维光学转向镜可以将光束下移到测量XY平面直线度信号光的水平位置上,能够解决测量XZ平面和YZ平面测量直线度时,干涉光斑不能回到探测器的问题,并且通过与可旋转激光头3相配合的光路设计,使得测量XZ平面和YZ平面的直线度信号与测量XY平面的直线度信号同光路。
如图7和图8所示,本例所述可旋转激光头3包括旋转回光部件和1/2波片,所述1/2波片安装在旋转回光部件的后端,所述可旋转激光头3将激光出射孔7设置于该可旋转激光头3的中心位置;所述光学系统正常工作时,所述可旋转激光头3的激光回光孔8设置于激光出射孔7的下方;所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转使得激光回光孔8和激光出射孔7位于同一水平面。本例所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转90°使得激光回光孔8和激光出射孔7位于同一水平面。
相比于传统的激光头回光部件的出射孔和回光孔中心对称的设计,本例将激光出射孔7设置于整个可旋转激光头3的中心位置,以保证可旋转激光头3在旋转过程中激光能顺利出射,激光回光孔8在正常模式下置于激光出射孔7的下方,在测量XZ平面和YZ平面上导轨的直线度时,需要将其旋转90°,将激光出射孔7和激光回光孔8
置于同一水平面即可。
本例通过可旋转激光头3和光束返回光路的设计,使得测量方便简洁;同时,通过可旋转激光头3的激光回光孔8的设计,使得单频激光干涉仪也能够很好的使用这种结构。
本例所述外光路组件包括渥拉斯顿棱镜4和双直角反射镜9,所述渥拉斯顿棱镜8设置于所述可旋转激光头3和双直角反射镜9之间。
本例所述可旋转激光头3,以激光出射孔7为可旋转激光头3的中心进行旋转,可以充分利用可旋转激光头3的激光出射孔7和激光回光孔8,免除了多余的孔位,也能尽量防止激光干涉仪长时间使用时灰尘对其影响;所述光学转向镜2的设计,可以轻松转换测量的轴向,大大的方便了垂直方向上直线度的测量,并且与通用的测量方法共用一个1/2波片,减少了光学元件的使用;所述探测光学组件1构成了双通道光学探测系统,减少了光学元件的使用,使得探测系统更为简单紧凑,同时最大化利用了已有的光学系统;值得一提的是,本例在未增加激光头孔位的情况下,增加了测量的维度。
本例通过三维光学转向镜2大大简化了垂直方向直线度测量的设置和步骤;所述探测光学组件1实现双通道的光学探测,简化了光学系统的光学元件,精简了机械结构的设计,并且最大化的利用了光学元件,节约仪器设计的空间;同时,所述可旋转激光头3的激光回光孔8设计得更为合理,充分利用了现有的孔位,而无需增加其他孔位,既使得机械结构更为简单,又可以减少光学元件的使用,减少孔位还有利于防止灰尘对仪器寿命的影响。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (10)
- 一种用于激光干涉仪测量导轨直线度的光学系统,其特征在于,包括:探测光学组件、光学转向镜、可旋转激光头和外光路组件,光束通过所述探测光学组件实现双通道的光学探测,所述光学转向镜用于实现光束的下移和转向以适应所述探测光学组件的探测需求,所述可旋转激光头为设置于所述探测光学组件和外光路组件之间的可旋转回光部件,所述外光路组件用于测量所述光学系统的外光路。
- 根据权利要求1所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述探测光学组件包括一个消偏振分光棱镜和两个偏振分光棱镜,所述两个偏振分光棱镜分别设置于所述消偏振分光棱镜的相互垂直的两侧,光束的回射光经过所述消偏振分光棱镜分别达到所述两个偏振分光棱镜。
- 根据权利要求2所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,每一个偏振分光棱镜上均设置有两个探测器,所述光束的回射光经过所述消偏振分光棱镜分别达到所述偏振分光棱镜的探测器。
- 根据权利要求1至3任意一项所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述光学转向镜为三维光学转向镜,所述三维光学转向镜用于将入射的光束向下平移,并且射出的光束与入射的光束相比转向90°。
- 根据权利要求4所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,光束从光学转向镜的上部入射,经过第一次反射向下偏移,光束传播的主面为XZ平面,并且光束的传播方向从x轴方向变为z轴方向;在第二次反射时,光束传播的主面为YZ平面,光束通过第二个反射面时,光束的传播方向从z轴方向变为y轴方向。
- 根据权利要求1至3任意一项所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述可旋转激光头包括旋转回光部件和1/2波片,所述1/2波片安装在旋转回光部件的后端。
- 根据权利要求6所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述可旋转激光头将激光出射孔设置于该可旋转激光头的中心位置。
- 根据权利要求7所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述光学系统正常工作时,所述可旋转激光头的激光回光孔设置于激光出射孔的下方;所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转使得激光回光孔和激光出射孔位于同一水平面。
- 根据权利要求8所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述光学系统在测量XZ平面和YZ平面上导轨的直线度时,通过旋转90°使得激光回光孔和激光出射孔位于同一水平面。
