WO2017190352A1 - Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire - Google Patents

Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire Download PDF

Info

Publication number
WO2017190352A1
WO2017190352A1 PCT/CN2016/081294 CN2016081294W WO2017190352A1 WO 2017190352 A1 WO2017190352 A1 WO 2017190352A1 CN 2016081294 W CN2016081294 W CN 2016081294W WO 2017190352 A1 WO2017190352 A1 WO 2017190352A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalytic
nano
film
tio
Prior art date
Application number
PCT/CN2016/081294
Other languages
English (en)
Chinese (zh)
Inventor
王建永
Original Assignee
宝峰时尚国际控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝峰时尚国际控股有限公司 filed Critical 宝峰时尚国际控股有限公司
Priority to PCT/CN2016/081294 priority Critical patent/WO2017190352A1/fr
Publication of WO2017190352A1 publication Critical patent/WO2017190352A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material

Definitions

  • the invention relates to the technical field of air purification sterilization, in particular to an air sterilization purifier and a preparation method thereof for using the photocatalytic film.
  • photocatalysis is considered to be one of the most promising air purification technologies.
  • most of the photocatalysts are N-type semiconductors, wherein TiO 2 is non-toxic, has high catalytic activity, and has strong oxidizing ability.
  • the advantages of good stability, low cost and easy availability are the most commonly used photocatalysts.
  • a surface of a wire mesh, a nickel mesh, a copper mesh or the like is plated with a TiO 2 film, that is, the above metal mesh is immersed in a TiO 2 alcohol or an aqueous solution, and then heated to form a TiO 2 film.
  • the TiO 2 film particles produced by the method have poor adhesion on the metal mesh.
  • TiO 2 is a wide bandgap semiconductor (rutile 3.0eV, anatase 3.2eV), which can only absorb ultraviolet light, and ultraviolet light only accounts for 4% of the solar energy. Therefore, the utilization ratio of TiO 2 to sunlight is very high.
  • the ultraviolet light excites the semiconductor to generate photogenerated electrons and holes, and the photogenerated electrons and holes interact with the organic contaminants attached to the TiO 2 to decompose it into inorganic small molecules, but the photogenerated electrons and holes recombine
  • the rate is much greater than the rate at which organic matter acts, which greatly reduces the photocatalytic efficiency of TiO 2 . Therefore, an efficient supporting material capable of simultaneously increasing the adsorption amount and photocatalytic efficiency of a conventional photocatalyst is required for the development and application of photocatalytic technology.
  • Graphene is a single-layer carbon atom graphite material with excellent electrical conductivity, thermal conductivity, mechanical properties, and large specific surface area and adsorption properties. Therefore, the specific structure of graphene is used to compositely grow TiO 2 particles on graphene sheets. In addition, the photocatalytic area of TiO 2 can be increased, the transmission rate of photogenerated carriers can be increased, and the photocatalytic efficiency of TiO 2 can be greatly increased. Therefore, the graphene composite photocatalyst powder composited by graphene and a semiconductor photocatalytic material is a novel photocatalytic material having high adsorption amount and high catalytic activity. However, two-dimensional graphene is easily agglomerated and difficult to disperse, and it is difficult to obtain a material having a high specific surface area.
  • the object of the present invention is to provide an air sterilization purifier which has a simple structure, a high purification and sterilization rate, no secondary pollution, can effectively remove harmful gases and harmful bacteria in the air, and has the characteristics of being convenient to carry.
  • An air sterilizing purifier comprising a casing, a centrifugal device, a filtering device and a photocatalytic device, wherein the centrifugal device, the filtering device and the photocatalytic device are located inside a casing, the photocatalytic device is located inside the filtering device, and the centrifugal device is located in the filtering device Above the photocatalytic device, the outer casing is provided with an air inlet and an air outlet; the photocatalytic device comprises a light source and a photocatalytic film, the light source is located in the photocatalytic film, and the photocatalytic film comprises a base layer and a three-dimensional graphene layer a TiO 2 nano-film layer and a nano-silver layer, the three-dimensional graphene layer being located between the base layer and the TiO 2 nano-film layer, the nano-silver layer being located on the TiO 2 nano-film layer.
  • the photocatalytic film device further comprises a photocatalytic film mounting stencil, and the photocatalytic film is mounted on the photocatalytic film mounting stencil.
  • the filtering device comprises a three-dimensional stencil and an activated carbon sponge, and the activated carbon sponge wraps the three-dimensional stencil.
