WO2017191537A1 - Proceso para obtener una arcilla industrial - Google Patents

Proceso para obtener una arcilla industrial Download PDF

Info

Publication number
WO2017191537A1
WO2017191537A1 PCT/IB2017/052443 IB2017052443W WO2017191537A1 WO 2017191537 A1 WO2017191537 A1 WO 2017191537A1 IB 2017052443 W IB2017052443 W IB 2017052443W WO 2017191537 A1 WO2017191537 A1 WO 2017191537A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
organic matrix
clay
industrial clay
industrial
Prior art date
Application number
PCT/IB2017/052443
Other languages
English (en)
French (fr)
Inventor
Luis Fernando SIERRA ZULUAGA
Diego Andrés ACOSTA MAYA
Julián JARAMILLO VALLEJO
Andrés RESTREPO MONTOYA
Alexander JARAMILLO RODRÍGUEZ
José Luis CADAVID CÁRDENAS
Original Assignee
Universidad Eafit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Eafit filed Critical Universidad Eafit
Priority to US16/098,587 priority Critical patent/US20190119165A1/en
Priority to EP17792570.8A priority patent/EP3466655A4/en
Publication of WO2017191537A1 publication Critical patent/WO2017191537A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/24Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of oily or fatty substances; of distillation residues therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica

Definitions

  • the present invention pertains to the field of materials, particularly processes for obtaining industrial clay for prototyping.
  • Clay is a natural material formed by minerals. This malleable material is usually highly moldable when combined with water. Its combination with water produces a substance of consistency similar to plastic, that is viscous and sticky. This ability to modify its structure allows it to be used as a molding material for different applications.
  • the clay mixed with water acquires certain levels of plasticity that facilitate its molding. When dried, the clay hardens and retains the shape with which it was molded.
  • the most common way to dry the clay is by applying heat inside ovens at temperatures above 800 ° C.
  • US8633269 describes the process for obtaining a malleable, extrudable and dry-resistant game composition that includes a polymeric binder and mineral oil.
  • the composition may include a plasticizer, a release agent and one or more filler materials, among the fillers can be included talc, calcium carbonate, clays and combinations thereof.
  • US5244726 discloses a process for obtaining a geopolymeric material that includes dispersed organic and inorganic phases, composed of silicate, particulates, surfactants, kaolin, volatile ashes, and a pH controlling buffer agent.
  • kaolin is used as a thickener and bentonite is used to absorb water You get a product that hardens and is resistant to high temperatures.
  • the invention provides a process for obtaining industrial clay with improved characteristics, which comprises incorporating an inorganic matrix into an organic matrix, in determined proportions.
  • the clay obtained is malleable and with resistance to compression and deformation.
  • FIG. Graph of stress vs. percentage deformation of composition 1 of Example 1.
  • FIG 2. Graph of stress vs. percentage deformation of composition 2 of Example 1.
  • FIG 3. Graph of stress vs. percent deformation of composition 3 of Example 1.
  • FIG 4. Graph of stress vs. percent strain of composition 4 of Example 1.
  • an organic matrix is initially prepared by mixing and heating its components, subsequently the organic matrix is incorporated in a proportion Once an inorganic matrix is defined, it is finally mixed until a clay in the form of a homogeneous paste is obtained.
  • the materials that make up the organic matrix e.g., wax, petroleum jelly, oil, mineral oil, and combinations thereof
  • the materials that make up the organic matrix e.g., wax, petroleum jelly, oil, mineral oil, and combinations thereof
  • dry materials e.g., bentonite, fillers
  • the inorganic matrix is slowly incorporated into the previously heated mixture of the organic matrix, in a proportion defined by the weight ratio between 1: 1 and 3: 2 inorganic matrix to organic matrix respectively, finally it is stirred until a homogeneous paste is obtained.
  • the organic matrix is obtained by mixing and heating the components selected from the group consisting of wax, petrolatum, oil, microscrystalline wax, paraffin, lubricating oils, mineral oil, saturated hydrocarbons and mixtures thereof. While the inorganic matrix is obtained from the mixture of the components selected from the group consisting of bentonite, fillers and mixtures thereof.
  • the term "fillers” corresponds to a composition comprising one or more of the following components: talc, carbonates, stearates, kaolin, complex carbohydrates, starch, cellulose, limestone, xanthan gum, carboxymethyl cellulose and silica, which form the inorganic matrix.
  • the organic matrix is initially prepared by mixing microscrystalline wax, mineral oil and petrolatum with stirring between 10 and 100 RPM and temperature between 80 and 150 ° C until forming a single liquid phase at the bottom of the container.
  • the organic matrix obtained is characterized by the composition indicated in Table 1.
  • the inorganic matrix is prepared by mixing in another bentonite calcium container and fillers.
  • the inorganic matrix obtained is characterized by the composition indicated in Table 2.
  • the inorganic matrix is slowly incorporated into the previously heated mixture of the organic matrix, in a proportion defined by the weight ratio between 1: 1 and 3: 2, finally it is stirred until an industrial clay in the form of a homogeneous paste is obtained.
  • the industrial clay obtained in accordance with the process of the present invention has the composition indicated in Table 3 and is characterized by the properties indicated in Table 4.
  • the organic matrix is prepared by mixing microscrystalline wax, mineral oil and petrolatum, then it is subjected to heating at a temperature of 60 ° C until a single liquid phase forms at the bottom of the vessel, under constant stirring at 20 RPM.
  • the inorganic matrix is prepared by mixing calcium bentonite, kaolin, talc, calcium stearate and calcium carbonate, which is milled and screened in Tyler 200 mesh.
  • the inorganic matrix is slowly incorporated into the hot organic matrix until a homogeneous paste is formed under constant stirring at 20 RPM.
  • the clay obtained is qualitatively evaluated to determine if it adheres to the skin and is characterized by measuring its mechanical properties such as strength, deformation, Young's modulus and density.
  • Exemplary clay compositions of the present invention were prepared in accordance with Table 5 where the relative amounts of the components used are listed.
  • Table 6 lists the mechanical characteristics obtained for the example compositions prepared in accordance with Table 5.
  • compositions demonstrate, among other things, that the clays of the present invention have improved characteristics of compressive strength and deformation as illustrated in FIGS. 1, 2, 3 and 4, it can be seen that Young's modulus properties , maximum compressive strength and fault deformation, can be adjusted by changes in the proportions of the ingredients as shown in Table 5.
  • Young's modulus properties maximum compressive strength and fault deformation
  • the range of ranges for these properties can be varied from 2500 kPa to 12000 kPa for the module Young, from 85 kPa to 250 kPa for maximum compressive strength, and deformation from 2.5% to 3.5%. Therefore, the present invention is well adapted to accomplish the objectives and achieve the aforementioned aims and advantages, as well as those that are inherent therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La invención se refiere a un proceso para obtener arcillas con características mejoradas que comprende incorporar una matriz inorgánica a una matriz orgánica, en proporciones determinadas. La arcilla industrial obtenida es maleable y con alta resistencia a la compresión y deformación, con gran utilidad en el sector industrial en la elaboración de prototipos.

