WO2017193340A1 - 一种滤波单元及滤波器 - Google Patents

一种滤波单元及滤波器 Download PDF

Info

Publication number
WO2017193340A1
WO2017193340A1 PCT/CN2016/081900 CN2016081900W WO2017193340A1 WO 2017193340 A1 WO2017193340 A1 WO 2017193340A1 CN 2016081900 W CN2016081900 W CN 2016081900W WO 2017193340 A1 WO2017193340 A1 WO 2017193340A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
transmission line
signal line
center signal
ground layer
Prior art date
Application number
PCT/CN2016/081900
Other languages
English (en)
French (fr)
Inventor
杨秉正
钱慧珍
罗讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680052473.3A priority Critical patent/CN108028450B/zh
Priority to KR1020187010329A priority patent/KR20180052725A/ko
Priority to JP2018521070A priority patent/JP2018531560A/ja
Priority to PCT/CN2016/081900 priority patent/WO2017193340A1/zh
Priority to EP16901295.2A priority patent/EP3346543B1/en
Publication of WO2017193340A1 publication Critical patent/WO2017193340A1/zh
Priority to US15/965,390 priority patent/US10673111B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/2013Coplanar line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/2039Galvanic coupling between Input/Output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • H01P3/006Conductor backed coplanar waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/086Coplanar waveguide resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines

Definitions

  • the present invention relates to the technical field of communication, and in particular to a filtering unit and a filter.
  • the working frequency band of the communication system is wider and wider, and the useless signals received by the communication system and various noises are also increasing.
  • a filter with good out-of-band rejection greatly simplifies the complexity of the communication system, simplifies design, and reduces cost.
  • many designs use the method of increasing the transmission zero to suppress the higher harmonics of the baseband signal.
  • some filters are generated by SIR (Stepped Impedance Resonator). Wide stop band.
  • One solution in the prior art is to add a series of shorting lines to a quarter-wave CPW (Coplanar Waveguide) resonator, which creates additional transmission zeros outside the passband. These transmission zeros can be used to suppress harmonics and achieve better out-of-band rejection.
  • the program uses multiple identical resonator cascades to enhance the out-of-band harmonic suppression.
  • the stopband of this scheme can only be extended to 5 times the baseband signal.
  • the technical scheme is designed to have a larger filter area and a higher cost.
  • a hybrid structure of microstrip lines and CPW is employed.
  • the interconversion of the microstrip line with the CPW can create additional open paths to produce transmission zeros, and these same transmission zeros can be used to suppress higher harmonics of the baseband signal.
  • the stop band can only be suppressed to 6.52 times of the baseband signal, and the area is large, which also causes the cost of the entire filter to become high.
  • the invention provides a filtering unit and a filter for improving the wide resistance band characteristic of the filtering unit, reducing the area of the filtering unit, and facilitating the miniaturization of the filtering unit.
  • the present invention provides a filtering unit, which includes: coupling a slow wave resonating unit of two coplanar waveguides CPW, each resonating unit comprising: a substrate, a CPW transmission line disposed on the substrate, a gradation CPW transmission line, and a grounding branch; wherein the CPW transmission line includes a first center a signal line and a first ground layer disposed on both sides of the first center signal line, and a first insulating groove having a constant width is disposed between the first center signal line and the first ground layer;
  • the tapered CPW transmission line includes: a second center signal line connected to the first center signal line; and a second ground layer arranged on both sides of the second center signal line, and the second center signal line and a second insulating groove having a gradation width is disposed between the second ground layers; the grounding branch is connected between the second center signal lines of the two slow wave resonating units, and the grounding branch is away from the
  • the resonant unit composed of the CPW transmission line, the gradual CPW transmission line and the grounding branch can generate slow wave characteristics, and push the higher harmonics of the baseband signal to the high frequency to realize the wide resistance band characteristic;
  • the slow wave effect rational design of the filter size can also reduce the overall area of the filter and reduce costs.
  • the sidewall of the second insulating slot away from the second center signal line is a straight line or an arc. That is, the width of the second insulating groove needs to be gradual, and the width of one end close to the CPW transmission line may be larger than the width of one end away from the CPW transmission line, or the width of one end close to the CPW transmission line may be smaller than the distance away from the second insulating slot.
  • the width of one end of the CPW transmission line, and the shape of the side wall of the second insulating groove away from the second center signal line may be different shapes, such as arc shape, linear shape, and the like in the above.
  • the coupled two slow wave resonant units are symmetrically arranged. It is more convenient to set the filter unit by symmetrical setting, and improve the performance of the filter unit.
  • first ground signal line and the first ground layer and the second ground layer on the same side of the second center signal line are integrally connected. This facilitates the setting of the ground plane.
  • the invention also provides a filter comprising at least one filtering unit as previously described, and between adjacent two of the plurality of filtering units, if any Connected by electrical coupling or magnetic coupling; the filter further includes a transmission line having an impedance step change, and the transmission line having the impedance step change is used as an output transmission line or an input transmission line and the filtering unit At least one slow wave resonant unit is coupled to the coupling.
  • the filtering unit composed of the CPW transmission line, the gradual CPW transmission line and the grounding branch can generate the slow wave characteristic, and push the higher harmonic of the baseband signal to the high frequency to realize the wide resistance band characteristic; With the slow wave effect, rational design of the filter size can also reduce the overall area of the filter and reduce costs. And through low-impedance to high-impedance signal transmission to obtain low-pass filter characteristics, introduce multiple transmission zeros, enhance the resistance of the stop band; and obtain a large reflection coefficient in the high frequency band, suppress the radiation generated by the slow-wave filter unit .
  • the impedance-changing transmission line is a T-type transmission line, and has a third ground layer on both sides of the T-type transmission line.
  • the filter is a passband filter.
  • first ground layer, the second ground layer and the third ground layer on the same side of the first central signal line, the second central signal line and the T-type transmission line are integrally connected. This facilitates the setting of the ground plane.
  • the first ground layer on both sides of the first center signal line, the second ground layer on both sides of the second center signal line or both sides of the T-type transmission line are connected together by a connecting member. Better filter performance is achieved by connecting the components to equal potentials on both sides.
  • the connecting component can adopt different structures in a specific arrangement.
  • the connecting component is a metal flying wire or an air bridge.
  • both ends of the connecting member are respectively disposed at two sides of the T-shaped transmission line, and the connecting member crosses the T-shaped transmission line and is insulated from the T-shaped transmission line.
  • the specific coupling manner is as follows: when the adjacent two filtering units are connected by magnetic coupling, two adjacent CPW transmission lines of the adjacent two filtering units are connected. Integral structure.
  • FIG. 1 is a schematic structural diagram of a filter according to an embodiment of the present invention.
  • FIG. 2 is a side view of a filter according to an embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of a filter according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a T-type transmission line of a filter according to an embodiment of the present invention.
  • FIG. 5 is a simulation frequency response of a filter according to an embodiment of the present invention.
  • FIG. 6 is a simulation frequency response of the filter in the frequency of 0 to 5 GHz in FIG. 5;
