WO2017186116A1 - 一种发射机及其实现信号处理的方法 - Google Patents

一种发射机及其实现信号处理的方法 Download PDF

Info

Publication number
WO2017186116A1
WO2017186116A1 PCT/CN2017/081975 CN2017081975W WO2017186116A1 WO 2017186116 A1 WO2017186116 A1 WO 2017186116A1 CN 2017081975 W CN2017081975 W CN 2017081975W WO 2017186116 A1 WO2017186116 A1 WO 2017186116A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
module
transmitter
radio frequency
Prior art date
Application number
PCT/CN2017/081975
Other languages
English (en)
French (fr)
Inventor
宋微微
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017186116A1 publication Critical patent/WO2017186116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • Embodiments of the present invention relate to, but are not limited to, wireless communication technologies, and more particularly to a transmitter and a method for implementing signal processing.
  • the traditional transmitter channel has a narrow bandwidth.
  • a single channel supports only one frequency band, and cannot support single-channel multi-band simultaneous transmission.
  • the traditional transmitter hardware circuit is complicated, and it is necessary to design an IQ filter, calculate the intermediate frequency and sampling frequency, and suppress the sampling image frequency, and also consider the relationship between the digital to analog converter (DAC) and the modulator.
  • the matching circuit design not only requires a large variety of devices, but also a complicated circuit design.
  • AD/DA analog-to-digital
  • Embodiments of the present invention provide a transmitter and a method for implementing signal processing thereof, which can easily implement support for multiple frequency bands.
  • an embodiment of the present invention provides a transmitter, including a digital signal processing module, a filter/duplexer;
  • the launch channel it also includes:
  • the RF digital-to-analog conversion RFDAC module is configured to perform digital-to-analog conversion on the transmitted signal from the digital signal processing module, and convert the baseband signal into a radio frequency signal;
  • a filtering module configured to filter the amplified RF signal
  • a first gain adjustment module configured to adjust a transmit power of the filtered signal after the filtering process
  • the broadband power amplifier PA is configured to amplify the RF signal after adjusting the transmission power to a desired rated power and then output to the antenna port by the filter/duplexer; wherein the PA is provided with a coupling module for coupling the transmission channel RF signal to the feedback channel;
  • the feedback channel it also includes:
  • a second gain adjustment module configured to adjust power of the signal from the PA coupling
  • the frequency band processing module is configured to filter the multi-frequency intermodulation signal from the received signal after adjusting the power
  • the RF analog-to-digital conversion RFADC module is configured to perform analog-to-digital conversion on the received signal, and directly convert the received RF signal into a baseband signal and output the signal to the digital signal processing module.
  • it also includes:
  • a small signal coupling module on the transmitting channel configured to couple a radio frequency small signal to the radio frequency signal, and output the signal to the filtering module;
  • a small signal channel selection module on the feedback channel is configured to perform real-time calibration of the RF small signal coupled to the transmission channel, and then output the received signal of the filtered multi-frequency intermodulation signal after real-time calibration to the The RFADC module.
  • the transmitter turns off the PA
  • the small signal channel selection module is specifically configured to:
  • the PA normally transmits service data
  • the small signal channel selection module receives a signal from the frequency band processing module, and performs forward power detection, reverse power detection, and predistortion data acquisition on the radio frequency signal coupled to the transmission channel.
  • the power detection and pre-distortion data acquisition are stopped; the signal from the small signal coupling module is received, and the local oscillator leakage and modulation image of the coupled RF small signal are calibrated in real time, in real time.
  • the forward power detection, reverse power detection, and predistortion data acquisition of the RF signal coupled to the transmission channel are returned until the transmitter stops operating.
  • the transmitting channel includes more than one;
  • the small signal channel selecting module is further configured to: select different transmitting channels in a time sharing manner.
  • the transmitting channel further includes an amplifier configured to amplify the RF signal from the RFDAC module and output the signal to the filtering module.
  • the RFDAC module includes two or more;
  • the transmitter further includes a combiner configured to combine the signals output by the plurality of RFDAC modules and output the signals to the amplifier.
  • the feedback channel further includes: a channel selecting module configured to select the PA coupled signal of different transmitting channels.
  • the invention also provides a method for implementing signal processing by a transmitter, comprising:
  • the processed signal is amplified by wideband power and output to the antenna for transmission, and the RF signal of the transmitting channel is coupled to the feedback channel;
  • signal power and signal quality processing is performed on signals coupled from the transmit channel
  • Digital signal processing is performed after analog-to-digital conversion of the processed RF signal.
  • the method further includes: coupling the radio frequency small signal to the transmit signal;
  • the method further includes: performing real-time calibration on the radio frequency small signal coupled to the transmitting channel.
  • performing real-time calibration on the coupled RF small signal includes:
  • the transmitter turns off the PA in the transmitter, and couples the RF
  • the leakage signal of the small signal and the modulated image signal are coarsely calibrated, and if the level of the leaked signal detected continuously for a preset number of times is less than a preset safety threshold, the PA in the transmitter is turned on;
  • the PA in the transmitter normally transmits the service data, and performs forward power detection, reverse power detection, and pre-distortion data acquisition on the radio frequency signal coupled to the transmission channel according to a preset period, and performs a preset threshold number of times after N cycles. Stop power detection and pre-distortion data acquisition; perform real-time calibration on the local oscillator leakage and modulation image of the RF small signal coupled by the transmitting channel, and return to the forward power detection and reverse of the RF signal coupled to the transmitting channel after the real-time calibration is completed. Data acquisition and pre-distortion data acquisition until the transmitter stops working.