Description

PROCESO PARA OBTENER UNA ARCILLA INDUSTRIAL
Campo de la invención La presente invención pertenece al campo de los materiales, particularmente a procesos para obtener arcilla industrial para prototipado.
Descripción del estado de la técnica La arcilla es un material natural formado por minerales. Este material maleable suele ser sumamente moldeable al combinarlo con agua. Su combinación con agua produce una sustancia de consistencia similar al plástico, es decir viscosa y pegajosa. Esta capacidad de modificar su estructura permite que se utilice como material de moldeo para diferentes aplicaciones.
La arcilla mezclada con agua adquiere ciertos niveles de plasticidad que facilitan su moldeo. Al secarse, la arcilla se endurece y conserva la forma con la que se le moldeó. La forma más común de secar la arcilla es mediante la aplicación de calor dentro de hornos a temperaturas superiores a los 800°C.
El estado de la técnica describe varios procesos y composiciones para obtener materiales maleables empleados en prototipado. El documento US8633269 describe el proceso para obtener una composición de juego maleable, extruíble y resistente al secado que incluye un ligante polimérico y aceite mineral. La composición puede incluir un plastificante, un agente de liberación y uno o más materiales de rellenos, entre los rellenos se pueden incluir talco, carbonato de calcio, arcillas y combinaciones de los mismos.
El documento US5244726 divulga un proceso para obtener un material geopolimérico que incluye fases orgánicas e inorgánicas dispersas, compuesto por silicato, particulados, surfactantes, caolín, cenizas volátiles, y un agente buffer controlador de pH. Durante el proceso de fabricación, el caolín se usa como espesante y la bentonita es utilizada para absorber agua. Se obtiene un producto que se auto-endurece y que es resistente a altas temperaturas.
Si bien en el estado de la técnica se encuentran divulgados varios procesos para obtener materiales maleables, es necesario el desarrollo de procesos que permitan obtener materiales para prototipado como la presente invención que permitan obtener arcillas industriales con propiedades de resistencia a la compresión y a la deformación, con menores costos de producción asociados y con materias primas de fácil acceso. Breve descripción de la invención
La invención proporciona un proceso para obtener arcilla industrial con características mejoradas, que comprende incorporar una matriz inorgánica a una matriz orgánica, en proporciones determinadas. La arcilla obtenida es maleable y con resistencia a la compresión y deformación.
Breve descripción de las figuras
FIG 1. Gráfica esfuerzo vs deformación porcentual de la composición 1 del Ejemplo 1.
FIG 2. Gráfica esfuerzo vs deformación porcentual de la composición 2 del Ejemplo 1. FIG 3. Gráfica esfuerzo vs deformación porcentual de la composición 3 del Ejemplo 1. FIG 4. Gráfica esfuerzo vs deformación porcentual de la composición 4 del Ejemplo 1. Descripción detallada de la invención
Para obtener arcillas industriales para prototipado de acuerdo con la presente invención, inicialmente se prepara una matriz orgánica mediante la mezcla y calentamiento de sus componentes, posteriormente a la matriz orgánica se le incorpora en una proporción definida una matriz inorgánica, finalmente se mezcla hasta obtener una arcilla en forma de pasta homogénea.
Inicialmente se pesan los materiales que componen la matriz orgánica (e.g., cera, vaselina, aceite, aceite mineral, y combinaciones de los mismos) en un recipiente que se calienta y se mezcla controlando la temperatura por un periodo entre 15 y 30 minutos. Se pesan los materiales secos (e.g., bentonita, materiales de relleno) que componen la matriz inorgánica. Se incorpora lentamente la matriz inorgánica a la mezcla previamente calentada de la matriz orgánica, en una proporción definida por la relación en peso entre 1: 1 y 3:2 matriz inorgánica a matriz orgánica respectivamente, finalmente se agita hasta obtener una pasta homogénea.
La matriz orgánica se obtiene de la mezcla y calentamiento de los componentes seleccionados del grupo que consiste de cera, vaselina, aceite, cera microscristalina, parafina, aceites lubricantes, aceite mineral, hidrocarburos saturados y mezclas de los mismos. Mientras que la matriz inorgánica se obtiene de la mezcla de los componentes seleccionados del grupo que consiste de bentonita, materiales de relleno y mezclas de los mismos.