  • the light source is an LED light
  • the LED light is preferably an ultraviolet light LED light.
  • the base layer is a nickel mesh or a copper mesh having a pore diameter of 0.01-0.6 mm.
  • the invention also provides a method for preparing a photocatalytic film, comprising the following steps: depositing a three-dimensional graphene layer on a base layer: at 800 ⁇ 1300 ° C, removing the oxide layer on the surface layer of the base layer in a protective gas and hydrogen gas, and then introducing Carbon source gas, turn off the carbon source after 2-10 minutes, rapidly cool the sample to room temperature, turn off the shielding gas and hydrogen; deposit TiO2 nano-film layer on the three-dimensional graphene layer: slow the tetrabutyl titanate in an ice bath Stirring is added to ethanol or water. The dropping rate is controlled at 1-2ml/min.
  • the sample of the first step is placed in the reaction solution, and hydrothermal reaction is carried out at 80-160 ° C.
  • Bottom layer / 3D graphene layer / TiO 2 nano film layer After passing through the shielding gas, the sample obtained by the above reaction is washed, dried, and then heated to 350-600 ° C for 0.5-3 h and then slowly cooled to obtain a basal layer / three-dimensional Graphene layer / TiO 2 nano film layer; depositing nano silver layer on TiO 2 nano film layer: using the above obtained base layer / three-dimensional graphene layer / TiO 2 nano film layer with 0.1% wt-5% wt AgNO 3 or Other solutions containing Ag + , soak 10-120m In, after heating to 200-400 ° C, a nano silver layer is formed on the surface of the TiO 2 nano film layer.
  • the carbon source gas is one or more of methane, methanol, ethanol, ethane or acetylene, and the carbon source gas is methane or ethane.
  • the flow rate of the carbon source gas is 1-10 S.c.c.m.; when the carbon source gas is methanol or ethanol, bubbling with a shielding gas of 1-10 s.c.c.m.; the shielding gas is argon or helium, and the shielding gas flow rate is 300-600 S.c.c.m.;
  • the flow rate of the hydrogen gas is 100-300 s.c.c.m.
  • the dropwise added tetrabutyl titanate accounts for 15-25% of the mass of the ethanol; and the ethanol temperature is controlled at 0-5 ° C.
  • the reaction time is 4-24 h.
  • the drying temperature is 50-80 ° C
  • the drying condition is vacuum
  • the drying time is 3-4 h
  • the heating temperature is preferably 500 ° C.
  • the invention adopts the above technical scheme, and uses the filtering device and the photocatalytic film device to double purify and sterilize, and can effectively remove harmful gases and bacteria in the air.
  • the use of LED lamps as a catalytic source increases the photocatalytic efficiency.
  • the photocatalytic film adopts a base layer/three-dimensional graphene layer/TiO 2 nano-film layer/nano-silver layer to uniformly distribute TiO 2 nanoparticles on the surface of the three-dimensional graphene layer, and has good dispersibility, thereby avoiding agglomeration of self particles and effective.
  • the heavy accumulation of graphene sheets is prevented, and the structure unique to nanocomposites makes them have good thermal stability and excellent photocatalytic activity.
  • Fig. 1 is a schematic view showing the structure of an air sterilizing purifier of the present invention.
  • FIG. 2 is a schematic view showing the structure of a photocatalytic film of the air sterilization purifier of the present invention.
  • FIG. 3 is a schematic view showing the air sterilization purification flow of the air sterilization purifier of the present invention.
  • Fig. 4 is a schematic view showing the results of analysis and detection of the antibacterial (sterilization) performance of the air sterilization purifier of the present invention.
  • Fig. 5 is a view showing the results of analysis and detection of the air purifying performance of the air sterilizing purifier of the present invention.
  • An air sterilization purifier as shown in FIG. 1 and FIG. 2, comprises a casing 1, a centrifugal device 2, a filtering device 3 and a photocatalytic device 4, wherein the centrifugal device 2, the filtering device 3 and the photocatalytic device 4 are located in the outer casing 1.
  • the photocatalytic device 4 is located inside the filtering device 3, the centrifugal device 2 is located above the filtering device 3 and the photocatalytic device 4, the outer casing 1 is provided with an air inlet 11 and an air outlet 12;
  • the photocatalytic device 4 comprises a light source 41 and a photocatalytic film 42.
  • the light source 41 is located in a photocatalytic film 42.
  • the photocatalytic film 42 includes a base layer 421, a three-dimensional graphene layer 422, a TiO 2 nano film layer 423, and a nano silver layer 424.
  • the olefin layer 422 is located between the base layer 421 and the TiO 2 nano film layer 423, and the nano silver layer 424 is located above the TiO 2 nano film layer 423.
  • the photocatalytic film device 4 further includes a photocatalytic film mounting mesh plate 43 mounted on the photocatalytic film mounting mesh plate 43.