  • the transmitting channel includes more than one;
  • the forward power detection, the reverse power detection, and the pre-distortion data acquisition of the RF signal coupled to the transmitting channel include: selecting different transmitting channels in time division to select the selected transmitting channel.
  • the real-time calibration of the local oscillator leakage and modulation image of the RF small signal coupled to the transmission channel includes: selecting the synchronized transmission channel in time to perform real-time calibration on the local oscillator leakage and modulation image of the RF small signal coupled to the selected transmission channel. .
  • the obtaining the required radio frequency signal includes two or more;
  • the method further comprises: performing signal combining processing on the obtained required radio frequency signal.
  • the method before performing the filtering process on the obtained radio frequency signal and adjusting the transmit power, the method further includes: performing amplification processing on the obtained radio frequency signal.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for performing the method for implementing signal processing by the transmitter according to any of the above.
  • the technical solution of the present application at least includes: an RFDAC module, an RFADC module, a filtering module, a first gain adjustment module and a second gain adjustment module, a frequency band processing module, a multi-frequency power amplifier (PA) module, and a filter. / Duplexer and digital signal processing module.
  • the link uses the RF AD/DA device to directly convert the digital signal into the required RF signal, single-channel support for multi-band simultaneous transmission is realized.
  • the analog link is greatly simplified due to the RF sampling DAC architecture.
  • the RF DAC implements digital frequency conversion, and only needs to provide a clock reference signal, and the clock link is also simplified, thereby having a greater advantage in product miniaturization design and product cost reduction.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a transmitter of the present invention
  • FIG. 2 is a schematic structural diagram of a second embodiment of a transmitter according to the present invention.
  • FIG. 3 is a schematic flowchart of a single channel implementation calibration in a transmitter according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first embodiment of a transmitter application according to the present invention.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a transmitter application according to the present invention.
  • FIG. 6 is a flow chart showing the two-channel real-time calibration based on the architecture shown in FIG. 5 of the present invention.
  • a full RF sampling DAC multi-frequency transmitter includes at least: a radio frequency digital-to-analog conversion (RFDAC) module and a radio frequency analog-to-digital conversion (RFADC).
  • RFDAC radio frequency digital-to-analog conversion
  • RFADC radio frequency analog-to-digital conversion
  • Filter module filter module, first gain adjustment module and second gain adjustment module, band processing module, multi-frequency power amplifier (PA), filter/duplexer, and digital signal processing module. among them,
  • a digital signal processing module configured to perform digital signal calculation and digital processing on the transmitted signal or the received signal
  • a filter/duplexer configured to filter out transmitted spurs from the received signal such that the transmitted signal or received signal satisfies protocol requirements such as the 3GPP protocol;
  • the launch channel it also includes:
  • the RFDAC module is configured to perform digital-to-analog conversion on the transmitted signal from the digital signal processing module and convert the baseband signal into a radio frequency signal;
  • the filtering module is configured to filter the RF signal, such as effectively suppressing the image frequency signal in the other sampling bands;
  • a first gain adjustment module configured to adjust a transmit power of the filtered signal after the filtering process
  • the PA is set to amplify the RF signal after adjusting the transmit power to the required rated power, and then output by the filter/duplexer to the antenna port; wherein the PA is provided with a coupling module, which is set to couple a certain frequency of the transmitting channel. Signal to the feedback channel to implement forward and reverse power detection, and digital pre-distortion processing, etc.; wherein how the coupled signal coupling depends on the specific implementation of the coupling module is a common technical means by those skilled in the art, here No longer.
  • the feedback channel it also includes:
  • a second gain adjustment module configured to adjust power of the signal from the PA coupling
  • the frequency band processing module is configured to filter the multi-frequency intermodulation signal from the received signal after adjusting the power
  • the RFADC module is configured to perform analog-to-digital conversion on the received signal, and directly convert the received RF signal into a baseband signal and output the signal to the digital signal processing module.
  • an amplifier is further disposed to amplify the RF signal from the RFDAC module and then output to the filtering module;
  • the amplifier may be a broadband amplifier;
  • the transmitter in the embodiment of the present invention further includes a combiner configured to perform a combined processing on the signals output by the plurality of RFDAC modules.
  • the transmitting channel further includes: a channel selecting module, configured to select a PA coupled signal of different transmitting channels.
  • the working principle of the full RF sampling DAC multi-frequency transmitter includes: for the transmitting part, the RFDAC module performs digital-to-analog conversion of the transmitted signal from the digital signal processing module and directly outputs the RF signal required by the system.
  • the RFDAC module determines whether the combiner is needed to combine the signals output by multiple RFDACs, and then provide the required RF signal to the wideband amplifier for signal power amplification (can be omitted), and pass the filter to the mirror in other sampling bands.
  • the frequency signal is effectively suppressed, and then the transmission power is adjusted by the first gain adjustment module, and finally, after the final amplification of the PA completion signal, the filter/duplexer outputs the signal to the antenna port for transmission.
