WO2017188379A1 - Endmill - Google Patents

Endmill Download PDF

Info

Publication number
WO2017188379A1
WO2017188379A1 PCT/JP2017/016732 JP2017016732W WO2017188379A1 WO 2017188379 A1 WO2017188379 A1 WO 2017188379A1 JP 2017016732 W JP2017016732 W JP 2017016732W WO 2017188379 A1 WO2017188379 A1 WO 2017188379A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
blade
end mill
angle
blade length
Prior art date
Application number
PCT/JP2017/016732
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 教和
石黒 力也
真靖 細川
光太郎 坂口
Original Assignee
国立大学法人名古屋大学
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 三菱マテリアル株式会社 filed Critical 国立大学法人名古屋大学
Publication of WO2017188379A1 publication Critical patent/WO2017188379A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft

Definitions

  • the present invention relates to an end mill that can effectively suppress chatter vibration over the entire blade length region.
  • an end mill as shown in Patent Document 1 below is known.
  • the end mill is formed on the outer periphery of the end mill main body having an axial shape and the end mill main body, and toward the side opposite to the tool rotation direction in the circumferential direction around the axis from the tip end in the axial direction of the end mill main body toward the base end side.
  • the end mill of Patent Document 1 is a so-called unequal lead end mill in which the torsion angles of the outer peripheral blades are different from each other.
  • Such an unequal lead end mill can suppress chatter vibration by suppressing self-excited vibration generated during cutting.
  • chatter vibration can be suppressed regardless of where the cutting process is performed in the cutting edge region (full cutting length) of the outer peripheral cutting edge (that is, regardless of the amount of cutting in the axial direction).
  • chatter vibration frequency cannot be known in advance and chatter vibration can be suppressed even in a state where chatter vibration can occur at an arbitrary frequency within a predetermined frequency band. There was room for improvement.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an end mill that can remarkably suppress chatter vibration regardless of the amount of cut.
  • the present invention proposes the following means. That is, the present invention provides an end mill body having an axial shape, and chip discharge formed on the outer periphery of the end mill body and extending in the circumferential direction around the axis as it goes from the distal end in the axial direction of the end mill body toward the base end side.
  • An end mill comprising a groove, a wall surface facing the tool rotation direction in the circumferential direction in the chip discharge groove, and an outer peripheral blade formed on a cross ridge line with the outer peripheral surface of the end mill body, wherein the chip discharge Four grooves are formed in the circumferential direction so as to be spaced apart from each other, and the four outer peripheral blades that are spaced apart from each other in the circumferential direction are twisted between the first outer peripheral blade and the first outer peripheral blade.
  • Two second outer peripheral blades having different angles are included, and the first outer peripheral blades and the second outer peripheral blades are alternately arranged in the circumferential direction, and the outer peripheral blades
  • the two pitch angles include two first pitch angles and two second pitch angles different from the first pitch angle, and the two first pitch angles are Are arranged adjacent to each other in the circumferential direction, and the two second pitch angles are arranged adjacent to each other in the circumferential direction.
  • the end mill of the present invention includes four outer peripheral blades arranged on the outer periphery of the end mill main body at intervals in the circumferential direction. These four outer peripheral blades each include two first outer peripheral blades and two second outer peripheral blades having different torsion angles, and the first outer peripheral blade and the second outer peripheral blade.
  • the outer peripheral blades are alternately arranged in the circumferential direction. That is, the end mill of the present invention is not an equal lead end mill in which the twist angles of the outer peripheral blades are all the same, but an unequal lead end mill having a plurality of types of twist angles.
  • four pitch angles arranged around the axis of the end mill main body includes two first pitch angles and two second pitch angles having different angles.
  • the two first pitch angles are adjacently arranged in the circumferential direction, and the two second pitch angles are also adjacently arranged in the circumferential direction. That is, the end mill of the present invention is not an equal pitch end mill in which the pitch angles of the outer peripheral blades are all the same, but is also an unequal pitch end mill having a plurality of types of pitch angles.
  • FIG. 5 schematically showing the arrangement of the outer peripheral blades of the present invention, the cross section of the end mill main body at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2 (in the example shown, the center (1 / 2))), the pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG.
  • the first pitch angle A, the first pitch angle A, the second pitch angle B, and the second pitch angle B are arranged in this order.
  • the outer peripheral blades alternate in the order of the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2 in the order opposite to the tool rotation direction T. Accordingly, the torsion angle of the outer peripheral blade is also directed toward the side opposite to the tool rotation direction T, the torsion angle ⁇ 1 of the first outer peripheral blade 1, the torsion angle ⁇ 2 of the second outer peripheral blade 2, and the first The twist angle ⁇ 1 of the outer peripheral blade 1 and the twist angle ⁇ 2 of the second outer peripheral blade 2 are alternately arranged in this order.
  • one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are One second pitch angle B positioned in the tool rotation direction T is the difference between the angles (B ⁇ A absolute value) over the entire blade length ap region.
  • the first pitch angle A on one side (left side / tool rotation direction T side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap.
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the blade length ap region.
  • the second pitch angle B on one side (left side / tool rotation direction T side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the blade length
  • the pitch angle ⁇ 3 is set at the tip position (ap0) of the ap region.
  • at the tip position of the blade length ap are equal to each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the first pitch angle A and the second pitch angle B is constant over the entire blade length ap region.
  • the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B is constant in the difference
  • the first pitch angle A on the other side (right side / opposite to the tool rotation direction T) at a predetermined position (ap1 / 2) in the blade length ap region is directed toward the tip side of the blade length ap. Accordingly, the pitch angle ⁇ 2 is set at the tip position (ap0) of the blade length ap region. Further, the second pitch angle B on the other side (right side / opposite to the tool rotation direction T) at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap.
  • the pitch angle ⁇ 4 is set at the tip position (ap0) of the blade length ap region.
  • at the predetermined position of the blade length ap is equal to the angle difference
  • the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the other first pitch angle A and the other second pitch angle B is constant over the entire blade length ap region.
  • , and the other first pitch angle A and the other second pitch angle B is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region. Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference
  • FIG. 6 which shows the arrangement
  • the first pitch angle A, the second pitch angle B, the second pitch angle B, and the first pitch angle A are arranged in this order.
  • the outer peripheral blades alternate in the order of the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2 in the order opposite to the tool rotation direction T. Accordingly, the torsion angle of the outer peripheral blade is also directed toward the side opposite to the tool rotation direction T, the torsion angle ⁇ 1 of the first outer peripheral blade 1, the torsion angle ⁇ 2 of the second outer peripheral blade 2, and the first The twist angle ⁇ 1 of the outer peripheral blade 1 and the twist angle ⁇ 2 of the second outer peripheral blade 2 are alternately arranged in this order.
  • one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are The difference between the other second pitch angles B located on the opposite side of the tool rotation direction T and the angle
  • the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • the second (right) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 3.
  • at the tip position of the blade length ap are equal to each other.
  • the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side
  • one second pitch angle B positioned in the tool rotation direction T is constant in the difference
  • the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the blade length ap is increased.
  • the pitch angle ⁇ 2 is set at the tip position (ap0) of the region.
  • one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 4.
  • at the predetermined position of the blade length ap is equal to the angle difference
  • the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the other first pitch angle A and one second pitch angle B is constant over the entire blade length ap region.
  • is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region. Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference
  • each of the difference of the angle corresponding to the frequency It came to the knowledge that it was effective to set it as the arrangement
  • the “difference in angle corresponding to a specific frequency” can be obtained based on vibration calculation theory or can be obtained from an experimental value (experience value).
  • the “specific frequency” specifically indicates a frequency band within a predetermined range, for example, a range of 300 to 900 Hz.
  • the present invention employs a configuration that maintains the above-described angle difference that can cancel a specific frequency over the entire blade length ap region.
  • the specific frequency to be canceled can be stably suppressed.
  • the frequency of chatter vibration cannot be known in advance, and conventionally, even in a state where chatter vibration can occur at an arbitrary frequency within a predetermined frequency band, the end mill of the present invention can be used. According to this, chatter vibration can be stably suppressed over the entire predetermined frequency band.
  • FIG. 7 a comparative example (conventional end mill) shown in FIG. 7 will be described.
  • the four pitch angles A and B are directed to the opposite side of the tool rotation direction T, and the first pitch angle A, the second pitch angle B, and the first The pitch angle A and the second pitch angle B are alternately arranged in this order.
  • the two first pitch angles A and A one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B in the tool rotation direction T.
  • One of the second pitch angles B that is positioned is an angle difference
  • the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 2.
  • at the tip position of the blade length ap are different from each other.
  • the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions. That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side is changed over the entire blade length ap region.
  • the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B is an angle at which a specific frequency can be suppressed only at a predetermined position (ap1 / 2) in the blade length ap region.
  • the difference is
  • the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • the second (right) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 2.
  • at the tip position of the blade length ap are different from each other.
  • the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions. That is, the difference between the other first pitch angle A and the other second pitch angle B is changed over the entire blade length ap region.
  • left-side first pitch angle A and the other (right-side) second pitch angle B is similar to the above. It is varied over the entire long ap region. Also, with respect to the other (right side) first pitch angle A and the one (left side) second pitch angle B, the difference between the angles
  • the end mill effectively suppresses the occurrence of self-excited vibration for the specific frequency not only at a predetermined position of the blade length ap region but also over the entire region of the blade length ap region. Can do it. That is, chatter vibration can be stably suppressed regardless of the amount of cut in the axial direction of the end mill, and the manufacture of the end mill is not complicated.
  • the end mill according to the present invention makes it easy to suppress not only the specific frequency but also the occurrence of self-excited vibration when the frequency changes because the outer peripheral blades are unequal leads.
  • the effect of suppressing a specific frequency is obtained, and the effect of suppressing a frequency other than the specific frequency is also achieved. Therefore, the effect of suppressing chatter vibration becomes particularly remarkable.
  • the predetermined position in the blade length region is a portion other than the tip portion in the blade length region.
  • the angles of the pitch angles ⁇ 1 to ⁇ 4 can be made different from each other. That is, the tip portion of the edge length region of the outer peripheral blade is a position that starts to be cut into the work material, and is a place that is frequently used for cutting, and when the pitch angles are all different in the tip portion, the present invention
  • the above-described effect of suppressing chatter vibration is more likely to be particularly remarkable, which is preferable.
  • a predetermined position in the blade length region is a central portion in the blade length region.
  • a predetermined length ap region of the outer peripheral blade including the two first pitch angles A and A and the two second pitch angles B and B is predetermined. Since the position is the central portion (ap1 / 2) of the blade length ap region, the width of the chip discharge groove adjacent to the outer peripheral blade is reduced at the distal end and the base end of the blade length ap region of the outer peripheral blade. It is suppressed that it passes too much. Therefore, according to the said structure, chip
  • chatter vibration can be remarkably suppressed regardless of the cutting amount or the like.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2 (a cross-sectional view of the end mill). It is a figure which shows typically the arrangement
  • FIG. 1 A graph showing the relationship between the amount of cut in the axial direction (vertical axis), the frequency (horizontal axis), and the number of regenerations (regenerative vibration) during cutting using the end mill of FIG. 1, (b) of the comparative example It is a graph showing the relationship between the amount of cuts in the axial direction (vertical axis), the frequency (horizontal axis), and the number of reproductions (reproduction vibration) during cutting using an end mill.
  • a square end mill 20 which is an example of an end mill according to an embodiment of the present invention will be described with reference to the drawings.
  • this invention is not limited to the square end mill 20,
  • it applies to various end mills, such as a radius end mill and a ball end mill (a taper ball end mill, a long neck end mill, a taper neck end mill etc.), etc. Is possible.
  • the square end mill 20 of the present embodiment has a shaft shape and includes an end mill body 3 made of, for example, cemented carbide or high-speed tool steel.
  • the end mill main body 3 has a substantially columnar shape, and a blade portion 3a is formed at least at a tip portion along the axis O direction of the end mill main body 3, and a portion other than the blade portion 3a is a shank portion 3b.
  • a cylindrical shank portion 3b in the end mill body 3 is held by a main shaft or the like of a machine tool, and is rotated in a tool rotation direction (end mill rotation direction) T around an axis O, thereby a metal material or the like. It is used for cutting work (rolling work) of work material consisting of Further, along with the above rotation, the cutting in the direction of the axis O and the feeding in the direction crossing the axis O are given, and the side surface processing, shoulder processing, plunge (longitudinal feeding) processing on the work material by the blade 3a Various processing such as grooving is performed.
  • the coolant is supplied toward the blade portion 3a of the square end mill 20 and the work surface (work part) of the work material.
  • the coolant for example, an oily or water-soluble cutting fluid or compressed air is used.
  • the coolant is supplied from the main spindle of the machine tool to the blade portion 3a and the machining surface through the inside of the end mill body 3, or is supplied to the blade portion 3a and the machining surface from the outside of the end mill body 3.
  • the direction from the shank portion 3b to the blade portion 3a is referred to as the distal end side, and the direction from the blade portion 3a to the shank portion 3b. It is called the proximal side.
  • a direction perpendicular to the axis O is referred to as a radial direction
  • a direction approaching the axis O in the radial direction is referred to as a radial inner side
  • a direction away from the axis O is referred to as a radial outer side.
  • the direction that circulates around the axis O is referred to as the circumferential direction.
  • the direction in which the end mill body 3 is rotated at the time of cutting is referred to as the tool rotation direction T, and the opposite direction is the tool rotation direction.
  • the side opposite to T (counter tool rotating direction) is referred to.
  • Chip discharge grooves 4 are formed on the outer periphery of the blade portion 3a at intervals in the circumferential direction. These chip discharge grooves 4 are arranged at unequal intervals in the circumferential direction. Specifically, among the four chip discharge grooves 4, the two chip discharge grooves 4 are arranged at equal intervals in the circumferential direction, and the remaining two chip discharge grooves 4 are arranged at the equal intervals. Are arranged at equal intervals in the circumferential direction, and the chip discharge grooves 4 are arranged at unequal intervals in the end mill as a whole.
  • the chip discharge groove 4 is twisted and extended in the circumferential direction along the axis O as it goes from the distal end along the axis O direction of the end mill body 3 toward the base end side.
  • the chip discharge groove 4 of the present embodiment opens at the distal end surface of the end mill body 3 and gradually twists and extends toward the side opposite to the tool rotation direction T from the distal end surface toward the proximal end side.
  • the chip discharge groove 4 is rounded up to the outer periphery of the end mill body 3 at the end portion on the base end side of the blade portion 3a.
  • Each chip discharge groove 4 has a wall surface facing the tool rotation direction T, and a portion of the wall surface adjacent to the cutting edge is a rake surface. Specifically, of the rake face of the cutting edge, the portions adjacent to the outer peripheral edges 1 and 2 and the bottom edge 9 described later of the cutting edge are the rake face 4a and the bottom edge 9 of the outer peripheral edges 1 and 2, respectively. The rake face 4b.
  • a gash 7 is formed at the tip of the chip discharge groove 4 so that the tip is cut out in a groove shape in the radial direction.
  • the gash 7 of the present embodiment is formed in a groove shape extending along the radial direction at the tip end portion of the chip discharge groove 4, and the end portion on the radially inner side is at a position close to the axis O. Is arranged.
  • four gashes 7 are formed corresponding to the four chip discharge grooves 4, and as shown in FIG. 3, a pair of gashes adjacent to each other in the circumferential direction among these gashes 7. 7, that is, a set of gashes 7 communicate with each other at the radially inner end of each gasche 7.
  • the two bottom blades 9 (short blades) cut out by the gash 7 (the set) have two blades 9 (long blades) that are not cut out by the gash 7.
  • the blade length is shorter than the blade length.
  • the blade portion 3a has four cutting edges spaced from each other in the circumferential direction.
  • Each of the cutting blades has an outer peripheral blade 1 or 2 and a bottom blade 9, which are connected to form one cutting blade having a substantially L shape. That is, the square end mill 20 of the present embodiment has a four-blade blade portion 3a.
  • the number of cutting edges (four) corresponds to the number of chip discharge grooves 4 (four).
  • Outer peripheral blades 1 and 2 are formed on the intersecting ridge line between the wall surface facing the tool rotation direction T in the chip discharge groove 4 and the outer peripheral surface of the end mill body 3.
  • the outer peripheral blades 1 and 2 extend in a spiral shape (spiral shape) along the outer peripheral edge of the wall surface of the chip discharge groove 4.
  • the outer peripheral blades 1 and 2 include a first outer peripheral blade 1 and a second outer peripheral blade 2 having a twist angle different from that of the first outer peripheral blade 1.
  • the first outer peripheral blade 1 and the second outer peripheral blade 2 will be described later separately.
  • the outer peripheral blades 1 and 2 are the rake face 4a located at the radially outer end of the wall surface of the chip discharge groove 4 facing the tool rotation direction T, and the chip discharge groove 4 of the outer peripheral surface of the blade part 3a. Are formed on the intersecting ridge line of the outer peripheral flank 5 adjacent to the opposite side to the tool rotation direction T. On the outer peripheral surface of the blade portion 3a, outer peripheral flank surfaces 5 are formed between the chip discharge grooves 4 adjacent in the circumferential direction.
  • the width of the outer peripheral flank 5 (the length in the direction perpendicular to the outer peripheral blades 1 and 2) is, for example, substantially constant along the extending direction of the outer peripheral blades 1 and 2.
  • a number (four) of outer peripheral blades 1 and 2 corresponding to the number (four) of the chip discharge grooves 4 are arranged at intervals in the circumferential direction.
  • Each of the outer peripheral blades 1 and 2 is a lead equal to the chip discharge groove 4 adjacent to the tool rotation direction T, and gradually twists toward the opposite side of the tool rotation direction T from the distal end of the end mill body 3 toward the proximal end side. It extends.
  • a rotation locus formed by rotating the outer peripheral blades 1 and 2 around the axis O is a single cylindrical surface centered on the axis O.
  • FIG. 2 is a side view of the square end mill 20 shown in FIG. 2 and a diagram schematically showing the arrangement of the outer peripheral blades 1 and 2 shown in FIG.
  • the four outer peripheral blades 1 and 2 formed on the blade portion 3a of the main body 3 include two first outer peripheral blades 1 and two second outer peripheral blades 2 having different twist angles. Further, the first outer peripheral blades 1 and the second outer peripheral blades 2 are alternately arranged in the circumferential direction.
  • the symbol ⁇ 1 represents the twist angle of the first outer peripheral blade 1
  • the symbol ⁇ 2 represents the twist angle of the second outer peripheral blade 2.
  • the twist angle ⁇ 2 of the second outer peripheral blade 2 is made larger than the twist angle ⁇ 1 of the first outer peripheral blade 1.
  • the present invention is not limited to this, and the twist angle ⁇ 2 may be smaller than the twist angle ⁇ 1.
  • the difference in angle between the twist angle ⁇ 1 of the first outer peripheral blade 1 and the twist angle ⁇ 2 of the second outer peripheral blade 2 (the absolute value of ⁇ 2- ⁇ 1; in the following description, it is simply expressed as
  • the twist angle ⁇ 1 of the first outer peripheral blade 1 is constant over the entire region of the blade length ap region of the outer peripheral blade 1
  • the twist angle ⁇ 2 of the second outer peripheral blade 2 is The outer peripheral blade 2 is constant over the entire region of the blade length ap region.
  • the formation region of the outer peripheral blades 1 and 2 along the axis O direction of the end mill body 3 is referred to as a blade length region (this may be referred to as a blade length ap region).
  • the “twist angle” referred to in the present embodiment refers to the axis O and the outer peripheral blades 1 and 2 (twist) in the side view of the end mill body 3 shown in FIG. 2 (when the end mill body 3 is viewed from the radial direction).
  • an acute angle is indicated.
  • the outer peripheral blades 1 and 2 are gradually extended toward the side opposite to the tool rotation direction T from the distal end toward the proximal end side along the axis O direction.
  • the twist angles 1 and 2 are positive angles (positive angles).
  • four pitch angles A arranged in the circumferential direction in the end mill cross-sectional view at a predetermined position (ap1 / 2 in the illustrated example) in the blade length ap region of the outer peripheral blades 1 and 2 B includes two first pitch angles A and two second pitch angles B different from the first pitch angle A.
  • the two first pitch angles A and A are adjacently arranged in the circumferential direction
  • the two second pitch angles B and B are adjacently arranged in the circumferential direction.
  • the four pitch angles A and B are the first pitch angle A, the first pitch angle A, the second pitch angle B, and the second pitch around the axis O.
  • the pitch angles B are arranged in this order.
  • the second pitch angle B is made larger than the first pitch angle A.
  • the present invention is not limited to this, and the pitch angle B may be smaller than the pitch angle A.
  • the difference in angle between the first pitch angle A and the second pitch angle B (which is an absolute value of BA, and may be simply expressed as
  • the pitch angles A, A, B, and B are arranged in this order along the circumferential direction (the horizontal axis direction in FIG. 5), Only at “predetermined positions”. And the said predetermined position is made into parts other than the front-end
  • a bottom blade (tip blade) 9 is formed on the intersecting ridge line between the wall surface facing the tool rotation direction T in the chip discharge groove 4 and the tip surface of the end mill body 3. .
  • the bottom blade 9 extends linearly along the tip edge of the wall surface of the chip discharge groove 4.
  • the bottom blade 9 includes a rake face 4b located at an end portion on the tip end side and a tip end face of the blade portion 3a among the wall surfaces facing the tool rotation direction T of the chip discharge groove 4 (gash 7).
  • the chip discharge groove 4 is formed at the intersecting ridge line with the tip flank 8 adjacent to the opposite side to the tool rotation direction T.
  • a tip flank 8 is formed between the chip discharge grooves 4 adjacent to each other in the circumferential direction on the tip surface of the blade portion 3a.
  • the width of the tip flank 8 (the length in the direction perpendicular to the bottom blade 9) is, for example, substantially constant along the extending direction of the bottom blade 9.
  • a number (four) of bottom blades 9 corresponding to the number (four) of the chip discharge grooves 4 are arranged at intervals in the circumferential direction.
  • the bottom blade 9 extends along the radial direction.
  • the four bottom blades 9 include a pair of long blades (bottom blade 9 not cut out by the gash 7) and a pair of short blades (bottom blade 9 in which the radially inner end is cut off by the gash 7). And are included.
  • Inner ends (end edges on the inner side in the radial direction) of the pair of long blades are arranged close to the axis O.
  • Gash 7 is disposed between the inner ends of the pair of short blades and the axis O.
  • the bottom blade 9 gradually extends slightly toward the base end side from the outer end (radially outer edge) toward the radially inner side. . Therefore, the rotation locus formed by the bottom blade 9 rotating around the axis O is a conical surface (tapered surface) that gradually inclines toward the base end side from the outer end of the bottom blade 9 toward the radially inner side. Become.
  • the bottom blade 9 may extend so as to be included in a plane perpendicular to the axis O. In this case, the rotation locus of the bottom blade 9 is a plane perpendicular to the axis O.
  • the outer end in the radial direction of the bottom blade 9 is connected to the tip of the outer peripheral blade 1 or 2 in the direction of the axis O.
  • FIG. 6 is a diagram schematically showing the arrangement of the outer peripheral blades 1 and 2 (a diagram showing the outer periphery of the end mill developed in a flat shape).
  • FIG. 5 described above is different from the outer peripheral blades 1 and 2 and the pitch angle A, FIG.
  • the arrangement (positional relationship) of B is different.
  • FIG. 6 a pair of adjacent outer peripheral blades 2 and 1 that form the pitch angle ⁇ 2 (and pitch angle A) shown in FIG. 5 and an adjacent outer peripheral blade 2 that forms the pitch angle ⁇ 4 (and pitch angle B),
  • the group (1) is arranged so as to be interchanged with each other.
  • the position of the first outer peripheral blade 1 and the position of the second outer peripheral blade 2 are replaced with each other and arranged as shown in FIG.
  • the end mill is configured as described above.
  • four outer peripheral blades 1, 2 face the opposite side to the tool rotation direction T, and the first outer peripheral blade 1, the second outer peripheral blade 2, and the first outer peripheral blade 1.
  • the second outer peripheral blades 2 are arranged in this order.
  • the four pitch angles A and B are directed to the side opposite to the tool rotation direction T.
  • the first pitch angle A, the second pitch angle B, the second pitch angle B, and the first pitch angle A are arranged in this order.
  • the first outer peripheral blades 1 and the second outer peripheral blades 2 are alternately arranged in the circumferential direction.
  • the two first pitch angles A and A among the four pitch angles A and B are The two second pitch angles B and B are adjacently arranged in the circumferential direction.
  • the square end mill (end mill) 20 of the present embodiment described above includes four outer peripheral blades 1 and 2 arranged on the outer periphery of the end mill body 3 at intervals in the circumferential direction. These four outer peripheral blades 1 and 2 include two first outer peripheral blades 1 and two second outer peripheral blades 2 having different torsion angles ⁇ 1 and ⁇ 2 from each other. The one outer peripheral blade 1 and the second outer peripheral blade 2 are alternately arranged in the circumferential direction. That is, the square end mill 20 of the present embodiment is not an equal lead end mill in which the outer blades have the same twist angle, but an unequal lead end mill having a plurality of types of twist angles ⁇ 1 and ⁇ 2.
  • the end mill body 3 at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2, four pitch angles arranged around the axis O of the end mill body 3 (a pair of adjacent ones in the end mill cross-sectional view).
  • the central angles A and B formed between a pair of imaginary straight lines connecting the outer peripheral blades 1 and 2 and the axis O are the first pitch angle A and the second pitch angle that are different in magnitude from each other.
  • B is included two by two.
  • the two first pitch angles A and A are adjacently arranged in the circumferential direction, and the two second pitch angles B and B are also adjacently arranged in the circumferential direction. That is, the square end mill 20 of this embodiment is not an equal pitch end mill in which the pitch angles of the outer peripheral blades are all the same, but is also an unequal pitch end mill having a plurality of types of pitch angles A and B.
  • the four outer peripheral blades 1 and 2 are arranged with special technical features that are not present.
  • the arrangement of the outer peripheral blades 1 and 2 and the effect thereof according to this embodiment will be described below with reference to FIGS. 5 and 6.
  • FIG. 5 schematically showing the arrangement of the outer peripheral blades of the present embodiment
  • the cross section of the end mill body 3 at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2 (in the illustrated example, the center of the blade length ap ( Pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG. 5 are opposite to the tool rotation direction T.
  • the first pitch angle A, the first pitch angle A, the second pitch angle B, and the second pitch angle B are arranged in this order.
  • the outer peripheral blades 1 and 2 are directed to the side opposite to the tool rotation direction T, and the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2.
  • the torsion angles ⁇ 1 and ⁇ 2 of the outer peripheral blades are also turned toward the side opposite to the tool rotation direction T, and the torsion angle ⁇ 1 of the first outer peripheral blade 1 and the second outer peripheral blade 2
  • the twist angle ⁇ 2, the twist angle ⁇ 1 of the first outer peripheral blade 1, and the twist angle ⁇ 2 of the second outer peripheral blade 2 are alternately arranged in this order.
  • one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are With respect to one second pitch angle B located in the tool rotation direction T, the difference in angle
  • the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • one (left side) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 3.
  • at the tip position of the blade length ap are equal to each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the first pitch angle A and the second pitch angle B is constant over the entire blade length ap region.
  • the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B is constant in the difference
  • the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap.
  • the pitch angle ⁇ 2 is set at the tip position (ap0) of the region.
  • the second (right) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 4.
  • at the predetermined position of the blade length ap is equal to the angle difference
  • the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the other first pitch angle A and the other second pitch angle B is constant over the entire blade length ap region.
  • , and the other first pitch angle A and the other second pitch angle B is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region. Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference
  • FIG. 6 which shows typically the arrangement
  • the pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG.
  • the first pitch angle A, the second pitch angle B, the second pitch angle B, and the first pitch angle A are arranged in this order.
  • outer peripheral blades 1 and 2 are directed to the side opposite to the tool rotation direction T, and the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2.
  • the torsion angles ⁇ 1 and ⁇ 2 of the outer peripheral blades are also turned toward the side opposite to the tool rotation direction T, and the torsion angle ⁇ 1 of the first outer peripheral blade 1 and the second outer peripheral blade 2
  • the twist angle ⁇ 2, the twist angle ⁇ 1 of the first outer peripheral blade 1, and the twist angle ⁇ 2 of the second outer peripheral blade 2 are alternately arranged in this order.
  • one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are The difference between the other second pitch angles B located on the opposite side of the tool rotation direction T and the angle
  • the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • the second (right) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 3.
  • at the tip position of the blade length ap are equal to each other.
  • the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side
  • one second pitch angle B positioned in the tool rotation direction T is constant in the difference
  • the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the blade length ap is increased.
  • the pitch angle ⁇ 2 is set at the tip position (ap0) of the region.
  • one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 4.
  • at the predetermined position of the blade length ap is equal to the angle difference
  • the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions. That is, the difference between the other first pitch angle A and one second pitch angle B is constant over the entire blade length ap region.
  • is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region. Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference
  • the inventor of the present invention in order to suppress a specific frequency that generates chatter vibration at the time of cutting, the difference in angle
  • the “difference in angle corresponding to a specific frequency” can be obtained based on vibration calculation theory or can be obtained from an experimental value (experience value).
  • the “specific frequency” specifically indicates a frequency band within a predetermined range, for example, a range of 300 to 900 Hz.
  • the present embodiment employs a configuration that maintains the above-described angle difference
  • BA angle difference
  • BA constant over the entire blade length ap region
  • the specific frequency to be canceled can be stably suppressed.
  • the frequency of chatter vibration cannot be known in advance, and conventionally, even in a state where chatter vibration can occur at an arbitrary frequency within a predetermined frequency band, the end mill of this embodiment can be used. Accordingly, chatter vibration can be stably suppressed over the entire predetermined frequency band.
  • the cutting amount mm vertical axis in the direction of the axis O
  • the frequency Hz horizontal axis
  • the reproduction number RF displayed by shading, which will be described in detail later. From the calculation result (analysis result) representing the relationship, according to the square end mill 20 of the present embodiment, for example, over a wide range of frequencies of 450 to 800 Hz, regardless of the depth of cut of 0 to 25 mm, the number of reproductions RF is all less than 0.3. It was confirmed that the occurrence of chatter vibration was significantly suppressed.
  • the rotation speed of the main shaft was 2500 rpm.
  • the reproduction number RF will be described.
  • the sum of complex vectors that can be expressed using the phase delay ⁇ j, l of the reproduction vibration at each cutting edge is the reproduction number RF, and it can be considered that the reproduction effect is small when the absolute value
  • the following formula (1) shows the definition formula of the reproduction number RF.
  • ⁇ j, l means a phase delay in the l-th minute cutting edge obtained by dividing N z in the axial direction in the j-th cutting edge in the N t -blade tool.
  • Phase delay can be expressed by the following formula (2) using the frequency f c and the main shaft rotational speed n of the vibration chatter and pitch angle ⁇ ⁇ j, l in the same micro-cutting edge.
  • FIG. 7 a comparative example (conventional square end mill) shown in FIG. 7 will be described.
  • the four pitch angles A and B are directed to the opposite side of the tool rotation direction T, and the first pitch angle A, the second pitch angle B, and the first The pitch angle A and the second pitch angle B are alternately arranged in this order.
  • the two first pitch angles A and A one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B in the tool rotation direction T.
  • One of the second pitch angles B that is positioned is an angle difference
  • the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 2.
  • at the tip position of the blade length ap are different from each other.
  • the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions. That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side is changed over the entire blade length ap region.
  • the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B is an angle at which a specific frequency can be suppressed only at a predetermined position (ap1 / 2) in the blade length ap region.
  • the difference is
  • the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap
  • the pitch angle ⁇ 1 is set at the tip position (ap0) of the region.
  • the second (right) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is ⁇ 2.
  • at the tip position of the blade length ap are different from each other.
  • the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions. That is, the difference between the other first pitch angle A and the other second pitch angle B is changed over the entire blade length ap region.
  • left-side first pitch angle A and the other (right-side) second pitch angle B is similar to the above. It is varied over the entire long ap region. Also, with respect to the other (right side) first pitch angle A and the one (left side) second pitch angle B, the difference between the angles
  • (Analysis result) confirms that, in the square end mill of the comparative example, chatter vibration occurs over almost the entire frequency range of 300 to 900 Hz when the cutting depth is 8 mm or less and the reproduction frequency RF exceeds 0.3. It was.
  • the rotation speed of the main shaft was 2500 rpm.
  • this end mill is effective not only in the predetermined position of the blade length ap region but also in the generation of self-excited vibration for the specific frequency over the entire region of the blade length ap region. Can be suppressed. That is, chatter vibration can be stably suppressed regardless of the amount of cut in the direction of the axis O of the square end mill 20, and the manufacture of the end mill is not complicated.
  • the following effects can also be obtained.
  • BB ⁇ ⁇ 0 that is, unequal division
  • BB ⁇ ⁇ 0 that is, unequal division
  • BB ⁇ ⁇ 0 that is, unequal division
  • BB ⁇ ⁇ 0 that is, unequal division
  • the square end mill 20 of the present embodiment makes it easy to suppress not only the specific frequency but also the occurrence of self-excited vibration when the frequency changes because the outer peripheral blades 1 and 2 are unequal leads. Has been. In other words, the effect of suppressing a specific frequency is obtained, and the effect of suppressing a frequency other than the specific frequency is also achieved. Therefore, the effect of suppressing chatter vibration becomes particularly remarkable.
  • the predetermined position in the blade length ap region is a portion other than the tip portion in the blade length ap region, so the following effects are obtained. That is, in this case, at the tip of the blade length ap region, as shown in FIGS. 5 and 6, for example, the pitch angles ⁇ 1 to ⁇ 4 can all be made different from each other. That is, the tip part of the edge length ap region of the outer peripheral blades 1 and 2 is a position where the cutting starts in the work material and is frequently used for cutting, and the pitch angles ⁇ 1 to ⁇ 4 are all at the tip part. If they are different from each other, the effect of suppressing the chatter vibration of the present embodiment is more likely to become particularly remarkable, which is preferable.
  • the predetermined position is made into the center part in this blade length ap area
  • the first pitch angle A and the second pitch angle B in the end mill cross-sectional view at a predetermined position in the blade length ap region are as follows.
  • the pitch angles A, A, B, and B are arranged in this order along the circumferential direction, and this predetermined position is a portion other than the tip portion in the blade length ap region, specifically the central portion (ap1 / 2). It was.
  • the present invention is not limited to this, and the predetermined position may be a portion other than the central portion in the blade length ap region, for example, a tip portion. However, it is preferable that the predetermined position is a portion other than the tip portion in the blade length ap region or a central portion, so that the operational effects described in the above-described embodiment can be obtained.
  • the chip discharge groove 4 gradually twists and extends toward the side opposite to the tool rotation direction T along the axis O direction along the axis O direction on the outer periphery of the end mill body 3. Yes. Accordingly, the outer peripheral blades 1 and 2 gradually twist and extend toward the opposite side of the tool rotation direction T along the axis O direction from the distal end toward the proximal end along the outer periphery of the end mill body 3. . That is, the twist angle of the outer peripheral blades 1 and 2 is a positive angle (positive angle).
  • the present invention is not limited to this, and the chip discharge groove 4 is gradually twisted in the tool rotation direction T along the axis O direction along the axis O direction on the outer periphery of the end mill body 3. It may extend. Further, along with this, the outer peripheral blades 1 and 2 may be gradually twisted and extended in the tool rotation direction T along the axis O direction on the outer periphery of the end mill body 3 from the distal end toward the proximal end side. That is, the twist angle of the outer peripheral blades 1 and 2 may be a negative angle (negative angle). According to the present invention, the above-described excellent effects can be achieved regardless of whether the outer blades 1 and 2 have a positive angle or a negative angle.