  • FIG. 7 is a comparison diagram of simulation test results of a filter according to an embodiment of the present invention.
  • FIG. 8 is a comparison diagram of simulation test results of the filter in the frequency of 0 to 5 GHz in FIG. 7;
  • FIG. 9 is a schematic structural diagram of another filter according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a filter obtained by cascading according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of a cascaded filter according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a filter simulation frequency response obtained by cascading according to an embodiment of the present invention.
  • FIG. 13 is a filter simulation frequency response obtained by cascading at 0 to 5 GHz in FIG.
  • FIG. 1 , FIG. 2 and FIG. 3 , FIG. 1 and FIG. 3 are schematic diagrams showing the structure of two filters according to an embodiment of the present invention
  • FIG. 2 is a side view of a filtering unit according to an embodiment of the present invention.
  • the filter may be a second order filter.
  • an embodiment of the present invention provides a filtering unit, which includes: a coupled slow wave resonant unit 3 of two coplanar waveguides CPW, each slow wave resonant unit 3 includes: a substrate 1 disposed at a CPW transmission line 10, a gradation type CPW transmission line 20, and a grounding branch 40 on the substrate 1;
  • the CPW transmission line 10 includes a first center signal line 11 and a first ground layer 12 arranged on both sides of the first center signal line 11, and a width constant is set between the first center signal line 11 and the first ground layer 12.
  • the tapered CPW transmission line 20 includes: a second center signal line 21 connected to the first center signal line 11 and a second ground layer 22 divided on both sides of the second center signal line 21, and the second center signal line 21 and the second Between the two ground layers 22 is provided a second insulating groove 23 with a gradual change in width;
  • a grounding branch 40 is connected between the second center signal lines 21 of the two slow wave resonating units 3, and the grounding branch 40 is away from the end A of the second center signal line 21 and the second ground layer 22. connection.
  • the filtering unit composed of the CPW transmission line 10, the gradual CPW transmission line 20 and the grounding branch 40 can generate slow wave characteristics, and push the higher harmonics of the baseband signal to the high frequency to realize the wide stop band.
  • reasonable design of the filter size can also reduce the overall area of the filter and reduce costs.
  • the filtering unit provided in this embodiment includes two coupled slow wave resonating units 3 .
  • the filtering unit includes two CPW transmission lines 10 , two gradual CPW transmission lines 20 , and two grounding branches 40 .
  • the above structures are all formed on one substrate 1. Specific as shown in Figure 2 It is shown that the metal layer 2 is formed on the substrate 1, and various structures described above are formed by etching.
  • the two slow wave resonating units 3 may adopt a symmetrical structure or an asymmetrical structure.
  • the two slow wave resonating units 3 are symmetrically arranged to facilitate the setting of the filtering unit and improve the performance of the filtering unit.
  • the two CPW transmission lines 10 are conventional CPW transmission lines.
  • the first center signal line 11 of the CPW transmission line 10 has a width W1 and a length L1, and the width of the first insulation slots 13 on both sides does not change to g2.
  • the width of the second center signal line 21 is W2 and the length is L2, and the groove width of the second insulating groove 23 on both sides of the second center signal line 21 changes linearly, as shown in FIG.
  • the groove width of the second insulating groove 23 is changed from L3+g2 to Ls;
  • the two ground branches 40 located on both sides of the second center signal line 21 have a width Ws and a length Ls.
  • the center frequency of the filter is determined by the physical size of the resonance unit in the above embodiment.
  • the electric field is mainly concentrated on the sides of the first center signal line 11 near the ground, the gradient CPW transmission line 20, and the edge of the ground branch 40; and the magnetic field is mainly concentrated on the first center signal line 11 Near the edge of the second insulating groove 23.
  • a strong equivalent capacitance and equivalent inductance (electric field corresponding equivalent capacitance, magnetic field corresponding equivalent inductance) are formed between the input port of the signal and the ground point, so that The signals in the stop band flow from the input port to ground (GND) through ground point A.
  • GND input port to ground
  • This produces a slow-wave characteristic that pushes the higher-order harmonics of the baseband signal to the high-frequency to achieve wide-band characteristics.
  • the overall area of the filter can be reduced by properly designing the filter size. ,cut costs.
  • two slow-wave resonating units 3 of the same size and bilaterally symmetric are coupled to each other, which can enhance the passband performance of the filter, increase the bandwidth, increase the flatness in the passband, and reduce the insertion loss.
  • the coupling strength can be described by the coupling coefficient k, and the length Ls and width of the ground branch 40 The degree Ws will affect the coupling coefficient k between the two resonance units. Increasing Ls or decreasing Ws increases the coupling coefficient k, thereby increasing the filter bandwidth.
  • the width of the second insulating slot 23 in the gradual CPW transmission line 20 is gradually changed, and one of the second insulating slots 23 is taken as an example, and the two ends of the second insulating slot 23 are respectively close to the first
  • the first end of the center signal line 11 (the end of the width L1+g2 shown in FIG. 1) is away from the second end of the first center signal line 11 (the end of the width Ls shown in FIG. 1)
  • the width of the first end may be greater than the width of the second end (as shown in FIG. 1), or the width of the first end may be smaller than the width of the second end (as shown in FIG. 3).
  • the shape of the sidewall 24 of the second insulating slot 23 away from the second center signal line 21 may be different in shape, for example, the second insulating slot 23 is straight away from the sidewall 24 of the second center signal line 21 or Arc.
  • the arc may be a concave arc or a convex arc. The specific design can be based on the performance requirements of the actual filter.
  • the ground layer between the CPW transmission line 10 and the gradual CPW transmission line 20 is an integrated structure (ground on the same side of the first center signal line 11), and the first insulation slot 13
  • the second insulating groove 23 is also in communication.
  • the first ground signal line 11 and the first ground layer 12 and the second ground layer 22 on the same side of the second center signal line 21 are integrally connected. That is, the first ground layer 12 and the second ground layer 22 on the same side are of a unitary structure, so that the potentials (ie, voltages) of the first node layer 12 and the second ground layer 22 are equalized to achieve better filter performance.