  • a part of the signal of the transmitted signal can be coupled to the feedback link through the PA to implement processing such as power detection and digital pre-distortion.
  • the system first determines whether the channel selection module is required to select the PA coupling signal of different transmission channels (here, if there is only one transmission channel, the channel selection module can be omitted), and then the second gain adjustment module and the band processing module respectively.
  • the signal power and signal quality are processed to ensure the authenticity of the acquired signal; the processed RF signal is directly supplied to the RFADC module for analog-to-digital conversion and then output to the digital signal processing module for the next digital signal processing.
  • the method for implementing signal processing by the full RF sampling DAC multi-frequency transmitter shown in FIG. 1 in the embodiment of the present invention includes:
  • the digital signal is processed by digital signal processing to obtain the required radio frequency signal; the obtained radio frequency signal is filtered and the transmission power is adjusted; the processed signal is amplified by the broadband power and output to the antenna. Transmitting, simultaneously coupling a part of the transmitting channel's RF signal to the feedback channel;
  • the signal power and signal quality processing are performed on the signal coupled from the transmitting channel; the processed RF signal is subjected to analog-to-digital conversion and then digital signal processing is performed.
  • the method After acquiring the required radio frequency signals, including two or more, after obtaining the required radio frequency signals, before filtering the required radio frequency signals and adjusting the transmit power, the method further includes: performing signal combining on the obtained required radio frequency signals. Road processing.
  • FIG. 1 is a full RF sampling DAC multi-frequency transmitter
  • FIG. 2 is a schematic diagram of the composition of the second embodiment of the transmitter of the present invention.
  • the RF signal output by the DAC has a local oscillator leakage and modulation image, as shown in Figure 2, and includes:
  • a small signal coupling module on the transmitting channel configured to couple a part of the radio frequency small signal to the radio frequency signal to participate in real-time calibration, and then output to the filtering module;
  • the small signal channel selection module on the feedback channel is configured to perform real-time calibration of the RF small signal coupled to the transmission channel, and then output the received signal of the filtered multi-frequency intermodulation signal after real-time calibration to the RFADC module.
  • the transmitter is turned off after the power is initialized, and the small signal channel selection module is specifically configured to: receive the signal from the small signal coupling module, perform analog-to-digital conversion by the RFADC module, and output the signal to the digital signal processing module to couple
  • the leakage signal of the RF small signal and the modulated image signal are coarsely calibrated, and if the level of the leaked signal detected continuously for a preset number of times is less than a preset safety threshold, the PA is turned on;
  • the PA normally transmits the service data
  • the small signal channel selection module receives the signal from the frequency band processing module, and performs forward power detection, reverse power detection, and predistortion data acquisition on the radio frequency signal coupled to the transmission channel according to a preset short period.
  • the forward power detection, reverse power detection, and predistortion data acquisition of the RF signal coupled to the transmit channel are then returned until the transmitter stops operating.
  • the transmission channel includes more than one.
  • the small signal channel selection module is further used to: select different transmission channels in time sharing.
  • the method before performing the filtering process on the obtained radio frequency signal and adjusting the transmitting power, the method further includes: performing amplification processing on the obtained radio frequency signal.
  • a channel selection module is further included, and the PA-coupled signals of different transmission channels are selected to be time-sharing.
  • the working principle of the non-complete RF sampling DAC multi-frequency transmitter is different from the full RF sampling DAC multi-frequency transmitter shown in FIG. 1 in that a real-time calibration circuit is added.
  • the RF signal output by the incomplete RF sampling DAC ie, the RF signal output from the RFDAC module or the RF signal output from the combiner
  • the signal is sent to the small signal channel selection module, and then the RFADC module of the feedback channel selects the acquisition calibration signal through the small signal channel.
  • the feedback channel of the multi-frequency transmitter of the incomplete radio frequency sampling DAC bears the functional requirements of power detection, standing wave detection, real-time calibration function and digital pre-distortion data acquisition, and is implemented by a small signal channel selection module.
  • the transmission channel performs time-sharing processing.
  • the method for implementing signal processing by the incomplete radio frequency sampling DAC multi-frequency transmitter shown in FIG. 2 in the embodiment of the present invention includes:
  • the digital signal is processed by digital signal processing to obtain the required radio frequency signal; a part of the radio frequency small signal is coupled to the transmitting channel to participate in real-time calibration; the obtained radio frequency signal is filtered and the transmitting power is adjusted; The processed signal is amplified by wideband power and output to the antenna for transmission, and a part of the signal is coupled to the feedback channel;
  • the signal power and signal quality processing are performed on the signal coupled from the transmitting channel; the RF small signal coupled to the transmitting channel is subjected to real-time calibration; and the processed RF signal is subjected to analog-to-digital conversion for digital signal processing.
  • the method After acquiring the required radio frequency signals, including two or more, after obtaining the required radio frequency signals, before filtering the required radio frequency signals and adjusting the transmit power, the method further includes: performing signal combining on the obtained required radio frequency signals. Road processing.