Para efectos de la presente invención, el término "materiales de relleno " corresponde a una composición que comprende uno o más de los siguientes componentes: talco, carbonatas, estearatos, caolín, carbohidratos complejos, almidón, celulosa, caliza, goma de xantano, carboximetil celulosa y sílice, que forman la matriz inorgánica.
En una modalidad preferida del proceso, inicialmente se prepara la matriz orgánica mezclando cera microscristalina, aceite mineral y vaselina con agitación entre 10 y 100 RPM y temperatura entre 80 y 150°C hasta formar una sola fase líquida en el fondo del recipiente. La matriz orgánica obtenida se caracteriza por la composición indicada en la Tabla 1.
Tabla 1
Componente % (p/p) base seca Cera microcristalina 90,0-100,0
Vaselina 0,0-5,0
Aceite mineral 0,0-5,0
La matriz inorgánica se prepara mezclando en otro recipiente bentonita cálcica y materiales de relleno. La matriz inorgánica obtenida se caracteriza por la composición indicada en la Tabla 2.
Tabla 2
Figure imgf000006_0001
Posteriormente se incorpora lentamente la matriz inorgánica a la mezcla previamente calentada de la matriz orgánica, en una proporción definida por la relación en peso entre 1: 1 y 3:2, finalmente se agita hasta obtener una arcilla industrial en forma de pasta homogénea.
La arcilla industrial obtenida de acuerdo con el proceso de la presente invención tiene la composición indicada en la Tabla 3 y se caracteriza por las propiedades indicadas en la Tabla 4.
Tabla 3
Compuesto (%p/p) base seca
Bentonita cálcica 5,0 - 15,0
Caolín 5,0 - 15,0
Talco 5,0 - 15,0
Estearato de calcio 5,0 - 15,0
Carbonato de calcio 5,0 - 15,0
Cera microcristalina 20,0 - 30,0
Aceite mineral 5,0 - 10,0
Vaselina 0,0 - 5,0 Tabla 4
Figure imgf000007_0001
La presente invención será presentada en detalle a través de los siguientes ejemplos, los cuales son suministrados solamente con propósitos ilustrativos y no con el objetivo de limitar su alcance.
EJEMPLOS
Ejemplo 1: Preparación arcilla industrial para prototipado
Se prepara la matriz orgánica mezclando cera microscristalina, aceite mineral y vaselina, posteriormente se somete a calentamiento a una temperatura de 60°C hasta formar una sola fase líquida en el fondo del recipiente, bajo agitación constante a 20 RPM. Se prepara la matriz inorgánica mezclando bentonita cálcica, caolín, talco, estearato de calcio y carbonato de calcio, que se muele y tamiza en malla Tyler 200.
Posteriormente se incorpora lentamente a la matriz orgánica caliente la matriz inorgánica hasta formar una pasta homogénea bajo agitación constante a 20 RPM. La arcilla obtenida es evaluada cualitativamente para determinar si se adhiere a la piel y se caracteriza midiendo sus propiedades mecánicas tales como resistencia, deformación, módulo de Young y densidad.
Composiciones de arcilla ejemplares de la presente invención se prepararon de acuerdo con la Tabla 5 donde se enumeran las cantidades relativas de los componentes utilizados. En la Tabla 6 se enumeran las características mecánicas obtenidas para las composiciones de ejemplo preparados de acuerdo con la Tabla 5.
Tabla 5. COMPOSICIÓN (%p/p)
COMPONENTE
1 2 3 4
Cera microscristalina (g) 30,00 30,00 30,00 36,00
Aceite mineral (g) 0,00 10,00 5,00 2,00
Vaselina (g) 10,00 0,00 5,00 2,00
Bentonita (g) 12,00 12,00 12,00 12,00
Caolín (g) 12,00 12,00 12,00 12,00
Talco (g) 12,00 12,00 12,00 12,00
Estearato de calcio (g) 12,00 12,00 12,00 12,00
Carbonato de calcio (g) 12,00 12,00 12,00 12,00
Tabla 6.
Figure imgf000008_0001
Las composiciones anteriores demuestran, entre otras cosas, que las arcillas de la presente invención presentan características mejoradas a la resistencia a la compresión y la deformación como se ilustra en las FIG 1, 2, 3 y 4 se observa que las propiedades de módulo de Young, resistencia máxima a la compresión y deformación de falla, pueden ser ajustadas mediante cambios en las proporciones de los ingredientes según se muestra en la Tabla 5. Así la gama de rangos para éstas propiedades puede variarse desde 2500 kPa hasta 12000 kPa para el módulo de Young, desde 85 kPa hasta 250 kPa para la resistencia máxima a la compresión, y la deformación desde 2.5% hasta 3.5%. Por lo tanto, la presente invención está bien adaptada para llevar a cabo los objetivos y alcanzar los fines y ventajas mencionados, así como aquellos que son inherentes a la misma.