Abstract

In the present end mill: four peripheral cutting edges (1) and (2) that are side by side at distances from each other in the circumferential direction of the end mill body comprise two each of first peripheral cutting edges (1) and second peripheral cutting edges (2) that have a different helix angle from the first peripheral cutting edges 1; the first peripheral cutting edges (1) and the second peripheral cutting edges (2) are alternately disposed in the circumferential direction; and in a transverse sectional view of the end mill at a specified location in the cutting edge length ap region of the peripheral cutting edges (1) and (2), four pitch angles A and B that are side by side in the circumferential direction comprise two each of first pitch angles A and second pitch angles B with a different angle from the first pitch angles A, and the two first pitch angles A, A are disposed adjacent to each other in the circumferential direction and the two second pitch angles B, B are disposed adjacent to each other in the circumferential direction.

Description

エンドミルEnd mill
 本発明は、刃長領域の全域にわたってびびり振動を効果的に抑制できるエンドミルに関する。
 本願は、2016年4月27日に、日本に出願された特願2016-089384号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an end mill that can effectively suppress chatter vibration over the entire blade length region.
This application claims priority based on Japanese Patent Application No. 2016-089384 filed in Japan on April 27, 2016, the contents of which are incorporated herein by reference.
 従来、例えば下記特許文献1に示されるようなエンドミルが知られている。
 エンドミルは、軸状をなすエンドミル本体と、エンドミル本体の外周に形成され、エンドミル本体の軸線方向の先端から基端側へ向かうに従い軸線回りの周方向のうち工具回転方向とは反対側へ向けて延びる切屑排出溝と、切屑排出溝における工具回転方向を向く壁面とエンドミル本体の外周面との交差稜線に形成された外周刃と、切屑排出溝における工具回転方向を向く壁面とエンドミル本体の先端面との交差稜線に形成された底刃(先端刃)と、を備えている。
Conventionally, for example, an end mill as shown in Patent Document 1 below is known.
The end mill is formed on the outer periphery of the end mill main body having an axial shape and the end mill main body, and toward the side opposite to the tool rotation direction in the circumferential direction around the axis from the tip end in the axial direction of the end mill main body toward the base end side. An extended chip discharge groove, an outer peripheral blade formed on a cross ridge line between the wall surface facing the tool rotation direction in the chip discharge groove and the outer peripheral surface of the end mill body, and a wall surface facing the tool rotation direction in the chip discharge groove and the tip end surface of the end mill body And a bottom blade (tip blade) formed at a crossing ridge line.
 特許文献1のエンドミルは、外周刃同士のねじれ角が互いに異なっており、いわゆる不等リードのエンドミルとされている。このような不等リードのエンドミルは、切削加工時に生じる自励振動を抑えて、びびり振動を抑制する効果を得ることができる。 The end mill of Patent Document 1 is a so-called unequal lead end mill in which the torsion angles of the outer peripheral blades are different from each other. Such an unequal lead end mill can suppress chatter vibration by suppressing self-excited vibration generated during cutting.
特開2009-220188号公報JP 2009-220188 A
 しかしながら、従来のエンドミルにおいては、外周刃の刃長領域(全刃長)のどの部位で切削加工を行っても(つまり軸線方向の切り込み量に係わらず)、びびり振動を抑制できるようにすることに、改善の余地があった。さらには、びびり振動の周波数を事前に知ることができず、所定の周波数帯域の範囲内において任意の周波数でびびり振動が発生し得る状態であっても、びびり振動を抑制できるようにすることに、改善の余地があった。 However, in a conventional end mill, chatter vibration can be suppressed regardless of where the cutting process is performed in the cutting edge region (full cutting length) of the outer peripheral cutting edge (that is, regardless of the amount of cutting in the axial direction). There was room for improvement. Furthermore, the chatter vibration frequency cannot be known in advance and chatter vibration can be suppressed even in a state where chatter vibration can occur at an arbitrary frequency within a predetermined frequency band. There was room for improvement.
 本発明は、このような事情に鑑みてなされたものであって、切り込み量等に係わらず、びびり振動を顕著に抑制することができるエンドミルを提供することを目的としている。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an end mill that can remarkably suppress chatter vibration regardless of the amount of cut.
 このような課題を解決して、前記目的を達成するために、本発明は以下の手段を提案している。
 すなわち、本発明は、軸状をなすエンドミル本体と、前記エンドミル本体の外周に形成され、前記エンドミル本体の軸線方向の先端から基端側へ向かうに従い前記軸線回りの周方向へ向けて延びる切屑排出溝と、前記切屑排出溝における前記周方向のうち工具回転方向を向く壁面と、前記エンドミル本体の外周面との交差稜線に形成された外周刃と、を備えたエンドミルであって、前記切屑排出溝は、前記周方向に互いに間隔をあけて4条形成され、前記周方向に互いに間隔をあけて並ぶ4つの外周刃には、第1の外周刃と、前記第1の外周刃とはねじれ角が異なる第2の外周刃と、が2つずつ含まれており、前記第1の外周刃と、前記第2の外周刃とは、前記周方向に交互に配置され、前記外周刃の刃長領域のうち所定位置における前記軸線に垂直なエンドミル横断面視において、前記周方向に隣り合う一対の前記外周刃と、前記軸線と、を繋ぐ一対の仮想直線間に形成される中心角をピッチ角として、前記周方向に並ぶ4つの前記ピッチ角には、第1のピッチ角と、前記第1のピッチ角とは角度が異なる第2のピッチ角と、が2つずつ含まれており、2つの前記第1のピッチ角同士は、前記周方向に隣接配置され、2つの前記第2のピッチ角同士は、前記周方向に隣接配置されることを特徴とする。
In order to solve such problems and achieve the above object, the present invention proposes the following means.
That is, the present invention provides an end mill body having an axial shape, and chip discharge formed on the outer periphery of the end mill body and extending in the circumferential direction around the axis as it goes from the distal end in the axial direction of the end mill body toward the base end side. An end mill comprising a groove, a wall surface facing the tool rotation direction in the circumferential direction in the chip discharge groove, and an outer peripheral blade formed on a cross ridge line with the outer peripheral surface of the end mill body, wherein the chip discharge Four grooves are formed in the circumferential direction so as to be spaced apart from each other, and the four outer peripheral blades that are spaced apart from each other in the circumferential direction are twisted between the first outer peripheral blade and the first outer peripheral blade. Two second outer peripheral blades having different angles are included, and the first outer peripheral blades and the second outer peripheral blades are alternately arranged in the circumferential direction, and the outer peripheral blades The axis at a predetermined position in the long region 4 in the circumferential direction with a central angle formed between a pair of virtual straight lines connecting the pair of outer peripheral blades adjacent in the circumferential direction and the axis as a pitch angle in a cross-sectional view perpendicular to the end mill. The two pitch angles include two first pitch angles and two second pitch angles different from the first pitch angle, and the two first pitch angles are Are arranged adjacent to each other in the circumferential direction, and the two second pitch angles are arranged adjacent to each other in the circumferential direction.
 本発明のエンドミルは、エンドミル本体の外周に、周方向に互いに間隔をあけて並ぶ4つの外周刃を備えている。これら4つの外周刃には、互いにねじれ角の大きさが異なる第1の外周刃と、第2の外周刃とが、2つずつ含まれており、また、第1の外周刃と第2の外周刃とは、周方向に交互に配列している。つまり、本発明のエンドミルは、外周刃のねじれ角がすべて同一とされた等リードのエンドミルではなく、複数種類のねじれ角を有する不等リードのエンドミルである。 The end mill of the present invention includes four outer peripheral blades arranged on the outer periphery of the end mill main body at intervals in the circumferential direction. These four outer peripheral blades each include two first outer peripheral blades and two second outer peripheral blades having different torsion angles, and the first outer peripheral blade and the second outer peripheral blade. The outer peripheral blades are alternately arranged in the circumferential direction. That is, the end mill of the present invention is not an equal lead end mill in which the twist angles of the outer peripheral blades are all the same, but an unequal lead end mill having a plurality of types of twist angles.
 また、外周刃の刃長領域のうち所定位置におけるエンドミル本体の横断面視において、エンドミル本体の軸線回りに並ぶ4つのピッチ角(エンドミル横断面視において、隣り合う一対の外周刃と、軸線と、を繋ぐ一対の仮想直線間に形成される中心角)は、互いに角度の大きさが異なる第1のピッチ角と、第2のピッチ角とを、2つずつ含んでいる。そして、2つの第1のピッチ角同士は周方向に隣接配置され、2つの第2のピッチ角同士も周方向に隣接配置されている。つまり、本発明のエンドミルは、外周刃のピッチ角がすべて同一とされた等ピッチのエンドミルではなく、複数種類のピッチ角を有する不等ピッチのエンドミルでもある。 Further, in the cross-sectional view of the end mill main body at a predetermined position in the blade length region of the outer peripheral blade, four pitch angles arranged around the axis of the end mill main body (in the end mill cross-sectional view, a pair of adjacent outer peripheral blades, an axis, (Center angle formed between a pair of virtual straight lines) includes two first pitch angles and two second pitch angles having different angles. The two first pitch angles are adjacently arranged in the circumferential direction, and the two second pitch angles are also adjacently arranged in the circumferential direction. That is, the end mill of the present invention is not an equal pitch end mill in which the pitch angles of the outer peripheral blades are all the same, but is also an unequal pitch end mill having a plurality of types of pitch angles.
 このため、本発明のエンドミルは、4つの外周刃が、従来にない特別な技術的特徴を有して配列されることになる。本発明の外周刃の配列及びその効果について、図5及び図6を参照しつつ下記に説明する。
 本発明の外周刃の配列を模式的に示す図5において、外周刃1、2の刃長ap領域のうち、所定位置におけるエンドミル本体の横断面(図示の例では刃長apの中央(1/2の位置))で、図5のエンドミル周方向(横軸方向)に沿う外周刃1、2同士の間の距離に相当するピッチ角A、Bは、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第1のピッチ角A、第2のピッチ角B、第2のピッチ角B、の順で配列する。
 そして、外周刃は、工具回転方向Tとは反対側へ向けて、第1の外周刃1、第2の外周刃2、第1の外周刃1、第2の外周刃2、の順で交互に配列し、これに伴い外周刃のねじれ角も、工具回転方向Tとは反対側へ向けて、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、の順で交互に並ぶ。
For this reason, in the end mill of the present invention, the four outer peripheral blades are arranged with special technical features that are not conventionally provided. The arrangement of the outer peripheral blades of the present invention and the effects thereof will be described below with reference to FIGS.
In FIG. 5 schematically showing the arrangement of the outer peripheral blades of the present invention, the cross section of the end mill main body at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2 (in the example shown, the center (1 / 2))), the pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG. The first pitch angle A, the first pitch angle A, the second pitch angle B, and the second pitch angle B are arranged in this order.
The outer peripheral blades alternate in the order of the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2 in the order opposite to the tool rotation direction T. Accordingly, the torsion angle of the outer peripheral blade is also directed toward the side opposite to the tool rotation direction T, the torsion angle γ1 of the first outer peripheral blade 1, the torsion angle γ2 of the second outer peripheral blade 2, and the first The twist angle γ1 of the outer peripheral blade 1 and the twist angle γ2 of the second outer peripheral blade 2 are alternately arranged in this order.
 従って、図5に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tに位置する一方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tに位置する一方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分(B-Aの絶対値であり、以下の説明では単に|B-A|と表すことがある)が一定とされている。 Accordingly, of the two first pitch angles A and A shown in FIG. 5, one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are One second pitch angle B positioned in the tool rotation direction T is the difference between the angles (B−A absolute value) over the entire blade length ap region. | May be expressed as |).
 詳しくは、図5において、刃長ap領域の所定位置(ap1/2)における一方(左側/工具回転方向T側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における一方(左側/工具回転方向T側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ3とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ3-θ1|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、一方の第1のピッチ角Aと、一方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 5, the first pitch angle A on one side (left side / tool rotation direction T side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap. Thus, the pitch angle θ1 is set at the tip position (ap0) of the blade length ap region. Further, the second pitch angle B on one side (left side / tool rotation direction T side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the blade length The pitch angle θ3 is set at the tip position (ap0) of the ap region.
In this case, the angle difference | BA | at the predetermined position of the blade length ap and the angle difference | θ3-θ1 | at the tip position of the blade length ap are equal to each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the first pitch angle A and the second pitch angle B is constant over the entire blade length ap region.
 また、図5に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tとは反対側に位置する他方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tとは反対側に位置する他方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 Further, of the two first pitch angles A and A shown in FIG. 5, the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B, the other second pitch angle B located on the opposite side of the tool rotation direction T is constant in the difference | BA− between each other over the entire blade length ap region. .
 詳しくは、図5において、刃長ap領域の所定位置(ap1/2)における他方(右側/工具回転方向Tとは反対側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。また、刃長ap領域の所定位置(ap1/2)における他方(右側/工具回転方向Tとは反対側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ4とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ4-θ2|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、他方の第1のピッチ角Aと、他方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 5, the first pitch angle A on the other side (right side / opposite to the tool rotation direction T) at a predetermined position (ap1 / 2) in the blade length ap region is directed toward the tip side of the blade length ap. Accordingly, the pitch angle θ2 is set at the tip position (ap0) of the blade length ap region. Further, the second pitch angle B on the other side (right side / opposite to the tool rotation direction T) at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap. The pitch angle θ4 is set at the tip position (ap0) of the blade length ap region.
In this case, the angle difference | BA | at the predetermined position of the blade length ap is equal to the angle difference | θ4-θ2 | at the tip position of the blade length ap. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the other first pitch angle A and the other second pitch angle B is constant over the entire blade length ap region.
 また、一方の第1のピッチ角Aと一方の第2のピッチ角Bとの角度の差分|B-A|と、他方の第1のピッチ角Aと他方の第2のピッチ角Bとの角度の差分|B-A|とが、互いに等しくされている。さらにこの関係は、刃長ap領域の全域にわたって維持される。
 具体的に、例えば刃長ap領域の先端位置(ap0)において、角度の差分|θ3-θ1|と、角度の差分|θ4-θ2|とが、それぞれ所定位置の角度の差分|B-A|と同一とされているとともに、互いに等しくされている。
Also, the difference in angle between one first pitch angle A and one second pitch angle B | B−A |, and the other first pitch angle A and the other second pitch angle B The angle difference | BA | is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region.
Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference | θ3-θ1 | and the angle difference | θ4-θ2 | And the same as each other.
 また、本発明に含まれる別の外周刃の配列を模式的に示す図6において、外周刃1、2の刃長ap領域のうち、所定位置におけるエンドミル本体の横断面(図示の例ではap1/2の位置)で、図6のエンドミル周方向(横軸方向)に沿う外周刃1、2同士の間の距離に相当するピッチ角A、Bは、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第2のピッチ角B、第2のピッチ角B、第1のピッチ角A、の順で配列する。
 そして、外周刃は、工具回転方向Tとは反対側へ向けて、第1の外周刃1、第2の外周刃2、第1の外周刃1、第2の外周刃2、の順で交互に配列し、これに伴い外周刃のねじれ角も、工具回転方向Tとは反対側へ向けて、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、の順で交互に並ぶ。
Moreover, in FIG. 6 which shows the arrangement | sequence of another outer periphery blade included in this invention typically, in the blade length ap area | region of the outer periphery blades 1 and 2, the cross section of an end mill main body in a predetermined position (in the example of illustration ap1 / 2), pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG. 6 are directed toward the side opposite to the tool rotation direction T. The first pitch angle A, the second pitch angle B, the second pitch angle B, and the first pitch angle A are arranged in this order.
The outer peripheral blades alternate in the order of the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2 in the order opposite to the tool rotation direction T. Accordingly, the torsion angle of the outer peripheral blade is also directed toward the side opposite to the tool rotation direction T, the torsion angle γ1 of the first outer peripheral blade 1, the torsion angle γ2 of the second outer peripheral blade 2, and the first The twist angle γ1 of the outer peripheral blade 1 and the twist angle γ2 of the second outer peripheral blade 2 are alternately arranged in this order.
 従って、図6に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tに位置する一方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tとは反対側に位置する他方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 Accordingly, of the two first pitch angles A and A shown in FIG. 6, one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are The difference between the other second pitch angles B located on the opposite side of the tool rotation direction T and the angle | BA− ||
 詳しくは、図6において、刃長ap領域の所定位置(ap1/2)における一方(左側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における他方(右側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ3とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ3-θ1|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、一方の第1のピッチ角Aと、他方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 6, the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. In addition, the second (right) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ3.
In this case, the angle difference | BA | at the predetermined position of the blade length ap and the angle difference | θ3-θ1 | at the tip position of the blade length ap are equal to each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side | B−A | is constant over the entire region of the blade length ap region.
 また、図6に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tとは反対側に位置する他方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tに位置する一方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 In addition, of the two first pitch angles A and A shown in FIG. 6, the other first pitch angle A located on the side opposite to the tool rotation direction T and the two second pitch angles B, Of B, one second pitch angle B positioned in the tool rotation direction T is constant in the difference | BA− of the angle over the entire blade length ap region.
 詳しくは、図6において、刃長ap領域の所定位置(ap1/2)における他方(右側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。また、刃長ap領域の所定位置(ap1/2)における一方(左側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ4とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ4-θ2|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、他方の第1のピッチ角Aと、一方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 6, the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the blade length ap is increased. The pitch angle θ2 is set at the tip position (ap0) of the region. In addition, one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ4.
In this case, the angle difference | BA | at the predetermined position of the blade length ap is equal to the angle difference | θ4-θ2 | at the tip position of the blade length ap. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the other first pitch angle A and one second pitch angle B is constant over the entire blade length ap region.
 また、一方の第1のピッチ角Aと他方の第2のピッチ角Bとの角度の差分|B-A|と、他方の第1のピッチ角Aと一方の第2のピッチ角Bとの角度の差分|B-A|とが、互いに等しくされている。さらにこの関係は、刃長ap領域の全域にわたって維持される。