  • real-time calibration of the coupled RF small signal includes:
  • the transmitter turns off the PA in the transmitter, and performs coarse calibration on the leaked signal and the modulated image signal of the coupled RF small signal. If the level of the leaked signal detected continuously for a preset number of times is less than the preset security gate Open the PA after the limit;
  • the PA in the transmitter normally transmits the service data, and performs forward power detection, reverse power detection, and pre-distortion data acquisition on the RF signal coupled to the transmission channel according to a preset short period, and performs a preset threshold number of N cycles. Stop power detection and pre-distortion data acquisition; perform real-time calibration of local oscillator leakage and modulation image of RF small signal coupled by transmit channel, real-time calibration is completed The forward power detection, reverse power detection, and predistortion data acquisition of the RF signal coupled to the transmit channel are then returned until the transmitter stops operating.
  • the transmission channel includes more than one.
  • the forward power detection, the reverse power detection, and the predistortion data acquisition of the RF signal coupled to the transmission channel include: selecting different transmission channels in time to couple the selected transmission channel to the RF Signals for forward power detection, reverse power detection, and predistortion data acquisition; and,
  • Real-time calibration of the local oscillator leakage and modulation image of the RF small signal coupled to the transmit channel includes time-sharing of the synchronized transmit channel to perform real-time calibration of the local oscillator leakage and modulation image of the RF small signal coupled to the selected transmit channel.
  • the radio frequency AD/DA based transmitter architecture has obvious advantages for implementing multi-band transmitters: on the one hand, since the link uses a radio frequency AD/DA device to directly convert digital signals into desired radio frequency signals, the channel Wide bandwidth, one channel can support multiple frequency bands, that is, single channel can support multi-band simultaneous transmission; on the other hand, because the complete RF sampling DAC architecture completes the modulation processing of I/Q signals through the digital part, the elimination of this Vibration devices, IF filters, and IQ modulators and demodulators, rather than full RF sampling DAC architectures, generate local and mirror signals, but only require a real-time calibration architecture based on the full RF sampling DAC architecture. The link devices are greatly reduced, which means that the analog link is simplified.
  • the RF DAC implements digital frequency conversion, and only needs to provide a clock reference signal, and the clock link is simplified. Furthermore, the present invention is based on the reduction of the radio link AD/DA transmitter architecture hardware link device, and the direct advantages brought about by product miniaturization and product cost reduction.
  • Real-time calibration of the coupled RF small signal generally includes: after the power-on initialization, the transmitter turns off the PA, and performs coarse calibration on the leaked signal and the modulated image signal of the coupled RF small signal, if the leak is detected for a preset preset number of times After the signal level is less than the preset security threshold, the PA is turned on; after the power amplifier is turned on, the service data is normally transmitted, and the forward power detection, the reverse power detection, and the predistortion data are performed on the PA coupled RF signal according to the preset short period and time division.
  • the feedback channel is responsible for the power detection and pre-distortion data acquisition.
  • the real-time calibration also occupies the feedback channel.
  • the implementation of several functions requires a time-sharing acquisition scheme.
  • the time-sharing scheme is implemented by the small-signal channel selection module, and specifically includes: in order to avoid damage to the power amplifier by the local oscillator leakage, as shown in steps 300 to 305, after the power-on initialization, the transmitter first turns off the power amplifier, that is, the PA, the small signal.
  • the channel selection module receives the signal from the small signal coupling module, and performs analog-to-digital conversion by the RFADC module, and outputs the signal to the digital signal processing module to perform rough calibration on the leakage signal and the modulated image signal, and if the calibration is repeated for a preset number of times, The level of the leaked signal detected 3 times is less than the preset safety threshold and then the amplifier is turned on. This process only needs to be performed once after the transmitter is powered on. The real-time calibration after power-on is performed according to a certain period of time. As shown in steps 306 to 309, the service data is normally transmitted after the power amplifier is turned on, and the small signal channel selection module receives the signal from the frequency band processing module, and is performed by the RFADC module.
  • the analog-to-digital conversion is output to the digital signal processing module, and the feedback channel performs forward power detection, reverse power detection, and pre-distortion data acquisition according to a preset short cycle time division, and performs a preset threshold number of times after N cycles, stopping power. Detection and pre-distortion data acquisition.
  • the small signal channel selection module receives the signal from the small signal coupling module, outputs it to the digital signal processing module after analog-to-digital conversion by the RFADC module, and selects the real-time calibration channel to complete a local oscillator. Real-time calibration of the leakage and modulation image. After the calibration is completed, the small signal channel selection module returns to the feedback channel, and then performs the above N cycles of power detection and predistortion data acquisition. Thus, the cycle is repeated, and the entire single channel implementation calibration process is as shown in FIG. Show.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for executing any of the above transmitters and a method for implementing signal processing.
  • FIG. 4 is a schematic structural diagram of a first embodiment of a transmitter application according to the present invention.
  • FIG. 4 an implementation manner of a F+A+D full RF sampling single-channel tri-band transmitter is presented in the first embodiment.
  • the F+A+D full RF sampling single-channel tri-band transmitter uses the full RF sampling DAC architecture provided by the present invention.
  • F, A, and D represent three discontinuous frequency bands such as 1.9G, 2.0G, and 2.6G, respectively.
  • the F+A+D tri-band signal is simultaneously sent from one DAC output port.