  • an embodiment of the present invention further provides a filter, the filter comprising: at least one of the foregoing filtering units, and if the plurality of filtering units are present, the phase thereof The adjacent two filtering units are connected by electrical coupling or magnetic coupling; the filter further includes a transmission line having an impedance step change, the transmission line being at least an output transmission line or an input transmission line or an input/output port and the filtering unit A slow wave resonating unit 3 is coupled.
  • the filtering unit 60 composed of the CPW transmission line 10, the gradual CPW transmission line 20 and the grounding branch 40 can generate slow wave characteristics and higher harmonics of the baseband signal. Push to high frequency to achieve wide stopband characteristics; additionally use slow wave effect, reasonable Designing the filter size also reduces the overall area of the filter and reduces cost. And each of the filtering units adopts two slow-wave resonating units 3 of the same size and bilaterally symmetric, which can enhance the passband performance of the filter, increase the bandwidth, increase the flatness in the passband and reduce the insertion loss.
  • the coupling strength can be described by the coupling coefficient k.
  • the length Ls and the width Ws of the grounding branch 40 affect the coupling coefficient k between the two resonant units. Increasing Ls or decreasing Ws increases the coupling coefficient k, thereby increasing the filter bandwidth.
  • the low-pass filter characteristic is obtained through a low-impedance to high-impedance signal transmission mode, a plurality of transmission zero points are introduced, and the stop band suppression degree is enhanced; and a large reflection coefficient is obtained in a high frequency band to suppress generation of the slow wave resonance unit 3 Radiation.
  • the transmission line whose impedance step changes is the T-type transmission line 30, and the third ground layer is disposed on both sides of the T-type transmission line 30.
  • the T-type transmission line 30 whose impedance step changes is used as an input or output port.
  • the width of the two sides of the 50 ohm CPW transmission line is g1 to meet the radio frequency circuit standard.
  • the signal is transmitted by slot coupling with the slow wave resonating unit 3 through the Wt2 segment.
  • decreasing Wt1 and increasing gt1 can increase the characteristic impedance (greater than 50 ohms) of this segment of the CPW transmission line 10.
  • Low pass filter characteristics are achieved by low impedance (width W) to high impedance (Wt1 width) signal transmission, introducing multiple transmission zeros, enhancing stopband rejection; and obtaining large reflection coefficients in high frequency bands
  • the radiation generated by the slow wave resonance unit 3 is suppressed.
  • the step impedance T-type transmission line 30 acts as an input port or an output port and affects the external quality factor Qe of the filter.
  • the external quality factor Qe is defined as:
  • the filter is a passband filter.
  • the following simulation is performed on the filter using the slow wave coplanar waveguide resonant unit, and the simulation results are shown in FIG. 5 and FIG. 6, and the simulation results show that
  • the center frequency of the filter passband of the filtering unit provided by this embodiment is 2.1 GHz, the stopband can be extended to 11.9 times of the baseband, and the suppression degree reaches -21.9 dB.
  • S21 and S11 are S parameters
  • S21 represents a transmission coefficient from port 2 (output port) to port 1 (input port)
  • S11 represents a reflection coefficient seen from port one. Both of these parameters are greater than zero and no greater than one, and dB is often used as a measure.
  • the larger the S21 the more energy is transferred from one port to the second port.
  • the larger S11 indicates that most of the energy input from the port is reflected back and does not reach port 2. Therefore, for the passband of the filter, there will be a larger S21 and a smaller S11.
  • the closer the S21 is to 0 dB the smaller the energy loss during transmission; and the smaller the S21 for the filter stopband.
  • the larger the S11 the smaller the S21 is, the better the resistance of the stop band is.
  • the band-pass filter based on the wide-band slow-wave coplanar waveguide resonant unit is processed and tested using an RT5880 high-frequency board (relative dielectric constant 2.2, thickness 0.508 mm), test and simulation.
  • the results are compared as shown in Figures 7 and 8. It can be seen from FIG. 7 and FIG. 8 that the filter stopband provided by this embodiment extends to 14.2 times of the baseband signal, the stopband suppression degree reaches -21.5 dB, and the insertion loss is less than 1.13 dB.
  • the ground layers on both sides of the first center signal line 11 are integrally connected by a connecting member 50. That is, the first ground layer 21, the second ground layer 22, and the third ground layer on the same side of the first center signal line 11, the second center signal line 21, and the T-type transmission line 30 are integrally connected, thereby The potential (ie, voltage) between the ground planes on the same side is the same. More preferably, the ground layers on both sides of the first center signal line 11 are integrally connected by a connecting member 30. The connection between the upper and lower sides is connected by the connecting member 50, and the potentials on both sides are equalized to achieve better filter performance.
  • the connecting member 50 can adopt different structures in a specific arrangement.
  • the connecting member 50 is a metal flying wire or an air bridge.
  • the two ends of the connecting component 50 are respectively disposed on the third grounding layer on both sides of the T-shaped transmission line, or the two ends of the connecting component 50 may be respectively disposed on the first central signal line 11 or the second central signal line.
  • the first ground layer 12 or the second ground layer 22 on both sides of the 21 is only a third ground layer in which the connecting members 50 are disposed on both sides of the T-type transmission line.
  • the connecting member 50 straddles the T-shaped transmission line and is insulated from the T-type transmission line. In a concrete reality In the embodiment, as shown in FIG.
  • the metal flying wires are disposed on both sides of the T-shaped transmission line 30. It should be understood that the position of the single air bridge or the single gold wire is not limited to the position shown in the above figure. In the case of maintaining connection with both sides, it can be moved up and down, up and down, and can be rotated at a certain angle, and the number of air bridges and gold wires used is not limited.
  • FIGS. 10 and 11 illustrate filters formed by coupling two filtering units.
  • the filtering units 60 when the filtering units 60 are specifically connected, the filtering units 60 may be cascaded by means of magnetic coupling or electrical coupling.
  • adjacent filtering units 60 when adjacent filtering units 60 are connected by magnetic coupling, adjacent CPW transmission lines 10 of two adjacent filtering units 60 are connected in an integrated structure, and are improved by magnetic coupling. Overall performance.
  • the band pass filter may also be cascaded by means of electrical coupling.
  • a high-performance filter formed by cascading two band-pass filters is used as shown in the case of using a metal flying wire.
  • the center frequency of the filter is 2.1 GHz
  • the stop band can be extended to 14.2 times of the baseband
  • the rejection is -30.1 dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