 具体的に、例えば刃長ap領域の先端位置(ap0)において、角度の差分|θ3-θ1|と、角度の差分|θ4-θ2|とが、それぞれ所定位置の角度の差分|B-A|と同一とされているとともに、互いに等しくされている。
Also, the difference between the first pitch angle A and the second pitch angle B on the other side | B−A | and the difference between the first pitch angle A on the other side and the second pitch angle B on the other side. The angle difference | BA | is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region.
Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference | θ3-θ1 | and the angle difference | θ4-θ2 | And the same as each other.
 そして、本発明の発明者は、エンドミルについて鋭意研究を重ねた結果、切削加工時においてびびり振動を発生させる特定の周波数を抑制するには、該周波数に対応する上記角度の差分となるような各ピッチ角とされた外周刃の配列とすることが有効である、という知見を得るに至った。つまり、4つの外周刃同士において、上記角度の差分を設定することにより、再生振動の位相差をこれら外周刃同士でずらすことができ、共振周波数付近で生じる自励振動の発生を抑制することができ、その結果、びびり振動を抑えることができる。
 なお、上記「特定の周波数に対応する角度の差分」については、振動計算理論に基づいて求めたり、実験値(経験値)から求めたりすることができる。また「特定の周波数」とは、具体的には所定範囲の周波数帯を示しており、例えば300~900Hzの範囲である。
As a result of extensive research on the end mill, the inventor of the present invention, in order to suppress a specific frequency that generates chatter vibration at the time of cutting, each of the difference of the angle corresponding to the frequency It came to the knowledge that it was effective to set it as the arrangement | sequence of the outer periphery blade made into the pitch angle. That is, by setting the difference between the angles between the four outer peripheral blades, the phase difference of the regenerative vibration can be shifted between the outer peripheral blades, thereby suppressing the occurrence of self-excited vibration near the resonance frequency. As a result, chatter vibration can be suppressed.
The “difference in angle corresponding to a specific frequency” can be obtained based on vibration calculation theory or can be obtained from an experimental value (experience value). The “specific frequency” specifically indicates a frequency band within a predetermined range, for example, a range of 300 to 900 Hz.
 上述の知見に基づいて、本発明では、刃長ap領域の全域にわたって、特定の周波数を打ち消すことができる上記角度の差分を維持する構成を採用した。具体的には、図5及び図6を用いて説明したように、角度の差分|B-A|を刃長ap領域の全域にわたって一定とする特別な構成を用いたことにより、切削加工時の切り込み量に係わらず、打ち消したい特定の周波数を安定して抑えることが可能になった。
 さらには、びびり振動の周波数を事前に知ることができず、従来であれば、所定の周波数帯域の範囲内において任意の周波数でびびり振動が発生し得る状態であっても、本発明のエンドミルによれば、所定の周波数帯域の全域でびびり振動を安定的に抑制することができる。
Based on the above-described knowledge, the present invention employs a configuration that maintains the above-described angle difference that can cancel a specific frequency over the entire blade length ap region. Specifically, as described with reference to FIGS. 5 and 6, by using a special configuration in which the angle difference | BA is constant over the entire blade length ap region, Regardless of the depth of cut, the specific frequency to be canceled can be stably suppressed.
Furthermore, the frequency of chatter vibration cannot be known in advance, and conventionally, even in a state where chatter vibration can occur at an arbitrary frequency within a predetermined frequency band, the end mill of the present invention can be used. According to this, chatter vibration can be stably suppressed over the entire predetermined frequency band.
 ここで、本発明の理解をより深めるために、図7に示される比較例(従来のエンドミル)について説明する。図7では、刃長ap領域の所定位置において、4つのピッチ角A、Bが、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第2のピッチ角B、第1のピッチ角A、第2のピッチ角B、の順で交互に並んでいる。
 そして、2つの第1のピッチ角A、Aのうち、工具回転方向Tに位置する一方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tに位置する一方の第2のピッチ角Bとが、刃長ap領域のうち所定位置(ap1/2)においてのみ、特定の周波数を抑制できる角度の差分|B-A|とされている。
Here, in order to deepen the understanding of the present invention, a comparative example (conventional end mill) shown in FIG. 7 will be described. In FIG. 7, at a predetermined position in the blade length ap region, the four pitch angles A and B are directed to the opposite side of the tool rotation direction T, and the first pitch angle A, the second pitch angle B, and the first The pitch angle A and the second pitch angle B are alternately arranged in this order.
Of the two first pitch angles A and A, one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B in the tool rotation direction T. One of the second pitch angles B that is positioned is an angle difference | BA− that can suppress a specific frequency only at a predetermined position (ap1 / 2) in the blade length ap region.
 詳しくは、図7において、刃長ap領域の所定位置(ap1/2)における一方(左側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における一方(左側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。
 この場合、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ2-θ1|とは、互いに異なってしまう。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は異なり、それ以外の刃長ap領域についても同様に、角度の差分は異なることになる。
 つまり、一方の第1のピッチ角Aと、一方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。
Specifically, in FIG. 7, the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. In addition, one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ2.
In this case, an angle difference | BA | at a predetermined position of the blade length ap and an angle difference | θ2-θ1 | at the tip position of the blade length ap are different from each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions.
That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side is changed over the entire blade length ap region.
 また、図7に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tとは反対側に位置する他方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tとは反対側に位置する他方の第2のピッチ角Bとが、刃長ap領域のうち所定位置(ap1/2)においてのみ、特定の周波数を抑制できる角度の差分|B-A|とされている。 In addition, of the two first pitch angles A and A shown in FIG. 7, the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B, the other second pitch angle B located on the side opposite to the tool rotation direction T is an angle at which a specific frequency can be suppressed only at a predetermined position (ap1 / 2) in the blade length ap region. The difference is | B−A |.
 詳しくは、図7において、刃長ap領域の所定位置(ap1/2)における他方(右側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における他方(右側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。
 この場合、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ2-θ1|とは、互いに異なってしまう。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は異なり、それ以外の刃長ap領域についても同様に、角度の差分は異なることになる。
 つまり、他方の第1のピッチ角Aと、他方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。
Specifically, in FIG. 7, the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. Further, the second (right) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ2.
In this case, an angle difference | BA | at a predetermined position of the blade length ap and an angle difference | θ2-θ1 | at the tip position of the blade length ap are different from each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions.
That is, the difference between the other first pitch angle A and the other second pitch angle B is changed over the entire blade length ap region.
 また図7において、一方(左側)の第1のピッチ角Aと、他方(右側)の第2のピッチ角Bとについても、上述と同様に、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。また、他方(右側)の第1のピッチ角Aと、一方(左側)の第2のピッチ角Bとについても、上述と同様に、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。 In FIG. 7, the difference between the first | left-side first pitch angle A and the other (right-side) second pitch angle B is similar to the above. It is varied over the entire long ap region. Also, with respect to the other (right side) first pitch angle A and the one (left side) second pitch angle B, the difference between the angles | BA is equal to the blade length ap region, as described above. Can be changed throughout.
 このような従来のエンドミルでは、刃長ap領域のうち所定位置以外の部位(所定位置に対応する切り込み量以外の切り込み量)で切削加工を行うと、特定の周波数を抑制することができず、びびり振動の発生を抑えることができない。 In such a conventional end mill, when cutting is performed at a portion other than a predetermined position in the blade length ap region (a cutting amount other than the cutting amount corresponding to the predetermined position), a specific frequency cannot be suppressed, The occurrence of chatter vibration cannot be suppressed.
 一方、本発明では、従来のエンドミルでは得られなかった下記の格別顕著な作用効果を奏する。すなわち、刃長ap領域のうち所定位置(図5及び図6ではap1/2)において、自励振動の発生を抑制したい特定の周波数に効果的なピッチ角A、Bを設定し、第1のピッチ角A、A同士、第2のピッチ角B、B同士をそれぞれ周方向に隣接配置するとともに、ねじれ角が互いに異なる外周刃1、2同士を周方向に交互に配列する、という簡単な構成でエンドミルを製作することにより、このエンドミルは、刃長ap領域の所定位置のみならず、刃長ap領域の全域にわたって、前記特定の周波数に対して自励振動の発生を効果的に抑制することができるのである。つまり、エンドミルの軸線方向への切り込み量に係わらず、びびり振動を安定して抑制することができ、かつ、エンドミルの製造を複雑にしてしまうこともない。 On the other hand, in the present invention, the following remarkable effects which are not obtained by the conventional end mill are exhibited. That is, at a predetermined position (ap1 / 2 in FIGS. 5 and 6) in the blade length ap region, effective pitch angles A and B are set to specific frequencies for which the occurrence of self-excited vibration is desired to be suppressed. A simple configuration in which the pitch angles A and A and the second pitch angles B and B are arranged adjacent to each other in the circumferential direction, and the outer peripheral blades 1 and 2 having different twist angles are alternately arranged in the circumferential direction. By manufacturing the end mill, the end mill effectively suppresses the occurrence of self-excited vibration for the specific frequency not only at a predetermined position of the blade length ap region but also over the entire region of the blade length ap region. Can do it. That is, chatter vibration can be stably suppressed regardless of the amount of cut in the axial direction of the end mill, and the manufacture of the end mill is not complicated.
 また、本発明では下記の作用効果も得ることができる。
 図5及び図6に示される本発明においては、第1のピッチ角A、A同士の角度の差分|A-A|、第2のピッチ角B、B同士の角度の差分|B-B|は、刃長ap領域のうち所定位置(図示の例ではap1/2)以外の位置では、|A-A|≠0、|B-B|≠0(つまり不等分割)となっている。つまり、第1のピッチ角A、A同士の組合せ、及び、第2のピッチ角B、B同士の組合せに着目した場合も、刃長ap領域の(所定位置以外の)殆どの位置において、再生効果を得ることができるようになっている。このため本発明は、従来の一般的な不等リードよりも、ロバストな効果を奏する(再生効果の抑制に効果が得られる領域の拡張が行える)。
In the present invention, the following effects can also be obtained.
In the present invention shown in FIGS. 5 and 6, the difference in angle between the first pitch angles A and A | A−A |, the difference in angle between the second pitch angles B and B | B−B | In the blade length ap region, at positions other than a predetermined position (ap1 / 2 in the illustrated example), | A−A | ≠ 0 and | BB | ≠ 0 (that is, unequal division). That is, even when paying attention to the combination of the first pitch angles A and A and the combination of the second pitch angles B and B, reproduction is performed at most positions (other than the predetermined position) in the blade length ap region. An effect can be obtained. For this reason, the present invention has a more robust effect than the conventional general unequal read (the area where the effect can be obtained for suppressing the reproduction effect can be expanded).
 これに対し、図7に示される比較例では、第1のピッチ角A、A同士の角度の差分|A-A|、第2のピッチ角B、B同士の角度の差分|B-B|は、刃長ap領域の全域にわたって、|A-A|=0、|B-B|=0(つまり等分割)となっている。このため、再生効果の抑制に効果を発揮しない。 On the other hand, in the comparative example shown in FIG. 7, the difference in angle between the first pitch angles A and A | A−A | and the difference in angle between the second pitch angles B and B | B−B | Is | A−A | = 0 and | BB | = 0 (that is, equally divided) over the entire blade length ap region. For this reason, it is not effective in suppressing the reproduction effect.
 さらに、本発明のエンドミルは、外周刃が不等リードとされていることにより、上記特定の周波数のみならず、周波数が変化した場合の自励振動の発生についても抑えやすくされている。つまり、特定の周波数を抑える効果が得られるのは勿論のこと、特定の周波数以外の周波数に対しても抑制効果を奏するのである。従って、びびり振動を抑える効果がより格別顕著なものとなる。 Furthermore, the end mill according to the present invention makes it easy to suppress not only the specific frequency but also the occurrence of self-excited vibration when the frequency changes because the outer peripheral blades are unequal leads. In other words, the effect of suppressing a specific frequency is obtained, and the effect of suppressing a frequency other than the specific frequency is also achieved. Therefore, the effect of suppressing chatter vibration becomes particularly remarkable.
 また、本発明のエンドミルにおいて、前記刃長領域のうち所定位置が、前記刃長領域における先端部以外の部位であることが好ましい。 In the end mill of the present invention, it is preferable that the predetermined position in the blade length region is a portion other than the tip portion in the blade length region.
 この場合、刃長領域の先端部においては、例えば図5及び図6に示されるように、ピッチ角θ1~θ4同士の角度を互いにすべて異ならせることができる。つまり、外周刃の刃長領域のうち先端部は、被削材に切り込み始める位置であるとともに、切削加工に多用される箇所であり、この先端部においてピッチ角がすべて異なっていると、本発明の上述したびびり振動を抑制する効果がさらに格別顕著なものとなりやすいため、好ましい。 In this case, at the tip of the blade length region, for example, as shown in FIGS. 5 and 6, the angles of the pitch angles θ1 to θ4 can be made different from each other. That is, the tip portion of the edge length region of the outer peripheral blade is a position that starts to be cut into the work material, and is a place that is frequently used for cutting, and when the pitch angles are all different in the tip portion, the present invention The above-described effect of suppressing chatter vibration is more likely to be particularly remarkable, which is preferable.
 また、本発明のエンドミルにおいて、前記刃長領域のうち所定位置が、前記刃長領域における中央部であることが好ましい。 In the end mill of the present invention, it is preferable that a predetermined position in the blade length region is a central portion in the blade length region.
 この場合、図5及び図6に示されるように、2つの第1のピッチ角A、Aと、2つの第2のピッチ角B、Bと、が含まれる外周刃の刃長ap領域の所定位置が、該刃長ap領域の中央部(ap1/2)であるので、外周刃の刃長ap領域の先端部や基端部において、外周刃に隣接する切屑排出溝の溝幅が小さくなり過ぎるようなことが抑制される。
 従って、上記構成によれば、びびり振動の発生を抑制しつつ、切屑排出性を良好に維持することができる。
In this case, as shown in FIG. 5 and FIG. 6, a predetermined length ap region of the outer peripheral blade including the two first pitch angles A and A and the two second pitch angles B and B is predetermined. Since the position is the central portion (ap1 / 2) of the blade length ap region, the width of the chip discharge groove adjacent to the outer peripheral blade is reduced at the distal end and the base end of the blade length ap region of the outer peripheral blade. It is suppressed that it passes too much.
Therefore, according to the said structure, chip | tip discharge property can be maintained favorable, suppressing generation | occurrence | production of chatter vibration.
 本発明のエンドミルによれば、切り込み量等に係わらず、びびり振動を顕著に抑制することができる。 According to the end mill of the present invention, chatter vibration can be remarkably suppressed regardless of the cutting amount or the like.
本発明の一実施形態に係るエンドミルを示す斜視図である。It is a perspective view which shows the end mill which concerns on one Embodiment of this invention. 図1のエンドミルを径方向から見た側面図である。It is the side view which looked at the end mill of FIG. 1 from radial direction. 図1のエンドミルを先端から基端側へ向けて見た正面図である。It is the front view which looked at the end mill of FIG. 1 toward the base end side from the front-end | tip. 図2のIV-IV断面を示す図(エンドミルの横断面図)である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2 (a cross-sectional view of the end mill). 図1のエンドミルの外周刃の配列を模式的に示す図である。It is a figure which shows typically the arrangement | sequence of the outer periphery blade of the end mill of FIG. 図1のエンドミルの変形例の、外周刃の配列を模式的に示す図である。It is a figure which shows typically the arrangement | sequence of the outer periphery blade | edge of the modification of the end mill of FIG. 比較例のエンドミルの外周刃の配列を模式的に示す図である。It is a figure which shows typically the arrangement | sequence of the outer periphery blade of the end mill of a comparative example. (a)図1のエンドミルを用いた切削加工時における、軸線方向の切り込み量(縦軸)、周波数(横軸)、及び再生数(再生振動)の関係を表すグラフ、(b)比較例のエンドミルを用いた切削加工時における、軸線方向の切り込み量(縦軸)、周波数(横軸)、及び再生数(再生振動)の関係を表すグラフである。(A) A graph showing the relationship between the amount of cut in the axial direction (vertical axis), the frequency (horizontal axis), and the number of regenerations (regenerative vibration) during cutting using the end mill of FIG. 1, (b) of the comparative example It is a graph showing the relationship between the amount of cuts in the axial direction (vertical axis), the frequency (horizontal axis), and the number of reproductions (reproduction vibration) during cutting using an end mill.
 以下、本発明の一実施形態に係るエンドミルの一例であるスクエアエンドミル20について、図面を参照して説明する。
 なお、本発明は、スクエアエンドミル20に限定されるものではなく、それ以外の例えばラジアスエンドミル、ボールエンドミル(テーパボールエンドミル、ロングネックエンドミル、テーパネックエンドミル等を含む)などの各種エンドミルに対して適用可能である。
Hereinafter, a square end mill 20 which is an example of an end mill according to an embodiment of the present invention will be described with reference to the drawings.
In addition, this invention is not limited to the square end mill 20, For example, it applies to various end mills, such as a radius end mill and a ball end mill (a taper ball end mill, a long neck end mill, a taper neck end mill etc.), etc. Is possible.
〔スクエアエンドミルの概略構成、及びエンドミル本体〕
 図1~図4に示されるように、本実施形態のスクエアエンドミル20は、軸状をなし、例えば超硬合金や高速度工具鋼等からなるエンドミル本体3を有している。
 エンドミル本体3は概略円柱状をなしており、該エンドミル本体3の軸線O方向に沿う少なくとも先端部に刃部3aが形成され、該刃部3a以外の部位がシャンク部3bとされている。
[Schematic configuration of square end mill and end mill body]
As shown in FIGS. 1 to 4, the square end mill 20 of the present embodiment has a shaft shape and includes an end mill body 3 made of, for example, cemented carbide or high-speed tool steel.
The end mill main body 3 has a substantially columnar shape, and a blade portion 3a is formed at least at a tip portion along the axis O direction of the end mill main body 3, and a portion other than the blade portion 3a is a shank portion 3b.
 スクエアエンドミル20は、エンドミル本体3において円柱状をなすシャンク部3bが工作機械の主軸等に把持され、軸線O回りのうち工具回転方向(エンドミル回転方向)Tに回転させられることで、金属材料等からなる被削材の切削加工(転削加工)に使用される。また上記回転とともに、軸線O方向への切り込みや軸線Oに交差する方向への送りを与えられて、刃部3aにより被削材に対して側面加工、肩削り加工、プランジ(縦送り)加工、溝加工等の各種加工を行う。 In the square end mill 20, a cylindrical shank portion 3b in the end mill body 3 is held by a main shaft or the like of a machine tool, and is rotated in a tool rotation direction (end mill rotation direction) T around an axis O, thereby a metal material or the like. It is used for cutting work (rolling work) of work material consisting of Further, along with the above rotation, the cutting in the direction of the axis O and the feeding in the direction crossing the axis O are given, and the side surface processing, shoulder processing, plunge (longitudinal feeding) processing on the work material by the blade 3a Various processing such as grooving is performed.
 また、このスクエアエンドミル20により被削材を切削加工する際には、該スクエアエンドミル20の刃部3a及び被削材の加工面(被加工部)に向けて、クーラントが供給される。クーラントとしては、例えば、油性又は水溶性の切削液剤や圧縮エア等が用いられる。クーラントは、工作機械の主軸からエンドミル本体3の内部を通して刃部3a及び加工面に供給されたり、エンドミル本体3の外部から刃部3a及び加工面に供給される。 Further, when the work material is cut by the square end mill 20, the coolant is supplied toward the blade portion 3a of the square end mill 20 and the work surface (work part) of the work material. As the coolant, for example, an oily or water-soluble cutting fluid or compressed air is used. The coolant is supplied from the main spindle of the machine tool to the blade portion 3a and the machining surface through the inside of the end mill body 3, or is supplied to the blade portion 3a and the machining surface from the outside of the end mill body 3.
〔本実施形態で用いる向き(方向)の定義〕
 本実施形態においては、エンドミル本体3の軸線Oに沿う方向(軸線O方向)のうち、シャンク部3bから刃部3aへ向かう方向を先端側といい、刃部3aからシャンク部3bへ向かう方向を基端側という。
 また、軸線Oに直交する方向を径方向といい、径方向のうち、軸線Oに接近する向きを径方向の内側といい、軸線Oから離間する向きを径方向の外側という。
 また、軸線O回りに周回する方向を周方向といい、周方向のうち、切削加工時にエンドミル本体3が回転させられる方向を工具回転方向Tといい、これとは反対へ向かう方向を工具回転方向Tとは反対側(反工具回転方向)という。
[Definition of direction (direction) used in this embodiment]
