WO2017188453A1 - ユーザ装置、基地局、及び通信方法 - Google Patents

ユーザ装置、基地局、及び通信方法 Download PDF

Info

Publication number
WO2017188453A1
WO2017188453A1 PCT/JP2017/017093 JP2017017093W WO2017188453A1 WO 2017188453 A1 WO2017188453 A1 WO 2017188453A1 JP 2017017093 W JP2017017093 W JP 2017017093W WO 2017188453 A1 WO2017188453 A1 WO 2017188453A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
user apparatus
transmission power
predetermined
base station
Prior art date
Application number
PCT/JP2017/017093
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
邦彦 手島
大將 梅田
安部田 貞行
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP17789734.5A priority Critical patent/EP3451751A4/en
Priority to JP2018514746A priority patent/JPWO2017188453A1/ja
Priority to US16/096,198 priority patent/US20190124604A1/en
Publication of WO2017188453A1 publication Critical patent/WO2017188453A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS

Definitions

  • the present invention relates to a technique for setting a maximum transmission power value for a user apparatus in a mobile communication system.
  • the transmission power of the user apparatus UE may be reduced according to the transmission position and number of RBs (resource blocks).
  • A-MPR Additional-Maximum Power Reduction
  • the A-MPR receives a specific signal “NS (Network Signaling) value” (hereinafter referred to as NS value) from the NW (base station eNB). ) Is allowed to be applied.
  • NW Network Signaling
  • FIG. 1 shows an example of NS values and corresponding transmission conditions (Requirements, band, bandwidth, number of RBs, allowable A-MPR values) (extract from Table 6.2.4-1 of Non-Patent Document 1). More specifically, the “transmission condition” is “additional spectrum emission mask and additional spurious emissions requirements” (additional spectrum emission mask and additional spurious emission requirements). For example, when the user apparatus UE located in a certain cell and receives NS_05 from the base station eNB uses the number of RBs corresponding to NS_05 in FIG. 1, “6.6.3.3.1” of Non-Patent Document 1. An A-MPR of 1 dB or less is allowed for transmission power as specified in the Minimum requirement (network signaled value “NS_05”). The NS value is defined as necessary for each operating band.
  • Non-Patent Document 2 stipulates that P-max (UE's maximum transmission power value) corresponding to each NS value is reported together with the NS value, and the user apparatus UE is informed of the user apparatus UE. Apply P-max corresponding to NS value applied by. Note that all user apparatuses UE can understand NS_01 (no A-MPR) by default in any band and any channel bandwidth. NS_01 can be referred to as a default signaling value.
  • the NS value is basically defined for each band.
  • P-max is associated with the NS value. Therefore, for example, when a new P-max is applied to all bands, it is necessary to define an NS value for applying the new P-max for each band.
  • there is little reserved space for defining a new NS value and a new NS value cannot be defined for all bands.
  • an appropriate P-max for example, a small P-max
  • an appropriate P-max is set for a user apparatus UE that supports a certain band, but an appropriate P-max is set for a user apparatus UE that supports another band. It may happen that it cannot be set.
  • the present invention has been made in view of the above points, and enables an appropriate maximum transmission power value to be applied to a user apparatus in a mobile communication system regardless of a band supported by the user apparatus.
  • the purpose is to provide technology.
  • the user apparatus in a mobile communication system comprising a base station and a user apparatus, A receiving unit that receives a predetermined signaling value that is a signaling value other than a default signaling value and a maximum transmission power value associated with the predetermined signaling value from the base station; A transmission power control unit configured to control transmission power by applying the maximum transmission power value corresponding to the predetermined signaling value when the user apparatus supports the predetermined signaling value;
  • the predetermined signaling value is a value predetermined as a common value for all bands used in the mobile communication system.
  • a technique is provided that allows an appropriate maximum transmission power value to be applied to a user apparatus in a mobile communication system regardless of the band supported by the user apparatus. .
  • FIG. 1 It is a figure which shows the example of A-MPR. It is a block diagram of the communication system which concerns on embodiment of this invention. It is a figure which shows the example of a specification change in embodiment of this invention. It is a figure which shows the example of a SIB1 message. It is a figure which shows the example of a SIB1 message. It is a figure which shows the example of a specification of operation
  • embodiments of the present invention include SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Mobile Broadband).
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • LTE Long Term Evolution
  • LTE-Advanced Long Term Evolution-Advanced
  • later methods eg, 5G
  • FIG. 2 shows a configuration diagram of a communication system according to the embodiment of the present invention.
  • the communication system according to the present embodiment is a mobile communication system including a base station eNB and a user apparatus UE.
  • a base station eNB and a user apparatus UE are shown in FIG. 2, this is an example, and there may be a plurality of each.
  • the user apparatus UE is not limited to a specific type of terminal.
  • the user apparatus UE may be a general smartphone, a terminal flying in the air described above, an MTC terminal, or another terminal.
  • the base station eNB provides, for each band supported by the base station eNB, a list of entries having an NS value and a maximum transmission power value (P-max) corresponding to the NS value.
  • SIB1 SystemInformationBlockType1 message
  • P-max maximum transmission power value
  • the user apparatus UE selects the NS value with the highest priority (the NS value listed first) among the NS values applicable to the user apparatus UE among a plurality of NS values in the list corresponding to the band to which the user apparatus UE applies. Then, P-max corresponding to the NS value is selected.
  • the base station eNB is NS_10, NS_20, NS_30 (in order of priority), and NS_10, NS_20, NS_30 corresponding to each P-max, P-max10, P-max20, and P-max30 are transmitted. Then, when the user apparatus UE applies NS_20, the user apparatus UE selects and applies P-max20 corresponding to NS_20.
  • Non-Patent Document 3 (6.2.5 Configured transmitted power), the user equipment UE uses the P-max of the serving cell c as P EMAX, c to configure the configured maximum output power (configured maximum output power).
  • P CMAX, c is set, and the transmission power is controlled so that the transmission power does not exceed P CMAX, c .
  • P CMAX, c does not exceed P EMAX, c (P-max of serving cell c). That is, “P-max” can be referred to as a maximum transmission power value.
  • P-max is also used for cell selection / cell reselection.
  • NS value which is a common value for all bands (E-UTRA bands).
  • the NS value is a common value for all channel bandwidths.
  • A-MPR, RB restrictions, etc. for the NS value may be provided.
  • FIG. 3 shows an example of specification changes in this case.
  • FIG. 3 shows a modified example from “Table 6.2.4-1:“ Additional Maximum Maximum Power Reduction (A-MPR) ”(excerpt) in Non-Patent Document 3, and the modified part is underlined.
  • A-MPR Additional Maximum Maximum Power Reduction
  • NS_27 is added as a new NS value.
  • “Requirements”, “Resources Blocks”, and “A-MPR” do not apply, as shown as N / A.
  • NS_27 is applied to all bands as indicated as “For all E-UTRA bands” in “E-UTRA Band”.
  • the all bands are all bands used in the mobile communication system of the present embodiment, for example, all bands defined in Table 5.5-1 E-UTRAUoperating bands of Non-Patent Document 1.
  • the “all bands” is not limited to this, and a smaller number of bands may be “all bands” than all the bands defined in Table 5.5-1 E-UTRA operating bands.
  • the number of bands larger than all of the bands defined in Table 5.5-5 E-UTRA operating bands may be “all bands”.
  • NS_27 is applied to all specified channel bandwidths as indicated by “1.4, 3, 5, 10, 15, 20” in “Channel bandwidth”. In addition, it is not essential for the band to be all. For example, NS_27 may be applied to a band obtained by excluding some bands from all bands. Also, it is not essential that the channel bandwidth is all. For example, NS_27 may be applied to a channel bandwidth obtained by removing a part of the channel bandwidth from the total channel bandwidth. Moreover, in this Embodiment, although one signaling value (NS_27) is introduced as a signaling value for applying new P-max to user apparatus UE, new P-max is applied to user apparatus UE. A plurality of signaling values may be introduced as the signaling value for causing them.
  • the user apparatus UE holds in advance a NS value to which the user apparatus UE can apply for each band supported by the user apparatus UE in a storage unit such as a memory. Further, in the present embodiment, as described above, the base station eNB broadcasts a list of entries including NS values and P-max using SIB1 for each band supported by itself. As an example, it is assumed that the user apparatus UE can apply only NS_27 as a signaling value other than the default signaling value (NS_01) in a certain band to be applied.
  • NS_01 default signaling value
  • the base station eNB for the band supported by the user apparatus UE, a list “(NS_10, P-maxA), (NS_27, P-maxB), (NS_30, P-maxC) ”is assumed to be broadcasted by the SIB1 message.
  • the user apparatus UE that has received the SIB1 message confirms the information stored in the memory (information indicating that NS_27 is supported), and sets NS_27 that is the NS value of the first entry to which the user apparatus UE can apply. Select and apply P-maxB corresponding to NS_27.
  • FIG. 4A, B, and FIG. 5 show examples of specifications that the user apparatus UE that performs the above operation complies with.
  • 4A and 4B are excerpts from “SystemInformationBlockType1 message” in Non-Patent Document 2.
  • FIG. 4A “freqBandInfo” and “multiBandInfoList-v10j0” are included as information elements.
  • “freqBandInfo” is a list of “additionalPmax and additionalSpectrumEmission” corresponding to the band indicated by freqBandIndicator.
  • additionalPmax is the P-max mentioned above.
  • additionalSpectrumEmission is NS value.
  • SIB1 includes “p-Max” in addition to additionalPmax. This “p-Max” is applied to a UE to which no additionalPmax is applied.
  • multiBandInfoList-v10j0 includes a list of “additionalPmax and additionalSpectrumEmission” of each band in multiBandInfoList.
  • Fig. 5 is an excerpt from 5.2.2.7 in Non-Patent Document 2.
  • the user apparatus UE that has received the SIB1 message first lists the values supported by itself in the list (NS-PmaxList) of “additionalPmax and additionalSpectrumEmission” corresponding to the band to which the user apparatus UE applies. Selected additionalSpectrumEmission (NS value) is applied, and additionalPmax (P-max) in the NS value entry is applied.
  • reception quality (RSRQ)
  • RSRP reception power
  • the user apparatus UE receives a synchronization signal (PSS / SSS) from the base station eNB by cell search (step S ⁇ b> 101), acquires synchronization, and acquires a cell ID (PCI).
  • PSS / SSS synchronization signal
  • PCI cell ID
  • the user apparatus UE receives the reference signal (CRS) transmitted from the base station eNB and measures the received power (RSRP) (step S102).
  • CRS reference signal
  • RSRP received power
  • the user apparatus UE selects the cell of the base station eNB (shown in FIG. 6) as the cell (best cell) having the highest RSRP of the reference signal.
  • step S103 the user apparatus UE receives system information (MIB, SIB1, etc.) broadcast from the base station eNB.
  • SIB1 includes “freqBandInfo” and “multiBandInfoList-v10j0” as shown in FIGS. 4A, 4B, and 5.
  • step S104 the user apparatus UE selects an NS value in a band to which the user apparatus UE applies, and selects a P-max corresponding to the NS value.
  • NS_27 and P-maxB corresponding thereto are selected.
  • the user apparatus UE determines the DL channel bandwidth (channel bandwidth) applied by the user apparatus UE in the cell based on the DL bandwidth information included in the MIB.
  • the band (operating band) applied by the cell itself is determined based on the band information included in SIB1.
  • UL channel bandwidth is considered the same as DL unless SIB2 contains UL bandwidth information.
  • the value broadcast in SIB2 is determined as the UL channel bandwidth (channel bandwidth) applied in the cell.
  • step S105 it is determined whether or not the cell satisfies the condition “cell selection criterion S”.
  • the user apparatus UE of the present embodiment determines whether or not “cell selection criterion S” is satisfied by the method described in 5.2.3.2 in Non-Patent Document 4.
  • FIG. 7 shows an excerpt of 5.2.3.2 in Non-Patent Document 4.
  • the user apparatus UE performs at least “Srxlev> 0” determination.
  • Srxlev is "Q rxlevmeas- (Q rxlevmin + Q rxlevminoffset )-Pcompensation".
  • P-max eg, P-maxB described above
  • Pcompensation is calculated as “max (P EMAX1 ⁇ P PowerClass , 0) ⁇ (min (P EMAX2 , P PowerClass ) ⁇ min (P EMAX1 , P PowerClass ))”.
  • P EMAX1 is “p-Max” in SIB1 (a value not associated with the NS value in the list)
  • P EMAX2 is “additionalPmax” (P-maxB corresponding to NS_27 described above) obtained from NS-PmaxList. Etc.).
  • the user apparatus UE can confirm that the conditions such as “cell selection criterion S” are satisfied in the cell, the user apparatus UE determines to be in the cell.
  • the above example is an example in which cell selection is performed, but the user apparatus UE is also present in the cell reselection that is performed when the user apparatus UE transitions from one cell to another cell (cell transition destination).
  • One of the conditions for selecting a cell is “cell selection criterion S” similar to cell selection. That is, it is necessary to satisfy at least Srxlev> 0 in the cell to be transitioned (target cell). Therefore, the user apparatus UE calculates “Q rxlevmeas ⁇ (Q rxlevmin + Q rxlevminoffset ) ⁇ Pcompensation” in cell reselection as in the case of cell selection.
  • Cell reselection includes the same frequency cell reselection (intra-frequency cell re-selection) and the different frequency cell reselection (inter-frequency cell re-selection).
  • the frequency of the cell may be called a carrier frequency
  • SIB3 System information Block Type 3