一种滤波单元(60),该滤波单元(60)包括:采用两个慢波谐振单元(3)相互耦合,每个慢波谐振单元(3)采用CPW传输线(10)、渐变式CPW传输线(20)及接地枝节(40)组成,可以产生慢波特性,将基带信号的高次谐波推向高频,来实现宽阻带特性;另外利用慢波效应,合理设计滤波器尺寸还能减小滤波器的整体面积,降低成本,并且采用两个慢波谐振单元(3)耦合能增强滤波器通带性能,增加带宽,增大通带内的平坦度与减小插入损耗。

Description

一种滤波单元及滤波器 技术领域
本发明涉及到通信的技术领域,尤其涉及到一种滤波单元及滤波器。
背景技术
随着通信技术的发展,通信系统的工作频段越来越宽,通信系统接收到的无用信号以及各种噪声也越来越多。这使的现代通信系统对带外信号要有很强的抑制,设计也更加复杂。而具有良好带外抑制功能的滤波器能极大地简化通信系统的复杂度,简化设计,降低成本。在现有的宽阻带滤波器当中,很多设计采用增加传输零点的方式来抑制基带信号的高次谐波,另外也有一部分滤波器采用SIR(Stepped Impedance Resonator阶跃阻抗谐振器)的方式来产生宽阻带。
现有技术中的一种方案是,在四分之一波长CPW(Coplanar Waveguide共面波导)谐振器中加入了一系列的短路线,这样能在通带外产生额外的传输零点。这些传输零点能够用来抑制谐波,实现较好的带外抑制。同时该方案采用了多个同样的谐振器级联,来增强带外的谐波抑制效果。但是,该方案的阻带只能拓展到基带信号的5倍。同时该技术方案设计的滤波器面积较大,成本较高。
在另外的一个方案中,采用了微带线与CPW的混合结构。微带线与CPW的互相转换能够产生额外的开路线来产生传输零点,同样的这些传输零点能够用来抑制基带信号的高次谐波。但是,该技术方案中,阻带同样只能抑制到基带信号的6.52倍,而且面积较大,这也将导致整个滤波器的成本变高。
发明内容
本发明提供了一种滤波单元及滤波器,用以提高滤波单元的宽阻带特性,并降低滤波单元的面积,便于滤波单元的小型化发展。
为了实现上述效果,本发明提供了一种滤波单元,该滤波单元包括:耦 合的两个共面波导CPW的慢波谐振单元,每个谐振单元包括:基板,设置在所述基板上的CPW传输线,渐变式CPW传输线以及接地枝节;其中,所述CPW传输线包括第一中心信号线以及分列在所述第一中心信号线两侧的第一接地层,且所述第一中心信号线与所述第一接地层之间设置有宽度不变的第一绝缘槽;所述渐变式CPW传输线包括:与所述第一中心信号线连接的第二中心信号线以及分列在所述第二中心信号线两侧的第二接地层,且所述第二中心信号线与所述第二接地层之间设置有宽度渐变的第二绝缘槽;所述两个慢波谐振单元的第二中心信号线之间连接有所述接地枝节,且所述接地枝节远离所述第二中心信号线的一端与所述第二接地层连接。
在上述技术方案中,采用CPW传输线、渐变式CPW传输线及接地枝节组成的谐振单元,可以产生慢波特性,将基带信号的高次谐波推向高频,来实现宽阻带特性;另外利用慢波效应,合理设计滤波器尺寸还能减小滤波器的整体面积,降低成本。
在一个具体的设置方式中,所述第二绝缘槽远离所述第二中心信号线的侧壁为直线或弧线。即该第二绝缘槽的仅需要是宽度渐变的即可,既可以采用靠近CPW传输线的一端的宽度大于远离所述CPW传输线的一端的宽度,也可以采用靠近CPW传输线的一端的宽度小于远离所述CPW传输线的一端的宽度,且第二绝缘槽的远离第二中心信号线的侧壁的形状可以为不同的形状,如上述中的弧形、直线形等不同的形状。
此外,在一个具体的实施方式中,所述耦合的两个慢波谐振单元对称设置。通过对称设置更方便滤波单元设置,同时改善滤波单元的性能。
更佳的,所述第一中心信号线和所述第二中心信号线同侧的第一接地层和第二接地层连接成一体。从而方便接地层的设置。
本发明还提供了一种滤波器,其特征在于,包括至少一个如之前所述的滤波单元,且在所述多个滤波单元(如果有的话)中的相邻的两个滤波单元之间通过电耦合或磁耦合连通;所述滤波器还包括阻抗阶跃变化的传输线,所述阻抗阶跃变化的传输线作为输出传输线或输入传输线与所述滤波单元中 的至少一个慢波谐振单元耦合连接。
在上述技术方案中,采用CPW传输线、渐变式CPW传输线及接地枝节组成的滤波单元,可以产生慢波特性,将基带信号的高次谐波推向高频,来实现宽阻带特性;另外利用慢波效应,合理设计滤波器尺寸还能减小滤波器的整体面积,降低成本。并且通过低阻抗到高阻抗的信号传输方式来获得低通滤波器特性,引入多个传输零点,增强阻带抑制度;以及在高频段获得较大的反射系数,抑制慢波滤波单元产生的辐射。在一个具体的实施例方式中,所述阻抗阶跃变化的传输线为T型传输线,且在所述T型传输线的两侧具有第三接地层。
在一个具体的设置方式中,所述滤波器为通带滤波器。
更佳的,所述位于所述第一中心信号线、第二中心信号线及所述T型传输线的同侧的第一接地层、第二接地层及第三接地层连接成一体。从而方便接地层的设置。
此外,为了改善滤波单元的性能,所述位于所述第一中心信号线两侧的第一节地层、所述第二中心信号线两侧的第二接地层或所述T型传输线两侧的第三接地层之间通过连接部件连接成一体。通过连接部件使两边地的电位相等,来实现更好的滤波器性能。
该连接部件在具体设置时可以采用不同的结构,在一个具体的方案中,所述连接部件为金属飞线或空气桥。
该连接部件在设置在滤波单元上时,所述连接部件的两端分别设置在所述T型传输线的两侧,所述连接部件横跨所述T型传输线且与所述T型传输线绝缘。
在采用两个滤波单元时,其具体的耦合方式如下:在所述相邻的两个滤波单元通过磁耦合连接时,所述相邻的两个滤波单元中的相邻的两个CPW传输线连接成一体结构。
在所述相邻的两个滤波单元通过电耦合连接时,所述相邻的两个滤波单元中的相邻的两个CPW传输线之间的第一信号线之间具有间隙。
附图说明
图1为本发明实施例提供的滤波器的结构示意图;
图2为本发明实施例提供的滤波器的侧视图;
图3为本发明实施例提供的滤波器的另一结构示意图;
图4为本发明实施例提供的滤波器的T型传输线的结构示意图;
图5为本发明实施例提供的滤波器的仿真频率响应;
图6为图5中频率在0~5GHz时滤波器的仿真频率响应;
图7为本发明实施例提供的滤波器的仿真测试结果对比图;
图8为图7中频率在0~5GHz时滤波器的仿真测试结果对比图;
图9为本发明实施例提供的另一滤波器的结构示意图;
图10为本发明实施例提供的级联得到的滤波器的结构示意图;
图11为本发明实施例提供的级联得到的滤波器的另一结构示意图;
图12为本发明实施例提供的级联得到的滤波器仿真频率响应;
图13为图12中0~5GHz时级联得到的滤波器仿真频率响应。
附图标记:
1-基板 2-金属层 3-慢波谐振单元
10-CPW传输线 11-第一中心信号线 12-第一接地层
13-第一绝缘槽 20-渐变式CPW传输线 21-第二中心信号线
22-第二接地层 23-第二绝缘槽 24-侧壁
30-T型传输线 40-接地枝节 50-连接部件
60-滤波单元 61-间隙
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1、图2及图3所示,图1及图3为本发明实施例提供的两种滤波器的结构示意图;图2为本发明实施例提供的滤波单元的侧视图。可选地,所述滤波器可以是二阶滤波器。
为了实现上述效果,本发明实施例提供了一种滤波单元,该滤波单元包括:耦合的两个共面波导CPW的慢波谐振单元3,每个慢波谐振单元3包括:基板1,设置在所述基板1上的CPW传输线10、渐变式CPW传输线20及接地枝节40;其中,