- 根据权利要求1至3任意一项所述的用于激光干涉仪测量导轨直线度的光学系统,其特征在于,所述外光路组件包括渥拉斯顿棱镜和双直角反射镜,所述渥拉斯顿棱镜设置于所述可旋转激光头和双直角反射镜之间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610323294.0A CN105841638B (zh) | 2016-05-13 | 2016-05-13 | 一种用于激光干涉仪测量导轨直线度的光学系统 |
CN201610323294.0 | 2016-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017193680A1 true WO2017193680A1 (zh) | 2017-11-16 |
Family
ID=56593480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/075817 WO2017193680A1 (zh) | 2016-05-13 | 2017-03-07 | 一种用于激光干涉仪测量导轨直线度的光学系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105841638B (zh) |
WO (1) | WO2017193680A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115469449A (zh) * | 2022-11-15 | 2022-12-13 | 中国工程物理研究院激光聚变研究中心 | 一种可调反射式激光传输装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105841638B (zh) * | 2016-05-13 | 2019-02-12 | 深圳市中图仪器股份有限公司 | 一种用于激光干涉仪测量导轨直线度的光学系统 |
CN106885535B (zh) * | 2017-02-10 | 2019-02-01 | 浙江理工大学 | 单频干涉直线度误差及其位置测量与补偿的装置及方法 |
CN106767558B (zh) * | 2017-03-27 | 2019-04-12 | 华中科技大学 | 一种导轨基面直线度误差的解耦辨识方法 |
CN107631690B (zh) * | 2017-08-31 | 2020-04-17 | 浙江双鸿智能设备有限公司 | 一种直线导轨表面缺陷测量方法 |
CN107941469B (zh) * | 2017-10-27 | 2019-11-15 | 南京理工大学 | 一种等边三棱镜顶角偏差测量方法 |
CN111541142A (zh) * | 2020-05-08 | 2020-08-14 | 中国航空制造技术研究院 | 脉冲激光光束的合成方法及装置 |
CN116222437A (zh) * | 2020-12-25 | 2023-06-06 | 深圳市中图仪器股份有限公司 | 具有平行光束偏光元件的直线度干涉测量装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020054298A1 (en) * | 2000-06-13 | 2002-05-09 | Koji Tenjimbayashi | Straightness measuring apparatus for moving stage |
CN1417556A (zh) * | 2001-11-02 | 2003-05-14 | 清华大学 | 横向塞曼双频激光直线度/同轴度测量装置 |
CN101210803A (zh) * | 2006-12-27 | 2008-07-02 | 北京市普锐科创科技有限责任公司 | 二维横向塞曼双频激光直线度/同轴度测量装置 |
CN101581576A (zh) * | 2009-06-22 | 2009-11-18 | 浙江理工大学 | 基于双频干涉原理的直线度及其位置的测量方法 |
CN101915560A (zh) * | 2010-06-25 | 2010-12-15 | 北京市普锐科创科技有限责任公司 | 激光直线度/同轴度测量装置 |
CN103308004A (zh) * | 2013-06-09 | 2013-09-18 | 北京市普锐科创科技有限责任公司 | 一种激光直线度和位移的测量装置 |
CN105841638A (zh) * | 2016-05-13 | 2016-08-10 | 深圳市中图仪器科技有限公司 | 一种用于激光干涉仪测量导轨直线度的光学系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3975892B2 (ja) * | 2002-05-02 | 2007-09-12 | 富士ゼロックス株式会社 | 位置計測システム |
JP4823039B2 (ja) * | 2006-12-07 | 2011-11-24 | キヤノン株式会社 | 位置測定方法、位置測定システム及び露光装置 |
CN101881606B (zh) * | 2010-03-22 | 2011-07-27 | 成都工具研究所 | 激光直线度干涉仪光路系统 |
CN104237088B (zh) * | 2014-09-05 | 2016-05-25 | 合肥工业大学 | 一种用于监测大气颗粒物浓度的光热干涉仪及其监测方法 |
CN104266610B (zh) * | 2014-10-17 | 2017-04-05 | 上海大恒光学精密机械有限公司 | 校正和标定三维激光扫描仪内部电机空间位置的装置 |
-
2016
- 2016-05-13 CN CN201610323294.0A patent/CN105841638B/zh active Active