  • the user equipment UE when calculating Pcompensation, use the "p-Max" in SIB3 as P Emax1, the "additionalPmax" obtained from NS-PmaxList in SIB3 as P Emax2 use.
  • the user apparatus UE measures a neighboring cell having a frequency different from the frequency of the cell in which the user apparatus UE is located based on the priority, etc., and transitions to the neighboring cell based on the measurement result. Decide whether or not.
  • SIB5 System information Block Type 5
  • the user equipment UE when calculating Pcompensation, use the "p-Max" corresponding to the transition target frequency in SIB5 as P Emax1, the transition target frequency in SIB5 as P Emax2 Use “additionalPmax” obtained from the corresponding NS-PmaxList.
  • the “user device UE flying in the air” exemplified in the “problem to be solved by the invention” is, for example, a drone.
  • the user apparatus UE for example, a communication module, a smartphone, etc.
  • mounted on the drone is not always in the air but may be on the ground (including a low altitude).
  • the same maximum transmission power as that of a user device UE such as a general smartphone is applied, and the maximum transmission power is set only in the case of flying the user device UE over the sky in order to suppress interference. It is desirable to make it low.
  • a low P-max for example, 20 dBm
  • the user apparatus UE is used on the ground
  • it is a general user apparatus UE such as a smartphone
  • P-max eg, 23 dBm
  • the base station eNB transmits broadcast information (eg, SIB1) including the first P-max and the second P-max, and the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S201).
  • broadcast information eg, SIB1
  • SIB1 broadcast information
  • the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S201).
  • the first P-max is, for example, “p-Max” already described (a value applied to a UE to which no additional Pmax is applied).
  • the second P-max is, for example, “additionalPmax” or a P-max newly introduced in the modification. In the present modification, the second P-max is smaller than the first P-max.
  • the second P-max is not limited to be smaller than the first P-max, and the second P-max is equal to the first P-max or the first P-max. It may be larger than max.
  • the predetermined quality is equal to or higher than the predetermined threshold” may be rephrased as “the predetermined quality is larger than the predetermined threshold”. The same applies to the examples of FIGS. 17 and 18 described later.
  • the predetermined quality is, for example, RSRP, RSRQ, or RS-SINR.
  • the predetermined quality may be a DL path loss.
  • predetermined quality is greater than or equal to a predetermined threshold” (“predetermined quality is greater than the predetermined threshold”) means that “the predetermined quality is lower than the predetermined threshold” (“ The predetermined quality is smaller than a predetermined threshold value ”).
  • step S202 If the determination result in step S202 is Yes (predetermined quality is greater than or equal to a predetermined threshold), the user apparatus UE applies the second P-max to control transmission power (step S203). When the determination result in step S202 is No (predetermined quality is not greater than or equal to a predetermined threshold), the user apparatus UE applies the first P-max to control transmission power (step S204).
  • the operation of the present modification it is possible to apply a low P-max when the user apparatus UE exists in the sky.
  • the predetermined quality such as RSRP becomes lower than the predetermined threshold, and the first P-max is applied.
  • the altitude of the user apparatus UE becomes very high, the influence of interference due to the UL transmission of the user apparatus UE is reduced, so the first P-max may be applied.
  • the above-described second P-max is the additionalPmax described so far.
  • P-max corresponding to NS_27 is applied as the second P-max.
  • the user apparatus UE does not apply P EMAX2 and max (P EMAX1 ⁇ Pcompensation is calculated as P PowerClass , 0).
  • P EMAX1 is the first P-max.
  • FIG. 9 shows a specification change example regarding the operation at the time of SIB1 reception in the first example of the modification.
  • FIG. 9 shows a modified example from “5.2.2.7 Actions upon reception of the SystemInformationBlockType1 message” (extract) in Non-Patent Document 2, and the changed portion is underlined.
  • RSRP is used as an example of the predetermined quality.
  • a predetermined threshold as shown in FIG. 9, when a predetermined threshold (additionalPmaxThreshold) exists, if the predetermined quality (RSRP) in the serving cell is larger than the value indicated by additionalPmaxThreshold, additionalPmax is applied, and the predetermined quality (RSRP) is indicated by additionalPmaxThreshold. If it is not larger than the value to be applied, p-Max is applied.
  • 10A and 10B show examples of changing the contents of SIB1. As shown in FIGS. 10A and 10B, additionalPmaxThreshold is added.
  • FIG. 11 shows a specification change example regarding the operation at the time of SIB3 reception in the first modified example.
  • FIG. 11 shows a change example from “5.2.2.10 Actions upon reception of the SystemInformationBlockType3” (extract) in Non-Patent Document 2, and the changed portion is underlined.
  • a predetermined threshold as shown in FIG. 11, in the case where a predetermined threshold (additionalPmaxThreshold) exists, if the predetermined quality (RSRP) in the neighboring cell (neighbor cell) is larger than the value indicated by additionalPmaxThreshold, additionalPmax is applied, and the predetermined quality (RSRP) ) Is greater than the value indicated by additionalPmaxThreshold, p-Max is applied.
  • 12A and 12B show examples of changing the contents of SIB3. As shown in FIGS. 12A and 12B, additionalPmaxThreshold is added.
  • FIG. 13 shows a specification change example regarding the operation at the time of SIB5 reception in the first modified example.
  • FIG. 13 shows a modified example from “5.2.2.12.2.1Actions upon reception of the SystemInformationBlockType5” (extract) in Non-Patent Document 2, and the changed portion is underlined.
  • a predetermined threshold as shown in FIG. 13, in the case where a predetermined threshold (additionalPmaxThreshold) exists, if the predetermined quality (RSRP) in an adjacent cell is larger than the value indicated by additionalPmaxThreshold, additionalPmax is applied, and the predetermined quality (RSRP) is additionalPmaxThreshold. If it is not larger than the indicated value, p-Max is applied.
  • 14A and 14B show examples of changing the contents of SIB5. As shown in FIGS. 14A and 14B, additionalPmaxThreshold is added.
  • a second P-max is provided separately from the multiple NS value / multiple P-max mechanism described with reference to FIG. That is, when the predetermined quality is equal to or higher than the predetermined threshold, the user apparatus UE applies the second P-max notified to the user apparatus UE separately from the additionalPmax.
  • the second P-max is applied, that is, whether or not the predetermined quality in the target cell (adjacent cell) is equal to or higher than a predetermined threshold. Regardless, the compensation is calculated as shown in FIG. Regardless of whether or not the second P-max is applied, the first P-max or additionalPmax is used to calculate "max (P EMAX1 -P PowerClass , 0)-(min (P EMAX2 , P PowerClass ) It is also possible to calculate the compensation as “ ⁇ min (P EMAX1 , P PowerClass ))”.
  • the user apparatus UE calculates Power Head Room using the first P-max or additionalPmax regardless of whether or not the predetermined quality in the target cell is equal to or higher than a predetermined threshold.
  • FIG. 15 shows a specification change example regarding the operation at the time of SIB1 reception in the second example of the modification.
  • FIG. 15 shows a change example from “5.2.2.7 Actions upon reception of the SystemInformationBlockType1 message” (extract) in Non-Patent Document 2, and the changed portion is underlined.
  • the user apparatus UE determines that the predetermined quality (RSRP) in the serving cell is greater than the value indicated by p-MaxThreshold. If it is larger, p-Max-r14 (second P-max) is applied.
  • RSRP predetermined quality
  • p-Max first P-max
  • Apply. 16A and 16B show examples of changing the contents of SIB1. As shown in FIGS. 16A and 16B, p-MaxAlt, p-Max-r14, and p-MaxThreshold are added.
  • FIG. 17 shows an application determination method example 1.
  • the base station eNB transmits broadcast information (eg, SIB1) including the first P-max and the second P-max, and the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S301).
  • broadcast information eg, SIB1
  • SIB1 broadcast information
  • the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S301).
  • the user apparatus UE measures the predetermined quality of the DL (direction from the base station eNB to the user apparatus UE) signal in the serving cell, and also measures the predetermined quality of the signals of all detected neighbor cells. It is determined whether or not the predetermined quality of the cell is equal to or higher than the first threshold and the predetermined quality of all detected neighbor cells is equal to or higher than the second threshold (step S302).
  • the predetermined quality is, for example, RSRP, RSRQ, or RS-SINR.
  • the first threshold value and the second threshold value may be the same value or different values.
  • “all detected neighbor cells” in the above conditions may be replaced with “at least one detected neighbor cell”, “some neighbor cells among all detected neighbor cells”, and the like.
  • step S302 If the determination result in step S302 is Yes, the user apparatus UE applies the second P-max to control transmission power (step S303). When the determination result in step S302 is No, the user apparatus UE performs transmission power control by applying the first P-max (step S304).
  • FIG. 18 shows an application determination method example 2.
  • the base station eNB transmits broadcast information (eg, SIB1) including the first P-max and the second P-max, and the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S401).
  • broadcast information eg, SIB1
  • SIB1 broadcast information
  • the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S401).
  • the user apparatus UE measures the predetermined quality of the DL (direction from the base station eNB to the user apparatus UE) signal in the serving cell, and also measures the predetermined quality of the signals of all detected neighbor cells. It is determined whether or not the predetermined quality of the cell is equal to or higher than the first threshold and the difference between the predetermined quality of all detected neighbor cells and the predetermined quality of serving cells is equal to or less than a certain value (step S402).
  • the predetermined quality is, for example, RSRP, RSRQ, or RS-SINR. Further, “below” may be “smaller”.
  • the “certain value” is, for example, 3 dB.
  • all detected neighbor cells in the above conditions may be replaced with “at least one detected neighbor cell”, “some neighbor cells among all detected neighbor cells”, and the like.
  • the “difference between the predetermined quality of the neighbor cell and the predetermined quality of the serving cell” is a value obtained by subtracting the predetermined quality of the serving cell from the predetermined quality of the neighbor cell.
  • step S402 When the determination result in step S402 is Yes, the user apparatus UE applies the second P-max to control transmission power (step S403). When the determination result in step S402 is No, the user apparatus UE performs transmission power control by applying the first P-max (step S404).
  • FIG. 19 shows an application determination method example 3.
  • the base station eNB transmits broadcast information (eg, SIB1) including the first P-max and the second P-max, and the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max.
  • P-max of 2 is held (step S501).
  • the user apparatus UE measures the pathloss of DL (direction from the base station eNB to the user apparatus UE) in the serving cell, and also measures the DL pathloss of all detected neighbor cells, and the “pathloss of the serving cell is“ It is determined whether or not the pathloss of all detected neighbor cells is equal to or less than the first threshold and is equal to or less than the second threshold (step S502).
  • the first threshold value and the second threshold value may be the same value or different values. Further, “below” may be “smaller”. Pathloss is an example of predetermined quality.
  • “all detected neighbor cells” in the above conditions may be replaced with “at least one detected neighbor cell”, “some neighbor cells among all detected neighbor cells”, and the like.
  • step S502 If the determination result in step S502 is Yes, the user apparatus UE applies the second P-max to control transmission power (step S503). When the determination result in step S502 is No, the user apparatus UE performs transmission power control by applying the first P-max (step S504).
  • FIG. 20 shows an application determination method example 4.
  • the base station eNB transmits broadcast information (eg, SIB1) including the first P-max and the second P-max, and the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S601).
  • broadcast information eg, SIB1
  • SIB1 broadcast information
  • the user apparatus UE receives the broadcast information, and receives the first P-max and the first P-max. 2 P-max is held (step S601).
  • the user apparatus UE measures the pathloss of DL (direction from the base station eNB to the user apparatus UE) in the serving cell, and also measures the DL pathloss of all detected neighbor cells, and the “pathloss of the serving cell is“ It is determined whether or not it is less than or equal to the first threshold and the difference between the pathloss of all detected neighbor cells and the pathloss of serving cells is less than a certain value (step S602). “Following” may be “smaller”. The “certain value” is, for example, 3 dB.
  • “all detected neighbor cells” in the above conditions may be replaced with “at least one detected neighbor cell”, “some neighbor cells among all detected neighbor cells”, and the like.
  • the “difference between the pathloss of the neighbor cell and the pathloss of the serving cell” is a value obtained by subtracting the pathloss of the serving cell from the pathloss of the neighbor cell.
  • it is not limited to this.
  • step S602 When the determination result in step S602 is Yes, the user apparatus UE applies the second P-max to control transmission power (step S603). When the determination result in step S402 is No, the user apparatus UE performs transmission power control by applying the first P-max (step S604).
  • the second P-max is applied to suppress the maximum transmission power, and