In the present embodiment, of the directions along the axis O of the end mill body 3 (axis O direction), the direction from the shank portion 3b to the blade portion 3a is referred to as the distal end side, and the direction from the blade portion 3a to the shank portion 3b. It is called the proximal side.
In addition, a direction perpendicular to the axis O is referred to as a radial direction, and a direction approaching the axis O in the radial direction is referred to as a radial inner side, and a direction away from the axis O is referred to as a radial outer side.
Further, the direction that circulates around the axis O is referred to as the circumferential direction. Of the circumferential directions, the direction in which the end mill body 3 is rotated at the time of cutting is referred to as the tool rotation direction T, and the opposite direction is the tool rotation direction. The side opposite to T (counter tool rotating direction) is referred to.
〔切屑排出溝〕
 刃部3aの外周には、周方向に互いに間隔をあけて4条の切屑排出溝4が形成されている。これらの切屑排出溝4は、互いに周方向に不等間隔をあけて配置されている。
 詳しくは、4条の切屑排出溝4のうち、2条の切屑排出溝4が、互いに周方向に等間隔をあけて配置されており、残りの2条の切屑排出溝4が、前記等間隔の間隔とは異なる間隔で、互いに周方向に等間隔をあけて配置されていて、エンドミル全体としては切屑排出溝4が不等間隔の配置とされている。
[Chip discharge groove]
Four chip discharge grooves 4 are formed on the outer periphery of the blade portion 3a at intervals in the circumferential direction. These chip discharge grooves 4 are arranged at unequal intervals in the circumferential direction.
Specifically, among the four chip discharge grooves 4, the two chip discharge grooves 4 are arranged at equal intervals in the circumferential direction, and the remaining two chip discharge grooves 4 are arranged at the equal intervals. Are arranged at equal intervals in the circumferential direction, and the chip discharge grooves 4 are arranged at unequal intervals in the end mill as a whole.
 切屑排出溝4は、エンドミル本体3の軸線O方向に沿う先端から基端側へ向かうに従い軸線O回りに沿う周方向へ向けて、ねじれて延びている。本実施形態の切屑排出溝4は、エンドミル本体3の先端面に開口しており、該先端面から基端側へ向かうに従い漸次工具回転方向Tとは反対側へ向けてねじれて延びている。切屑排出溝4は、刃部3aの基端側の端部において、エンドミル本体3の外周に切り上がっている。 The chip discharge groove 4 is twisted and extended in the circumferential direction along the axis O as it goes from the distal end along the axis O direction of the end mill body 3 toward the base end side. The chip discharge groove 4 of the present embodiment opens at the distal end surface of the end mill body 3 and gradually twists and extends toward the side opposite to the tool rotation direction T from the distal end surface toward the proximal end side. The chip discharge groove 4 is rounded up to the outer periphery of the end mill body 3 at the end portion on the base end side of the blade portion 3a.
 各切屑排出溝4は、工具回転方向Tを向く壁面を有しており、この壁面のうち、切れ刃に隣接する部分がすくい面とされている。具体的には、切れ刃のすくい面のうち、該切れ刃の後述する外周刃1、2、及び底刃9に隣接する部分がそれぞれ、外周刃1、2のすくい面4a、及び底刃9のすくい面4bとされている。 Each chip discharge groove 4 has a wall surface facing the tool rotation direction T, and a portion of the wall surface adjacent to the cutting edge is a rake surface. Specifically, of the rake face of the cutting edge, the portions adjacent to the outer peripheral edges 1 and 2 and the bottom edge 9 described later of the cutting edge are the rake face 4a and the bottom edge 9 of the outer peripheral edges 1 and 2, respectively. The rake face 4b.
 切屑排出溝4の先端部には、該先端部を径方向へ向けて溝状に切り欠くようにして、ギャッシュ7が形成されている。具体的に、本実施形態のギャッシュ7は、切屑排出溝4の先端部において径方向に沿うように延びる溝状に形成されており、その径方向内側の端部は、軸線Oに近い位置に配置されている。
 本実施形態では、4条の切屑排出溝4に対応して4条のギャッシュ7が形成されており、図3に示されるように、これらのギャッシュ7のうち、周方向に隣り合う一対のギャッシュ7同士、つまりギャッシュ7の組が、各ギャッシュ7における径方向内側の端部で互いに連通している。またこれにより、4つの底刃9のうち、ギャッシュ7(の組)により切り欠かれる2つの底刃9(短刃)の刃長が、ギャッシュ7により切り欠かれない2つの底刃9(長刃)の刃長よりも、短くなっている。
A gash 7 is formed at the tip of the chip discharge groove 4 so that the tip is cut out in a groove shape in the radial direction. Specifically, the gash 7 of the present embodiment is formed in a groove shape extending along the radial direction at the tip end portion of the chip discharge groove 4, and the end portion on the radially inner side is at a position close to the axis O. Is arranged.
In this embodiment, four gashes 7 are formed corresponding to the four chip discharge grooves 4, and as shown in FIG. 3, a pair of gashes adjacent to each other in the circumferential direction among these gashes 7. 7, that is, a set of gashes 7 communicate with each other at the radially inner end of each gasche 7. In addition, among the four bottom blades 9, the two bottom blades 9 (short blades) cut out by the gash 7 (the set) have two blades 9 (long blades) that are not cut out by the gash 7. The blade length is shorter than the blade length.
〔切れ刃〕
 図1~図4に示されるように、刃部3aは、周方向に互いに間隔をあけて4つの切れ刃を有している。切れ刃はそれぞれ、外周刃1又は2、及び底刃9を有しており、これらが接続して略L字状をなす1つの切れ刃を形成している。つまり、本実施形態のスクエアエンドミル20は、4枚刃の刃部3aを有している。なお、切れ刃の数(4つ)は、切屑排出溝4の数(4条)に対応している。
[Cutting edge]
As shown in FIGS. 1 to 4, the blade portion 3a has four cutting edges spaced from each other in the circumferential direction. Each of the cutting blades has an outer peripheral blade 1 or 2 and a bottom blade 9, which are connected to form one cutting blade having a substantially L shape. That is, the square end mill 20 of the present embodiment has a four-blade blade portion 3a. The number of cutting edges (four) corresponds to the number of chip discharge grooves 4 (four).
〔外周刃〕
 切屑排出溝4における工具回転方向Tを向く壁面と、エンドミル本体3の外周面との交差稜線には、外周刃1、2が形成されている。外周刃1、2は、切屑排出溝4の前記壁面の外周端縁に沿って、つる巻き線状(螺旋状)に延びている。外周刃1、2には、第1の外周刃1と、該第1の外周刃1とはねじれ角が異なる第2の外周刃2と、が含まれる。これら第1の外周刃1及び第2の外周刃2については、別途後述する。
(Peripheral blade)
Outer peripheral blades 1 and 2 are formed on the intersecting ridge line between the wall surface facing the tool rotation direction T in the chip discharge groove 4 and the outer peripheral surface of the end mill body 3. The outer peripheral blades 1 and 2 extend in a spiral shape (spiral shape) along the outer peripheral edge of the wall surface of the chip discharge groove 4. The outer peripheral blades 1 and 2 include a first outer peripheral blade 1 and a second outer peripheral blade 2 having a twist angle different from that of the first outer peripheral blade 1. The first outer peripheral blade 1 and the second outer peripheral blade 2 will be described later separately.
 外周刃1、2は、切屑排出溝4の工具回転方向Tを向く壁面のうち、径方向外側の端部に位置するすくい面4aと、刃部3aの外周面のうち、該切屑排出溝4の工具回転方向Tとは反対側に隣接する外周逃げ面5と、の交差稜線に形成されている。
 刃部3aの外周面には、周方向に隣り合う切屑排出溝4同士の間に、外周逃げ面5がそれぞれ形成されている。外周逃げ面5の幅(外周刃1、2に直交する向きの長さ)は、例えば外周刃1、2の延在方向に沿って略一定とされている。
The outer peripheral blades 1 and 2 are the rake face 4a located at the radially outer end of the wall surface of the chip discharge groove 4 facing the tool rotation direction T, and the chip discharge groove 4 of the outer peripheral surface of the blade part 3a. Are formed on the intersecting ridge line of the outer peripheral flank 5 adjacent to the opposite side to the tool rotation direction T.
On the outer peripheral surface of the blade portion 3a, outer peripheral flank surfaces 5 are formed between the chip discharge grooves 4 adjacent in the circumferential direction. The width of the outer peripheral flank 5 (the length in the direction perpendicular to the outer peripheral blades 1 and 2) is, for example, substantially constant along the extending direction of the outer peripheral blades 1 and 2.
 刃部3aには、切屑排出溝4の数(4条)に対応する数(4つ)の外周刃1、2が、互いに周方向に間隔をあけて並んでいる。各外周刃1、2は、その工具回転方向Tに隣接する切屑排出溝4と等しいリードで、エンドミル本体3の先端から基端側へ向かうに従い漸次工具回転方向Tとは反対側へ向けてねじれて延びている。
 外周刃1、2が軸線O回りに回転して形成される回転軌跡は、軸線Oを中心とする1つの円筒面となる。
In the blade portion 3a, a number (four) of outer peripheral blades 1 and 2 corresponding to the number (four) of the chip discharge grooves 4 are arranged at intervals in the circumferential direction. Each of the outer peripheral blades 1 and 2 is a lead equal to the chip discharge groove 4 adjacent to the tool rotation direction T, and gradually twists toward the opposite side of the tool rotation direction T from the distal end of the end mill body 3 toward the proximal end side. It extends.
A rotation locus formed by rotating the outer peripheral blades 1 and 2 around the axis O is a single cylindrical surface centered on the axis O.
 そして、図2に示されるスクエアエンドミル20の側面図、及び、図5に示される外周刃1、2の配列を模式的に表す図(エンドミル外周を平面状に展開して表す図)において、エンドミル本体3の刃部3aに形成される4つの外周刃1、2には、互いにねじれ角が異なる第1の外周刃1と第2の外周刃2とが、2つずつ含まれている。また、第1の外周刃1と、第2の外周刃2とは、周方向に交互に配置されている。 2 is a side view of the square end mill 20 shown in FIG. 2 and a diagram schematically showing the arrangement of the outer peripheral blades 1 and 2 shown in FIG. The four outer peripheral blades 1 and 2 formed on the blade portion 3a of the main body 3 include two first outer peripheral blades 1 and two second outer peripheral blades 2 having different twist angles. Further, the first outer peripheral blades 1 and the second outer peripheral blades 2 are alternately arranged in the circumferential direction.
 図2及び図5においては、符号γ1が、第1の外周刃1のねじれ角を表しており、符号γ2が、第2の外周刃2のねじれ角を表している。図示の例では、第1の外周刃1のねじれ角γ1に比べて、第2の外周刃2のねじれ角γ2が大きくされている。ただしこれに限定されるものではなく、ねじれ角γ1に比べて、ねじれ角γ2が小さくされていてもよい。 2 and 5, the symbol γ1 represents the twist angle of the first outer peripheral blade 1, and the symbol γ2 represents the twist angle of the second outer peripheral blade 2. In the illustrated example, the twist angle γ2 of the second outer peripheral blade 2 is made larger than the twist angle γ1 of the first outer peripheral blade 1. However, the present invention is not limited to this, and the twist angle γ2 may be smaller than the twist angle γ1.
 なお、第1の外周刃1のねじれ角γ1と、第2の外周刃2のねじれ角γ2との角度の差分(γ2-γ1の絶対値であり、以下の説明では単に|γ2-γ1|と表すことがある)は、例えば0°<|γ2-γ1|≦20°であり、好ましくは、2°≦|γ2-γ1|≦15°である。角度の差分|γ2-γ1|が20°以下とされていることにより、切屑排出溝4の先端部及び基端部のいずれかにおいて、溝幅が小さくなり過ぎるようなことを抑制できる。
 また、本実施形態では、第1の外周刃1のねじれ角γ1は、該外周刃1の刃長ap領域の全域にわたって一定とされており、第2の外周刃2のねじれ角γ2は、該外周刃2の刃長ap領域の全域にわたって一定とされている。
 本実施形態では、エンドミル本体3の軸線O方向に沿う外周刃1、2の形成領域を、刃長領域という(これを刃長ap領域という場合がある)。
The difference in angle between the twist angle γ1 of the first outer peripheral blade 1 and the twist angle γ2 of the second outer peripheral blade 2 (the absolute value of γ2-γ1; in the following description, it is simply expressed as | γ2-γ1 | For example) 0 ° <| γ2-γ1 | ≦ 20 °, and preferably 2 ° ≦ | γ2-γ1 | ≦ 15 °. By setting the angle difference | γ2−γ1 | to 20 ° or less, it is possible to prevent the groove width from becoming too small at either the tip end portion or the base end portion of the chip discharge groove 4.
In the present embodiment, the twist angle γ1 of the first outer peripheral blade 1 is constant over the entire region of the blade length ap region of the outer peripheral blade 1, and the twist angle γ2 of the second outer peripheral blade 2 is The outer peripheral blade 2 is constant over the entire region of the blade length ap region.
In this embodiment, the formation region of the outer peripheral blades 1 and 2 along the axis O direction of the end mill body 3 is referred to as a blade length region (this may be referred to as a blade length ap region).
 ここで、本実施形態でいう「ねじれ角」とは、図2に示されるエンドミル本体3の側面視において(エンドミル本体3を径方向から見て)、軸線Oと、外周刃1、2(ねじれのつる巻き線)との間に形成される鋭角及び鈍角のうち、鋭角の角度を指している。
 なお、本実施形態の例では、外周刃1、2が、軸線O方向に沿って先端から基端側へ向かうに従い漸次工具回転方向Tとは反対側へ向けて延びていることから、外周刃1、2のねじれ角は、正角(ポジティブ角)とされている。
Here, the “twist angle” referred to in the present embodiment refers to the axis O and the outer peripheral blades 1 and 2 (twist) in the side view of the end mill body 3 shown in FIG. 2 (when the end mill body 3 is viewed from the radial direction). Among the acute angles and obtuse angles formed between the coil and the spiral winding), an acute angle is indicated.
In the example of the present embodiment, the outer peripheral blades 1 and 2 are gradually extended toward the side opposite to the tool rotation direction T from the distal end toward the proximal end side along the axis O direction. The twist angles 1 and 2 are positive angles (positive angles).
〔外周刃のピッチ角〕
 また本実施形態では、図4に示されるように、軸線Oに垂直なエンドミル横断面視において、周方向に隣り合う一対の外周刃1、2と、軸線Oと、をそれぞれ繋ぐ一対の仮想直線間に形成される中心角(符号A、Bで示される角度)を、「ピッチ角」(分割角)という。
[Pitch angle of outer peripheral edge]
In the present embodiment, as shown in FIG. 4, a pair of virtual straight lines connecting the pair of outer peripheral blades 1 and 2 adjacent to each other in the circumferential direction and the axis O in the end mill cross-sectional view perpendicular to the axis O. A central angle (an angle indicated by reference signs A and B) formed between them is referred to as a “pitch angle” (division angle).
 そして、図4に示されるように、外周刃1、2の刃長ap領域のうち所定位置(図示の例ではap1/2)におけるエンドミル横断面視において、周方向に並ぶ4つのピッチ角A、Bには、第1のピッチ角Aと、第1のピッチ角Aとは角度が異なる第2のピッチ角Bと、が2つずつ含まれている。2つの第1のピッチ角A、A同士は、周方向に隣接配置され、2つの第2のピッチ角B、B同士は、周方向に隣接配置されている。 As shown in FIG. 4, four pitch angles A arranged in the circumferential direction in the end mill cross-sectional view at a predetermined position (ap1 / 2 in the illustrated example) in the blade length ap region of the outer peripheral blades 1 and 2, B includes two first pitch angles A and two second pitch angles B different from the first pitch angle A. The two first pitch angles A and A are adjacently arranged in the circumferential direction, and the two second pitch angles B and B are adjacently arranged in the circumferential direction.
 つまり、前記所定位置でのエンドミル横断面視において、4つのピッチ角A、Bは、軸線O回りに第1のピッチ角A、第1のピッチ角A、第2のピッチ角B、第2のピッチ角B、の順で配列している。図示の例では、第1のピッチ角Aに比べて、第2のピッチ角Bが大きくされている。ただしこれに限定されるものではなく、ピッチ角Aに比べて、ピッチ角Bが小さくされていてもよい。 That is, in the end mill cross-sectional view at the predetermined position, the four pitch angles A and B are the first pitch angle A, the first pitch angle A, the second pitch angle B, and the second pitch around the axis O. The pitch angles B are arranged in this order. In the illustrated example, the second pitch angle B is made larger than the first pitch angle A. However, the present invention is not limited to this, and the pitch angle B may be smaller than the pitch angle A.
 なお、第1のピッチ角Aと、第2のピッチ角Bとの角度の差分(B-Aの絶対値であり、以下の説明では単に|B-A|と表すことがある)は、例えば0°<|B-A|≦20°であり、好ましくは、5°≦|B-A|≦15°である。角度の差分|B-A|が20°以下とされていることにより、切屑排出溝4の先端部及び基端部のいずれかにおいて、溝幅が小さくなり過ぎるようなことを抑制できる。 The difference in angle between the first pitch angle A and the second pitch angle B (which is an absolute value of BA, and may be simply expressed as | BA− in the following description) is, for example, 0 ° <| BA | ≦ 20 °, preferably 5 ° ≦ | BA | ≦ 15 °. By setting the angle difference | B−A | to 20 ° or less, it is possible to prevent the groove width from becoming too small at either the tip end portion or the base end portion of the chip discharge groove 4.
 図5に示されるように、ピッチ角A、A、B、Bが周方向(図5の横軸方向)に沿ってこの順に並ぶのは、外周刃1、2の刃長ap領域のうち、「所定位置」においてのみである。そして、前記所定位置は、刃長ap領域における先端部以外の部位とされており、具体的に本実施形態の例では、この所定位置が、刃長ap領域における中央部(つまりap1/2)とされている。 As shown in FIG. 5, the pitch angles A, A, B, and B are arranged in this order along the circumferential direction (the horizontal axis direction in FIG. 5), Only at "predetermined positions". And the said predetermined position is made into parts other than the front-end | tip part in the blade length ap area | region, and in the example of this embodiment specifically, this predetermined position is a center part (namely, ap1 / 2) in a blade length ap area | region. It is said that.
〔底刃(先端刃)〕
 図1~図3に示されるように、切屑排出溝4における工具回転方向Tを向く壁面と、エンドミル本体3の先端面との交差稜線には、底刃(先端刃)9が形成されている。底刃9は、切屑排出溝4の前記壁面の先端縁に沿って、直線状に延びている。
[Bottom blade (tip blade)]
As shown in FIGS. 1 to 3, a bottom blade (tip blade) 9 is formed on the intersecting ridge line between the wall surface facing the tool rotation direction T in the chip discharge groove 4 and the tip surface of the end mill body 3. . The bottom blade 9 extends linearly along the tip edge of the wall surface of the chip discharge groove 4.
 具体的に、底刃9は、切屑排出溝4(ギャッシュ7)の工具回転方向Tを向く壁面のうち、先端側の端部に位置するすくい面4bと、刃部3aの先端面のうち、該切屑排出溝4の工具回転方向Tとは反対側に隣接する先端逃げ面8と、の交差稜線に形成されている。
 刃部3aの先端面には、周方向に隣り合う切屑排出溝4同士の間に、先端逃げ面8がそれぞれ形成されている。先端逃げ面8の幅(底刃9に直交する向きの長さ)は、例えば底刃9の延在方向に沿って略一定とされている。
Specifically, the bottom blade 9 includes a rake face 4b located at an end portion on the tip end side and a tip end face of the blade portion 3a among the wall surfaces facing the tool rotation direction T of the chip discharge groove 4 (gash 7). The chip discharge groove 4 is formed at the intersecting ridge line with the tip flank 8 adjacent to the opposite side to the tool rotation direction T.
A tip flank 8 is formed between the chip discharge grooves 4 adjacent to each other in the circumferential direction on the tip surface of the blade portion 3a. The width of the tip flank 8 (the length in the direction perpendicular to the bottom blade 9) is, for example, substantially constant along the extending direction of the bottom blade 9.
 刃部3aには、切屑排出溝4の数(4条)に対応する数(4つ)の底刃9が、互いに周方向に間隔をあけて並んでいる。
 本実施形態では、図3に示されるエンドミル本体3の正面視において(エンドミル本体3の先端面を軸線O方向から正面に見て)、底刃9は、径方向に沿うように延びている。
 また、4つの底刃9には、一対の長刃(ギャッシュ7により切り欠かれない底刃9)と、一対の短刃(ギャッシュ7により径方向内側の端部が切り欠かれる底刃9)と、が含まれている。一対の長刃の内端(径方向内側の端縁)は、軸線Oに接近して配置されている。
 一対の短刃の内端と、軸線Oとの間には、ギャッシュ7が配置される。
In the blade portion 3a, a number (four) of bottom blades 9 corresponding to the number (four) of the chip discharge grooves 4 are arranged at intervals in the circumferential direction.
In the present embodiment, in a front view of the end mill main body 3 shown in FIG. 3 (when the front end surface of the end mill main body 3 is viewed from the axis O direction to the front), the bottom blade 9 extends along the radial direction.
The four bottom blades 9 include a pair of long blades (bottom blade 9 not cut out by the gash 7) and a pair of short blades (bottom blade 9 in which the radially inner end is cut off by the gash 7). And are included. Inner ends (end edges on the inner side in the radial direction) of the pair of long blades are arranged close to the axis O.
Gash 7 is disposed between the inner ends of the pair of short blades and the axis O.
 また、図2に示されるエンドミル本体3の側面視において、底刃9は、その外端(径方向外側の端縁)から径方向内側に向かうに従い漸次僅かに基端側へ向けて延びている。従って、底刃9が軸線O回りに回転して形成される回転軌跡は、該底刃9の外端から径方向内側に向かうに従い漸次基端側へ向けて傾斜する円錐面(テーパ面)となる。
 なお、底刃9は、軸線Oに垂直な平面に含まれるように延びていてもよく、この場合、底刃9の前記回転軌跡は、軸線Oに垂直な平面となる。
 底刃9の径方向の外端は、外周刃1又は2の軸線O方向の先端に接続している。
In addition, in the side view of the end mill body 3 shown in FIG. 2, the bottom blade 9 gradually extends slightly toward the base end side from the outer end (radially outer edge) toward the radially inner side. . Therefore, the rotation locus formed by the bottom blade 9 rotating around the axis O is a conical surface (tapered surface) that gradually inclines toward the base end side from the outer end of the bottom blade 9 toward the radially inner side. Become.
The bottom blade 9 may extend so as to be included in a plane perpendicular to the axis O. In this case, the rotation locus of the bottom blade 9 is a plane perpendicular to the axis O.
The outer end in the radial direction of the bottom blade 9 is connected to the tip of the outer peripheral blade 1 or 2 in the direction of the axis O.
〔本実施形態の変形例〕
 ここで、本発明に含まれる本実施形態の変形例について、図6を参照して説明する。なお、前述した構成と同じ構成要素については詳細な説明を省略し、主として異なる点についてのみ、下記に説明する。
 図6は、外周刃1、2の配列を模式的に表す図(エンドミル外周を平面状に展開して表す図)であり、上述した図5とは、外周刃1、2とピッチ角A、Bの配置(位置関係)が異なっている。
[Modification of this embodiment]