-
2017
- 2017-03-07 WO PCT/CN2017/075817 patent/WO2017193680A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020054298A1 (en) * | 2000-06-13 | 2002-05-09 | Koji Tenjimbayashi | Straightness measuring apparatus for moving stage |
CN1417556A (zh) * | 2001-11-02 | 2003-05-14 | 清华大学 | 横向塞曼双频激光直线度/同轴度测量装置 |
CN101210803A (zh) * | 2006-12-27 | 2008-07-02 | 北京市普锐科创科技有限责任公司 | 二维横向塞曼双频激光直线度/同轴度测量装置 |
CN101581576A (zh) * | 2009-06-22 | 2009-11-18 | 浙江理工大学 | 基于双频干涉原理的直线度及其位置的测量方法 |
CN101915560A (zh) * | 2010-06-25 | 2010-12-15 | 北京市普锐科创科技有限责任公司 | 激光直线度/同轴度测量装置 |
CN103308004A (zh) * | 2013-06-09 | 2013-09-18 | 北京市普锐科创科技有限责任公司 | 一种激光直线度和位移的测量装置 |
CN105841638A (zh) * | 2016-05-13 | 2016-08-10 | 深圳市中图仪器科技有限公司 | 一种用于激光干涉仪测量导轨直线度的光学系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115469449A (zh) * | 2022-11-15 | 2022-12-13 | 中国工程物理研究院激光聚变研究中心 | 一种可调反射式激光传输装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105841638A (zh) | 2016-08-10 |
CN105841638B (zh) | 2019-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017193680A1 (zh) | 一种用于激光干涉仪测量导轨直线度的光学系统 | |
CN107255451B (zh) | 角度补偿式激光外差干涉位移测量装置及方法 | |
US7440113B2 (en) | Littrow interferometer | |
US9587977B2 (en) | Boresight error monitor for laser radar integrated optical assembly | |
US8829420B2 (en) | Two dimensional encoder system and method | |
CN102003935B (zh) | 一种激光跟踪仪测量中环境补偿的方法 | |
CN100460811C (zh) | 一种提高直线度测量灵敏度的方法与装置 | |
CN111412832B (zh) | 基于干涉仪模块的半导体激光六自由度误差测量系统 | |
JP7089401B2 (ja) | 真直度測定装置 | |
CN112781529B (zh) | 一种对入射角不敏感的直线度干涉测量装置 | |
CN106767395A (zh) | 一种用于直线导轨六项几何误差高分辨力高效测量系统及方法 | |
JPH0455243B2 (zh) | ||
US6954273B2 (en) | Laser-based measuring apparatus for measuring an axial run-out in a cylinder of rotation and method for measuring the same utilizing opposing incident measuring light beams | |
JPH07120213A (ja) | 追尾式レーザ干渉計 | |
KR20050072340A (ko) | 변위와 각도 변화를 동시에 측정하기 위한 방법과 장치 | |
TWI502170B (zh) | 光學量測系統及以此系統量測線性位移、轉動角度、滾動角度之方法 | |
CN110132126B (zh) | 基于自混合全息干涉的位移测量装置及方法 | |
CN113483726B (zh) | 一种小型化、高精度三维角度运动误差测量方法与系统 | |
US6529278B2 (en) | Optical interference apparatus and position detection apparatus | |
JPH095059A (ja) | 平面度測定装置 | |
JP2011164090A (ja) | ヘテロダインレーザー干渉測長器 | |
JP2008209272A (ja) | レーザ干渉測長器 | |
JPH0210201A (ja) | 二波長干渉計による測長方法及び装置 | |
JPH05504833A (ja) | 2軸平面鏡干渉計 | |
CN213932403U (zh) | 一种对入射角不敏感的直线度干涉测量装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17795298 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17795298 Country of ref document: EP Kind code of ref document: A1 |