CPW传输线10包括第一中心信号线11以及分列在第一中心信号线11两侧的第一接地层12,且第一中心信号线11与第一接地层12之间设置有宽度不变的第一绝缘槽13;
渐变式CPW传输线20包括:与第一中心信号线11连接的第二中心信号线21以及分列在第二中心信号线21两侧的第二接地层22,且第二中心信号线21与第二接地层22之间设置有宽度渐变的第二绝缘槽23;
所述两个慢波谐振单元3的第二中心信号线21之间连接有接地枝节40,且所述接地枝节40远离所述第二中心信号线21的一端A与所述第二接地层22连接。
在上述实施例中,采用CPW传输线10、渐变式CPW传输线20及接地枝节40组成的滤波单元,可以产生慢波特性,将基带信号的高次谐波推向高频,来实现宽阻带特性;另外利用慢波效应,合理设计滤波器尺寸还能减小滤波器的整体面积,降低成本。
为了方便理解本实施例提供的滤波单元的结构以及原理,下面结合具体的附图及实施例对其进行详细的说明。
继续参考图1本实施例提供的滤波单元包括两个耦合的慢波谐振单元3,具体的,该滤波单元包括两个CPW传输线10、两个渐变式CPW传输线20及两个接地枝节40,其中上述结构均形成在一个基板1上。具体的如图2所 示,在基板1上形成金属层2,通过刻蚀形成上述的各种结构。并且在具体设置时,两个慢波谐振单元3可以采用对称的结构,也可以采用不对称的结构。较佳的,采用两个慢波谐振单元3对称设置的方式,从而方便滤波单元的设置,并改善滤波单元的性能。
其中,两个CPW传输线10为传统的CPW传输线,该CPW传输线10的第一中心信号线11宽度为W1,长度为L1,两边的第一绝缘槽13的宽度不变为g2;
两个渐变式CPW传输线20中,第二中心信号线21的宽度为W2,长度为L2,第二中心信号线21两边的第二绝缘槽23的槽宽度线性变化,在图1中示出的结构中,第二绝缘槽23的槽宽由L3+g2渐变成Ls;
位于第二中心信号线21两侧的两个接地枝节40的宽度为Ws,长度为Ls。
滤波器的中心频率是由上述实施例中的谐振单元的物理尺寸决定的。总的电长度之和为L(L=W1+L1+L2+L3+Ls),在滤波器的中心频率近似于90度。且实际物理长度越长对应的特定频率下的电长度就越长,所以通过增加W1,L1,L2,L3和Ls这些尺寸的大小可以降低该带通滤波器的中心频率。
在该滤波器的阻带范围内,电场主要集中在第一中心信号线11靠近地的两侧、渐变式CPW传输线20以及接地枝节40的边缘;而磁场则主要集中在第一中心信号线11靠近第二绝缘槽23的边缘。这意味着在采用上述滤波单元形成滤波器的时候,信号的输入端口与接地点之间形成了很强的等效电容与等效电感(电场对应等效电容,磁场对应等效电感),使得阻带内的信号都从输入端口通过接地点A流入了地(GND)。这样就产生了慢波特性,将基带信号的高次谐波推向高频,来实现宽阻带特性;另外利用慢波效应,通过合理设计滤波器尺寸还能减小滤波器的整体面积,降低成本。
在上述实施例中,采用两个相同尺寸且左右对称的慢波谐振单元3相互耦合,能增强滤波器通带性能,增加带宽,增大通带内的平坦度与减小插入损耗。其耦合强度能用耦合系数k来进行描述,接地枝节40的长度Ls与宽 度Ws都会对这两个谐振单元之间的耦合系数k产生影响。增大Ls或者减小Ws会增加耦合系数k,从而增大滤波器带宽。
在上述实施例中,渐变式CPW传输线20中的第二绝缘槽23的宽度是逐渐变化的,以其中的一个第二绝缘槽23为例,该第二绝缘槽23两端分别为靠近第一中心信号线11的第一端(在图1中示出的宽度为L1+g2的一端),远离第一中心信号线11的第二端(在图1中示出的宽度为Ls的一端),在该变化中,第一端的宽度可以大于第二端的宽度(如图1所示),也可以第一端的宽度小于第二端的宽度(如图3所示)。并且在具体设置时,第二绝缘槽23远离第二中心信号线21的侧壁24的形状可以为不同的形状,例如第二绝缘槽23远离第二中心信号线21的侧壁24为直线或弧线。且在采用弧线时,该弧线可以为内凹形的弧线或者外凸形的弧线。具体的可以根据实际的滤波器的性能要求进行设计。
且在具体的设置过程中,如图1所示,CPW传输线10与渐变式CPW传输线20之间的接地层为一体结构(位于第一中心信号线11同侧的地),第一绝缘槽13及第二绝缘槽23也连通。
继续参考图1及图3,在本实施例中,第一中心信号线11和所述第二中心信号线21同侧的第一接地层12和第二接地层22连接成一体。即位于同一侧的第一接地层12和第二接地层22为一体结构,使第一节地层12和第二接地层22的电位(即电压)相等,来实现更好的滤波器性能。
继续参考图1、图2及图3所示,本发明实施例还提供了一种滤波器,该滤波器包括:至少一个上述的滤波单元,且如果存在所述多个滤波单元,其中的相邻的两个滤波单元之间通过电耦合或磁耦合连通;该滤波器还包括阻抗阶跃变化的传输线,所述传输线作为输出传输线或输入传输线或者输入/输出端口与所述滤波单元中的至少一个慢波谐振单元3耦合连接。
在上述实施例中,一并参考图1及图3,采用CPW传输线10、渐变式CPW传输线20及接地枝节40组成的滤波单元60,可以产生慢波特性,将基带信号的高次谐波推向高频,来实现宽阻带特性;另外利用慢波效应,合理 设计滤波器尺寸还能减小滤波器的整体面积,降低成本。且每个滤波单元中采用两个相同尺寸且左右对称的慢波谐振单元3相互耦合,能增强滤波器通带性能,增加带宽,增大通带内的平坦度与减小插入损耗。其耦合强度能用耦合系数k来进行描述,接地枝节40的长度Ls与宽度Ws都会对这两个谐振单元之间的耦合系数k产生影响。增大Ls或者减小Ws会增加耦合系数k,从而增大滤波器带宽。
并且,通过低阻抗到高阻抗的信号传输方式来获得低通滤波器特性,引入多个传输零点,增强阻带抑制度;以及在高频段获得较大的反射系数,抑制慢波谐振单元3产生的辐射。在一个具体的实施例方式中,阻抗阶跃变化的传输线为T型传输线30,且该T型传输线30的两侧设置有第三接地层。阻抗阶跃变化的T型传输线30作为输入或输出的端口。在T型传输线30中,对于宽度为W的一段为50欧姆CPW传输线,该50欧姆CPW传输线的两边槽宽度为g1,以满足射频电路标准。信号通过Wt2段与慢波谐振单元3进行缝隙耦合来进行传输。在T型传输线30的Lt1段,减小Wt1和增大gt1可以增加这一段CPW传输线10的特征阻抗(大于50欧姆)。通过低阻抗(宽度为W)到高阻抗(宽度为Wt1)的信号传输方式来获得低通滤波器特性,引入多个传输零点,增强阻带抑制度;以及在高频段获得较大的反射系数,抑制慢波谐振单元3产生的辐射。该阶跃阻抗T型传输线30作为输入端口或输出端口,会对滤波器的外部品质因数Qe产生影响。外部品质因数Qe的定义为:
Figure PCTCN2016081900-appb-000001
其中,f0表示滤波器的中心频率,Δf3dB表示滤波器的3dB带宽。增大Wt2,减小gc将减小外部品质因数Qe,从而增加滤波器带宽。在一个具体的实施例中,该滤波器为通带滤波器。
为了方便理解本实施例提供的滤波器的效果,下面对采用慢波共面波导谐振单元的滤波器,进行仿真,仿真结果如图5及图6所示,仿真结果显示, 采用本实施例提供的滤波单元的滤波器通带的中心频率为2.1GHz,阻带可以拓展到基带的11.9倍,抑制度达到了-21.9dB。
其中,S21和S11是S参数,S21表示从端口二(输出端口)到端口一(输入端口)的传输系数,S11表示从端口一看到的反射系数。这两个参数均大于零且不大于一,常使用dB作为度量。S21越大说明有越多的能量从一端口传输到了二端口。而较大的S11则说明从端口一输入的能量大部分都反射了回来,没有到达端口二。所以对于滤波器的通带来说,会有较大的S21与较小的S11,S21越接近0dB则说明传输过程中的能量损耗越小;而对于滤波器阻带来说有较小的S21与较大的S11,S21越小说明阻带抑制度越好。