Here, the modification of this embodiment included in this invention is demonstrated with reference to FIG. Detailed description of the same components as those described above will be omitted, and only different points will be described below.
6 is a diagram schematically showing the arrangement of the outer peripheral blades 1 and 2 (a diagram showing the outer periphery of the end mill developed in a flat shape). FIG. 5 described above is different from the outer peripheral blades 1 and 2 and the pitch angle A, FIG. The arrangement (positional relationship) of B is different.
 図6では、図5に示されるピッチ角θ2(及びピッチ角A)を形成する隣り合う外周刃2、1の組と、ピッチ角θ4(及びピッチ角B)を形成する隣り合う外周刃2、(1)の組とが、互いに入れ替わって配置されている。言い換えると、図5に示される4つの外周刃1、2において、第1の外周刃1の位置と、第2の外周刃2の位置とを、互いに入れ替えて配置することで、図6に示されるようなエンドミルの構成となる。 In FIG. 6, a pair of adjacent outer peripheral blades 2 and 1 that form the pitch angle θ2 (and pitch angle A) shown in FIG. 5 and an adjacent outer peripheral blade 2 that forms the pitch angle θ4 (and pitch angle B), The group (1) is arranged so as to be interchanged with each other. In other words, in the four outer peripheral blades 1 and 2 shown in FIG. 5, the position of the first outer peripheral blade 1 and the position of the second outer peripheral blade 2 are replaced with each other and arranged as shown in FIG. The end mill is configured as described above.
 具体的に、図6においては、4つの外周刃1、2が、工具回転方向Tとは反対側へ向けて、第1の外周刃1、第2の外周刃2、第1の外周刃1、第2の外周刃2、の順で並んでいる。また、外周刃1、2の刃長ap領域のうち所定位置(図示の例ではap1/2)におけるエンドミル横断面視において、4つのピッチ角A、Bが、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第2のピッチ角B、第2のピッチ角B、第1のピッチ角A、の順で並んでいる。 Specifically, in FIG. 6, four outer peripheral blades 1, 2 face the opposite side to the tool rotation direction T, and the first outer peripheral blade 1, the second outer peripheral blade 2, and the first outer peripheral blade 1. The second outer peripheral blades 2 are arranged in this order. Further, in the end mill cross-sectional view at a predetermined position (ap1 / 2 in the illustrated example) in the blade length ap region of the outer peripheral blades 1 and 2, the four pitch angles A and B are directed to the side opposite to the tool rotation direction T. The first pitch angle A, the second pitch angle B, the second pitch angle B, and the first pitch angle A are arranged in this order.
 つまり、この図6においても上述した図5と同様に、第1の外周刃1と、第2の外周刃2とは、周方向に交互に配置されている。また、外周刃1、2の刃長ap領域のうち所定位置における軸線Oに垂直なエンドミル横断面視で、4つのピッチ角A、Bのうち、2つの第1のピッチ角A、A同士は、周方向に隣接配置され、2つの第2のピッチ角B、B同士は、周方向に隣接配置されている。 That is, in FIG. 6 as well, as in FIG. 5 described above, the first outer peripheral blades 1 and the second outer peripheral blades 2 are alternately arranged in the circumferential direction. Moreover, in the end mill cross-sectional view perpendicular to the axis O at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2, the two first pitch angles A and A among the four pitch angles A and B are The two second pitch angles B and B are adjacently arranged in the circumferential direction.
〔本実施形態による作用効果〕
 以上説明した本実施形態のスクエアエンドミル(エンドミル)20は、エンドミル本体3の外周に、周方向に互いに間隔をあけて並ぶ4つの外周刃1、2を備えている。これら4つの外周刃1、2には、互いにねじれ角γ1、γ2の大きさが異なる第1の外周刃1と、第2の外周刃2とが、2つずつ含まれており、また、第1の外周刃1と第2の外周刃2とは、周方向に交互に配列している。つまり、本実施形態のスクエアエンドミル20は、外周刃のねじれ角がすべて同一とされた等リードのエンドミルではなく、複数種類のねじれ角γ1、γ2を有する不等リードのエンドミルである。
[Effects of this embodiment]
The square end mill (end mill) 20 of the present embodiment described above includes four outer peripheral blades 1 and 2 arranged on the outer periphery of the end mill body 3 at intervals in the circumferential direction. These four outer peripheral blades 1 and 2 include two first outer peripheral blades 1 and two second outer peripheral blades 2 having different torsion angles γ1 and γ2 from each other. The one outer peripheral blade 1 and the second outer peripheral blade 2 are alternately arranged in the circumferential direction. That is, the square end mill 20 of the present embodiment is not an equal lead end mill in which the outer blades have the same twist angle, but an unequal lead end mill having a plurality of types of twist angles γ1 and γ2.
 また、外周刃1、2の刃長ap領域のうち所定位置におけるエンドミル本体3の横断面視において、エンドミル本体3の軸線O回りに並ぶ4つのピッチ角(エンドミル横断面視において、隣り合う一対の外周刃1、2と、軸線Oと、を繋ぐ一対の仮想直線間に形成される中心角)A、Bは、互いに角度の大きさが異なる第1のピッチ角Aと、第2のピッチ角Bとを、2つずつ含んでいる。そして、2つの第1のピッチ角A、A同士は周方向に隣接配置され、2つの第2のピッチ角B、B同士も周方向に隣接配置されている。つまり、本実施形態のスクエアエンドミル20は、外周刃のピッチ角がすべて同一とされた等ピッチのエンドミルではなく、複数種類のピッチ角A、Bを有する不等ピッチのエンドミルでもある。 Further, in the cross-sectional view of the end mill body 3 at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2, four pitch angles arranged around the axis O of the end mill body 3 (a pair of adjacent ones in the end mill cross-sectional view). The central angles A and B formed between a pair of imaginary straight lines connecting the outer peripheral blades 1 and 2 and the axis O are the first pitch angle A and the second pitch angle that are different in magnitude from each other. B is included two by two. The two first pitch angles A and A are adjacently arranged in the circumferential direction, and the two second pitch angles B and B are also adjacently arranged in the circumferential direction. That is, the square end mill 20 of this embodiment is not an equal pitch end mill in which the pitch angles of the outer peripheral blades are all the same, but is also an unequal pitch end mill having a plurality of types of pitch angles A and B.
 このため、本実施形態のスクエアエンドミル20は、4つの外周刃1、2が、従来にない特別な技術的特徴を有して配列されることになる。本実施形態の外周刃1、2の配列及びその効果について、図5及び図6を参照しつつ下記に説明する。
 本実施形態の外周刃の配列を模式的に示す図5において、外周刃1、2の刃長ap領域のうち、所定位置におけるエンドミル本体3の横断面(図示の例では刃長apの中央(1/2の位置))で、図5のエンドミル周方向(横軸方向)に沿う外周刃1、2同士の間の距離に相当するピッチ角A、Bは、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第1のピッチ角A、第2のピッチ角B、第2のピッチ角B、の順で配列する。
 そして、外周刃1、2は、工具回転方向Tとは反対側へ向けて、第1の外周刃1、第2の外周刃2、第1の外周刃1、第2の外周刃2、の順で交互に配列し、これに伴い外周刃のねじれ角γ1、γ2も、工具回転方向Tとは反対側へ向けて、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、の順で交互に並ぶ。
For this reason, in the square end mill 20 of the present embodiment, the four outer peripheral blades 1 and 2 are arranged with special technical features that are not present. The arrangement of the outer peripheral blades 1 and 2 and the effect thereof according to this embodiment will be described below with reference to FIGS. 5 and 6.
In FIG. 5 schematically showing the arrangement of the outer peripheral blades of the present embodiment, the cross section of the end mill body 3 at a predetermined position in the blade length ap region of the outer peripheral blades 1 and 2 (in the illustrated example, the center of the blade length ap ( Pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG. 5 are opposite to the tool rotation direction T. The first pitch angle A, the first pitch angle A, the second pitch angle B, and the second pitch angle B are arranged in this order.
And the outer peripheral blades 1 and 2 are directed to the side opposite to the tool rotation direction T, and the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2. As a result, the torsion angles γ1 and γ2 of the outer peripheral blades are also turned toward the side opposite to the tool rotation direction T, and the torsion angle γ1 of the first outer peripheral blade 1 and the second outer peripheral blade 2 The twist angle γ2, the twist angle γ1 of the first outer peripheral blade 1, and the twist angle γ2 of the second outer peripheral blade 2 are alternately arranged in this order.
 従って、図5に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tに位置する一方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tに位置する一方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 Accordingly, of the two first pitch angles A and A shown in FIG. 5, one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are With respect to one second pitch angle B located in the tool rotation direction T, the difference in angle | BA is constant over the entire blade length ap region.
 詳しくは、図5において、刃長ap領域の所定位置(ap1/2)における一方(左側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における一方(左側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ3とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ3-θ1|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、一方の第1のピッチ角Aと、一方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 5, the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. In addition, one (left side) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ3.
In this case, the angle difference | BA | at the predetermined position of the blade length ap and the angle difference | θ3-θ1 | at the tip position of the blade length ap are equal to each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the first pitch angle A and the second pitch angle B is constant over the entire blade length ap region.
 また、図5に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tとは反対側に位置する他方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tとは反対側に位置する他方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 Further, of the two first pitch angles A and A shown in FIG. 5, the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B, the other second pitch angle B located on the opposite side of the tool rotation direction T is constant in the difference | BA− between each other over the entire blade length ap region. .
 詳しくは、図5において、刃長ap領域の所定位置(ap1/2)における他方(右側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。また、刃長ap領域の所定位置(ap1/2)における他方(右側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ4とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ4-θ2|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、他方の第1のピッチ角Aと、他方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 5, the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap. The pitch angle θ2 is set at the tip position (ap0) of the region. Further, the second (right) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ4.
In this case, the angle difference | BA | at the predetermined position of the blade length ap is equal to the angle difference | θ4-θ2 | at the tip position of the blade length ap. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the other first pitch angle A and the other second pitch angle B is constant over the entire blade length ap region.
 また、一方の第1のピッチ角Aと一方の第2のピッチ角Bとの角度の差分|B-A|と、他方の第1のピッチ角Aと他方の第2のピッチ角Bとの角度の差分|B-A|とが、互いに等しくされている。さらにこの関係は、刃長ap領域の全域にわたって維持される。
 具体的に、例えば刃長ap領域の先端位置(ap0)において、角度の差分|θ3-θ1|と、角度の差分|θ4-θ2|とが、それぞれ所定位置の角度の差分|B-A|と同一とされているとともに、互いに等しくされている。
Also, the difference in angle between one first pitch angle A and one second pitch angle B | B−A |, and the other first pitch angle A and the other second pitch angle B The angle difference | BA | is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region.
Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference | θ3-θ1 | and the angle difference | θ4-θ2 | And the same as each other.
 また、本実施形態の変形例である外周刃の配列を模式的に示す図6において、外周刃1、2の刃長ap領域のうち、所定位置におけるエンドミル本体3の横断面(図示の例ではap1/2の位置)で、図6のエンドミル周方向(横軸方向)に沿う外周刃1、2同士の間の距離に相当するピッチ角A、Bは、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第2のピッチ角B、第2のピッチ角B、第1のピッチ角A、の順で配列する。
 そして、外周刃1、2は、工具回転方向Tとは反対側へ向けて、第1の外周刃1、第2の外周刃2、第1の外周刃1、第2の外周刃2、の順で交互に配列し、これに伴い外周刃のねじれ角γ1、γ2も、工具回転方向Tとは反対側へ向けて、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、第1の外周刃1のねじれ角γ1、第2の外周刃2のねじれ角γ2、の順で交互に並ぶ。
Moreover, in FIG. 6 which shows typically the arrangement | sequence of the outer periphery blade which is a modification of this embodiment, among the blade length ap area | regions of the outer periphery blades 1 and 2, the cross section (in the example of illustration) of the end mill main body 3 in a predetermined position. The pitch angles A and B corresponding to the distance between the outer peripheral blades 1 and 2 along the end mill circumferential direction (horizontal axis direction) in FIG. The first pitch angle A, the second pitch angle B, the second pitch angle B, and the first pitch angle A are arranged in this order.
And the outer peripheral blades 1 and 2 are directed to the side opposite to the tool rotation direction T, and the first outer peripheral blade 1, the second outer peripheral blade 2, the first outer peripheral blade 1, and the second outer peripheral blade 2. As a result, the torsion angles γ1 and γ2 of the outer peripheral blades are also turned toward the side opposite to the tool rotation direction T, and the torsion angle γ1 of the first outer peripheral blade 1 and the second outer peripheral blade 2 The twist angle γ2, the twist angle γ1 of the first outer peripheral blade 1, and the twist angle γ2 of the second outer peripheral blade 2 are alternately arranged in this order.
 従って、図6に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tに位置する一方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tとは反対側に位置する他方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 Accordingly, of the two first pitch angles A and A shown in FIG. 6, one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B are The difference between the other second pitch angles B located on the opposite side of the tool rotation direction T and the angle | BA− ||
 詳しくは、図6において、刃長ap領域の所定位置(ap1/2)における一方(左側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における他方(右側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ3とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ3-θ1|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、一方の第1のピッチ角Aと、他方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 6, the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. In addition, the second (right) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually reduced toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ3.
In this case, the angle difference | BA | at the predetermined position of the blade length ap and the angle difference | θ3-θ1 | at the tip position of the blade length ap are equal to each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side | B−A | is constant over the entire region of the blade length ap region.
 また、図6に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tとは反対側に位置する他方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tに位置する一方の第2のピッチ角Bとは、刃長ap領域の全域にわたって、互いの角度の差分|B-A|が一定とされている。 In addition, of the two first pitch angles A and A shown in FIG. 6, the other first pitch angle A located on the side opposite to the tool rotation direction T and the two second pitch angles B, Of B, one second pitch angle B positioned in the tool rotation direction T is constant in the difference | BA− of the angle over the entire blade length ap region.
 詳しくは、図6において、刃長ap領域の所定位置(ap1/2)における他方(右側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。また、刃長ap領域の所定位置(ap1/2)における一方(左側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ4とされている。
 この場合において、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ4-θ2|とが、互いに等しくされている。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は等しくなり、それ以外の刃長ap領域についても同様に、角度の差分は等しくなる。
 つまり、他方の第1のピッチ角Aと、一方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって一定である。
Specifically, in FIG. 6, the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the blade length ap is increased. The pitch angle θ2 is set at the tip position (ap0) of the region. In addition, one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ4.
In this case, the angle difference | BA | at the predetermined position of the blade length ap is equal to the angle difference | θ4-θ2 | at the tip position of the blade length ap. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is the same as described above, and the difference in angle is also equal in the other blade length ap regions.
That is, the difference between the other first pitch angle A and one second pitch angle B is constant over the entire blade length ap region.
 また、一方の第1のピッチ角Aと他方の第2のピッチ角Bとの角度の差分|B-A|と、他方の第1のピッチ角Aと一方の第2のピッチ角Bとの角度の差分|B-A|とが、互いに等しくされている。さらにこの関係は、刃長ap領域の全域にわたって維持される。
 具体的に、例えば刃長ap領域の先端位置(ap0)において、角度の差分|θ3-θ1|と、角度の差分|θ4-θ2|とが、それぞれ所定位置の角度の差分|B-A|と同一とされているとともに、互いに等しくされている。
Also, the difference between the first pitch angle A and the second pitch angle B on the other side | B−A | and the difference between the first pitch angle A on the other side and the second pitch angle B on the other side. The angle difference | BA | is equal to each other. Furthermore, this relationship is maintained over the entire blade length ap region.
Specifically, for example, at the tip position (ap0) of the blade length ap region, the angle difference | θ3-θ1 | and the angle difference | θ4-θ2 | And the same as each other.
 そして、本発明の発明者は、エンドミルについて鋭意研究を重ねた結果、切削加工時においてびびり振動を発生させる特定の周波数を抑制するには、該周波数に対応する上記角度の差分|B-A|となるような各ピッチ角A、Bとされた外周刃1、2の配列とすることが有効である、という知見を得るに至った。つまり、4つの外周刃1、2同士において、上記角度の差分|B-A|を設定することにより、再生振動の位相差をこれら外周刃1、2同士でずらすことができ、共振周波数付近で生じる自励振動の発生を抑制することができ、その結果、びびり振動を抑えることができる。
 なお、上記「特定の周波数に対応する角度の差分」については、振動計算理論に基づいて求めたり、実験値(経験値)から求めたりすることができる。また「特定の周波数」とは、具体的には所定範囲の周波数帯を示しており、例えば300~900Hzの範囲である。
As a result of extensive research on the end mill, the inventor of the present invention, in order to suppress a specific frequency that generates chatter vibration at the time of cutting, the difference in angle | BA corresponding to the frequency | B−A | As a result, it has been found that it is effective to arrange the outer peripheral blades 1 and 2 with the pitch angles A and B. That is, by setting the angle difference | B−A | between the four outer peripheral blades 1 and 2, the phase difference of the regenerative vibration can be shifted between the outer peripheral blades 1 and 2, and near the resonance frequency. Generation of self-excited vibration that occurs can be suppressed, and as a result, chatter vibration can be suppressed.
The “difference in angle corresponding to a specific frequency” can be obtained based on vibration calculation theory or can be obtained from an experimental value (experience value). The “specific frequency” specifically indicates a frequency band within a predetermined range, for example, a range of 300 to 900 Hz.
 上述の知見に基づいて、本実施形態では、刃長ap領域の全域にわたって、特定の周波数を打ち消すことができる上記角度の差分|B-A|を維持する構成を採用した。具体的には、図5及び図6を用いて説明したように、角度の差分|B-A|を刃長ap領域の全域にわたって一定とする特別な構成を用いたことにより、切削加工時の切り込み量に係わらず、打ち消したい特定の周波数を安定して抑えることが可能になった。
 さらには、びびり振動の周波数を事前に知ることができず、従来であれば、所定の周波数帯域の範囲内において任意の周波数でびびり振動が発生し得る状態であっても、本実施形態のエンドミルによれば、所定の周波数帯域の全域でびびり振動を安定的に抑制することができる。
Based on the above findings, the present embodiment employs a configuration that maintains the above-described angle difference | BA− that can cancel a specific frequency over the entire blade length ap region. Specifically, as described with reference to FIGS. 5 and 6, by using a special configuration in which the angle difference | BA is constant over the entire blade length ap region, Regardless of the depth of cut, the specific frequency to be canceled can be stably suppressed.
Furthermore, the frequency of chatter vibration cannot be known in advance, and conventionally, even in a state where chatter vibration can occur at an arbitrary frequency within a predetermined frequency band, the end mill of this embodiment can be used. Accordingly, chatter vibration can be stably suppressed over the entire predetermined frequency band.
 具体的には、図8(a)に示されるように、軸線O方向の切り込み量mm(縦軸)、周波数Hz(横軸)、及び再生数RF(濃淡により表示。詳しくは後述する)の関係を表す計算結果(解析結果)より、本実施形態のスクエアエンドミル20によれば、例えば周波数450~800Hzの広範囲にわたって、切り込み量0~25mmに係わらず、再生数RFがすべて0.3以下に抑えられて、びびり振動の発生が顕著に抑制されることが確認された。なお、主軸の回転数については2500rpmとした。 Specifically, as shown in FIG. 8A, the cutting amount mm (vertical axis) in the direction of the axis O, the frequency Hz (horizontal axis), and the reproduction number RF (displayed by shading, which will be described in detail later). From the calculation result (analysis result) representing the relationship, according to the square end mill 20 of the present embodiment, for example, over a wide range of frequencies of 450 to 800 Hz, regardless of the depth of cut of 0 to 25 mm, the number of reproductions RF is all less than 0.3. It was confirmed that the occurrence of chatter vibration was significantly suppressed. The rotation speed of the main shaft was 2500 rpm.
 上記再生数RFについて説明する。
 各切れ刃における再生振動の位相遅れεj,lを用いて表すことのできる複素ベクトルの総和が再生数RFであり、その絶対値|RF|が小さい場合に再生効果が小さいと考えることができる。再生数RFの定義式を下記式(1)に示す。なお、等ピッチ工具を用いる場合には、再生効果が最大となり再生数|RF|は1となる。εj,lはN枚刃の工具におけるj番目の切れ刃において、軸方向にN分割したl番目の微小切れ刃における位相遅れを意味する。位相遅れは同じ微小切れ刃におけるピッチ角△θj,lとびびり振動の周波数f及び主軸回転数nを用いて下記式(2)で表すことができる。
The reproduction number RF will be described.
The sum of complex vectors that can be expressed using the phase delay ε j, l of the reproduction vibration at each cutting edge is the reproduction number RF, and it can be considered that the reproduction effect is small when the absolute value | RF | is small. . The following formula (1) shows the definition formula of the reproduction number RF. When using an equal pitch tool, the reproduction effect is maximized and the number of reproductions | RF | is 1. ε j, l means a phase delay in the l-th minute cutting edge obtained by dividing N z in the axial direction in the j-th cutting edge in the N t -blade tool. Phase delay can be expressed by the following formula (2) using the frequency f c and the main shaft rotational speed n of the vibration chatter and pitch angle △ θ j, l in the same micro-cutting edge.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 ここで、本実施形態の理解をより深めるために、図7に示される比較例(従来のスクエアエンドミル)について説明する。図7では、刃長ap領域の所定位置において、4つのピッチ角A、Bが、工具回転方向Tとは反対側へ向けて、第1のピッチ角A、第2のピッチ角B、第1のピッチ角A、第2のピッチ角B、の順で交互に並んでいる。
 そして、2つの第1のピッチ角A、Aのうち、工具回転方向Tに位置する一方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tに位置する一方の第2のピッチ角Bとが、刃長ap領域のうち所定位置(ap1/2)においてのみ、特定の周波数を抑制できる角度の差分|B-A|とされている。
Here, in order to deepen the understanding of the present embodiment, a comparative example (conventional square end mill) shown in FIG. 7 will be described. In FIG. 7, at a predetermined position in the blade length ap region, the four pitch angles A and B are directed to the opposite side of the tool rotation direction T, and the first pitch angle A, the second pitch angle B, and the first The pitch angle A and the second pitch angle B are alternately arranged in this order.
Of the two first pitch angles A and A, one of the first pitch angles A located in the tool rotation direction T and two of the second pitch angles B and B in the tool rotation direction T. One of the second pitch angles B that is positioned is an angle difference | BA− that can suppress a specific frequency only at a predetermined position (ap1 / 2) in the blade length ap region.
 詳しくは、図7において、刃長ap領域の所定位置(ap1/2)における一方(左側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における一方(左側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。
 この場合、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ2-θ1|とは、互いに異なってしまう。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は異なり、それ以外の刃長ap領域についても同様に、角度の差分は異なることになる。
 つまり、一方の第1のピッチ角Aと、一方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。
Specifically, in FIG. 7, the first pitch angle A on one side (left side) at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. In addition, one (left side) second pitch angle B at a predetermined position (ap1 / 2) in the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ2.
In this case, an angle difference | BA | at a predetermined position of the blade length ap and an angle difference | θ2-θ1 | at the tip position of the blade length ap are different from each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions.
That is, the difference between the first pitch angle A on one side and the second pitch angle B on the other side is changed over the entire blade length ap region.
 また、図7に示される2つの第1のピッチ角A、Aのうち、工具回転方向Tとは反対側に位置する他方の第1のピッチ角Aと、2つの第2のピッチ角B、Bのうち、工具回転方向Tとは反対側に位置する他方の第2のピッチ角Bとが、刃長ap領域のうち所定位置(ap1/2)においてのみ、特定の周波数を抑制できる角度の差分|B-A|とされている。 In addition, of the two first pitch angles A and A shown in FIG. 7, the other first pitch angle A located on the side opposite to the tool rotation direction T, and the two second pitch angles B, Of B, the other second pitch angle B located on the side opposite to the tool rotation direction T is an angle at which a specific frequency can be suppressed only at a predetermined position (ap1 / 2) in the blade length ap region. The difference is | B−A |.
 詳しくは、図7において、刃長ap領域の所定位置(ap1/2)における他方(右側)の第1のピッチ角Aが、刃長apの先端側へ向かうに従い漸次小さくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ1とされている。また、刃長ap領域の所定位置(ap1/2)における他方(右側)の第2のピッチ角Bが、刃長apの先端側へ向かうに従い漸次大きくされて、刃長ap領域の先端位置(ap0)においてピッチ角θ2とされている。
 この場合、刃長apの所定位置における角度の差分|B-A|と、刃長apの先端位置における角度の差分|θ2-θ1|とは、互いに異なってしまう。また、刃長ap領域の基端位置(図示しないap1)においても、上述と同様に角度の差分は異なり、それ以外の刃長ap領域についても同様に、角度の差分は異なることになる。
 つまり、他方の第1のピッチ角Aと、他方の第2のピッチ角Bとは、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。
Specifically, in FIG. 7, the first (right) first pitch angle A at a predetermined position (ap1 / 2) in the blade length ap region is gradually decreased toward the tip side of the blade length ap, and the blade length ap The pitch angle θ1 is set at the tip position (ap0) of the region. Further, the second (right) second pitch angle B at a predetermined position (ap1 / 2) of the blade length ap region is gradually increased toward the tip side of the blade length ap, and the tip position of the blade length ap region ( In ap0), the pitch angle is θ2.
In this case, an angle difference | BA | at a predetermined position of the blade length ap and an angle difference | θ2-θ1 | at the tip position of the blade length ap are different from each other. Also, at the base end position (ap1 not shown) of the blade length ap region, the difference in angle is different as described above, and the difference in angle is also different in the other blade length ap regions.
That is, the difference between the other first pitch angle A and the other second pitch angle B is changed over the entire blade length ap region.
 また図7において、一方(左側)の第1のピッチ角Aと、他方(右側)の第2のピッチ角Bとについても、上述と同様に、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。また、他方(右側)の第1のピッチ角Aと、一方(左側)の第2のピッチ角Bとについても、上述と同様に、互いの角度の差分|B-A|が刃長ap領域の全域にわたって変化させられる。 In FIG. 7, the difference between the first | left-side first pitch angle A and the other (right-side) second pitch angle B is similar to the above. It is varied over the entire long ap region. Also, with respect to the other (right side) first pitch angle A and the one (left side) second pitch angle B, the difference between the angles | BA is equal to the blade length ap region, as described above. Can be changed throughout.
 このような従来のスクエアエンドミルでは、刃長ap領域のうち所定位置以外の部位(所定位置に対応する切り込み量以外の切り込み量)で切削加工を行うと、特定の周波数を抑制することができず、びびり振動の発生を抑えることができない。 In such a conventional square end mill, when cutting is performed at a portion other than the predetermined position in the blade length ap region (a cutting amount other than the cutting amount corresponding to the predetermined position), a specific frequency cannot be suppressed. The occurrence of chatter vibration cannot be suppressed.
 具体的には、図8(b)に示されるように、軸線O方向の切り込み量mm(縦軸)、周波数Hz(横軸)、及び再生数RF(濃淡により表示)の関係を表す計算結果(解析結果)より、比較例のスクエアエンドミルにおいては、周波数300~900Hzのほぼ全域にわたって、切り込み量8mm以下のときに再生数RFが0.3を超えて、びびり振動が発生することが確認された。なお、主軸の回転数は2500rpmとした。 Specifically, as shown in FIG. 8B, the calculation result representing the relationship between the cut amount mm (vertical axis) in the axis O direction, the frequency Hz (horizontal axis), and the reproduction frequency RF (displayed by shading). (Analysis result) confirms that, in the square end mill of the comparative example, chatter vibration occurs over almost the entire frequency range of 300 to 900 Hz when the cutting depth is 8 mm or less and the reproduction frequency RF exceeds 0.3. It was. The rotation speed of the main shaft was 2500 rpm.
 一方、本実施形態では、従来のスクエアエンドミルでは得られなかった下記の格別顕著な作用効果を奏する。すなわち、刃長ap領域のうち所定位置(図5及び図6ではap1/2)において、自励振動の発生を抑制したい特定の周波数に効果的なピッチ角A、Bを設定し、第1のピッチ角A、A同士、第2のピッチ角B、B同士をそれぞれ周方向に隣接配置するとともに、ねじれ角γ1、γ2が互いに異なる外周刃1、2同士を周方向に交互に配列する、という簡単な構成でスクエアエンドミル20を製作することにより、このエンドミルは、刃長ap領域の所定位置のみならず、刃長ap領域の全域にわたって、前記特定の周波数に対して自励振動の発生を効果的に抑制することができるのである。つまり、スクエアエンドミル20の軸線O方向への切り込み量に係わらず、びびり振動を安定して抑制することができ、かつ、エンドミルの製造を複雑にしてしまうこともない。 On the other hand, in the present embodiment, the following remarkable effects that are not obtained with the conventional square end mill are achieved. That is, at a predetermined position (ap1 / 2 in FIGS. 5 and 6) in the blade length ap region, effective pitch angles A and B are set to specific frequencies for which the occurrence of self-excited vibration is desired to be suppressed. The pitch angles A and A and the second pitch angles B and B are adjacently arranged in the circumferential direction, and the outer peripheral blades 1 and 2 having different twist angles γ1 and γ2 are alternately arranged in the circumferential direction. By manufacturing the square end mill 20 with a simple configuration, this end mill is effective not only in the predetermined position of the blade length ap region but also in the generation of self-excited vibration for the specific frequency over the entire region of the blade length ap region. Can be suppressed. That is, chatter vibration can be stably suppressed regardless of the amount of cut in the direction of the axis O of the square end mill 20, and the manufacture of the end mill is not complicated.
 また、本実施形態では下記の作用効果も得ることができる。
 図5及び図6に示される本実施形態においては、第1のピッチ角A、A同士の角度の差分|A-A|、第2のピッチ角B、B同士の角度の差分|B-B|は、刃長ap領域のうち所定位置(図示の例ではap1/2)以外の位置では、|A-A|≠0、|B-B|≠0(つまり不等分割)となっている。つまり、第1のピッチ角A、A同士の組合せ、及び、第2のピッチ角B、B同士の組合せに着目した場合も、刃長ap領域の(所定位置以外の)殆どの位置において、再生効果を得ることができるようになっている。このため本実施形態は、従来の一般的な不等リードよりも、ロバストな効果を奏する(再生効果の抑制に効果が得られる領域の拡張が行える)。
In the present embodiment, the following effects can also be obtained.
In the present embodiment shown in FIGS. 5 and 6, the difference in angle between the first pitch angles A and A | A−A |, the difference in angle between the second pitch angles B and B | BB | Is | AA− ≠ 0, | BB− ≠ 0 (that is, unequal division) at positions other than a predetermined position (ap1 / 2 in the illustrated example) in the blade length ap region. . That is, even when paying attention to the combination of the first pitch angles A and A and the combination of the second pitch angles B and B, reproduction is performed at most positions (other than the predetermined position) in the blade length ap region. An effect can be obtained. For this reason, this embodiment has a more robust effect than the conventional general unequal read (the area in which the effect can be obtained can be expanded).
 これに対し、図7に示される比較例では、第1のピッチ角A、A同士の角度の差分|A-A|、第2のピッチ角B、B同士の角度の差分|B-B|は、刃長ap領域の全域にわたって、|A-A|=0、|B-B|=0(つまり等分割)となっている。このため、再生効果の抑制に効果を発揮しない。 On the other hand, in the comparative example shown in FIG. 7, the difference in angle between the first pitch angles A and A | A−A | and the difference in angle between the second pitch angles B and B | B−B | Is | A−A | = 0 and | BB | = 0 (that is, equally divided) over the entire blade length ap region. For this reason, it is not effective in suppressing the reproduction effect.
 さらに、本実施形態のスクエアエンドミル20は、外周刃1、2が不等リードとされていることにより、上記特定の周波数のみならず、周波数が変化した場合の自励振動の発生についても抑えやすくされている。つまり、特定の周波数を抑える効果が得られるのは勿論のこと、特定の周波数以外の周波数に対しても抑制効果を奏するのである。従って、びびり振動を抑える効果がより格別顕著なものとなる。 Furthermore, the square end mill 20 of the present embodiment makes it easy to suppress not only the specific frequency but also the occurrence of self-excited vibration when the frequency changes because the outer peripheral blades 1 and 2 are unequal leads. Has been. In other words, the effect of suppressing a specific frequency is obtained, and the effect of suppressing a frequency other than the specific frequency is also achieved. Therefore, the effect of suppressing chatter vibration becomes particularly remarkable.
 また本実施形態では、刃長ap領域のうち所定位置が、該刃長ap領域における先端部以外の部位とされているので、下記の作用効果を奏する。
 すなわちこの場合、刃長ap領域の先端部においては、例えば図5及び図6に示されるように、ピッチ角θ1~θ4同士の角度を互いにすべて異ならせることができる。つまり、外周刃1、2の刃長ap領域のうち先端部は、被削材に切り込み始める位置であるとともに、切削加工に多用される箇所であり、この先端部においてピッチ角θ1~θ4がすべて異なっていると、本実施形態の上述したびびり振動を抑制する効果がさらに格別顕著なものとなりやすいため、好ましい。
Further, in the present embodiment, the predetermined position in the blade length ap region is a portion other than the tip portion in the blade length ap region, so the following effects are obtained.
That is, in this case, at the tip of the blade length ap region, as shown in FIGS. 5 and 6, for example, the pitch angles θ1 to θ4 can all be made different from each other. That is, the tip part of the edge length ap region of the outer peripheral blades 1 and 2 is a position where the cutting starts in the work material and is frequently used for cutting, and the pitch angles θ1 to θ4 are all at the tip part. If they are different from each other, the effect of suppressing the chatter vibration of the present embodiment is more likely to become particularly remarkable, which is preferable.
 また本実施形態では、刃長ap領域のうち所定位置が、該刃長ap領域における中央部とされているので、下記の作用効果を奏する。
 すなわちこの場合、図5及び図6に示されるように、2つの第1のピッチ角A、Aと、2つの第2のピッチ角B、Bと、が含まれる外周刃1、2の刃長ap領域の所定位置が、該刃長ap領域の中央部(ap1/2)であるので、外周刃1、2の刃長ap領域の先端部や基端部において、外周刃1、2に隣接する切屑排出溝4の溝幅が小さくなり過ぎるようなことが抑制される。
 従って、上記構成によれば、びびり振動の発生を抑制しつつ、切屑排出性を良好に維持することができる。
Moreover, in this embodiment, since the predetermined position is made into the center part in this blade length ap area | region among blade length ap area | regions, there exists the following effect.
That is, in this case, as shown in FIGS. 5 and 6, the blade lengths of the outer peripheral blades 1 and 2 including the two first pitch angles A and A and the two second pitch angles B and B are included. Since the predetermined position of the ap region is the central portion (ap1 / 2) of the blade length ap region, adjacent to the outer peripheral blades 1 and 2 at the distal end and the base end of the blade length ap region of the outer peripheral blades 1 and 2 It is suppressed that the groove width of the chip discharge groove 4 to be reduced becomes too small.
Therefore, according to the said structure, chip | tip discharge property can be maintained favorable, suppressing generation | occurrence | production of chatter vibration.
〔本発明に含まれるその他の構成〕
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
[Other configurations included in the present invention]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、前述の実施形態では、刃長ap領域(外周刃1、2の全刃長)のうち所定位置におけるエンドミル横断面視において、第1のピッチ角Aと、第2のピッチ角Bとが、周方向に沿ってピッチ角A、A、B、Bの順に並び、この所定位置が、刃長ap領域における先端部以外の部位とされ、具体的には中央部(ap1/2)であるとした。本発明はこれに限定されるものではなく、前記所定位置は、刃長ap領域における中央部以外の部位であってもよく、例えば先端部であってもよい。
 ただし、前記所定位置が、刃長ap領域における先端部以外の部位とされていたり、中央部とされていたりすることにより、前述の実施形態で説明した作用効果が得られることから、好ましい。
For example, in the above-described embodiment, the first pitch angle A and the second pitch angle B in the end mill cross-sectional view at a predetermined position in the blade length ap region (the entire blade length of the outer peripheral blades 1 and 2) are as follows. The pitch angles A, A, B, and B are arranged in this order along the circumferential direction, and this predetermined position is a portion other than the tip portion in the blade length ap region, specifically the central portion (ap1 / 2). It was. The present invention is not limited to this, and the predetermined position may be a portion other than the central portion in the blade length ap region, for example, a tip portion.
However, it is preferable that the predetermined position is a portion other than the tip portion in the blade length ap region or a central portion, so that the operational effects described in the above-described embodiment can be obtained.
 また、前述の実施形態では、切屑排出溝4は、エンドミル本体3の外周において軸線O方向に沿って先端から基端側へ向かうに従い漸次工具回転方向Tとは反対側へ向けてねじれて延びている。またこれに伴い、各外周刃1、2は、エンドミル本体3の外周において軸線O方向に沿って先端から基端側へ向かうに従い漸次工具回転方向Tとは反対側へ向けてねじれて延びている。つまり、外周刃1、2のねじれ角は、正角(ポジティブ角)とされている。ただし、本発明はこれに限定されるものではなく、切屑排出溝4は、エンドミル本体3の外周において軸線O方向に沿って先端から基端側へ向かうに従い漸次工具回転方向Tへ向けてねじれて延びていてもよい。またこれに伴い、各外周刃1、2は、エンドミル本体3の外周において軸線O方向に沿って先端から基端側へ向かうに従い漸次工具回転方向Tへ向けてねじれて延びていてもよい。つまり、外周刃1、2のねじれ角は、負角(ネガティブ角)とされていてもよい。
 本発明によれば、外周刃1、2のねじれ角が、正角の場合であっても、負角の場合であっても、上述した優れた作用効果を奏功する。
In the above-described embodiment, the chip discharge groove 4 gradually twists and extends toward the side opposite to the tool rotation direction T along the axis O direction along the axis O direction on the outer periphery of the end mill body 3. Yes. Accordingly, the outer peripheral blades 1 and 2 gradually twist and extend toward the opposite side of the tool rotation direction T along the axis O direction from the distal end toward the proximal end along the outer periphery of the end mill body 3. . That is, the twist angle of the outer peripheral blades 1 and 2 is a positive angle (positive angle). However, the present invention is not limited to this, and the chip discharge groove 4 is gradually twisted in the tool rotation direction T along the axis O direction along the axis O direction on the outer periphery of the end mill body 3. It may extend. Further, along with this, the outer peripheral blades 1 and 2 may be gradually twisted and extended in the tool rotation direction T along the axis O direction on the outer periphery of the end mill body 3 from the distal end toward the proximal end side. That is, the twist angle of the outer peripheral blades 1 and 2 may be a negative angle (negative angle).
According to the present invention, the above-described excellent effects can be achieved regardless of whether the outer blades 1 and 2 have a positive angle or a negative angle.
 その他、本発明の趣旨から逸脱しない範囲において、前述の実施形態、変形例及びなお書き等で説明した各構成(構成要素)を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 In addition, in the range which does not deviate from the meaning of this invention, you may combine each structure (component) demonstrated by the above-mentioned embodiment, a modification, and a remark etc., addition of a structure, omission, substitution, others It can be changed. Further, the present invention is not limited by the above-described embodiments, and is limited only by the scope of the claims.
 1 第1の外周刃(外周刃)
 2 第2の外周刃(外周刃)
 3 エンドミル本体
 4 切屑排出溝
 20 スクエアエンドミル(エンドミル)
 A 第1のピッチ角(ピッチ角)
 ap 刃長
 B 第2のピッチ角(ピッチ角)
 O 軸線
 T 工具回転方向
 γ1 第1の外周刃のねじれ角(ねじれ角)
 γ2 第2の外周刃のねじれ角(ねじれ角)
1 First outer peripheral blade (outer peripheral blade)
2 Second outer peripheral blade (outer peripheral blade)
3 End mill body 4 Chip discharge groove 20 Square end mill (end mill)
A First pitch angle (pitch angle)
ap Blade length B Second pitch angle (pitch angle)
O Axis T Tool rotation direction γ1 Torsion angle of first outer peripheral blade (twist angle)
γ2 Twist angle (twist angle) of the second outer peripheral blade

Claims (3)

  1.  軸状をなすエンドミル本体と、
     前記エンドミル本体の外周に形成され、前記エンドミル本体の軸線方向の先端から基端側へ向かうに従い前記軸線回りの周方向へ向けて延びる切屑排出溝と、
     前記切屑排出溝における前記周方向のうち工具回転方向を向く壁面と、前記エンドミル本体の外周面との交差稜線に形成された外周刃と、を備えたエンドミルであって、
     前記切屑排出溝は、前記周方向に互いに間隔をあけて4条形成され、
     前記周方向に互いに間隔をあけて並ぶ4つの外周刃には、第1の外周刃と、前記第1の外周刃とはねじれ角が異なる第2の外周刃と、が2つずつ含まれており、
     前記第1の外周刃と、前記第2の外周刃とは、前記周方向に交互に配置され、
     前記外周刃の刃長領域のうち所定位置における前記軸線に垂直なエンドミル横断面視において、
     前記周方向に隣り合う一対の前記外周刃と、前記軸線と、を繋ぐ一対の仮想直線間に形成される中心角をピッチ角として、
     前記周方向に並ぶ4つの前記ピッチ角には、第1のピッチ角と、前記第1のピッチ角とは角度が異なる第2のピッチ角と、が2つずつ含まれており、
     2つの前記第1のピッチ角同士は、前記周方向に隣接配置され、2つの前記第2のピッチ角同士は、前記周方向に隣接配置されることを特徴とするエンドミル。
    A shaft-shaped end mill body,
    A chip discharge groove formed on the outer periphery of the end mill body and extending in the circumferential direction around the axis as it goes from the distal end in the axial direction of the end mill body toward the proximal side;
    An end mill comprising a wall surface facing the tool rotation direction in the circumferential direction in the chip discharge groove, and an outer peripheral blade formed on a cross ridge line with the outer peripheral surface of the end mill body,
    The chip discharge grooves are formed in four strips at intervals in the circumferential direction,
    The four outer peripheral blades arranged at intervals in the circumferential direction include two first outer peripheral blades and two second outer peripheral blades having different helix angles from the first outer peripheral blade. And
    The first outer peripheral blades and the second outer peripheral blades are alternately arranged in the circumferential direction,
    In the end mill cross-sectional view perpendicular to the axis at a predetermined position in the blade length region of the outer peripheral blade,
    As a pitch angle, a central angle formed between a pair of virtual straight lines connecting the pair of outer peripheral blades adjacent in the circumferential direction and the axis line,
    The four pitch angles arranged in the circumferential direction include two first pitch angles and two second pitch angles different from the first pitch angles,
    Two end pitches are arranged adjacent to each other in the circumferential direction, and two second pitch angles are arranged adjacent to each other in the circumferential direction.
  2.  請求項1に記載のエンドミルであって、
     前記刃長領域のうち所定位置が、前記刃長領域における先端部以外の部位であることを特徴とするエンドミル。
    The end mill according to claim 1,
    The end mill characterized in that the predetermined position in the blade length region is a portion other than the tip in the blade length region.
  3.  請求項1又は2に記載のエンドミルであって、
     前記刃長領域のうち所定位置が、前記刃長領域における中央部であることを特徴とするエンドミル。
    The end mill according to claim 1 or 2,
    The end mill characterized in that a predetermined position in the blade length region is a central portion in the blade length region.
PCT/JP2017/016732 2016-04-27 2017-04-27 Endmill WO2017188379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-089384 2016-04-27
JP2016089384A JP2017196694A (en) 2016-04-27 2016-04-27 End mill