  • the filtering device 3 includes a three-dimensional stencil 31 and an activated carbon sponge 32, and the activated carbon sponge 32 wraps the three-dimensional stencil 31.
  • the light source 41 is an LED light, and the LED light is preferably an ultraviolet light LED lamp; the base layer 421 is a nickel mesh or a copper mesh having a hole diameter of 0.01-0.6 mm.
  • the preparation method of the photocatalytic film 42 used in the present invention includes the following:
  • the carbon source gas is one or more of methane, methanol, ethanol, ethane or acetylene, and the carbon source gas is methane or B
  • the flow rate of the carbon source gas in the case of alkane is 1-10 S.c.c.m.; when the carbon source gas is methanol or ethanol, bubbling with a protective gas of 1-10 s.c.c.m.; the shielding gas is argon or helium, and the shielding gas flow rate is 300-600 S.c.c.m.; the flow rate of the hydrogen gas is 100-300 s.c.c.m.;
  • the centrifugal device 2 acts to promote air circulation, so that air enters the air sterilizing purifier from the air inlet 11 and passes through the activated carbon sponge 32 to adsorb and remove volatile organic compounds.
  • the photocatalytic degradation mechanism of TiO 2 nanometer is divided into 8 steps to complete the photocatalytic process, including:
  • the photocatalysis can be carried out under the three-dimensional graphene material, which is structurally different from the two-dimensional graphene, which has a three-dimensional hollow porous network structure, the mesh wall is graphene, the layered structure of graphite and the porous graphite carbon.
  • Foam with large specific surface area, super active point, can form many dangling bonds on its surface at high temperature, effectively bond TiO 2 nanoparticles, adsorb more TiO 2 particles, and have more adhesion
  • the three-dimensional graphene graphene can effectively prolong the lifetime of carriers generated by photocatalysis, prevent the recombination of holes and electrons, and produce high photocatalytic efficiency due to high electron mobility; and is also stable due to three-dimensional graphene.
  • nanoparticles TiO 2 on the surface thereof good dispersion, avoids avoids agglomeration of agglomerated particles themselves, but also to effectively prevent the stone Re-deposited graphene sheet layers, nanocomposite structure peculiar to have good thermal stability and excellent photocatalytic activity.
  • the invention also adds a nano silver layer on the TiO 2 nano film layer, so that the nano silver is adsorbed on the surface of the TiO 2 nano particles, and under the illumination, the oxygen ions are on the surface of the TiO 2 nano particles, and the silver can collect electrons and provide a large amount of electrons in the ultraviolet
  • the light has a negative electron, which generates a large amount of plasma, thereby greatly enhancing the photocatalytic efficiency.
  • the air sterilizing purifier according to the present invention can effectively remove harmful bacteria such as Staphylococcus aureus and purify harmful gases such as formaldehyde.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un purificateur de désinfection de l'air, comprenant une enveloppe externe (1), un dispositif centrifuge (2), un dispositif de filtration (3) et un dispositif photocatalytique (4), le dispositif centrifuge (2), le dispositif de filtration (3) et le dispositif photocatalytique (4) étant situés à l'intérieur de l'enveloppe externe (1) ; le dispositif photocatalytique (4) étant situé sur le côté intérieur du dispositif de filtration (3) ; le dispositif centrifuge (2) étant situé au-dessus du dispositif de filtration (3) et du dispositif photocatalytique (4) ; l'enveloppe externe (1) étant pourvue d'une entrée d'air (11) et d'une sortie d'air (12) ; le dispositif photocatalytique (4) comprenant une source lumineuse (41) et un film photocatalytique (42), et la source lumineuse (41) étant située à l'intérieur du film photocatalytique (42) ; et le film photocatalytique (42) comprenant une couche de substrat (421), une couche de graphène tridimensionnel (422), une couche de nanofilm de TiO2 et une couche de nanoargent (424), la couche de graphène tridimensionnel (422) étant située entre la couche de substrat (421) et la couche de nanofilm de TiO2 (423), et la couche de nanoargent (424) étant située sur la couche de nanofilm de TiO2 (423). Dans le dispositif, l'efficacité photocatalytique de la couche de nanofilm de TiO2 est améliorée grâce aux caractéristiques de la couche de graphène tridimensionnelle, les gaz nocifs présents dans l'air peuvent être efficacement éliminés, et les bactéries nocives présentes dans l'air peuvent être tuées.
PCT/CN2016/081294 2016-05-06 2016-05-06 Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire WO2017190352A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081294 WO2017190352A1 (fr) 2016-05-06 2016-05-06 Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081294 WO2017190352A1 (fr) 2016-05-06 2016-05-06 Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire

Publications (1)

Publication Number Publication Date
WO2017190352A1 true WO2017190352A1 (fr) 2017-11-09

Family

ID=60202715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081294 WO2017190352A1 (fr) 2016-05-06 2016-05-06 Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire

Country Status (1)

Country Link
WO (1) WO2017190352A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190145635A1 (en) * 2017-11-14 2019-05-16 Regal Beloit America, Inc. Air handling system and method for assembling the same
CN111110899A (zh) * 2019-12-24 2020-05-08 湖北格林森绿色环保材料股份有限公司 类石墨烯与藻钙的复合空气净化材料及其制备方法和应用
CN111266108A (zh) * 2020-01-21 2020-06-12 中国石油大学(华东) 一种异质结构纳米光催化涂层的制备方法及档案柜
CN111534065A (zh) * 2020-05-11 2020-08-14 陈建华 一种C-N共掺杂TiO2纳米管改性聚乳酸抗菌薄膜及其制法
CN111735143A (zh) * 2020-07-02 2020-10-02 南京先材环保科技有限公司 一种石墨烯空气过滤装置
CN111905807A (zh) * 2020-07-06 2020-11-10 安徽理工大学 一种高瞬时光电流纳米TiO2/聚苯胺/石墨烯复合材料及其制备方法
CN112374767A (zh) * 2019-11-07 2021-02-19 陕西彩虹新材料有限公司 一种光伏玻璃用功能涂层的制备方法
CN112469663A (zh) * 2018-07-09 2021-03-09 对数9物质科学私人有限公司 用于空气净化的石墨烯负载光催化纳米材料的系统和合成方法
WO2021232244A1 (fr) * 2020-05-19 2021-11-25 福建新峰二维材料科技有限公司 Dispositif de purification de l'air, de stérilisation et d'inactivation de virus
CN113776155A (zh) * 2021-09-27 2021-12-10 深圳市绿美环保科技有限公司 一种银离子消毒机
CN113959039A (zh) * 2020-03-23 2022-01-21 艾感科技(广东)有限公司 一种纳米纤维膜损耗状态的评估装置及方法
CN113996187A (zh) * 2021-10-12 2022-02-01 中科朗劢技术有限公司 一种氧化石墨烯空气杀菌膜及其制备方法
CN115404445A (zh) * 2022-10-10 2022-11-29 沈阳大学 一种耐蚀抗菌TiO2/Cu-Ni纳米复合薄膜的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104163421A (zh) * 2014-07-27 2014-11-26 北京工业大学 一种三维絮状石墨烯基底材料的制备方法及其应用
US20150030506A1 (en) * 2012-09-14 2015-01-29 Kompass Technology Co., Ltd. Embedded multifunctional air purifier used in kitchen
CN204159143U (zh) * 2014-09-26 2015-02-18 福建省辉锐材料科技有限公司 一种便携式空气净化器
CN205052997U (zh) * 2015-04-09 2016-03-02 宝峰时尚国际控股有限公司 一种杀菌鞋
CN105465899A (zh) * 2014-09-26 2016-04-06 福建省辉锐材料科技有限公司 一种空气杀菌净化器及其使用的光催化薄膜制备方法