Claims

CAPÍTULO REIVINDICATORIO MODIFICADO (Examen de Forma)
1. Un proceso para obtener una arcilla industrial que comprende las siguientes etapas:
a) preparar una matriz orgánica mediante la mezcla y calentamiento de sus componentes, que comprende cera, vaselina, aceite, cera microcristalina, parafina, aceites lubricantes, aceite mineral, hidrocarburos saturados y/o mezclas de los mismos;
b) incorporar, en una relación en peso de matriz inorgánica a matriz orgánica entre 1: 1 y 3:2, una matriz inorgánica que comprende bentonita y materiales de relleno y/o mezclas de los mismos en la matriz orgánica obtenida en a), hasta obtener una arcilla industrial en forma de pasta homogénea.
2. El proceso según la Reivindicación 1, donde la matriz orgánica de la etapa a) tiene la siguiente composición:
Figure imgf000009_0001
3. El proceso según la Reivindicación 1, donde la matriz inorgánica de la etapa b) tiene la siguiente composición:
Figure imgf000009_0002
4. El proceso según la Reivindicación 1, donde en la etapa a) la matriz orgánica se mezcla bajo las siguientes condiciones: agitación entre 10 y 100 RPM y temperatura entre 80 y 150°C.
5. Una arcilla industrial obtenida según el proceso de la Reivindicación 1, que comprende la siguiente composición: Compuesto (%p/p) base seca
Bentonita 5,0-15,0
Caolín 5,0-15,0
Talco 5,0-15,0
Estearato de calcio 5,0-15,0
Carbonato de calcio 5,0-15,0
Cera microcristalina 20,0 - 30,0
Aceite mineral 5,0 - 10,0
Vaselina 0,0 - 5,0
6. La arcilla industrial según de la Reivindicación 5, que tiene las siguientes características:
Características Valor
Módulo de Young (kPa) 7500 - 12000
Densidad (kg/m3) 1,10-1,40
Resistencia máxima a compresión (kPa) 80,0 - 260,0
Deformación en falla (%) 2,25 - 4,00
PCT/IB2017/052443 2016-05-06 2017-04-27 Proceso para obtener una arcilla industrial WO2017191537A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/098,587 US20190119165A1 (en) 2016-05-06 2017-04-27 Method for producing industrial clay
EP17792570.8A EP3466655A4 (en) 2016-05-06 2017-04-27 METHOD FOR PRODUCING INDUSTRIAL CLAY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO16119223 2016-05-06
CO16119223 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191537A1 true WO2017191537A1 (es) 2017-11-09

Family

ID=60202818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/052443 WO2017191537A1 (es) 2016-05-06 2017-04-27 Proceso para obtener una arcilla industrial

Country Status (1)