如图7及图8所示,基于该宽阻带慢波共面波导谐振单元的带通滤波器,使用RT5880高频板(相对介电常数2.2,厚度0.508mm)加工并测试,测试与仿真结果对比如图7及图8所示。由图7及图8可以看出,本实施例提供的滤波器阻带拓展到了基带信号的14.2倍,阻带抑制度达到了-21.5dB,插入损耗小于1.13dB。
如图9所示,为了改善滤波单元的性能,位于第一中心信号线11两侧的接地层之间通过连接部件50连接成一体。即位于所述第一中心信号线11、第二中心信号线21及所述T型传输线30的同侧的第一接地层21、第二接地层22及第三接地层连接成一体,从而使得位于同一侧的接地层之间的电位(即电压)相同。更佳的,位于所述第一中心信号线11两侧的接地层之间通过连接部件30连接成一体。通过连接部件50来连接上下两边被分割开的地,使两边地的电位相等,来实现更好的滤波器性能。
该连接部件50在具体设置时可以采用不同的结构,在一个具体的方案中,连接部件50为金属飞线或空气桥。在具体设置时,连接部件50的两端分别设置在T型传输线的两侧的第三接地层,也可以是连接部件50的两端分别设置在第一中心信号线11或第二中心信号线21两侧的第一接地层12或第二接地层22,只是将连接部件50设置在T型传输线两侧的第三接地层为更优方案。如图9,连接部件50横跨T型传输线且与T型传输线绝缘。在一个具体的实 施例中,如图9所示,金属飞线设置在位于T型传输线30的两侧,应当理解的是,单个空气桥或单根金线的位置并不仅仅限于上图所示的位置,在与两边地保持连接的情况下,可以在地上左右、上下移动,可以旋转一定角度,空气桥和金线的使用数量也没有限制。
此外,在采用多个滤波单元时,多个滤波单元之间耦合连接,具体的,如图10及图11所示,图10及图11示出了采用两个滤波单元耦合形成的滤波器。具体的,在滤波单元60之间具体连接时,滤波单元60之间可以采用磁耦或者电耦的方式进行级联。如图10及图1所示,在相邻的滤波单元60通过磁耦合连接时,相邻的两个滤波单元60中的相邻的CPW传输线10连接成一体结构,通过磁耦合的方式来提高整体的性能。另外,如图11及图1所示,带通滤波器也可以采用电耦的方式进行级联,在相邻的滤波单元60通过电耦合连接时,相邻的两个滤波单元60中,相邻的两个CPW传输线10之间的第一信号线之间具有间隙61。也就是在滤波器之间不直接连接,而是用间隙耦合代替。这两种级联方式都可以适用于多个滤波单元60(数量可以是2,但不限于2)之间的组合。
此外,在本实施例中,如图12及图13所示,由两个带通滤波器级联形成的高性能滤波器,在使用金属飞线的情况下,仿真结果如图所示。滤波器的中心频率为2.1GHz,阻带可以拓展到基带的14.2倍以上,抑制度达到了-30.1dB。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种滤波单元,其特征在于,包括:耦合的两个共面波导CPW的慢波谐振单元,每个慢波谐振单元包括:基板,设置在所述基板上的CPW传输线,渐变式CPW传输线及接地枝节;其中,
    所述CPW传输线包括第一中心信号线以及分列在所述第一中心信号线两侧的第一接地层,且所述第一中心信号线与所述第一接地层之间设置有宽度不变的第一绝缘槽;
    所述渐变式CPW传输线包括:与所述第一中心信号线连接的第二中心信号线以及分列在所述第二中心信号线两侧的第二接地层,且所述第二中心信号线与所述第二接地层之间设置有宽度渐变的第二绝缘槽;
    所述两个慢波谐振单元的第二中心信号线之间连接有所述接地枝节,且所述接地枝节远离所述第二中心信号线的一端与所述第二接地层连接。
  2. 如权利要求1所述的滤波单元,其特征在于,所述第二绝缘槽远离所述第二中心信号线的侧壁为直线或弧线。
  3. 如权利要求1或2所述的滤波单元,其特征在于,所述耦合的两个慢波谐振单元对称设置。
  4. 如权利要求1~3任一项所述的滤波单元,其特征在于,所述第一中心信号线和所述第二中心信号线同侧的第一接地层和第二接地层连接成一体。
  5. 一种滤波器,其特征在于,包括至少一个如权利要求1~4任一项所述的滤波单元;
    所述滤波器还包括阻抗阶跃变化的传输线,所述阻抗阶跃变化的传输线作为输出传输线或输入传输线与所述滤波单元中的至少一个慢波谐振单元耦合连接。
  6. 如权利要求5所述的滤波器,其特征在于,所述阻抗阶跃变化的传输线为T型传输线,且在所述T型传输线的两侧具有第三接地层。
  7. 如权利要求6所述的滤波器,其特征在于,位于所述第一中心信号线、 第二中心信号线及所述T型传输线的同侧的所述第一接地层、第二接地层及第三接地层连接成一体。
  8. 如权利要求7所述的滤波器,其特征在于,所述位于所述第一中心信号线两侧的第一接地层、所述第二中心信号线两侧的第二接地层或所述T型传输线的两侧的第三接地层之间通过连接部件连接成一体。
  9. 如权利要求8所述的滤波器,其特征在于,所述连接部件为金属飞线或空气桥。
  10. 如权利要求8或9所述的滤波器,其特征在于,所述连接部件的两端分别设置在所述T型传输线的两侧,所述连接部件横跨所述T型传输线且与所述T型传输线绝缘。
  11. 如权利要求5~10任一项所述的滤波器,其特征在于,在相邻的两个滤波单元通过磁耦合连接时,所述相邻的两个滤波单元中的相邻的两个CPW传输线连接成一体结构。
  12. 如权利要求5~11任一项所述的滤波器,其特征在于,在相邻的两个滤波单元通过电耦合连接时,所述相邻的两个滤波单元中的相邻的两个CPW传输线之间具有间隙。
  13. 如权利要求5~12任一项所述的滤波器,其特征在于,所述滤波器为通带滤波器。
PCT/CN2016/081900 2016-05-12 2016-05-12 一种滤波单元及滤波器 WO2017193340A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680052473.3A CN108028450B (zh) 2016-05-12 2016-05-12 一种滤波单元及滤波器
KR1020187010329A KR20180052725A (ko) 2016-05-12 2016-05-12 필터링 유닛 및 필터
JP2018521070A JP2018531560A (ja) 2016-05-12 2016-05-12 フィルタリング装置およびフィルタ
PCT/CN2016/081900 WO2017193340A1 (zh) 2016-05-12 2016-05-12 一种滤波单元及滤波器
EP16901295.2A EP3346543B1 (en) 2016-05-12 2016-05-12 Filtering unit and filter
US15/965,390 US10673111B2 (en) 2016-05-12 2018-04-27 Filtering unit and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081900 WO2017193340A1 (zh) 2016-05-12 2016-05-12 一种滤波单元及滤波器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/965,390 Continuation US10673111B2 (en) 2016-05-12 2018-04-27 Filtering unit and filter