CN106139222A (zh) * 2015-04-09 2016-11-23 藍石環球科技(香港)有限公司 一种空气杀菌净化器及其使用的光催化薄膜制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150030506A1 (en) * 2012-09-14 2015-01-29 Kompass Technology Co., Ltd. Embedded multifunctional air purifier used in kitchen
CN104163421A (zh) * 2014-07-27 2014-11-26 北京工业大学 一种三维絮状石墨烯基底材料的制备方法及其应用
CN204159143U (zh) * 2014-09-26 2015-02-18 福建省辉锐材料科技有限公司 一种便携式空气净化器
CN105465899A (zh) * 2014-09-26 2016-04-06 福建省辉锐材料科技有限公司 一种空气杀菌净化器及其使用的光催化薄膜制备方法
CN205052997U (zh) * 2015-04-09 2016-03-02 宝峰时尚国际控股有限公司 一种杀菌鞋
CN106139222A (zh) * 2015-04-09 2016-11-23 藍石環球科技(香港)有限公司 一种空气杀菌净化器及其使用的光催化薄膜制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190145635A1 (en) * 2017-11-14 2019-05-16 Regal Beloit America, Inc. Air handling system and method for assembling the same
CN112469663A (zh) * 2018-07-09 2021-03-09 对数9物质科学私人有限公司 用于空气净化的石墨烯负载光催化纳米材料的系统和合成方法
CN112374767A (zh) * 2019-11-07 2021-02-19 陕西彩虹新材料有限公司 一种光伏玻璃用功能涂层的制备方法
CN111110899A (zh) * 2019-12-24 2020-05-08 湖北格林森绿色环保材料股份有限公司 类石墨烯与藻钙的复合空气净化材料及其制备方法和应用
CN111266108A (zh) * 2020-01-21 2020-06-12 中国石油大学(华东) 一种异质结构纳米光催化涂层的制备方法及档案柜
CN111266108B (zh) * 2020-01-21 2022-12-16 中国石油大学(华东) 一种异质结构纳米光催化涂层的制备方法及档案柜
CN113959039A (zh) * 2020-03-23 2022-01-21 艾感科技(广东)有限公司 一种纳米纤维膜损耗状态的评估装置及方法
CN111534065A (zh) * 2020-05-11 2020-08-14 陈建华 一种C-N共掺杂TiO2纳米管改性聚乳酸抗菌薄膜及其制法
WO2021232244A1 (fr) * 2020-05-19 2021-11-25 福建新峰二维材料科技有限公司 Dispositif de purification de l'air, de stérilisation et d'inactivation de virus
CN111735143A (zh) * 2020-07-02 2020-10-02 南京先材环保科技有限公司 一种石墨烯空气过滤装置
CN111905807A (zh) * 2020-07-06 2020-11-10 安徽理工大学 一种高瞬时光电流纳米TiO2/聚苯胺/石墨烯复合材料及其制备方法
CN113776155A (zh) * 2021-09-27 2021-12-10 深圳市绿美环保科技有限公司 一种银离子消毒机
CN113996187A (zh) * 2021-10-12 2022-02-01 中科朗劢技术有限公司 一种氧化石墨烯空气杀菌膜及其制备方法
CN113996187B (zh) * 2021-10-12 2024-01-09 中科朗劢技术有限公司 一种氧化石墨烯空气杀菌膜及其制备方法
CN115404445A (zh) * 2022-10-10 2022-11-29 沈阳大学 一种耐蚀抗菌TiO2/Cu-Ni纳米复合薄膜的制备方法