Country Link
WO (1) WO2017191537A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1489221A (en) * 1973-10-03 1977-10-19 Dynamit Nobel Ag Production of casting moulds
EP0799102A1 (en) * 1994-12-19 1997-10-08 Aga Aktiebolag Process including heating and cooling for production of an injection-moulded body
US20040138336A1 (en) * 1996-09-04 2004-07-15 Z Corporation Three dimensional printing material system and method
US20050059757A1 (en) * 2003-08-29 2005-03-17 Z Corporation Absorbent fillers for three-dimensional printing
JP2005193267A (ja) * 2004-01-06 2005-07-21 Kinsei Matec Co Ltd 鋳型砂とその製造方法
US20080045638A1 (en) * 2002-08-12 2008-02-21 Chapman Bryan R Plasticized hetero-phase polyolefin blends
CN104525835A (zh) * 2014-12-01 2015-04-22 繁昌县恒鑫汽车零部件有限公司 一种随形高压造型用型砂及其制备方法
CN104891928A (zh) * 2015-05-18 2015-09-09 山东大学 一种用于断层突泥模型试验的相似材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1489221A (en) * 1973-10-03 1977-10-19 Dynamit Nobel Ag Production of casting moulds
EP0799102A1 (en) * 1994-12-19 1997-10-08 Aga Aktiebolag Process including heating and cooling for production of an injection-moulded body
US20040138336A1 (en) * 1996-09-04 2004-07-15 Z Corporation Three dimensional printing material system and method
US20080045638A1 (en) * 2002-08-12 2008-02-21 Chapman Bryan R Plasticized hetero-phase polyolefin blends
US20050059757A1 (en) * 2003-08-29 2005-03-17 Z Corporation Absorbent fillers for three-dimensional printing
JP2005193267A (ja) * 2004-01-06 2005-07-21 Kinsei Matec Co Ltd 鋳型砂とその製造方法
CN104525835A (zh) * 2014-12-01 2015-04-22 繁昌县恒鑫汽车零部件有限公司 一种随形高压造型用型砂及其制备方法
CN104891928A (zh) * 2015-05-18 2015-09-09 山东大学 一种用于断层突泥模型试验的相似材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466655A4 *

Similar Documents

Publication Publication Date Title
Guna et al. Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications
KR101178221B1 (ko) 중온 아스팔트 첨가제와 이것의 제조방법 및 중온 아스팔트 첨가제가 포함된 아스팔트 혼합물과 이것의 제조방법
CN102604146A (zh) 无机生物活性材料与聚合物多孔复合材料的制备方法
AU2016310344A1 (en) Moldable compositions and methods of using the same
JPH01139646A (ja) 脱水により架橋してエラストマーにすることができる水性シリコーンエマルジョン
WO2018164003A1 (ja) 温度応答性ヒドロゲル及びその製造方法
KR101639767B1 (ko) 현무암가루를 이용한 굳지않는 점토 및 그 제조방법
BR112016026421B1 (pt) Sistema ligante refratário
KR20180077145A (ko) 중공구체를 함유하는 새로운 인조 점토 조성물 및 이의 제조방법
CN104130562A (zh) 纳米膨润土复合阻燃聚羟基丁酸酯生物塑料及其制备方法
AU2018204799B2 (en) Moldable compositions and methods of using thereof
EP3630702A1 (de) Verfahren zur herstellung von kompositpartikeln und von isoliermaterial zur herstellung von isolierenden produkten für die baustoffindustrie sowie entsprechende verwendungen
WO2017191537A1 (es) Proceso para obtener una arcilla industrial
US20150184020A1 (en) Artificial particle and preparation method thereof
Jacquart et al. Mechanical properties of self-setting composites: influence of the carboxymethylcellulose content and hydration state
US20190119165A1 (en) Method for producing industrial clay
Janbuala et al. Effect of rice husk ash to mechanical properties of clay bricks
KR20110126856A (ko) 짚을 이용한 불연 건축패널의 제조방법 및 그 건축패널
KR100221402B1 (ko) 황토의 활성화 방법
KR100567684B1 (ko) 신규의 조소 재료
Fakhruddin et al. Effect of glutinous rice flour and dried egg white in fabrication of porous cordierite by gel casting method
Mackenzie et al. Towards an understanding of the synthesis mechanisms of geopolymer materials
RU2060239C1 (ru) Состав для изготовления теплоизоляционного материала
KR100557705B1 (ko) 왕겨 및 짚을 이용한 방음 및 불연 내장보드
RU2582138C1 (ru) Керамическая масса для производства кирпича

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017792570

Country of ref document: EP

Effective date: 20181206