Publications (1)

Publication Number Publication Date
WO2017188379A1 true WO2017188379A1 (en) 2017-11-02

Family

ID=60160921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016732 WO2017188379A1 (en) 2016-04-27 2017-04-27 Endmill

Country Status (2)

Country Link
JP (1) JP2017196694A (en)
WO (1) WO2017188379A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110013998A1 (en) * 2008-04-10 2011-01-20 Maurizio Tardivo End mill with different helix angles
JP2011206863A (en) * 2010-03-29 2011-10-20 Mitsubishi Materials Corp End mill
JP2014058041A (en) * 2006-08-07 2014-04-03 Hanita Metal Works Ltd Chatter resistant end mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058041A (en) * 2006-08-07 2014-04-03 Hanita Metal Works Ltd Chatter resistant end mill
US20110013998A1 (en) * 2008-04-10 2011-01-20 Maurizio Tardivo End mill with different helix angles
JP2011206863A (en) * 2010-03-29 2011-10-20 Mitsubishi Materials Corp End mill

Also Published As

Publication number Publication date
JP2017196694A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP6246825B2 (en) Radius end mill
JP5526924B2 (en) End mill
US9901995B2 (en) Radius end mill and cutting work method
JP6221660B2 (en) Roughing end mill
JP2006198767A (en) Milling cutter tool
US20170304909A1 (en) Radius end mill
KR102164730B1 (en) Ball end mill
WO2016158980A1 (en) Milling tool
JP2013537854A (en) End mill with different helix angles
WO2019044791A1 (en) Tapered reamer
JP7125611B2 (en) end mill
JP5346827B2 (en) End mill
JP2008110453A (en) End mill
JP2018167384A (en) End mill
JP2011056608A (en) Square end mill
WO2017188379A1 (en) Endmill
JP5849817B2 (en) Square end mill
JP2019177474A (en) Roughing end mill
JP2018164946A (en) Radius end mill
JP5895654B2 (en) End mill
JPH06114621A (en) Rotary machining tool equipment with undulate cutter on cylindrical surface
JP5515327B2 (en) End mill
US20240001463A1 (en) End mill
JP2019098444A (en) End mill
JP6410220B1 (en) End mill

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789661

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789661

Country of ref document: EP

Kind code of ref document: A1