Similar Documents

Publication Publication Date Title
WO2017190352A1 (fr) Purificateur de désinfection de l'air et procédé de préparation d'un film photocatalytique utilisé pour ce faire
Moradi et al. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin
Lin et al. Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst
Zhang et al. Preparation of Ag/β-cyclodextrin co-doped TiO2 floating photocatalytic membrane for dynamic adsorption and photoactivity under visible light
Qin et al. One-step fabrication of TiO2/Ti foil annular photoreactor for photocatalytic degradation of formaldehyde
Xu et al. CuBi2O4 and rGO co-modified 3D hierarchical flower-like Bi5O7I nanoflakes as Z-scheme heterojunction for enhanced photocatalytic performance
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
CN105465899A (zh) 一种空气杀菌净化器及其使用的光催化薄膜制备方法
CN109364992B (zh) 一种氮掺杂石墨烯/纳米二氧化钛光催化剂及其制备方法和应用
Do et al. Tailoring photocatalysts and elucidating mechanisms of photocatalytic degradation of perfluorocarboxylic acids (PFCAs) in water: a comparative overview
Deng et al. Facile in situ hydrothermal synthesis of g-C3N4/SnS2 composites with excellent visible-light photocatalytic activity
Liang et al. In situ synthesis of g-C3N4/TiO2 with {001} and {101} facets coexposed for water remediation
CN106139222A (zh) 一种空气杀菌净化器及其使用的光催化薄膜制备方法
Dastborhan et al. Synthesis of flower-like MoS2/CNTs nanocomposite as an efficient catalyst for the sonocatalytic degradation of hydroxychloroquine
Sajna et al. An overview of graphene-based 2D/3D nanostructures for photocatalytic applications
Wang et al. Construction of tubular g-C3N4/TiO2 S-scheme photocatalyst for high-efficiency degradation of organic pollutants under visible light
Duan et al. Direct Z-scheme Bi2O2CO3/porous g-C3N4 heterojunction for improved photocatalytic degradation performance
Tuna et al. Construction of novel Zn2TiO4/g-C3N4 Heterojunction with efficient photodegradation performance of tetracycline under visible light irradiation
Lin et al. Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye
Ma et al. Construction of a novel Ag/AgBr/AgI@ SiO2 composite aerogel with controlled pore structure: Efficient removal of tetracycline by adsorption/photocatalysis synergism under visible light irradiation
Yang et al. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange
Zhao et al. Fabrication of oxygen vacancy-rich 3D/2D BiO1-XBr/BiOCl heterostructures towards efficient charge separation for enhanced photodegradation activity
Rajamani et al. Photocatalytic pathway toward real time control of tetracycline from industrial wastewater mediated by hetero-structure CuFe2O4-SnS2
Li et al. Enhanced simulated solar sono-photocatalytic performance and antibacterial activities of ZnO/NiO heterojunction nanofibrous membranes
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900874

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900874

Country of ref document: EP

Kind code of ref document: A1