  • the combiner module is not required, and the F+A+D tri-band signal is amplified, low-pass filtered, and the variable gain amplifier gain is adjusted and input to the PA, and then sent to the antenna port through the filter for transmission. A part of the signal passes through the PA, and the variable gain amplifier input to the feedback link completes the power adjustment. Finally, after being processed by the band pass filter, the RFADC module is input to complete the analog-to-digital conversion and then perform digital signal processing.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a transmitter application according to the present invention.
  • a second embodiment of a 1.8G+2.1G incomplete radio frequency sampling dual-channel dual-band transmitter is shown.
  • the 1.8G+2.1G non-complete RF sampling dual-channel dual-band transmitter adopts the incomplete RF sampling DAC architecture provided by the present invention.
  • the two-channel transmitting channel shares one feedback channel, and the two transmitting channels are completely identical.
  • the power detection and pre-distortion data acquisition are performed on the two transmitting channels by the switch module 1 in time division.
  • the variable gain amplifier of the transmitting channel can be selected as a dual device, or can be implemented by two single devices as shown in FIG.
  • FIG. 6 is a schematic flow chart of dual-channel real-time calibration based on the architecture shown in FIG. 5, wherein two transmission channels, that is, a transmission channel 0 and a transmission channel 1 share a feedback channel through a time division manner, and corresponding control passes through the switch module 1 Or switch module 0 to realize time division sharing, as shown in FIG. 6, for the convenience of description, in this embodiment, it is assumed that only one RFDAC module is included in each transmission channel, and the process of dual channel real-time calibration specifically includes:
  • the transmitter first turns off the two power amplifier modules, PA0 and PA1, and performs coarse calibration on the local oscillator leakage and modulation image: first select the module through the small signal channel.
  • the switch module 0 selects the signal sent by the transmitting channel 0, and then completes the coarse calibration of the transmitting channel 0 through the RFADC to the digital signal processing module; after the channel 0 of the transmitting channel completes the coarse calibration, the small signal channel selecting module, that is, the switching module 0, selects the transmitting again.
  • the signal of channel 1 is then subjected to the rough calibration of the transmitting channel 1 through the RFADC to the digital signal processing module.
  • the two channels are simultaneously turned on, namely PA0 and PA1.
  • the process of this rough calibration is after power-on. It can be executed only once.
  • the switch module 0 selects a signal sent by the band pass filter, and the switch module 1 selects the signal of PA 0 to perform forward power detection, reverse power detection, and pre-processing of the transmit channel 0. Distortion data acquisition; after that, the switch module 1 selects the signal of the PA1 to perform forward power detection, reverse power detection, and predistortion data acquisition of the transmission channel 1. If the detection total time is less than N times the single-channel detection period of the number of times, return to continue detection; if the total time is detected a single channel detection period equal to N times the threshold value, and proceeds to a subsequent step;
  • the switch module 0 selects to receive the signal from the coupler 0, and performs a real-time calibration of the local oscillator leakage and the modulation image on the transmission channel 0 until the signal power of the local oscillator leakage and modulation image is less than
  • the preset safety threshold is used to end the calibration; after that, the switch module 0 selects to receive the signal from the coupler 1 and performs a real-time calibration of the local oscillator leakage and modulation image on the transmission channel 1 until the local oscillator leaks and modulates the image.
  • the signal power is less than the preset safety threshold, and the calibration is ended.
  • the cycle is repeated until the transmitter stops normal operation, such as power failure.
  • real-time calibration, power detection, and pre-distortion data acquisition are performed in a time-sharing manner.
  • the real-time calibration cycle is relatively long, which is N times the power detection and pre-distortion cycle, and the two detection cycles are consistent with the calibration cycle.
  • the transmitter and the method for implementing the signal processing provided by the embodiment of the invention at least include: an RFDAC module, an RFADC module, a filtering module, a first gain adjustment module and a second gain adjustment module, a frequency band processing module, and a multi-frequency power amplifier (PA) ), filter/duplexer and digital signal processing module.
  • the link uses the RF AD/DA device to directly convert the digital signal into the required RF signal, the single channel supports multi-band simultaneous transmission; on the other hand, the analog sampling chain is greatly simplified due to the RF sampling DAC architecture. road.
  • the RF DAC implements digital frequency conversion, and only needs to provide a clock reference signal, and the clock link is also simplified, thereby having a greater advantage in product miniaturization design and product cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

本文公布了一种发射机及其实现信号处理的方法,至少包括:RFDAC模块、RFADC模块、滤波模块、第一增益调整模块和第二增益调整模块、频段处理模块、多频功率放大器(PA)、滤波器/双工器以及数字信号处理模块。一方面,由于链路采用射频AD/DA器件将数字信号直接转换成所需要的射频信号,实现了单通道支持多频段同时发射;另一方面,由于采用射频采样DAC架构,大大简化了模拟链路。而且,射频DAC实现数字变频,只需要提供时钟参考信号即可,时钟链路也得到了简化,从而在产品小型化设计和产品成本的降低方面具有更大优势。

Description

一种发射机及其实现信号处理的方法 技术领域
本发明实施例涉及但不限于无线通信技术,尤指一种发射机及其实现信号处理的方法。
背景技术
随着无线通信技术的发展,发射机的架构也在不断的改进,传统的发射机通道带宽窄,一般单通道仅支持一个频段,不能支持单通道多频段同时发射。而且,传统的发射机硬件电路复杂,需要设计IQ滤波器、计算中频和采样频率、对采样镜频进行抑制,同时还要考虑数字模拟转换器(DAC,Digital to analog converter)和调制器之间的匹配电路设计,不仅需要的器件种类多,电路设计也复杂。
随着对发射机小型化的需求越来越多,加上器件发展日趋成熟,射频模数/数模(AD/DA)也越来越完善,基于射频采样发射机技术将会得到广泛应用,而对支持多频段的发射机的需求也会越来越多。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种发射机及其实现信号处理的方法,能够简单地实现对多频段的支持。
为了达到本发明目的,本发明实施例提供了一种发射机,包括数字信号处理模块,滤波器/双工器;
对于发射通道,还包括:
射频数模转换RFDAC模块,设置为对来自数字信号处理模块的发射信号完成数模转换,并将基带信号转换成射频信号;
滤波模块,设置为对放大后的射频信号进行滤波处理;
第一增益调整模块,设置为调整滤波处理后的发射信号的发射功率;
宽带功率放大器PA,设置为将调整发射功率后的射频信号放大到所需的额定功率后由滤波器/双工器输出给天线口发射;其中,PA中设置有耦合模块,用于耦合发射通道的射频信号到反馈通道;
对于反馈通道,还包括:
第二增益调整模块,设置为调整来自PA耦合的信号的功率;
频段处理模块,设置为对调整功率后的接收信号滤除多频交调信号;
射频模数转换RFADC模块,设置为对接收到的信号完成模数转换,并将接收到的射频信号直接转换成基带信号后输出给数字信号处理模块。
可选地,还包括:
在所述发射通道上的小信号耦合模块,设置为对所述射频信号耦合射频小信号,再输出给所述滤波模块;以及,
在所述反馈通道上的小信号通道选择模块,设置为完成对发射通道耦合的射频小信号进行实时校准,再将经过实时校准后的所述滤除多频交调信号的接收信号输出给所述RFADC模块。
可选地,所述发射机在上电初始化后,关闭所述PA,所述小信号通道选择模块具体设置为:
接收来自所述小信号耦合模块的信号,在经所述RFADC模块进行模数转换后输出给所述数字信号处理模块,以对所述耦合的射频小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开所述PA;
所述PA正常发送业务数据,所述小信号通道选择模块接收来自所述频段处理模块的信号,对所述发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集;接收来自所述小信号耦合模块的信号,并对耦合的射频小信号的本振泄露和调制镜像进行实时校准,实时校准完成后返回对所述发射通道耦合的射频信号的前向功率检测、反向功率检测和预失真数据采集,直至发射机停止工作。
可选地,所述发射通道包括一个以上;
当所述发射通道包括两个以上时,所述小信号通道选择模块还设置为:分时选择不同的发射通道。
可选地,所述发射通道上还包括放大器,设置为对来自所述RFDAC模块的射频信号进行放大后输出给所述滤波模块。
可选地,所述RFDAC模块包括两个以上;
所述发射机还包括合路器,设置为对多个RFDAC模块输出的信号进行合路处理后输出给所述放大器。
可选地,当所述发射通道包括两个以上时,所述反馈通道上还包括:通道选择模块,设置为选择不同发射通道的所述PA耦合的信号。
本发明还提供了一种发射机实现信号处理的方法,包括:
对于发射部分,对经过数字信号处理的发射信号进行数模转换后获取所需的射频信号;
对获得的射频信号进行滤波处理并调整发射功率;
对处理后的信号进行宽带功率放大后输出给天线发射,同时耦合发射通道的射频信号到反馈通道;
对于反馈部分,对来自发射通道耦合的信号进行信号功率和信号质量处理;
对经处理后的射频信号进行模数转换后进行数字信号处理。
可选地,在所述发射通道上,所述获取所需的射频信号之后,所述对获得的射频信号进行滤波处理并调整发射功率之前,还包括:对所述发射信号耦合射频小信号;
相应地,
在所述反馈通道上,所述进行信号功率和信号质量处理之后,所述对经处理后的射频信号进行模数转换之前,还包括:对所述发射通道耦合的射频小信号进行实时校准。
可选地,所述对耦合的射频小信号进行实时校准包括:
所述发射机在上电初始化后,关闭所述发射机中的PA,对耦合的射频 小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开所述发射机中的PA;
所述发射机中的PA正常发送业务数据,按照预先设置的周期对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集;对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准,实时校准完成后返回对所述发射通道耦合的射频信号的前向功率检测、反向功率检测和预失真数据采集,直至发射机停止工作。
可选地,所述发射通道包括一个以上;
当所述发射通道包括两个以上时,所述对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集包括:分时选择不同的发射通道以对选出的发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集;以及,
所述对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准包括:分时选择同步的发射通道以对选出发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准。
可选地,所述获取所需的射频信号包括两个以上;
所述获取所需的射频信号之后,所述对所需的射频信号进行滤波处理并调整发射功率之前,该方法还包括:对所述获得的所需的射频信号进行信号合路处理。
可选地,所述对获得的射频信号进行滤波处理并调整发射功率之前还包括:对所述获得的射频信号进行放大处理。
本发明实施例又提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的发射机实现信号处理的方法。
与现有技术相比,本申请技术方案至少包括:RFDAC模块、RFADC模块、滤波模块、第一增益调整模块和第二增益调整模块、频段处理模块、多频功率放大器(PA)模块、滤波器/双工器以及数字信号处理模块。一方面, 由于链路采用射频AD/DA器件将数字信号直接转换成所需要的射频信号,实现了单通道支持多频段同时发射;另一方面,由于采用射频采样DAC架构,大大简化了模拟链路。而且,射频DAC实现数字变频,只需要提供时钟参考信号即可,时钟链路也得到了简化,从而在产品小型化设计和产品成本的降低方面具有更大优势。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明发射机的第一实施例的组成架构示意图;
图2为本发明发射机的第二实施例的组成架构示意图;
图3为本发明第二实施例所示的发射机中单通道实现校准的流程示意图;
图4为本发明发射机应用的第一实施例的架构示意图;
图5为本发明发射机应用的第二实施例的架构示意图;
图6为本发明基于图5所示的架构的双通道实时校准的流程示意。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供的发射机基于射频模数/数模(AD/DA),由发射通道 和反馈通道构成。图1为本发明发射机的第一实施例的组成架构示意图,如图1所示,完全射频采样DAC多频发射机至少包括:射频数模转换(RFDAC)模块、射频模数转换(RFADC)模块、滤波模块、第一增益调整模块和第二增益调整模块、频段处理模块、多频功率放大器(PA)、滤波器/双工器以及数字信号处理模块。其中,
数字信号处理模块,设置为对发射信号或接收信号进行数字信号运算及数字处理;
滤波器/双工器,设置为对接收到的信号滤除发射杂散,使发射信号或接收信号满足协议要求如3GPP协议;
对于发射通道还包括:
RFDAC模块,设置为对来自数字信号处理模块的发射信号完成数模转换,并将基带信号转换成射频信号;
滤波模块,设置为对射频信号进行滤波处理,比如有效抑制其它采样带内的镜频信号;
第一增益调整模块,设置为调整滤波处理后的发射信号的发射功率;
PA,设置为将调整发射功率后的射频信号放大到所需的额定功率后由滤波器/双工器输出给天线口发射;其中,PA中设置有耦合模块,设置为耦合一部分发射通道的射频信号到反馈通道,以实现前向和反向功率检测、及数字预失真等处理等;其中,如何耦合的信号耦合多少取决于耦合模块的具体实现,属于本领域技术人员的惯用技术手段,这里不再赘述。
对于反馈通道还包括:
第二增益调整模块,设置为调整来自PA耦合的信号的功率;
频段处理模块,设置为对调整功率后的接收信号滤除多频交调信号;
RFADC模块,设置为对接收信号完成模数转换,并将接收到的射频信号直接转换成基带信号后输出给数字信号处理模块。
进一步地,对于发射通道,还包括放大器,设置为对来自RFDAC模块的射频信号进行放大后再输出给滤波模块;放大器可以是宽带放大器;
进一步地,如果RFDAC模块包括两个以上,本发明实施例中的发射机还包括合路器,设置为对多个RFDAC模块输出的信号进行合路处理。
进一步地,如果发射通道包括两个以上,所述发射通道上还包括:通道选择模块,设置为选择不同发射通道的PA耦合的信号。
参见图1,本发明提供的完全射频采样DAC多频发射机的工作原理包括:对于发射部分,由RFDAC模块完成对来自数字信号处理模块的发射信号数模转换后直接输出系统所需的射频信号,根据系统需求确定是否需要合路器将多个RFDAC输出的信号合路,然后将所需的射频信号提供给宽带放大器进行信号功率放大(可以省略)、通过滤波器对其它采样带内的镜频信号进行有效抑制,再经过第一增益调整模块调整发射功率,最后经过PA完成信号的最终放大后再由滤波器/双工器输出给天线口发射。其中,发射信号的一部分信号可以通过PA耦合到反馈链路,以实现功率检测以及数字预失真等处理。对于反馈部分,首先由系统确定是否需要通道选择模块选择不同发射通道的PA耦合信号(这里,如果发射通道只有一个,通道选择模块可以省略),然后再经过第二增益调整模块和频段处理模块分别对信号功率和信号质量进行处理,保证所采集信号的真实性;经处理后的射频信号直接提供给RFADC模块进行模数转换后再输出给数字信号处理模块做下一步的数字信号处理。
相应地,本发明实施例中图1所示的完全射频采样DAC多频发射机实现信号处理的方法包括:
对于发射部分,对经过数字信号处理的发射信号进行数模转换后获取所需的射频信号;对获得的射频信号进行滤波处理并调整发射功率;对处理后的信号进行宽带功率放大后输出给天线发射,同时耦合一部分发射通道的射频信号到反馈通道;
对于反馈部分,对来自发射通道耦合的信号进行信号功率和信号质量处理;对经处理后的射频信号进行模数转换后进行数字信号处理。
当获取所需的射频信号包括两个以上时,获取所需的射频信号之后,对所需的射频信号进行滤波处理并调整发射功率之前,还包括:对获得的所需的射频信号进行信号合路处理。