  • a conventional mobile terminal eg, a smartphone
  • the DL signal receiving unit 101 includes a function of receiving various downlink signals from the base station eNB and acquiring higher layer information from the received physical layer signal, and the UL signal transmitting unit 102 receives from the user apparatus UE It includes a function of generating various signals of the physical layer from information of higher layers to be transmitted and transmitting the signals to the base station eNB. Further, the DL signal receiving unit 101 includes a function of measuring predetermined quality (eg, RSRP, RSRQ, RS-SINR, pathloss) of the DL of the serving cell and the neighbor cell.
  • predetermined quality eg, RSRP, RSRQ, RS-SINR, pathloss
  • the RRC processing unit 103 receives and reads system information (broadcast information) including SIB1, SIB3, and SIB5 described in the present embodiment, and performs NS value selection, P-max selection processing, and the like. To do.
  • the RRC processing unit 103 includes a storage unit and holds applicable NS values in advance. For example, the RRC processing unit 103 determines whether the user apparatus UE supports the NS value received by the SIB1 or the like by comparing the held NS value with the NS value received by the SIB1 or the like. To do.
  • the transmission power control unit 104 controls transmission power based on the applied NS value determined by the RRC processing unit 103 and the corresponding maximum transmission power value (P-max). Control of transmission power includes, for example, determining transmission power that does not exceed the maximum transmission power value (P-max) when transmitting a signal. Further, the transmission power control unit 104 may include a function of measuring a predetermined quality of DL.
  • the cell selection control unit 105 includes a function of performing cell selection and cell reselection. That is, the cell selection control unit 105 determines whether or not at least “cell selection criterion S” is satisfied using the maximum transmission power value corresponding to the selected NS value, and performs cell selection or cell reselection. Execute.
  • the DL signal receiving unit 101 receives, from the base station eNB, a predetermined signaling value that is a signaling value other than the default signaling value, and a maximum transmission power value associated with the predetermined signaling value, and transmits
  • the power control unit 104 measures a predetermined quality of the downlink, and controls the transmission power by applying the maximum transmission power value corresponding to the predetermined signaling value when the predetermined quality is larger than a predetermined threshold.
  • the DL signal receiving unit 101 receives the first maximum transmission power value and the second maximum transmission power value from the base station eNB, and the transmission power control unit 104 measures the predetermined quality of the downlink.
  • the predetermined quality is greater than a predetermined threshold
  • the second maximum transmission power value is applied to control transmission power
  • the predetermined quality is not greater than the predetermined threshold
  • the first The transmission power is controlled by applying the maximum transmission power value.
  • the configuration of the user apparatus UE shown in FIG. 21 may be entirely realized by a hardware circuit (eg, one or a plurality of IC chips), or part of the configuration may be configured by a hardware circuit, and the other part may be a CPU. Further, it may be realized by a memory and a program.
  • a hardware circuit eg, one or a plurality of IC chips
  • part of the configuration may be configured by a hardware circuit, and the other part may be a CPU. Further, it may be realized by a memory and a program.
  • FIG. 22 shows a functional configuration diagram of the base station eNB.
  • the base station eNB includes a DL signal transmission unit 201, a UL signal reception unit 202, an RRC processing unit 203, and a transmission power control unit 204.
  • FIG. 22 shows only functional units particularly related to the embodiment of the present invention in the base station eNB, and the base station eNB also has a function (not shown) for performing at least the operation based on the LTE scheme. Is.
  • the DL signal transmission unit 201 includes a function of generating and transmitting various physical layer signals from information on higher layers to be transmitted from the base station eNB.
  • the UL signal receiving unit 202 includes a function of receiving various uplink signals from the user apparatus UE and acquiring higher layer information from the received physical layer signals.
  • the RRC processing unit 203 creates system information such as SIB1, SIB3, and SIB5 described in the present embodiment, and transmits the system information from the DL signal transmission unit 201.
  • the transmission power control unit 204 performs scheduling for the user apparatus UE in consideration of the maximum transmission power of the user apparatus UE.
  • the configuration of the base station eNB shown in FIG. 22 may be entirely realized by a hardware circuit (eg, one or a plurality of IC chips), a part is constituted by a hardware circuit, and the other part is a CPU. Further, it may be realized by a memory and a program.
  • a hardware circuit eg, one or a plurality of IC chips
  • a part is constituted by a hardware circuit
  • the other part is a CPU.
  • it may be realized by a memory and a program.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • each of the base station eNB and the user apparatus UE in an embodiment of the present invention may function as a computer that performs processing in the present embodiment.
  • FIG. 23 is a diagram illustrating an example of the hardware configuration of each of the base station eNB and the user apparatus UE according to an embodiment of the present invention. Since the base station eNB and the user apparatus UE have the same configuration as hardware, these hardware configurations are shown in one figure (FIG. 23).
  • the base station eNB and the user apparatus UE described above physically include a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. It may be configured as.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the base station eNB and the user apparatus UE may be configured to include one or a plurality of each device (each unit) illustrated in the figure, or may be configured not to include some devices. .
  • Each function in the base station eNB and the user apparatus UE reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs calculation and controls communication by the communication apparatus 1004. This is realized by controlling data reading and / or writing in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the DL signal receiving unit 101, the UL signal transmitting unit 102, the RRC processing unit 103, the transmission power control unit 104, and the cell selection control unit 105 of the user apparatus UE are stored in the memory 1002 and controlled by a control program that operates on the processor 1001. It may be realized.
  • the DL signal transmission unit 201, the UL signal reception unit 102, the RRC processing unit 203, and the transmission power control unit 104 of the base station eNB may be realized by a control program stored in the memory 1002 and operating on the processor 1001. Good.
  • processor 1001 may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be constituted by.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), software module, data, and the like that can be executed to perform the processing described in this embodiment.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc) ROM, a hard disk drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between devices via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the DL signal receiving unit 101 and the UL signal transmitting unit 102 of the user apparatus UE may be realized by the communication apparatus 1004.
  • the DL signal transmission unit 201 and the UL signal reception unit 202 of the base station eNB may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the base station eNB and the user equipment UE are hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate (FPGA). Hardware may be configured, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate
  • the user apparatus in the mobile communication system including the base station and the user apparatus, the predetermined signaling that is a signaling value other than the default signaling value from the base station.
  • a reception unit that receives a value and a maximum transmission power value associated with the predetermined signaling value, and the user apparatus supports the predetermined signaling value when the user apparatus supports the predetermined signaling value.
  • a transmission power control unit that controls transmission power by applying the maximum transmission power value, and the predetermined signaling value is a common value for all bands used in the mobile communication system.
  • a user device is provided that has a predetermined value.
  • the DL signal reception unit 101 is an example of the reception unit
  • the transmission power control unit 104 is an example of the transmission power control unit.
  • an appropriate maximum transmission power value can be applied to a user apparatus in a mobile communication system regardless of the band supported by the user apparatus.
  • the predetermined signaling value may be a common value for all channel bandwidths used in the mobile communication system. With this configuration, an appropriate maximum transmission power value can be applied regardless of the channel bandwidth supported by the user apparatus.
  • the user apparatus performs cell selection using the maximum transmission power value associated with the predetermined signaling value and the maximum transmission power value not associated with the predetermined signaling value. A part may be further provided. With this configuration, appropriate cell selection can be performed.
  • a user apparatus in a mobile communication system including a base station and a user apparatus, wherein the base station receives a predetermined signaling value that is a signaling value other than a default signaling value, and the predetermined A receiving unit that receives the maximum transmission power value associated with the signaling value of the first and a predetermined quality of the downlink, and when the predetermined quality is greater than a predetermined threshold, And a transmission power control unit that controls transmission power by applying a maximum transmission power value.
  • an appropriate maximum transmission power value can be applied to a user apparatus in a mobile communication system regardless of the band supported by the user apparatus.
  • the user apparatus in a mobile communication system including a base station and a user apparatus receives a first maximum transmission power value and a second maximum transmission power value from the base station. And measuring a predetermined quality of a downlink, and when the predetermined quality is larger than a predetermined threshold, the second maximum transmission power value is applied to control transmission power, and the predetermined quality is
  • a user apparatus comprising: a transmission power control unit configured to control transmission power by applying the first maximum transmission power value when not larger than a predetermined threshold value.
  • an appropriate maximum transmission power value can be applied to a user apparatus in a mobile communication system regardless of the band supported by the user apparatus.
  • the base station in the mobile communication system including the base station and the user apparatus, which corresponds to a predetermined signaling value that is a signaling value other than the default signaling value and the predetermined signaling value
  • the base station is characterized in that the value is a value predetermined as a common value for all bands used in the mobile communication system.
  • the RRC processing unit 203 is an example of the processing unit, and the DL signal transmission unit 201 is an example of the transmission unit.
  • an appropriate maximum transmission power value can be applied to a user apparatus in the mobile communication system regardless of the band supported by the user apparatus.
  • the notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Accu), signaling (MediaColl). It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fure Radio Access), and W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
  • the input / output information or the like may be stored in a specific location (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the notification of the predetermined information is not limited to explicitly performed, and may be performed implicitly (for example, notification of the predetermined information is not performed). .
  • the terms described in this specification and / or terms necessary for understanding this specification may be replaced with terms having the same or similar meaning.
  • the message may be a signal.
  • RS Reference Signal
  • the specific operation assumed to be performed by the base station in the present specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user apparatus 10 are performed by other network nodes other than the base station and / or the base station 20. Obviously, this can be done by (for example, but not limited to MME or S-GW).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • User equipment can be obtained by those skilled in the art from subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • a base station may also be referred to by those skilled in the art as NB (Node B), eNB (enhanced Node B), base station (Base Station), gNB, or some other appropriate terminology.
  • determining may encompass a wide variety of actions.
  • “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like.
  • “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”.
  • determination and determination are regarded as “determination” and “determination” when resolving, selecting, selecting, establishing, comparing, etc. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • UE user apparatus 101 DL signal reception unit 102 UL signal transmission unit 103 RRC processing unit 104 transmission power control unit 105 cell selection control unit eNB base station 201 DL signal transmission unit 202 UL signal reception unit 203 RRC processing unit 204 transmission power control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置において、前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信する受信部と、前記ユーザ装置が、前記所定のシグナリング値をサポートしている場合において、当該所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、を備え、前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値とする。