Publications (1)

Publication Number Publication Date
WO2017193340A1 true WO2017193340A1 (zh) 2017-11-16

Family

ID=60266892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081900 WO2017193340A1 (zh) 2016-05-12 2016-05-12 一种滤波单元及滤波器

Country Status (6)

Country Link
US (1) US10673111B2 (zh)
EP (1) EP3346543B1 (zh)
JP (1) JP2018531560A (zh)
KR (1) KR20180052725A (zh)
CN (1) CN108028450B (zh)
WO (1) WO2017193340A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4037094B1 (en) * 2021-01-27 2023-09-13 Murata Manufacturing Co., Ltd. An electrical device comprising a coplanar waveguide with buried bridges and apertures
CN114389043B (zh) * 2021-12-29 2023-11-10 广东盛路通信科技股份有限公司 一种慢波结构、微带传输线、集成化馈电网络及基站天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142255A (en) * 1990-05-07 1992-08-25 The Texas A&M University System Planar active endfire radiating elements and coplanar waveguide filters with wide electronic tuning bandwidth
CN1956256A (zh) * 2005-10-27 2007-05-02 鸿富锦精密工业(深圳)有限公司 带通滤波器
CN101359760A (zh) * 2008-09-18 2009-02-04 中国科学院光电技术研究所 一种应用于k波段的mems电磁带隙可调带阻滤波器
CN101431172A (zh) * 2008-07-29 2009-05-13 华东师范大学 一种含mems开关的可重构微波低通滤波器及其制备
CN201478427U (zh) * 2009-08-04 2010-05-19 中国科学院紫金山天文台 多层共面波导传输线
CN104953205A (zh) * 2015-06-26 2015-09-30 南京邮电大学 基于新型开口谐振环结构的共面波导带阻滤波器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569697B2 (ja) * 1988-03-02 1997-01-08 三菱電機株式会社 モノリシックマイクロ波集積回路の配線構造
JP3319377B2 (ja) * 1998-01-30 2002-08-26 株式会社村田製作所 コプレーナラインフィルタ及びデュプレクサ
JP2005102200A (ja) * 2003-09-05 2005-04-14 Ntt Docomo Inc コプレーナ線路型共振器
DE602004021217D1 (de) 2003-09-05 2009-07-09 Ntt Docomo Inc Koplanarleiterresonator
JP2005223392A (ja) * 2004-02-03 2005-08-18 Ntt Docomo Inc 結合線路およびフィルタ
JP4426931B2 (ja) * 2004-02-03 2010-03-03 株式会社エヌ・ティ・ティ・ドコモ コプレーナフィルタ及びその形成方法
WO2009090917A1 (ja) * 2008-01-17 2009-07-23 Murata Manufacturing Co., Ltd. 積層型共振器および積層型フィルタ
US8933763B2 (en) * 2012-12-14 2015-01-13 Raytheon Company Meandered slow wave taper matching network
CN103219570B (zh) * 2013-04-07 2015-07-01 华南理工大学 一种采用终端短路的h型谐振器的超宽带共面波导滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142255A (en) * 1990-05-07 1992-08-25 The Texas A&M University System Planar active endfire radiating elements and coplanar waveguide filters with wide electronic tuning bandwidth
CN1956256A (zh) * 2005-10-27 2007-05-02 鸿富锦精密工业(深圳)有限公司 带通滤波器
CN101431172A (zh) * 2008-07-29 2009-05-13 华东师范大学 一种含mems开关的可重构微波低通滤波器及其制备
CN101359760A (zh) * 2008-09-18 2009-02-04 中国科学院光电技术研究所 一种应用于k波段的mems电磁带隙可调带阻滤波器
CN201478427U (zh) * 2009-08-04 2010-05-19 中国科学院紫金山天文台 多层共面波导传输线
CN104953205A (zh) * 2015-06-26 2015-09-30 南京邮电大学 基于新型开口谐振环结构的共面波导带阻滤波器

Also Published As

Publication number Publication date
CN108028450A (zh) 2018-05-11
US20180248243A1 (en) 2018-08-30
JP2018531560A (ja) 2018-10-25
EP3346543A4 (en) 2018-12-12
EP3346543B1 (en) 2020-11-25
US10673111B2 (en) 2020-06-02
KR20180052725A (ko) 2018-05-18
CN108028450B (zh) 2020-01-31
EP3346543A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
CN108172958B (zh) 一种基于共面波导的周期性慢波传输线单元
CN107146930B (zh) 基于s-型互补螺旋线的半模基片集成波导带通滤波器
US11158924B2 (en) LTCC wide stopband filtering balun based on discriminating coupling
JP2005223392A (ja) 結合線路およびフィルタ
US9343789B2 (en) Compact microstrip bandpass filter with multipath source-load coupling
CN114284673B (zh) 一种基片集成波导双频带滤波巴伦
WO2017193340A1 (zh) 一种滤波单元及滤波器
JP3723284B2 (ja) 高周波フィルタ
US7688164B2 (en) High frequency circuit board converting a transmission mode of high frequency signals
CN108428979A (zh) 一种微带带通滤波器及其设计方法
JP2018531560A6 (ja) フィルタリング装置およびフィルタ
CN105720340A (zh) 一种含有低频传输零点的紧凑型带通滤波器
CN108736117B (zh) 一种具有超宽阻带的毫米波带通滤波器
Moradian et al. Optimum design of microstrip parallel coupled-line band-pass filters for multi-spurious pass-band suppression
CN112713378A (zh) 一种超宽带小型化功分器、设计方法、多路通信网络终端
Feng et al. Wideband power dividers with improved upper stopband using coupled lines
JP2002335108A (ja) インピーダンス変成器の設計方法
CN110137644A (zh) 一种基于槽线的高选择性宽阻带平衡滤波器
JP2002135014A (ja) 分岐回路、高域通過フィルタおよび分波器
Liu et al. Miniaturized Quarter-Wavelength Resonator for Common-Mode Filter Based on Pattern Ground Structure
Kumar et al. Review on various issues and design topologies of edge coupled coplanar waveguide filters
CN220086341U (zh) 一种陶瓷滤波器
Chang et al. Design of slot-coupled diamond-shape microstrip wideband bandpass filter
CN219553853U (zh) 印刷膜射频微带带通滤波器
Khalid et al. Design of highly selective ultra-wideband bandpass filter using multiple resonance resonator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187010329

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018521070

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE