WO2017188250A1 - 垂直軸型風力発電機用風車の羽根 - Google Patents

垂直軸型風力発電機用風車の羽根 Download PDF

Info

Publication number
WO2017188250A1
WO2017188250A1 PCT/JP2017/016376 JP2017016376W WO2017188250A1 WO 2017188250 A1 WO2017188250 A1 WO 2017188250A1 JP 2017016376 W JP2017016376 W JP 2017016376W WO 2017188250 A1 WO2017188250 A1 WO 2017188250A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind
rear wall
wind turbine
cavity
Prior art date
Application number
PCT/JP2017/016376
Other languages
English (en)
French (fr)
Inventor
豊 根本
Original Assignee
豊 根本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊 根本 filed Critical 豊 根本
Publication of WO2017188250A1 publication Critical patent/WO2017188250A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the shape of a blade of a wind turbine for a vertical axis wind power generator.
  • the wind speed will be less than about 2m / s.
  • the wind speed at which the windmill starts to rotate is referred to as start-up wind speed or start wind speed, and the wind speed at which power generation is started is referred to as cut-in wind speed.
  • Patent Document 1 discloses that the outer edge of the blade is close to the outer edge of the blade at the position near the outer edge of the wind turbine so as to generate a high torque in a low rotational speed range without sacrificing the characteristics of the simple structure Savonius wind turbine as much as possible.
  • the structure is bent in an inverted Z-shaped or Z-shaped staircase so that it is displaced relative to the curved surface side.
  • the wind force received by the outer surface of the stepped step plate assists the wind force received by the original concave curved surface. To act. As a result, high torque is generated even in a low rotational speed range.
  • the Savonius windmill has a problem in that a decrease in torque or output is unavoidable due to this drag, since one of the two curved blades receives a force in the direction reverse to the wind direction.
  • a force that acts in the direction opposite to the rotation direction is reduced, and an improvement in a blade shape that effectively acts in the rotation direction as shown in FIG. 4 has been proposed.
  • a wind turbine (blade) for a normal wind power generator rotates the wind turbine (blade) by using the action of either [drag] or [lift].
  • Wind turbines (blades) for vertical axis wind power generators of course use the [force of drag], which is the force that hits the object in the direction of the airflow received on the surface 2 of the blade 1, and it will occur from there It is a windmill (blade) that has the great feature that it also uses the lift force, which is the vertical force due to the pressure difference between the top and bottom, at the same time. That is, a concave curved surface 3 having a radius smaller than that of the convex curved surface of the surface 2 is formed on the back side, that is, on the circumferential central axis 6 side of the blade 1.
  • One of its features is to generate [lift] as well as [drag] as well as (a) vane and (b) the shape of the back side of each strut 4 shown in FIG. It is a wind turbine (blade) for a novel vertical axis wind power generator that can generate twice as much wind force with a single wind force.
  • the wind turbine (blade) for the vertical axis wind power generator rotates the wind turbine (blade) by generating [drag] on the surface of the wind turbine (blade), and the back side of the blade 1 and the strut 4.
  • Efficient power generation can be obtained by generating [lift] using the concave and curved shapes 3, 5 of the above.
  • it succeeded in generating twice the power with a single wind, and unlike ordinary wind power generators, it is possible to start rotation with a breeze wind, thus generating a strong wind that enables power generation When this occurs, power generation can be started instantaneously with a short time difference, enabling high-efficiency power generation.
  • the position where the rear side of the blade 1 which is one of the features of the wind turbine (blade) for the vertical axis wind power generator according to the present invention starts shaping into the concavely curved shape 3 is the frontal region shown in FIG. 21 to 45% of sites are best.
  • a lightweight and strong aluminum alloy AL-5025 is used.
  • the pipe is shaped into a hollow shape by a pressing method or drawing that is divided into two parts in the front-rear direction from the substantially central portion.
  • blade M of the opening-and-closing structure is plate-shaped, and the front end is attached to the outer surface of the blade
  • FIG. Therefore, (1) When the blade 1 is orbiting toward the wind W, the open / close blade M is closed by the wind pressure, but (2) it moves 180 degrees and the wind W pushes the concave curved surface 3 at the rear end. In this state, the opening / closing blade M is pushed open by the wind pressure and the air pressure is received by a wide surface of the opening / closing blade M, and the pressing force can be used more effectively.
  • Claim 1 is a blade standing vertically at the outer ends of a plurality of horizontal arms radially attached to a vertical central axis, the horizontal cross-sectional shape of which is a streamline shape, and is vertically at the rear.
  • the cavity surrounded by the rear wall standing in the transverse direction, the convex arcuate outer wall surface and the inner side surface standing on the central axis side is more narrow than the narrow part where the distance between the outer wall surface and the inner side surface is the narrowest.
  • the rear side gradually widens backwards, and opens and opens so that the wind is guided from the rear end, On the front side of the narrowed portion, the front side is gradually widened, and the rear wall side is maximum, And it is a blade
  • Claim 2 is a blade of a wind turbine for a vertical axis type wind power generator according to claim 1, wherein at least an inner surface is bent to form the narrow portion.
  • the pressing groove vertically fixed to the horizontal arm has a concave groove shape on the back surface that receives the tailwind, and a convex surface on the front surface. It is a blade
  • a wind turbine for a vertical axis type wind power generator has blades standing vertically at the outer ends of a plurality of horizontal arms radially attached to a vertical central axis, and its horizontal cross section.
  • the shape is streamlined.
  • a cavity surrounded by a rear wall standing vertically in the transverse direction, a convex arcuate outer wall surface, and an inner side surface standing on the central axis side is formed.
  • This cavity forms a narrowed portion where the distance between the outer wall surface and the inner side surface is the narrowest, the rear side of the narrowed portion gradually widens backward, and the tailwind is guided from the rear end to flow in. Open for easy access.
  • the narrow portion is pushed by the wind pressure and circulates.
  • the front side of the narrowed portion gradually increases in distance toward the front and the maximum near the rear wall, so that the air pressure inside the cavity gradually decreases and becomes the minimum near the rear wall.
  • the air resistance received by the jet that has passed through the narrowed portion gradually decreases and becomes the lowest near the rear wall. Therefore, the rear wall is pushed at the highest speed, and the windmill is further pushed to go around. In this way, the tailwind can be effectively utilized to contribute to the circulation of the windmill.
  • the cavity communicates with the outside air at least on the inner surface and close to the rear wall, the air pressure of the cavity decreases and approaches the outside air pressure.
  • the injected wind collides with the rear wall and becomes a force for moving the blade forward, and makes the windmill circulate more effectively.
  • the inner surface is bent at least to form the narrow portion, the outer surface is not required to be bent, so the processing load is reduced and the outer surface is reduced. Since the sides are not machined at all, there is no risk of disturbing the wind flow.
  • the pressing groove fixed vertically to the horizontal arm has a concave groove shape on the back surface that receives the tailwind, and the front surface has a convex shape.
  • the back surface that receives the tailwind is a concave groove, so that the air resistance is large and the windmill circulates effectively.
  • FIG. 1 It is a top view of the windmill by this invention.
  • (1) is the perspective view which expands and shows a part of windmill of FIG. 1, (2)
  • wing, (3) is the external view of one blade. It is a top view which shows the wind direction and output which the windmill of FIG. 1 receives. It is a horizontal sectional view showing details of a conventional opening and closing blade. It is a perspective view showing the whole picture of one blade by the present invention. It is the top view which attached the blade
  • FIG. 5 is a schematic perspective view showing an entire view of one blade of a wind turbine for a vertical axis type wind power generator according to the present invention.
  • the shape of the rear portion in the horizontal sectional direction is completely different. Is different.
  • the front half 7 of the blade 1 has a streamline shape, but the configuration on the rear side of the rear wall 8 stands on the rear wall 8, the convex arcuate outer wall surface 9 and the central axis 6 side.
  • a cavity C surrounded by the inner surface 10 is formed. That is, as shown in the figure, the outer wall surface 9 and the inner surface 10 face each other, but the interval gradually changes.
  • the cavity C narrows the narrowed portion 11 where the distance between the outer wall surface 9 and the inner side surface 10 is the narrowest, and the rear side G of the narrowed portion 11 gradually widens and opens rearward as shown in the figure. It has a function of guiding the tailwind so that it can easily enter, and is opened so that the wind flows from the rear end. Accordingly, when the windmill circulates and the blades of the present invention become a tailwind, the narrow portion 11 is pushed by the wind pressure, and the windmill further circulates. Further, on the front side of the narrow portion 11, the front side gradually increases in distance and the rear wall 8 side is maximum, so that the air pressure inside the cavity C gradually decreases and becomes the minimum near the rear wall 8. .
  • the air resistance received by the jet flow that has passed through the narrowed portion 11 gradually decreases, becomes the lowest near the rear wall 8, pushes the rear wall 8 at the highest speed, and further pushes the windmill to circulate. Accordingly, the blade 1 is smoothly circulated in response to the wind pressure pushed from behind.
  • the outer side surface 9 Since at least the inner side surface 10 is bent to form the narrowed portion 11, the outer side surface 9 does not require a process such as bending, so that the processing load is lightened. Since it is not processed, there is no risk of disturbing the wind flow. Further, since the hole h for communicating the cavity C with the outside air is opened at least near the front side of the inner side surface 10, that is, near the rear wall 8, the air pressure of the cavity C decreases and approaches the outside pressure. The wind that has passed through the narrow portion 11 becomes a jet and collides with the rear wall 8 to generate a force that further advances the blades 1 and further circulates the windmill.
  • the pressing groove 12 fixed in a vertically standing state has a rear surface formed in a V or U-shaped concave groove shape so as to easily receive a tailwind, and the front surface is pointed to a convex shape 13. While the air resistance when the blade 1 moves forward is small, the back surface that receives the tailwind has a concave groove shape 12, so that the air resistance is large and suitable for forward rotation of the blade.
  • the upper end and the lower end of the pressing groove 12 are blocked by a baffle plate 14 whose outer shape is V or U, it is difficult for the wind to escape from the upper end and the lower end.
  • FIG. 7 is an exploded plan view of the actual blade 1
  • FIG. 8 is a plan view of the assembled state.
  • 1c and 1c are outer and inner cover plates, and 1r is a reinforcing rib assembly.
  • the forehead fc is a cover plate for the forehead.
  • the rear wall 8 also serves as a rib for holding the outer face plate 9 and the inner plate 10 at the rear end. When these are assembled, it becomes one blade 1 that receives the tailwind as shown in FIG.
  • the blade 1 assembled in this way is assembled into a windmill, as shown in FIG. 6, a tailwind is received also from the rear, and the windmill circulates.
  • the central vertical shaft 15 is used, and the rear is also supported via the rear vertical shaft 16.
  • the pressing groove 12 is provided on the inner side of the blade 1 near the outer end of the strut 4. That is, since the pressing groove 12 having a convex shape 13 at the tip is attached to the outer end of the strut 4, as described above, the tailwind is effectively used to circulate more effectively.
  • a cavity surrounded by a rear wall standing vertically in the transverse direction, an outer wall surface having a convex arc shape and an inner side surface standing on the central axis side has an interval between the outer wall surface and the inner side surface.
  • the narrowest narrow part is formed, and the rear side of the narrow part gradually widens rearward, and is opened in an open state so that the tailwind can easily flow from the rear end.
  • the narrow portion is pushed by the wind pressure and circulates. Further, the front side of the narrowed portion is gradually widened toward the front and the maximum near the rear wall, so that the pressure inside the cavity gradually decreases and becomes the minimum near the rear wall. Therefore, the air resistance received by the jet that has passed through the narrowed portion gradually decreases, becomes the lowest near the rear wall, pushes the rear wall at the highest speed, and further pushes the windmill to circulate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

【課題】追風をも効果的に生かして風車の回転を速め、風力発電に寄与する。 【解決手段】流線型の羽根1の後部において、横断方向に立った鉛直の後壁8と、凸円弧状の外壁面9と中心軸側に立った内側面10とで囲まれた空洞Cが形成されており、この空洞は、外壁面と内側面との間隔が最も狭くなった狭隘部11を形成してあり、この狭隘部より後側Gは後向きに広き、後端から追い風が流入し易いように開いている。従って、風車が周回して羽根が追い風となると、狭隘部が風圧で押されて周回する。また、狭隘部より前側は、前寄りが次第に間隔が拡がり、後壁寄りが最大となっているので、空洞内部の空気圧次第に低下し、後壁寄りで最低となるため、噴流が受ける空気抵抗が次第に低下し、最高速で後壁を押して、風車を更に高速で周回させる。

Description

垂直軸型風力発電機用風車の羽根
 本発明は、垂直軸型の風力発電機用の風車の羽根の形状に関する。
 牛山泉著の「風力発電の本」の74ページに記載のように、特別に羽根の幅を広くしたりするような工夫をしない限り、風速2m/s程度以下では回り出さないという。風車が回転を開始する風速を、起動風速またはスタート風速、発電を開始する風速をカットイン風速と言う。東北の震災で福島県の原発が損傷し、原発の安全性が低下したのを機に、再生可能エネルギーを使用した発電装置の効率化が望まれている。
 垂直軸型の風車では、特許文献1などが知られている。特許文献1は簡易構造のサボニウス風車の特徴を極力犠牲にすることなく、低回転数域で高トルクを発生すべく、風車の羽根の外端寄りの位置において、羽根外端寄りが受風凹曲面側に相対的にずれるように、逆Z字状又はZ字状の階段状に屈曲させた構造であり、階段状の段差板の外面で受ける風力は、本来の凹曲面で受ける風力を補助する作用をする。その結果、低回転数域でも高トルクを発生する。
特許第5251458号 特許第5731048号
 ところが、サボニウス風車は、2枚の曲板羽根のうち1枚は、風向に対して逆戻り方向の力を受けるので、この抗力により、トルク又は出力の減少が避けられないという問題が有る。
 このような問題を解消すべく特許文献2のように、回転方向と逆方向に作用する力を少なくし、図4のような回転方向に効果的に作用する羽根形状とする改良を提案した。通常の風力発電機用の風車(羽根)は、[抗力]又は、[揚力]の何れかの作用を利用して風車(羽根)を回転させているが、図1のように、特許文献2の垂直軸型風力発電機用の風車(羽根)は、羽根1の表面2で受ける気流の進行方向の物体に当たる力である[抗力の力]を利用する事は無論の事、そこから発生する上下の圧力差による垂直方向の力である[揚力の力]も同時に生かし利用するという大きな特徴を持つ風車(羽根)である。すなわち、表面2の凸曲面より半径の小さな凹曲面3が裏側すなわち羽根1の周回中心軸6側に形成されている。
 その特徴の一つである[抗力]と同時に[揚力]も生み出す方法は、(a)羽根と、(b)図2に示すストラット4其々の裏側の形状を凹彎曲3、5にする事により、一度の風の力で二倍の風の力を生み出せる斬新な垂直軸型風力発電機用の風車(羽根)となっている。
 このように、本発明による垂直軸型風力発電機用の風車(羽根)は、風車(羽根)の表面で[抗力]を生ませて風車(羽根)を回転させ、羽根1とストラット4の裏側の凹彎曲形状3、5を利用して[揚力]を生ませる事により、効率の良い発電量が得られる。すなわち、一回の風で二倍の力を生み出すことに成功し、通常の風力発電機と異なり、微風の風で回転を開始させる事を可能としているため、発電を可能とする強い風が発生した時には短時間差で瞬時に発電を開始できるため、高効率発電を可能とする。
 さらに詳述すると、本発明である垂直軸型風力発電機用風車(羽根)の特徴の一つである羽根1の裏側を凹彎曲形状3に整形開始する位置は、図4に示す前頭部21から45%の部位がベストである。
 また、特許文献2の垂直軸型風力発電機用風車(羽根)の特徴の一つでもある風車(羽根)の製造に関しては、材質は軽量で強度のあるアルミ合金(AL-5025)を使用し、図4のように全体のほぼ中心部から前後に二分割された押圧工法又は引き抜きにより、パイプ形状の中空形状に整形されている。
 なお、開閉構造の翼Mは板状をしており、その前端をヒンジHで羽根1の外面に取付けてある。従って、(1)風Wに向かって羽根1が周回している場合は、風圧で開閉翼Mは閉じられるが、(2)180度周回移動して風Wが後端の凹曲面3を押す状態になると、開閉翼Mが風圧で押し開かれると共に開閉翼Mの広い面で風圧を受ける状態となり、より効果的に押圧力を利用できる。
 さらに周回移動して、(1)開閉翼Mが閉じる方向の風圧を前端から受けるようになると、開閉翼Mが閉じて、羽根1を押し戻す方向の力は最小となる。
 ところが、特許文献2のように、羽根1にヒンジHを介して開閉構造の翼Mを設ける構造にすると、開閉翼Mが確実に開閉しない恐れがあり、またストラット後端のように袋状に形成することも可能だが、入り口が狭いため風圧を十分に生かせない。
 本発明の技術的課題は、このような問題に着目し、追い風を効果的に利用して風車の周回を速め、風力発電に寄与することを課題とする。
 請求項1は、鉛直の中心軸に放射状に取付けた複数本の水平アームの外端で、鉛直に立った羽根であって、その水平断面形状は流線形状をしており、後部において鉛直に横断方向に立った後壁と、凸円弧状の外壁面と前記中心軸側に立った内側面とで囲まれた空洞は、前記外壁面と内側面との間隔が最も狭くなった狭隘部より後側は後向きに次第に広くなり、そして後端から風がガイドされて流入するように開いて開口し、
 前記狭隘部より前側は、前寄りが次第に間隔が拡がり、前記後壁寄りが最大となっており、
 しかも、前記の空洞を外気と連通する穴を少なくとも内側面に、かつ前記後壁寄りに開けたことを特徴とする垂直軸型風力発電機用風車の羽根である。
 請求項2は、前記の狭隘部を形成すべく、少なくとも内側面が曲がった形状になっていることを特徴とする請求項1に記載の垂直軸型風力発電機用風車の羽根である。
 請求項3は、前記の水平アームに鉛直に固定された押圧溝は、追い風を受ける背面が凹溝状であり、前面は凸形状であることを特徴とする請求項1又は請求項2に記載の垂直軸型風力発電機用風車の羽根である。
 請求項1のように、垂直軸型風力発電機用風車は、鉛直の中心軸に放射状に取付けた複数本の水平アームの外端で、鉛直に立った羽根を有しており、その水平断面形状は流線形状をしている。このような羽根の後部において、鉛直に横断方向に立った後壁と、凸円弧状の外壁面と前記中心軸側に立った内側面とで囲まれた空洞が形成されている。この空洞は、前記外壁面と内側面との間隔が最も狭くなった狭隘部を形成してあり、この狭隘部より後側は後向きに次第に広くなり、そして後端から追い風がガイドされて流入し易いように開いている。従って、風車が周回して本発明の羽根が追い風となると、前記狭隘部が風圧で押されて周回する。また、前記狭隘部より前側は、前寄りが次第に間隔が拡がり、前記後壁寄りが最大となっているので、空洞内部の空気圧が次第に低下し、前記後壁寄りで最低となる。そのため、前記狭隘部を通過した噴流が受ける空気抵抗が次第に低下し、前記後壁寄りで最低となるので、最高速で前記の後壁を押して、風車を更に押して周回させる。このように、追い風を有効に生かして風車の周回に寄与できる。さらに、前記の空洞が外気と連通する穴を少なくとも内側面に、かつ前記後壁寄りに開けてあるので、前記空洞の空気圧が低下して外気圧に近づくため、前記の狭隘部を通過して噴入した風が前記後壁に衝突して羽根を前進させる力となり、風車をより効果的に周回させる。
 請求項2のように、前記の狭隘部を形成すべく、少なくとも内側面が曲がった形状に成っているので、外側面は曲げるなどの加工を要しないため、加工の負担が軽くなり、しかも外側面は全く加工しないので、風の流れが乱される恐れはない。
 請求項3に記載のように、前記の水平アームに鉛直に固定された押圧溝は、追い風を受ける背面が凹溝状であり、前面は凸形状となっているので、風車が前進するときの空気抵抗は小さいのに対し、追い風を受ける背面は凹溝状であるため、空気抵抗が大きく、風車が効果的に周回する。
本発明による風車の平面図である。 (1)は図1の風車の一部を拡大して示す斜視図、(2)1枚の羽根の組み立て図、(3)は1枚の羽根の外観図である。 図1の風車の受ける風向と出力を示す平面図である。 従来の開閉翼の詳細を示す水平断面図である。 本発明による羽根1枚の全容を示す斜視図である。 本発明の羽根と追い風翼をストラットに取付けた平面図である。 本発明の羽根の分解平面図である。 本発明の羽根の組み立て平面図である。
 次に本発明による垂直軸型風力発電機用風車の羽根が実際上どのように具体化されるか実施形態で説明する。図5は、本発明による垂直軸型風力発電機用風車の1枚の羽根の全容を示す模式斜視図であり、特許文献2を示す図4とは異なり、後部の水平断面方向の形状が全く相違する。すなわち、羽根1の前半部7は流線形状をしているが、後壁8より後側の構成は、この後壁8と、凸円弧状の外壁面9と前記中心軸6側に立った内側面10とで囲まれた空洞Cが形成されている。すなわち、図のように、外壁面9と内側面10とが対向しているが、間隔は徐々に変化している。
 この空洞Cは、前記外壁面9と内側面10との間隔が最も狭くなった狭隘部11を狭くしてあり、この狭隘部11より後側Gは、図示のように後向きに次第に広くなり開いていて、追い風が入り込み易いようにガイドする機能を有し、後端から風が流入するように開口してある。従って、風車が周回して本発明の羽根が追い風となると、前記狭隘部11が風圧で押されて風車は更に周回する。また、前記狭隘部11より前側は、前寄りが次第に間隔が拡がり、前記後壁8寄りが最大となっているので、空洞C内部の空気圧は次第に低下し、前記後壁8寄りで最低となる。
 そのため、前記狭隘部11を通過した噴流の受ける空気抵抗が次第に低下し、前記後壁8寄りで最低となり、最高速で前記の後壁8を押して、風車を更に押して周回させる。従って、羽根1が後ろから押される風圧も受けて円滑に周回する。
 前記の狭隘部11を形成すべく、少なくとも内側面10が曲がった形状に成っているので、外側面9は曲げるなどの加工を要しないため、加工の負担が軽くなり,しかも外側面9は全く加工しないので、風の流れが乱される恐れはない。
 さらに、前記の空洞Cを外気と連通する穴h…を少なくとも内側面10の前寄りすなわち後壁8寄りに開けてあるので、前記空洞Cの空気圧が低下して外気圧に近づくため、前記の狭隘部11を通過した風が噴流となって前記後壁8に衝突し、羽根1を更に前進させる力となり、風車を更に周回させる。
 図6のように、前記のような羽根1だけでなく、ストラットすなわち水平アーム4にも受風効果がより高まる改良を加えてある。すなわち、鉛直に立った状態で固定された押圧溝12は、追い風を受け易いように背面をV又はU状の凹溝状に形成してあり、前面は凸形状13に尖っているので、前記羽根1が前進するときの空気抵抗は小さいのに対し、追い風を受ける背面は凹溝状12であるため、空気抵抗が大きく、羽根の前進周回に好適である。なお、前記押圧溝12の上端と下端とは、外形がV状やU状の邪魔板14で塞がれているので、上端と下端から風が逃げ出すことは困難である。
 図7は前記羽根1の実物の分解平面図、図8は組み立て状態の平面図である。1c、1cは、外側及び内側のカバー板であり、1rは補強用のリブ組みである。前頭部fcは前頭部のカバー板である。後壁8は、後端の外側面板9や内側板10を保持するリブを兼ねている。これらを組み立てると、図8のように追い風も受ける1枚の羽根1となる。
 こうして組み立てた羽根1を風車に組み立てると、図6のように、後方からも追い風を受けて、風車を周回させる。羽根1をストラット4の外端に取付けるには、中央の鉛直軸15を用い、さらに後寄りの鉛直軸16を介して、後方も支持してある。なお、羽根1よりは内側に、ストラット4の外端寄りに前記の押圧溝12を設けてある。すなわち、先端が凸形状13の押圧溝12をストラット4の外端寄りに取付けてあるので、前記のように、追い風を有効利用してより効果的に周回する。
 以上のように、鉛直の中心軸に放射状に取付けた複数本の水平アームの外端に鉛直に取付けた羽根を有しており、その水平断面形状は流線形状をしており、このような羽根の後部において、鉛直に横断方向に立った後壁と、凸円弧状の外壁面と前記中心軸側に立った内側面とで囲まれた空洞は、前記外壁面と内側面との間隔が最も狭くなった狭隘部を形成してあり、この狭隘部より後側は後向きに次第に広くなり、そして後端から追い風が流入し易いように開いた状態で開口している。従って風車が周回して本発明の羽根が追い風になると、前記狭隘部が風圧で押されて周回する。また、前記狭隘部より前側は、前寄りが次第に間隔が拡がり、前記後壁寄りが最大となっているので、空洞内部の圧力が次第に低下し、前記後壁寄りで最低となる。そのため、前記狭隘部を通過した噴流が受ける空気抵抗が次第に低下して、前記後壁寄りで最低となり、最高速で前記の後壁を押して、風車を更に押して周回させる。
1 羽根
2 表面
21 前頭部
22 羽根の後部
3 凹曲面
4 ストラット
5 凹彎曲
23 後方の薄い部分
6 センターシャフト
M 開閉翼
H ヒンジ
7 前半部
8 後壁
9 外壁面
10 内側面
C 空洞
11 狭隘部
D 開いた後側
h 穴
12 押圧溝
13 凸形状の前面
14 邪魔板
15、16 鉛直軸

 

Claims (3)

  1.  鉛直の中心軸に放射状に取付けた複数本の水平アームの外端で、鉛直に立った羽根であって、その水平断面形状は流線形状をしており、後部において鉛直に横断方向に立った後壁と、凸円弧状の外壁面と前記中心軸側に立った内側面とで囲まれた空洞は、前記外壁面と内側面との間隔が最も狭くなった狭隘部より後側は後向きに次第に広くなり、そして後端から追い風が流入するように開口し、
     前記狭隘部より前側は、前寄りが次第に間隔が拡がり、前記後壁寄りが最大となっており、
     しかも、前記の空洞を外気と連通する穴を少なくとも内側面に、かつ前記後壁寄りに開けたことを特徴とする垂直軸型風力発電機用風車の羽根。
  2.  前記の狭隘部を形成すべく、少なくとも内側面が曲がった形状になっていることを特徴とする請求項1に記載の垂直軸型風力発電機用風車の羽根。
  3.  前記の水平アームに鉛直に固定された押圧溝は、追い風を受ける背面が凹溝状であり、前面は凸形状になることを特徴とする請求項1又は請求項2に記載の垂直軸型風力発電機用風車の羽根。


     
PCT/JP2017/016376 2016-04-28 2017-04-25 垂直軸型風力発電機用風車の羽根 WO2017188250A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016091330A JP6031208B1 (ja) 2016-04-28 2016-04-28 垂直軸型風力発電機用風車の羽根
JP2016-091330 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188250A1 true WO2017188250A1 (ja) 2017-11-02

Family

ID=57358768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016376 WO2017188250A1 (ja) 2016-04-28 2017-04-25 垂直軸型風力発電機用風車の羽根

Country Status (3)

Country Link
JP (1) JP6031208B1 (ja)
TW (1) TWI665386B (ja)
WO (1) WO2017188250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118407874A (zh) * 2024-06-19 2024-07-30 深圳市德兰明海新能源股份有限公司 叶片组件以及风力发电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106677981A (zh) * 2017-02-27 2017-05-17 浙江工业大学 一种组合型垂直轴风力发电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092851A (ja) * 2012-02-14 2012-05-17 Helena International:Kk 翼部材
EP2541048A2 (en) * 2011-06-29 2013-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Airfoil, wind rotor and wind rotor arrangement
US20130028742A1 (en) * 2011-07-26 2013-01-31 Wing Power Energy System and method for efficient wind power generation
WO2015152073A1 (ja) * 2014-04-04 2015-10-08 豊 根本 垂直軸型風力発電機用風車の羽根並びにストラット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509511B2 (ja) * 1993-03-26 1996-06-19 一博 今井 風 車
JP2004301088A (ja) * 2003-03-31 2004-10-28 Ebara Corp 垂直軸風車装置
JP2005090332A (ja) * 2003-09-17 2005-04-07 Satsuki Seisakusho:Kk ダリウス形風車
TW201028541A (en) * 2009-01-17 2010-08-01 Chin-Feng Chang Wind power generator
JP5392822B2 (ja) * 2009-04-17 2014-01-22 のあい株式会社 風力発電用風車
TW201525281A (zh) * 2013-12-30 2015-07-01 Univ Chienkuo Technology 太極螺旋型垂直軸式風力機葉片
JP2016041916A (ja) * 2014-08-18 2016-03-31 株式会社日本自動車部品総合研究所 風車装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2541048A2 (en) * 2011-06-29 2013-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Airfoil, wind rotor and wind rotor arrangement
US20130028742A1 (en) * 2011-07-26 2013-01-31 Wing Power Energy System and method for efficient wind power generation
JP2012092851A (ja) * 2012-02-14 2012-05-17 Helena International:Kk 翼部材
WO2015152073A1 (ja) * 2014-04-04 2015-10-08 豊 根本 垂直軸型風力発電機用風車の羽根並びにストラット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118407874A (zh) * 2024-06-19 2024-07-30 深圳市德兰明海新能源股份有限公司 叶片组件以及风力发电装置

Also Published As

Publication number Publication date
JP2017198172A (ja) 2017-11-02
TWI665386B (zh) 2019-07-11
JP6031208B1 (ja) 2016-11-24
TW201738459A (zh) 2017-11-01

Similar Documents

Publication Publication Date Title
AU2015239310B2 (en) Blade and strut of wind turbine for vertical-axis wind power generator
KR100637297B1 (ko) 풍력 발전용 풍차
US7112034B2 (en) Wind turbine assembly
HRP20041140A2 (en) Improved turbine
JP2007529662A (ja) タービンおよびそのためのローター
WO2011140412A1 (en) Fluid turbine with moveable fluid control member
NZ567673A (en) Rotor for a low speed wind turbine
MX2011006877A (es) Motor primario.
WO2017188250A1 (ja) 垂直軸型風力発電機用風車の羽根
US20180171966A1 (en) Wind turbine with rotating augmentor
EP1422422A2 (en) Darrieus windmill
JP2005090332A (ja) ダリウス形風車
US20130287543A1 (en) Down wind fluid turbine
EP2446141B1 (en) Wind turbine
RU2355910C2 (ru) Ветротурбинный двигатель
DK202370542A1 (en) Wind turbine blades and wind turbine systems that include a co-flow jet
JP2006526100A (ja) ウインドミルローター
KR101990381B1 (ko) 양력과 항력 보완식 수평축 풍력발전기
US20170234298A1 (en) Wind concentrator turbine generator
JP2005282451A (ja) 風力発電装置
JPS5920870B2 (ja) 風力発電装置
US20220128032A1 (en) Horizontal-axis turbine for a wind generator, and wind generator comprising said turbine
Jericha et al. Novel Vertical-Axis Wind Turbine With Articulated Blading
JP5361026B1 (ja) 風車の風向制御装置2
CN113982840A (zh) 一种适用于山谷风的增功风力机及发电方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789532

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789532

Country of ref document: EP

Kind code of ref document: A1