Description

ユーザ装置、基地局、及び通信方法
 本発明は、移動通信システムにおけるユーザ装置に対して最大送信電力値を設定する技術に関連するものである。
 LTE(Long Term Evolution)方式では、同一地域で利用される無線システムに対して、干渉を与えないように、帯域外輻射規定等が設けられている。一般に、本規定は、各国の国内法規にて定められているものであり、通信事業者は、この規格に基づく無線システムを運用することが求められる。
 一方で、帯域の利用方法等によっては、隣接システムへの許容干渉レベルに対して、十分な減衰を得ることができないケースが想定される。
 特に、LTEでは、広帯域送信となり、Spuriousによるノイズが、より離れた周波数に高いレベルで届きやすいため、デュプレクサ等のアナログデバイスによる抑圧では、当該規定を満たすことが現実的ではない場合がある。
 このような場合に対応するために、LTE方式では、ユーザ装置UEの送信電力をRB(リソースブロック)の送信位置及び数等に応じて低減してよいように規定がなされている。具体的には、許容可能な送信電力の最大低減量は、「A-MPR(Additional-Maximum Power Reduction)」として規定されている。
 ただし、保護すべき無線システムが各国、各地域に常に存在するわけではないので、当該A-MPRは、NW(基地局eNB)から特定の信号「NS(Network Signaling) value」(以下、NS値)が報知された場合に適用が許容されている。
 図1にNS値とそれに対応する送信条件(Requirements、band、bandwidth、RB数、許容A-MPR値)の例を示す(非特許文献1のTable 6.2.4-1からの抜粋)。「送信条件」とはより具体的には、「additional spectrum emission mask and Additional spurious emissions requirements」(追加のスペクトル放射マスク及び追加のスプリアスエミッション要求条件)である。
 例えば、あるセルに在圏して、基地局eNBからNS_05を受信したユーザ装置UEは、図1のNS_05に対応するRB数等を使用する際に、非特許文献1の「6.6.3.3.1 Minimum requirement (network signalled value "NS_05")」で規定されるような送信電力に対して、1dB以下のA-MPRが許容される。NS値は、バンド(operating band)毎に必要に応じて規定されている。
 また、LTEでは、基地局eNBが、複数のNS値を報知し、当該複数のNS値を受信するユーザ装置UEが、複数のNS値から、自身が適用可能なNS値の中で、最も優先度の高いNS値を適用することが規定されている(非特許文献2)。また、非特許文献2には、各NS値に対応するP-max(UEの最大送信電力値)をNS値と合わせて報知することも規定されており、ユーザ装置UEは、当該ユーザ装置UEが適用するNS値に対応するP-maxを適用する。
 なお、全てのユーザ装置UEは、任意のバンド及び任意のチャネル帯域幅においてデフォルトでNS_01(A-MPR無)を理解可能である。NS_01は、デフォルトのシグナリング値と称することができる。
3GPP TS 36.101 V12.8.0 (2015-07) 3GPP TS 36.331 V10.19.0 (2015-12) 3GPP TS 36.101 V13.3.0 (2016-03) 3GPP TS 36.304 V10.9.0 (2015-12)
 特定の種類のユーザ装置UEに対して、既に規定されているP-maxとは異なる新たな値を適用したいという要求がある。一例として、空中を飛行するユーザ装置UE(例:ドローン)から出力される電波によるUL干渉を低減するために、当該ユーザ装置UEに対して既に規定されているP-maxよりも小さい値を適用したいという要求が考えられる。
 ここで、図1に示したように、従来の仕様では、NS値は基本的にバンド毎に規定されている。また、P-maxはNS値に対応付けられる。よって、例えば全てのバンドに対して新たなP-maxを適用させる場合、バンド毎に、新たなP-maxを適用するためのNS値を規定する必要がある。しかし、新たなNS値を規定するためのreserved spaceは少なく、全バンドに対して新たなNS値を規定することはできない。これにより、例えば、あるバンドをサポートするユーザ装置UEには適切なP-max(例:小さなP-max)を設定できるが、別のバンドをサポートするユーザ装置UEには適切なP-maxを設定できないことが生じ得る。
 本発明は上記の点に鑑みてなされたものであり、移動通信システムにおけるユーザ装置に対し、当該ユーザ装置がサポートするバンドに関わらずに、適切な最大送信電力値を適用することを可能とする技術を提供することを目的とする。
 本発明の実施の形態によれば、基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、
 前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信する受信部と、
 前記ユーザ装置が、前記所定のシグナリング値をサポートしている場合において、当該所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、を備え、
 前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値として予め定められた値である
 ことを特徴とするユーザ装置が提供される。
 本発明の実施の形態によれば、移動通信システムにおけるユーザ装置に対し、当該ユーザ装置がサポートするバンドに関わらずに、適切な最大送信電力値を適用することを可能とする技術が提供される。
A-MPRの例を示す図である。 本発明の実施の形態に係る通信システムの構成図である。 本発明の実施の形態における仕様変更例を示す図である。 SIB1メッセージの例を示す図である。 SIB1メッセージの例を示す図である。 SIB1メッセージを受信した場合の動作の仕様例を示す図である。 処理シーケンスの例を示す図である。 セル選択/セル再選択に関する仕様例を示す図である。 変形例におけるユーザ装置UEの動作を説明するためのフローチャートである。 変形例の第1の例におけるSIB1に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB1に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB1に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB3に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB3に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB3に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB5に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB5に関する仕様変更例を示す図である。 変形例の第1の例におけるSIB5に関する仕様変更例を示す図である。 変形例の第2の例におけるSIB1に関する仕様変更例を示す図である。 変形例の第2の例におけるSIB1に関する仕様変更例を示す図である。 変形例の第2の例におけるSIB1に関する仕様変更例を示す図である。 変形例における適用判定方法例1を示す図である。 変形例における適用判定方法例2を示す図である。 変形例における適用判定方法例1を示す図である。 変形例における適用判定方法例2を示す図である。 ユーザ装置UEの構成図である。 基地局eNBの構成図である。 ユーザ装置UE及び基地局eNBのハードウェア構成図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態の通信システムは、LTE-Advancedを含むLTEに対応していることを想定しているが、本発明の実施の形態はLTEに限らず、他の方式にも適用可能である。例えば、本発明の実施の形態は、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、もしくは、これらに基づいて拡張された次世代システムに適用されてもよい。
 以下、特に断らない限り、「LTE」は、LTE-Advanced、及び、LTE-Advanced以降の方式(例:5G)を含む広い意味で使用する。
 (システム構成、動作概要)
 図2に、本発明の実施の形態に係る通信システムの構成図を示す。図2に示すように、本実施の形態の通信システムは、基地局eNBとユーザ装置UEを含む移動通信システムである。図2には、基地局eNBとユーザ装置UEが1つずつ示されているが、これは例であり、それぞれ複数であってもよい。また、ユーザ装置UEは特定の種類の端末に限定されない。例えば、ユーザ装置UEは一般的なスマートフォンであってもよいし、前述した空中を飛行する端末であってもよいし、MTC端末であってもよいし、その他の端末であってもよい。
 本実施の形態では、基地局eNBは、当該基地局eNBがサポートするバンド毎に、NS値と、当該NS値に対応する最大送信電力値(P-max)を有するエントリのリストを、システム情報(SIB1:SystemInformationBlockType1 message)で報知する機能を有する(非特許文献2)。
 ユーザ装置UEは、自身が適用するバンドに対応するリストにおける複数のNS値の中で、自身が適用可能なNS値のうち最も優先度の高いNS値(最初にリストされたNS値)を選択し、当該NS値に対応するP-maxを選択する。
 一例として、ユーザ装置UEが適用するあるバンドに対して、基地局eNBは、NS_10、NS_20、NS_30(優先度の高い順)、及び、NS_10、NS_20、NS_30のそれぞれに対応するP‐maxとして、P‐max10、P‐max20、P‐max30を送信する。そして、ユーザ装置UEがNS_20を適用する場合に、ユーザ装置UEはNS_20に対応するP‐max20を選択し、適用する。
 非特許文献3(6.2.5 Configured transmitted power)において規定されているように、ユーザ装置UEは、サービングセルcのP-maxをPEMAX,cとして使用して、設定最大送信電力(configured maximum output power)であるPCMAX,cを設定し、送信電力がPCMAX,cを超えないように送信電力を制御する。なお、PCMAX,cはPEMAX,c(サービングセルcのP-max)を超えない。つまり、「P-max」を最大送信電力値と呼ぶことができる。また、非特許文献4において規定されているように、P-maxはセル選択/セル再選択にも使用される。
 (仕様例)
 本実施の形態では、ユーザ装置UEがサポートするバンドに関わらずに、当該ユーザ装置UEに対して適切なP-maxを設定することを可能とするために、新たなNS値を導入する。具体的には、全てのバンド(E-UTRA bands)に対して共通な値であるNS値が導入される。また、当該NS値は全てのチャネル帯域幅に対しても共通の値である。当該NS値に対するA-MPR、RB制限等は設けないこととする。ただし、当該NS値に対するA-MPR、RB制限等を設けることとしてもよい。
 この場合の仕様変更例を図3に示す。図3は、非特許文献3における「Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)」(抜粋)からの変更例を示し、変更部分は下線で示される。
 図3に示すとおり、新たなNS値として、NS_27が追加される。NS_27に対し、「Requirements」、「Resources Blocks」、及び「A-MPR」は、N/Aとして示されるように、適用されない。NS_27は、「E-UTRA Band」において「For all E-UTRA bands」として示されているように全バンドに適用される。全バンドとは、本実施の形態の移動通信システムで使用される全てのバンドであり、例えば、非特許文献1のTable 5.5-1 E-UTRA operating bandsにおいて規定されている全てのバンドである。ただし、「全バンド」は、これに限られるわけではなく、Table 5.5-1 E-UTRA operating bandsにおいて規定されている全てのバンドよりも少ない数のバンドが「全バンド」であってもよいし、Table 5.5-1 E-UTRA operating bandsにおいて規定されている全てのバンドよりも大きい数のバンドが「全バンド」であってもよい。
 また、NS_27は、「Channel bandwidth」において「1.4, 3, 5, 10, 15, 20」として示されているように、規定されている全チャネル帯域幅に適用される。なお、バンドについては、全部であることは必須ではない。例えば、NS_27を、全バンドから一部のバンドを除いたバンドに適用することとしてもよい。また、チャネル帯域幅についても、全部であることは必須ではない。例えば、NS_27を、全チャネル帯域幅から一部のチャネル帯域幅を除いたチャネル帯域幅に適用することとしてもよい。また、本実施の形態では、新たなP-maxをユーザ装置UEに適用させるためのシグナリング値として1つのシグナリング値(NS_27)を導入しているが、新たなP-maxをユーザ装置UEに適用させるためのシグナリング値として複数のシグナリング値を導入してもよい。
 本実施の形態において、ユーザ装置UEは、自身がサポートするバンド毎に、自身が適用可能なNS値をメモリ等の記憶部に予め保持している。また、本実施の形態では、前述したように、基地局eNBは、自身がサポートするバンド毎に、NS値とP-maxを含むエントリのリストをSIB1で報知する。一例として、ユーザ装置UEが、適用するあるバンドにおいて、デフォルトのシグナリング値(NS_01)以外のシグナリング値としてNS_27のみを適用可能であるとする。このとき、基地局eNBが、当該ユーザ装置UEのサポートするバンドに対して、優先度の高い順にエントリが並んだリスト「(NS_10, P-maxA), (NS_27, P-maxB), (NS_30、P-maxC)」をSIB1メッセージで報知すると想定する。
 上記SIB1メッセージを受信したユーザ装置UEは、上記のメモリに格納された情報(NS_27をサポートしていることを示す情報)を確認し、自身が適用可能な最初のエントリのNS値であるNS_27を選択し、NS_27に対応するP-maxBを適用する。
 上記のような動作を行うユーザ装置UEが準拠する仕様例を図4A、B、図5に示す。図4A、Bは、非特許文献2における「SystemInformationBlockType1 message」からの抜粋である。図4Aに示すように、情報要素として、「freqBandInfo」と「multiBandInfoList-v10j0」が含まれる。図4Bに記載のとおり、「freqBandInfo」は、freqBandIndicatorで示されるバンドに対応する、「additionalPmax及びadditionalSpectrumEmission」のリストである。additionalPmaxは、これまでに述べたP-maxのことである。additionalSpectrumEmissionはNS値である。なお、SIB1には、additionalPmaxの他に、「p-Max」が含まれる。この「p-Max」はいずれのadditionalPmaxも適用されないUEに対して適用される。
 また、「multiBandInfoList-v10j0」には、multiBandInfoListにおける各バンドの「additionalPmax及びadditionalSpectrumEmission」のリストが含まれる。
 図5は、非特許文献2における5.2.2.7からの抜粋である。図5に示すように、SIB1メッセージを受信したユーザ装置UEは、自身が適用するバンドに対応する「additionalPmax及びadditionalSpectrumEmission」のリスト(NS-PmaxList)における、自身がサポートする値の中で最初にリストされているadditionalSpectrumEmission(NS値)を選択し、当該NS値のエントリにあるadditionalPmax(P-max)を適用する。
 なお、「freqBandInfo」と「multiBandInfoList-v10j0」は、セル再選択のための情報を報知するSIB3、及びSIB5にも含まれている。
 (処理シーケンス例)
 次に、本実施の形態に係る通信システムの処理シーケンスの例として、RRCアイドル状態におけるセル選択時の動作の例を図6のシーケンス図を参照して説明する。セル選択においては、受信品質(RSRQ)の測定、及び判定も行ってよいが、本例では、受信電力(RSRP)の測定、及び判定に着目した説明を行う。受信電力のことを受信レベルと称しても良い。
 図6に示す例において、ユーザ装置UEはセルサーチにより基地局eNBから同期信号(PSS/SSS)を受信して(ステップS101)、同期をとるとともにセルID(PCI)を取得する。同期信号により同期がとれた当該セルに関して、ユーザ装置UEは、基地局eNBから送信される参照信号(CRS)を受信し、受信電力(RSRP)の測定を行う(ステップS102)。ここでは、複数セルの受信電力(RSRP)を測定していると想定する。
 ユーザ装置UEは、参照信号のRSRPが最も高いセル(ベストセル)として(図6に示す)基地局eNBのセルを選択する。
 ステップS103において、ユーザ装置UEは、基地局eNBから報知されるシステム情報(MIB、SIB1等)を受信する。ここでのSIB1は、図4A、B、図5に示したように、「freqBandInfo」と「multiBandInfoList-v10j0」を含むものである。
 ステップS104において、ユーザ装置UEは、自身が適用するバンドにおけるNS値を選択するとともに、当該NS値に対応するP‐maxを選択する。一例として、前述したように、NS_27と、これに対応するP-maxBが選択される。
 なお、ユーザ装置UEは、MIBに含まれるDL帯域幅情報により、自身が当該セルで適用するDLチャネル帯域幅(channel bandwidth)を決定する。また、SIB1に含まれるバンド情報により自身が当該セルで適用するバンド(operating band)を決定する。ULチャネル帯域幅は、SIB2にUL帯域幅情報が含まれない限り、DLと同じとみなす。SIB2にUL帯域幅情報が含まれる場合、SIB2で報知されている値を、当該セルで適用するULチャネル帯域幅(channel bandwidth)として決定する。
 ステップS105において、当該セルが条件「cell selection criterion S」を満たすかどうかの判定を行う。具体的には、一例として、本実施の形態のユーザ装置UEは、非特許文献4における5.2.3.2に記載された方法で「cell selection criterion S」を満たすかどうかの判定を行う。図7に、非特許文献4における5.2.3.2の抜粋を示す。図7に示すように、ユーザ装置UEは、少なくとも「Srxlev>0」の判定を行う。Srxlevは「Qrxlevmeas - (Qrxlevmin + Qrxlevminoffset) - Pcompensation」である。ここで、ユーザ装置は、Pcompensationの計算にP-max(例:上記のP-maxB)を使用する。具体的には、Pcompensationを「max(PEMAX1 -PPowerClass, 0) - (min(PEMAX2, PPowerClass) - min(PEMAX1, PPowerClass))」として計算する。ここでPEMAX1が前述したSIB1における「p-Max」(リストにおけるNS値と対応付けされない値)であり、PEMAX2がNS-PmaxListから得られる「additionalPmax」(前述したNS_27に対応するP-maxB等)である。ユーザ装置UEは、当該セルにおいて「cell selection criterion S」等の条件を満たすことを確認できた場合に、当該セルに在圏することを決定する。
 上記の例はセル選択を行う例であるが、ユーザ装置UEが、あるセルから別のセルに遷移する場合等に実行するセル再選択(cell reselection)においても、在圏する(遷移先の)セルを選択する際の条件の1つとして、セル選択と同様の「cell selection criterion S」がある。つまり、遷移しようとするセル(ターゲットセル)において、少なくともSrxlev>0を満たす必要がある。よって、ユーザ装置UEは、セル選択の場合と同様に、セル再選択においても、「Qrxlevmeas - (Qrxlevmin + Qrxlevminoffset) - Pcompensation」の計算を行う。
 セル再選択として、同一周波数セル再選択(intra-frequency cell re-selection)と異周波数セル再選択(inter-frequency cell re-selection)がある。
 同一周波数セル再選択において、ユーザ装置UEは、在圏しているセル(serving cell)における参照信号の受信電力が所定値以下になった場合に、当該セルの周波数(キャリア周波数と呼んでもよい)と同じ周波数の周辺セル(neighboring cell)における受信電力の測定を開始し、測定結果に基づいて周辺セルに遷移するかどうかを決定する。同一周波数セル再選択では、基地局eNBからユーザ装置UEに送信される複数種類のシステム情報のうちの1つであるSIB3(System information Block Type 3)に含まれる情報が用いられる。
 すなわち、同一周波数セル再選択において、ユーザ装置UEは、Pcompensationを計算する場合に、PEMAX1としてSIB3における「p-Max」を使用し、PEMAX2としてSIB3におけるNS-PmaxListから得られる「additionalPmax」を使用する。
 一方、異周波数セル再選択では、ユーザ装置UEは、優先度等に基づき、在圏しているセルの周波数と異なる周波数の周辺セルの測定を行って、測定結果に基づいて周辺セルに遷移するかどうかを決定する。異周波数セル再選択では、SIB5(System information Block Type 5)に含まれる情報が用いられる。
 すなわち、異周波数セル再選択において、ユーザ装置UEは、Pcompensationを計算する場合に、PEMAX1としてSIB5における遷移対象周波数に対応する「p-Max」を使用し、PEMAX2としてSIB5における遷移対象周波数に対応するNS-PmaxListから得られる「additionalPmax」を使用する。
 (変形例)
 次に、変形例を説明する。変形例は、これまでに説明した実施の形態をベースとし、以下、これまでに説明した実施形態と異なる部分について主に説明する。
 「発明が解決しようとする課題」のところで例示した「空中で飛行するユーザ装置UE」は、例えばドローンである。ドローンに搭載されるユーザ装置UE(例:通信モジュール、スマートフォン等)は、常に空中にあるわけではなく、地上(低空を含む)にある場合もある。地上で当該ユーザ装置UEを使用する場合には、一般のスマートフォン等のユーザ装置UEと同じ最大送信電力を適用し、ユーザ装置UEを上空に飛ばす場合にのみ、干渉を抑えるために最大送信電力を低くすることが望ましい。
 例えば、ユーザ装置UEが上空に存在する場合にのみ、低いP-max(例:20dBm)を適用し、当該ユーザ装置UEを地上で使用する場合には、一般のユーザ装置UE(スマートフォン等)で使用されるP-maxと同じP-max(例:23dBm)を適用することが望ましい。変形例では、このようなP-maxの適用を可能としている。
 <変形例:動作概要>
 変形例におけるユーザ装置UEの動作の概要を図8のフローチャートを参照して説明する。
 基地局eNBは、第1のP-maxと第2のP-maxを含むブロードキャスト情報(例:SIB1)を送信し、ユーザ装置UEは当該ブロードキャスト情報を受信し、第1のP-maxと第2のP-maxを保持する(ステップS201)。
 第1のP-maxは、例えば既に説明した「p-Max」(いずれのadditionalPmaxも適用されないUEに対して適用される値)である。第2のP-maxは、例えば、「additionalPmax」もしくは、変形例で新たに導入するP-maxである。本変形例では、第2のP-maxは第1のP-maxよりも小さい。ただし、第2のP-maxは第1のP-maxよりも小さいことに限定されるわけではなく、第2のP-maxは第1のP-maxと等しい、又は、第1のP-maxよりも大きいこととしてもよい。
 そして、ユーザ装置UEは、対象セル(serving cell)においてDL(基地局eNBからユーザ装置UEへの方向)の信号の所定品質を測定し、当該所定品質が所定の閾値以上であるか否かを判定する(ステップS202)。「所定品質が所定の閾値以上である」を、「所定品質が所定の閾値よりも大きい」と言い換えてもよい。後述する図17、図18の例でも同様である。本変形例において所定品質は、例えば、RSRP、RSRQ、又は、RS-SINRである。なお、所定品質が、DLのパスロス(pathloss)であってもよい。所定品質としてパスロスを使用する場合、上記の「所定品質が所定の閾値以上である」(「所定品質が所定の閾値よりも大きい」)は、「所定品質が所定の閾値以下である」(「所定品質が所定の閾値よりも小さい」)に置き換えられる。
 ステップS202での判定結果がYes(所定品質が所定の閾値以上)の場合、ユーザ装置UEは第2のP-maxを適用して送信電力の制御を行う(ステップS203)。ステップS202での判定結果がNo(所定品質が所定の閾値以上ではない)の場合、ユーザ装置UEは第1のP-maxを適用して送信電力の制御を行う(ステップS204)。
 ユーザ装置UEが上空にある場合、一般には見通しがよく、所定品質は良くなると考えられる。よって、本変形例の動作により、ユーザ装置UEが上空に存在する場合に、低いP-maxを適用することが可能となる。なお、ユーザ装置UEの高度が非常に高くなった場合には、RSRP等の所定品質は所定閾値よりも低くなり、第1のP-maxが適用される。ユーザ装置UEの高度が非常に高くなった場合には、ユーザ装置UEのUL送信による干渉の影響は小さくなるため、第1のP-maxが適用されることでよい。
 以下、変形例におけるより具体的な例として第1の例と第2の例を説明する。
  <変形例:第1の例>
 第1の例では、前述した第2のP-maxを、これまでに説明したadditionalPmaxとするものである。例えば、ユーザ装置UEがNS_27を適用する場合に、第2のP-maxとしてNS_27に対応するP-maxが適用される。
 また、図7を参照して説明したセル選択及びセル再選択において、ユーザ装置UEは、対象セル(隣接セル)での所定品質が所定閾値以上の場合(第2のP-maxが適用される場合の例)には、PEMAX2として第2のP-maxを使用し、Pcompensationを「max(PEMAX1 -PPowerClass, 0) - (min(PEMAX2, PPowerClass) - min(PEMAX1, PPowerClass))」として計算する。
 また、ユーザ装置UEは、対象セルでの所定品質が所定閾値以上でない場合(第1のP-maxが適用される場合の例)には、PEMAX2を適用せずに、max(PEMAX1 -PPowerClass, 0)としてPcompensationを計算する。PEMAX1は第1のP-maxである。
 また、ユーザ装置UEは、対象セルでの所定品質が所定閾値以上の場合(第2のP-maxが適用される場合の例)には、Power Head Roomを第2のP-maxを用いて算出し、対象セルでの所定品質が所定閾値以上でない場合(第1のP-maxが適用される場合の例)には、Power Head Roomを第1のP-maxを用いて算出する。
 図9に、変形例の第1の例におけるSIB1受信時の動作に関する仕様変更例を示す。図9は、非特許文献2における「5.2.2.7 Actions upon reception of the SystemInformationBlockType1 message」(抜粋)からの変更例を示し、変更部分は下線で示される。図9、及び以降で説明する仕様変更例において、所定品質の例としてRSRPを使用している。図9に示すとおり、所定閾値(additionalPmaxThreshold)が存在する場合において、サービングセルでの所定品質(RSRP)がadditionalPmaxThresholdで示される値よりも大きければ、additionalPmaxが適用され、所定品質(RSRP)がadditionalPmaxThresholdで示される値よりも大きくなければp-Maxが適用される。図10A、Bは、SIB1の内容の変更例を示している。図10A、Bに示すとおり、additionalPmaxThresholdが追加されている。
 図11に、変形例の第1の例におけるSIB3受信時の動作に関する仕様変更例を示す。図11は、非特許文献2における「5.2.2.10 Actions upon reception of the SystemInformationBlockType3」(抜粋)からの変更例を示し、変更部分は下線で示される。図11に示すとおり、所定閾値(additionalPmaxThreshold)が存在する場合において、隣接セル(neighbor cell)での所定品質(RSRP)がadditionalPmaxThresholdで示される値よりも大きければ、additionalPmaxが適用され、所定品質(RSRP)がadditionalPmaxThresholdで示される値よりも大きくなければp-Maxが適用される。図12A、Bは、SIB3の内容の変更例を示している。図12A、Bに示すとおり、additionalPmaxThresholdが追加されている。
 図13に、変形例の第1の例におけるSIB5受信時の動作に関する仕様変更例を示す。図13は、非特許文献2における「5.2.2.12 Actions upon reception of the SystemInformationBlockType5」(抜粋)からの変更例を示し、変更部分は下線で示される。図13に示すとおり、所定閾値(additionalPmaxThreshold)が存在する場合において、隣接セルでの所定品質(RSRP)がadditionalPmaxThresholdで示される値よりも大きければ、additionalPmaxが適用され、所定品質(RSRP)がadditionalPmaxThresholdで示される値よりも大きくなければp-Maxが適用される。図14A、Bは、SIB5の内容の変更例を示している。図14A、Bに示すとおり、additionalPmaxThresholdが追加されている。
  <変形例:第2の例>
 第2の例では、図5等を参照して説明した複数NS値/複数P-maxの仕組みとは別に、第2のP-maxを設ける。つまり、ユーザ装置UEは、所定品質が所定の閾値以上である場合において、additionalPmaxとは別にユーザ装置UEに通知されている第2のP-maxを適用する。
 第2の例におけるセル選択及びセル再選択について、例えば、第2のP-max の適用の有無に関わらずに、つまり、対象セル(隣接セル)での所定品質が所定閾値以上か否かに関わらずに、図7に示したとおりにPcompensationを計算する。また、第2のP-max の適用の有無に関わらず、第1のP-max、若しくはaddtionalPmaxを用いて、「max(PEMAX1 -PPowerClass, 0) - (min(PEMAX2, PPowerClass) - min(PEMAX1, PPowerClass))」としてPcompensationを計算することとしてもよい。
 また、ユーザ装置UEは、対象セルでの所定品質が所定閾値以上か否かに関わらずに、Power Head Roomを第1のP-max、若しくはaddtionalPmaxを用いて算出する。
 図15に、変形例の第2の例におけるSIB1受信時の動作に関する仕様変更例を示す。図15は、非特許文献2における「5.2.2.7 Actions upon reception of the SystemInformationBlockType1 message」(抜粋)からの変更例を示し、変更部分は下線で示される。図15に示すとおり、第2のP-maxに対応する通知情報(p-MaxAlt)がある場合において、ユーザ装置UEは、サービングセルでの所定品質(RSRP)がp-MaxThresholdで示される値よりも大きければ、p-Max-r14(第2のP-max)を適用し、所定品質(RSRP)がp-MaxThresholdで示される値よりも大きくなければp-Max(第1のP-max)を適用する。図16A、Bは、SIB1の内容の変更例を示している。図16A、Bに示すとおり、p-MaxAlt、p-Max-r14、p-MaxThresholdが追加されている。
 <変形例:第1のP-max/第2のP-maxの適用判定方法の他の例>
 第1のP-maxと第2のP-maxのどちらを適用するかの判定について、図8を参照して説明した方法の他に、以下で説明する方法を用いてもよい。以下、変形例における追加の適用判定方法として、適用判定方法例1~4を説明する。以下で説明する方法は、serving cellの品質のみでなく、neighbor cellの品質も考慮して、第1のP-maxと第2のP-maxのどちらを適用するかを判定するものである。なお、第1のP-maxと第2のP-maxの例、及び使用方法等は、これまでに説明したとおりである。
 図17は、適用判定方法例1を示す。基地局eNBは、第1のP-maxと第2のP-maxを含むブロードキャスト情報(例:SIB1)を送信し、ユーザ装置UEは当該ブロードキャスト情報を受信し、第1のP-maxと第2のP-maxを保持する(ステップS301)。
 そして、ユーザ装置UEは、serving cellにおいてDL(基地局eNBからユーザ装置UEへの方向)の信号の所定品質を測定するとともに、検出した全てのneighbor cellの信号の所定品質を測定し、「serving cellの所定品質が第1の閾値以上であり、かつ、検出した全てのneighbor cellの所定品質が第2の閾値以上である」か否かを判定する(ステップS302)。既に説明したように、当該所定品質は、例えば、RSRP、RSRQ、又は、RS-SINRである。また、第1の閾値と第2の閾値は同じ値でもよいし、異なる値でもよい。また、上記条件の中の「検出した全てのneighbor cell」を、「検出した少なくとも1つのneighbor cell」、「検出した全てのneighbor cellの中の一部のneighbor cell」等に置き換えてもよい。
 ステップS302での判定結果がYesの場合、ユーザ装置UEは第2のP-maxを適用して送信電力の制御を行う(ステップS303)。ステップS302での判定結果がNoの場合、ユーザ装置UEは第1のP-maxを適用して送信電力の制御を行う(ステップS304)。
 図18は、適用判定方法例2を示す。基地局eNBは、第1のP-maxと第2のP-maxを含むブロードキャスト情報(例:SIB1)を送信し、ユーザ装置UEは当該ブロードキャスト情報を受信し、第1のP-maxと第2のP-maxを保持する(ステップS401)。
 そして、ユーザ装置UEは、serving cellにおいてDL(基地局eNBからユーザ装置UEへの方向)の信号の所定品質を測定するとともに、検出した全てのneighbor cellの信号の所定品質を測定し、「serving cellの所定品質が第1の閾値以上であり、かつ、検出した全てのneighbor cellの所定品質とserving cellの所定品質の差分がある値以下である」か否かを判定する(ステップS402)。既に説明したように、当該所定品質は、例えば、RSRP、RSRQ、又は、RS-SINRである。また、「以下」は、「より小さい」としてもよい。「ある値」は、例えば3dBである。また、上記条件の中の「検出した全てのneighbor cell」を、「検出した少なくとも1つのneighbor cell」、「検出した全てのneighbor cellの中の一部のneighbor cell」等に置き換えてもよい。なお、本変形例では、「neighbor cellの所定品質とserving cellの所定品質の差分」とは、neighbor cellの所定品質からserving cellの所定品質を引いた値である。ただし、これに限られない。
 ステップS402での判定結果がYesの場合、ユーザ装置UEは第2のP-maxを適用して送信電力の制御を行う(ステップS403)。ステップS402での判定結果がNoの場合、ユーザ装置UEは第1のP-maxを適用して送信電力の制御を行う(ステップS404)。
 図19は、適用判定方法例3を示す。基地局eNBは、第1のP-maxと第2のP-maxを含むブロードキャスト情報(例:SIB1)を送信し、ユーザ装置UEは当該ブロードキャスト情報を受信し、第1のP-maxと第2のP-maxを保持する(ステップS501)。
 そして、ユーザ装置UEは、serving cellにおいてDL(基地局eNBからユーザ装置UEへの方向)のpathlossを測定するとともに、検出した全てのneighbor cellのDLのpathlossを測定し、「serving cellのpathlossが第1の閾値以下であり、かつ、検出した全てのneighbor cellのpathlossが第2の閾値以下である」か否かを判定する(ステップS502)。第1の閾値と第2の閾値は同じ値でもよいし、異なる値でもよい。また、「以下」は、「より小さい」としてもよい。なお、pathlossは所定品質の一例である。また、上記条件の中の「検出した全てのneighbor cell」を、「検出した少なくとも1つのneighbor cell」、「検出した全てのneighbor cellの中の一部のneighbor cell」等に置き換えてもよい。
 ステップS502での判定結果がYesの場合、ユーザ装置UEは第2のP-maxを適用して送信電力の制御を行う(ステップS503)。ステップS502での判定結果がNoの場合、ユーザ装置UEは第1のP-maxを適用して送信電力の制御を行う(ステップS504)。
 図20は、適用判定方法例4を示す。基地局eNBは、第1のP-maxと第2のP-maxを含むブロードキャスト情報(例:SIB1)を送信し、ユーザ装置UEは当該ブロードキャスト情報を受信し、第1のP-maxと第2のP-maxを保持する(ステップS601)。
 そして、ユーザ装置UEは、serving cellにおいてDL(基地局eNBからユーザ装置UEへの方向)のpathlossを測定するとともに、検出した全てのneighbor cellのDLのpathlossを測定し、「serving cellのpathlossが第1の閾値以下であり、かつ、検出した全てのneighbor cellのpathlossとserving cellのpathlossの差分がある値以下である」か否かを判定する(ステップS602)。「以下」は、「より小さい」としてもよい。「ある値」は、例えば3dBである。また、上記条件の中の「検出した全てのneighbor cell」を、「検出した少なくとも1つのneighbor cell」、「検出した全てのneighbor cellの中の一部のneighbor cell」等に置き換えてもよい。なお、本変形例では、「neighbor cellのpathlossとserving cellのpathlossの差分」とは、neighbor cellのpathlossからserving cellのpathlossを引いた値である。ただし、これに限られない。
 ステップS602での判定結果がYesの場合、ユーザ装置UEは第2のP-maxを適用して送信電力の制御を行う(ステップS603)。ステップS402での判定結果がNoの場合、ユーザ装置UEは第1のP-maxを適用して送信電力の制御を行う(ステップS604)。
 以上、説明した変形例の構成により、例えば、ユーザ装置UEを備えるドローンが上空にいる場合(干渉が顕著になる場合)のみ、第2のP-maxを適用して最大送信電力を抑え、当該ドローンが地上にいる場合には、従来の移動端末(例:スマートフォン)向けの最大送信電力を適用する制御を実現できる。
 (装置構成)
 次に、本発明の実施の形態(変形例を含む)におけるユーザ装置UEと基地局eNBの構成例を示す。
  <ユーザ装置UE>
 図21に、ユーザ装置UEの機能構成図を示す。図21に示すように、ユーザ装置UEは、DL信号受信部101、UL信号送信部102、RRC処理部103、送信電力制御部104、セル選択制御部105を備える。なお、図21は、ユーザ装置UEにおいて本発明に特に関連する機能部のみを示すものであり、ユーザ装置UEは、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。
 DL信号受信部101は、基地局eNBから各種の下り信号を受信し、受信した物理レイヤの信号からより上位のレイヤの情報を取得する機能を含み、UL信号送信部102は、ユーザ装置UEから送信されるべき上位のレイヤの情報から、物理レイヤの各種信号を生成し、基地局eNBに対して送信する機能を含む。また、DL信号受信部101は、serving cell及びneighbor cellのDLの所定品質(例:RSRP、RSRQ、RS-SINR、pathloss)を測定する機能を含む。
 RRC処理部103は、本実施の形態で説明したSIB1、SIB3、SIB5を含むシステム情報(ブロードキャスト情報)の受信、読み取りを行うとともに、NS値の選択、及びP‐maxの選択の処理等を実施する。RRC処理部103は、記憶部を含み、適用可能なNS値が予め保持されている。例えば、RRC処理部103は、当該保持したNS値と、SIB1等で受信するNS値とを比較することで、ユーザ装置UEが、SIB1等で受信するNS値をサポートしているか否かを判定する。
 送信電力制御部104は、RRC処理部103により決定された適用NS値、及び対応する最大送信電力値(P-max)に基づく送信電力の制御を行う。送信電力の制御は、例えば、信号を送信する際に、最大送信電力値(P-max)を超えない送信電力を決定することを含む。また、送信電力制御部104がDLの所定品質を測定する機能を含むこととしてもよい。
 セル選択制御部105は、セル選択及びセル再選択を実行する機能を含む。すなわち、セル選択制御部105は、選択されたNS値に対応する最大送信電力値を用いて、少なくとも、「cell selection criterion S」を満たすかどうかの判定を行って、セル選択又はセル再選択を実行する。
 例えば、DL信号受信部101が、基地局eNBから、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信し、送信電力制御部104が、ダウンリンクの所定品質を測定し、当該所定品質が所定閾値よりも大きい場合に、前記所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う。
 また、例えば、DL信号受信部101が、基地局eNBから、第1の最大送信電力値と第2の最大送信電力値とを受信し、送信電力制御部104が、ダウンリンクの所定品質を測定し、当該所定品質が所定閾値よりも大きい場合に、前記第2の最大送信電力値を適用して送信電力の制御を行い、前記所定品質が前記所定閾値よりも大きくない場合に、前記第1の最大送信電力値を適用して送信電力の制御を行う。
 図21に示すユーザ装置UEの構成は、全体をハードウェア回路(例:1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPU及びメモリとプログラムとで実現してもよい。
  <基地局eNB>
 図22に、基地局eNBの機能構成図を示す。図22に示すように、基地局eNBは、DL信号送信部201、UL信号受信部202、RRC処理部203、送信電力制御部204を備える。なお、図22は、基地局eNBにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、基地局eNBは、少なくともLTE方式に準拠した動作を行うための図示しない機能も有するものである。
 DL信号送信部201は、基地局eNBから送信されるべき上位のレイヤの情報から、物理レイヤの各種信号を生成し、送信する機能を含む。UL信号受信部202は、ユーザ装置UEから各種の上り信号を受信し、受信した物理レイヤの信号からより上位のレイヤの情報を取得する機能を含む。
 RRC処理部203は、本実施の形態で説明したSIB1、SIB3、SIB5等のシステム情報を作成し、DL信号送信部201から送信する。送信電力制御部204は、例えば、ユーザ装置UEの最大送信電力を考慮して、ユーザ装置UEに対するスケジューリング等を実施する。
 図22に示す基地局eNBの構成は、全体をハードウェア回路(例:1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPU及びメモリとプログラムとで実現してもよい。
 <ハードウェア構成>
 上記のブロック図(図21及び図22)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施の形態における基地局eNBとユーザ装置UEのそれぞれは、本実施の形態における処理を行うコンピュータとして機能してもよい。図23は、本発明の一実施の形態に係る基地局eNB及びユーザ装置UEのそれぞれのハードウェア構成の一例を示す図である。基地局eNBとユーザ装置UEは、ハードウェアとしては同様の構成を備えるため、1つの図(図23)にこれらのハードウェア構成を示している。
 図23に示すとおり、上述の基地局eNB及びユーザ装置UEは、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局eNB及びユーザ装置UEのハードウェア構成は、図に示した各装置(各部)を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局eNB及びユーザ装置UEにおける各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御し、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、及びデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ装置UEのDL信号受信部101、UL信号送信部102、RRC処理部103、送信電力制御部104、セル選択制御部105は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、基地局eNBのDL信号送信部201、UL信号受信部102、RRC処理部203、送信電力制御部104は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。
 上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などのうちの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態で説明した処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール、データなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどのうちの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介して装置間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置UEのDL信号受信部101、及び、UL信号送信部102は通信装置1004で実現されてもよい。また、基地局eNBのDL信号送信部201、及び、UL信号受信部202は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、基地局eNB及びユーザ装置UEは、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態により、基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信する受信部と、前記ユーザ装置が、前記所定のシグナリング値をサポートしている場合において、当該所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、を備え、前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値として予め定められた値であることを特徴とするユーザ装置が提供される。
 DL信号受信部101は上記受信部の例であり、送信電力制御部104は上記送信電力制御部の例である。
 上記の構成により、移動通信システムにおけるユーザ装置に対し、当該ユーザ装置がサポートするバンドに関わらずに、適切な最大送信電力値を適用することが可能となる。
 前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのチャネル帯域幅に対しても共通の値であってもよい。この構成により、ユーザ装置がサポートするチャネル帯域幅に関わらずに適切な最大送信電力値を適用することが可能となる。
 前記ユーザ装置は、前記所定のシグナリング値に対応付けられた前記最大送信電力値と、当該所定のシグナリング値に対応付けられていない最大送信電力値とを使用してセル選択を実施するセル選択制御部を更に備えてもよい。この構成により、適切なセル選択を行うことができる。
 また、本実施の形態により、基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信する受信部と、ダウンリンクの所定品質を測定し、当該所定品質が所定閾値よりも大きい場合に、前記所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、を備えることを特徴とするユーザ装置が提供される。
 上記の構成により、移動通信システムにおけるユーザ装置に対し、当該ユーザ装置がサポートするバンドに関わらずに、適切な最大送信電力値を適用することが可能となる。
 また、本実施の形態により、基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、前記基地局から、第1の最大送信電力値と第2の最大送信電力値とを受信する受信部と、ダウンリンクの所定品質を測定し、当該所定品質が所定閾値よりも大きい場合に、前記第2の最大送信電力値を適用して送信電力の制御を行い、前記所定品質が前記所定閾値よりも大きくない場合に、前記第1の最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、を備えることを特徴とするユーザ装置が提供される。
 上記の構成により、移動通信システムにおけるユーザ装置に対し、当該ユーザ装置がサポートするバンドに関わらずに、適切な最大送信電力値を適用することが可能となる。
 また、本実施の形態により、基地局とユーザ装置とを備える移動通信システムにおける前記基地局であって、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを含むシステム情報を作成する処理部と、前記所定のシグナリング値と前記最大送信電力値とを含む前記システム情報を送信する送信部と、を備え、前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値として予め定められた値であることを特徴とする基地局が提供される。
 RRC処理部203は上記処理部の例であり、DL信号送信部201は上記送信部の例である。
 上記の構成によれば、移動通信システムにおけるユーザ装置に対し、当該ユーザ装置がサポートするバンドに関わらずに、適切な最大送信電力値を適用することが可能となる。
 以上、本発明の各実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 また、本明細書で説明した各態様/実施形態の処理手順、シーケンスなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、メッセージは信号であってもよい。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。また、参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本明細書において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置10との通信のために行われる様々な動作は、基地局および/または基地局20以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。
 ユーザ装置は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、gNB、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
 本発明は上記実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本特許出願は2016年4月28日に出願した日本国特許出願第2016-91553号、及び2017年2月2日に出願した日本国特許出願第2017-017985号に基づきその優先権を主張するものであり、日本国特許出願第2016-91553号及び日本国特許出願第2017-017985号の全内容を本願に援用する。
UE ユーザ装置
101 DL信号受信部
102 UL信号送信部
103 RRC処理部
104 送信電力制御部
105 セル選択制御部
eNB 基地局
201 DL信号送信部
202 UL信号受信部
203 RRC処理部
204 送信電力制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス

Claims (7)

  1.  基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、
     前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信する受信部と、
     前記ユーザ装置が、前記所定のシグナリング値をサポートしている場合において、当該所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、を備え、
     前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値として予め定められた値である
     ことを特徴とするユーザ装置。
  2.  前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのチャネル帯域幅に対しても共通の値である
     ことを特徴とする請求項1に記載のユーザ装置。
  3.  前記所定のシグナリング値に対応付けられた前記最大送信電力値と、当該所定のシグナリング値に対応付けられていない最大送信電力値とを使用してセル選択を実施するセル選択制御部
     を更に備えることを特徴とする請求項1又は2に記載のユーザ装置。
  4.  基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、
     前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信する受信部と、
     ダウンリンクの所定品質を測定し、当該所定品質が所定閾値よりも大きい場合に、前記所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、
     を備えることを特徴とするユーザ装置。
  5.  基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置であって、
     前記基地局から、第1の最大送信電力値と第2の最大送信電力値とを受信する受信部と、
     ダウンリンクの所定品質を測定し、当該所定品質が所定閾値よりも大きい場合に、前記第2の最大送信電力値を適用して送信電力の制御を行い、前記所定品質が前記所定閾値よりも大きくない場合に、前記第1の最大送信電力値を適用して送信電力の制御を行う送信電力制御部と、
     を備えることを特徴とするユーザ装置。
  6.  基地局とユーザ装置とを備える移動通信システムにおける前記基地局であって、
     デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを含むシステム情報を作成する処理部と、
     前記所定のシグナリング値と前記最大送信電力値とを含む前記システム情報を送信する送信部と、を備え、
     前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値として予め定められた値である
     ことを特徴とする基地局。
  7.  基地局とユーザ装置とを備える移動通信システムにおける前記ユーザ装置が実行する通信方法であって、
     前記基地局から、デフォルトのシグナリング値以外のシグナリング値である所定のシグナリング値と、当該所定のシグナリング値に対応付けられた最大送信電力値とを受信するステップと、
     前記ユーザ装置が、前記所定のシグナリング値をサポートしている場合において、当該所定のシグナリング値に対応する前記最大送信電力値を適用して送信電力の制御を行うステップと、を備え、
     前記所定のシグナリング値は、前記移動通信システムにおいて使用される全てのバンドに対して共通の値として予め定められた値である
     ことを特徴とする通信方法。
PCT/JP2017/017093 2016-04-28 2017-04-28 ユーザ装置、基地局、及び通信方法 WO2017188453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17789734.5A EP3451751A4 (en) 2016-04-28 2017-04-28 USER EQUIPMENT, BASE STATION AND COMMUNICATION METHOD
JP2018514746A JPWO2017188453A1 (ja) 2016-04-28 2017-04-28 ユーザ装置、基地局、及び通信方法
US16/096,198 US20190124604A1 (en) 2016-04-28 2017-04-28 User equipment, base station, and communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-091553 2016-04-28
JP2016091553 2016-04-28
JP2017-017985 2017-02-02
JP2017017985 2017-02-02

Publications (1)

Publication Number Publication Date
WO2017188453A1 true WO2017188453A1 (ja) 2017-11-02

Family

ID=60160916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017093 WO2017188453A1 (ja) 2016-04-28 2017-04-28 ユーザ装置、基地局、及び通信方法

Country Status (4)

Country Link
US (1) US20190124604A1 (ja)
EP (1) EP3451751A4 (ja)
JP (1) JPWO2017188453A1 (ja)
WO (1) WO2017188453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245993A (zh) * 2019-08-15 2022-03-25 株式会社Ntt都科摩 终端以及终端操作控制方法
US11419061B2 (en) 2018-02-15 2022-08-16 Telefonaktiebolaget LM Ericsson (Publ) Stockholn Altitude dependent uplink power control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2848726T3 (es) * 2016-09-30 2021-08-11 Ericsson Telefon Ab L M Métodos y nodos para la selección de células en una red de comunicación inalámbrica
CN109151968B (zh) * 2017-06-16 2021-02-23 华为技术有限公司 一种功率确定方法、设备及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501427A (ja) * 2009-07-31 2013-01-10 クゥアルコム・インコーポレイテッド オプション・システム・パラメータ値のためのサポート
JP2014502128A (ja) * 2011-01-07 2014-01-23 インターデイジタル パテント ホールディングス インコーポレイテッド 追加の電力バックオフを処理するための方法、装置、およびシステム
US20140248889A1 (en) * 2011-09-30 2014-09-04 Samsung Electronics Co., Ltd. Management of spectrum emission requirements
WO2016056556A1 (ja) * 2014-10-07 2016-04-14 株式会社Nttドコモ ユーザ装置、移動通信システム、及び最大送信電力決定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101622224B1 (ko) * 2009-11-06 2016-05-18 엘지전자 주식회사 무선 통신 시스템에서 단말 송신 전력 제어 방법 및 이를 위한 장치
KR101697597B1 (ko) * 2010-04-01 2017-01-18 엘지전자 주식회사 송신 파워를 제어하는 방법 및 이를 위한 장치
US9148859B2 (en) * 2011-04-27 2015-09-29 Lg Electronics Inc. Method for transmitting IDC interference information in wireless communication system and device therefor
EP3091786B1 (en) * 2014-01-29 2021-07-28 Huawei Technologies Co., Ltd. Apparatus, method and system for cell selection
JP6041965B1 (ja) * 2015-08-27 2016-12-14 株式会社Nttドコモ ユーザ装置、移動通信システム、及びセル選択方法
US20170303181A1 (en) * 2016-04-13 2017-10-19 Qualcomm Incorporated Cell change management during voice call establishment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501427A (ja) * 2009-07-31 2013-01-10 クゥアルコム・インコーポレイテッド オプション・システム・パラメータ値のためのサポート
JP2014502128A (ja) * 2011-01-07 2014-01-23 インターデイジタル パテント ホールディングス インコーポレイテッド 追加の電力バックオフを処理するための方法、装置、およびシステム
US20140248889A1 (en) * 2011-09-30 2014-09-04 Samsung Electronics Co., Ltd. Management of spectrum emission requirements
WO2016056556A1 (ja) * 2014-10-07 2016-04-14 株式会社Nttドコモ ユーザ装置、移動通信システム、及び最大送信電力決定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA) ; User Equipment (UE) procedures in idle mode(Release 10", 3GPP TS 36.304 V10.9.0, pages 17 - 18, XP051294521 *
See also references of EP3451751A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11419061B2 (en) 2018-02-15 2022-08-16 Telefonaktiebolaget LM Ericsson (Publ) Stockholn Altitude dependent uplink power control
CN114245993A (zh) * 2019-08-15 2022-03-25 株式会社Ntt都科摩 终端以及终端操作控制方法
CN114245993B (zh) * 2019-08-15 2024-04-19 株式会社Ntt都科摩 终端、基站、系统以及通信方法

Also Published As

Publication number Publication date
US20190124604A1 (en) 2019-04-25
EP3451751A1 (en) 2019-03-06
EP3451751A4 (en) 2019-12-04
JPWO2017188453A1 (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
KR102301902B1 (ko) 유저장치
CN107950059B (zh) 用户装置、移动通信系统、和小区选择方法
WO2019031212A1 (ja) ユーザ装置及び基地局装置
WO2017188453A1 (ja) ユーザ装置、基地局、及び通信方法
CN110235462B (zh) 用户装置及测量报告发送方法
CN109804677B (zh) 用户装置以及基站
WO2018037837A1 (ja) ユーザ装置及び送信方法
WO2018203402A1 (ja) ユーザ装置及び基地局
JP6337134B2 (ja) ユーザ装置、移動通信システム、及び最大送信電力決定方法
WO2018142978A1 (ja) 基地局及び同期信号送信方法
WO2019062307A1 (zh) 小区选择或接入方法、用户终端、维护方法和基站
WO2019154061A1 (zh) 无线通信方法以及相应的基站、用户终端
JP2018026629A (ja) ユーザ装置及び上り信号送信方法
JPWO2018203403A1 (ja) ユーザ装置
WO2019159328A1 (ja) ユーザ装置及び無線通信方法
US20190281533A1 (en) Wireless terminal device and communications method
EP3691329B1 (en) Base station and measurement capability determination method
WO2019064604A1 (ja) 基地局及びユーザ装置
JPWO2016072430A1 (ja) ユーザ装置、移動通信システム、及びシグナリング値適用方法
WO2017183245A1 (ja) ユーザ装置
WO2021005759A1 (ja) 端末及び通信方法
JP2018038016A (ja) 基地局及び測定指示方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789734

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017789734

Country of ref document: EP

Effective date: 20181128

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789734

Country of ref document: EP

Kind code of ref document: A1