以上图1描述的发射机为完全射频采样DAC多频发射机,图2为本发明发射机的第二实施例的组成架构示意图,对于非完全射频采样DAC多频发射机,由于非完全射频采样DAC输出的射频信号存在本振泄露和调制镜像,如图2所示,还包括:
在发射通道上的小信号耦合模块,设置为对射频信号耦合一部分射频小信号参与实时校准后再输出给滤波模块;以及,
在反馈通道上的小信号通道选择模块,设置为完成对发射通道耦合的射频小信号进行实时校准,再将经过实时校准后的滤除多频交调信号的接收信号输出给RFADC模块。
其中,发射机在上电初始化后,关闭PA,小信号通道选择模块具体用于:接收来自小信号耦合模块的信号,在经RFADC模块进行模数转换后输出给数字信号处理模块,以对耦合的射频小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开PA;
PA正常发送业务数据,小信号通道选择模块接收来自频段处理模块的信号,按照预先设置的短周期对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集;接收来自小信号耦合模块的信号,并对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准,实时校准完成后返回对所述发射通道耦合的射频信号的前向功率检测、反向功率检测和预失真数据采集,直至发射机停止工作。
其中,发射通道包括一个以上。
当发射通道包括两个以上时,小信号通道选择模块还用于:分时选择不同的发射通道。
进一步地,对于发射部分,对获得的射频信号进行滤波处理并调整发射功率之前还包括:对获得的射频信号进行放大处理。
进一步地,发射通道包括两个以上时,还包括通道选择模块,设置为分时选择不同的发射通道的PA耦合的信号。
参见图2,本发明实施例提供的非完全射频采样DAC多频发射机的工作原理与图1所示的完全射频采样DAC多频发射机的区别在于:增加了实时校准电路。非完全射频采样DAC输出的射频信号(即RFDAC模块输出的射频信号或合路器输出的射频信号)由于存在本振泄露和调制镜像,在RFDAC模块的输出处由一个小信号耦合模块直接耦合一部分信号到小信号通道选择模块,然后反馈通道的RFADC模块通过小信号通道选择采集校准信号。这样,本发明提供的非完全射频采样DAC多频发射机的反馈通道承担了功率检测、驻波检测、实时校准功能和数字预失真数据采集等功能需求,由小信号通道选择模块实现对多个发射通道进行分时处理。
相应地,本发明实施例中的图2所示的非完全射频采样DAC多频发射机实现信号处理的方法包括:
对于发射部分,对经过数字信号处理的发射信号进行数模转换后获取所需的射频信号;对发射通道耦合一部分射频小信号参与实时校准;对获得的射频信号进行滤波处理并调整发射功率;对处理后的信号进行宽带功率放大后输出给天线发射,同时耦合一部分信号到反馈通道;
对于反馈部分,对来自发射通道耦合的信号进行信号功率和信号质量处理;完成对发射通道耦合的射频小信号进行实时校准;对经处理后的射频信号进行模数转换后进行数字信号处理。
当获取所需的射频信号包括两个以上时,获取所需的射频信号之后,对所需的射频信号进行滤波处理并调整发射功率之前,还包括:对获得的所需的射频信号进行信号合路处理。
其中,对耦合的射频小信号进行实时校准包括:
发射机在上电初始化后,关闭发射机中的PA,对耦合的射频小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开PA;
发射机中的PA正常发送业务数据,按照预先设置的短周期对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集;对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准,实时校准完成 后返回对所述发射通道耦合的射频信号的前向功率检测、反向功率检测和预失真数据采集,直至发射机停止工作。
其中,发射通道包括一个以上。
当发射通道包括两个以上时,对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集包括:分时选择不同的发射通道以对选出的发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集;以及,
对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准包括:分时选择同步的发射通道以对选出发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准。
从本发明提供的基于射频AD/DA的发射机架构对于实现多频段发射机有明显的优势:一方面,由于链路采用射频AD/DA器件将数字信号直接转换成所需要的射频信号,通道带宽较宽,一个通道可以支持多个频段,也就是说单通道可以支持多频段同时发射;另一方面,由于完全射频采样DAC架构通过数字部分完成I/Q信号的调制处理,省去了本振器件、中频滤波器以及IQ调制器和解调器,而非完全射频采样DAC架构虽然会产生本振和镜像信号,但只需要在完全射频采样DAC架构的基础上增加实时校准架构,仍然使链路器件大大减少,也就是说模拟链路得以简化。而且,射频DAC实现数字变频,只需要提供时钟参考信号即可,时钟链路得到了简化。再者,本发明基于射频AD/DA的发射机架构硬件链路器件的减少,带来的直接优势还有产品小型化和产品成本的降低。
以上即为射频AD/DA多频段发射机的硬件架构说明。下面针对非完全射频采样DAC单通道多频发射机的架构阐述实时校准的具体实现。对耦合的射频小信号进行实时校准大致包括:发射机在上电初始化后,关闭PA,对耦合的射频小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开PA;功放打开后正常发送业务数据,按照预先设置的短周期分时对PA耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集,同时,对耦合的射频 小信号的本振泄露和调制镜像进行实时校准,校准完成后反复循环直至发射机停止工作。具体地:
反馈通道承担着功率检测和预失真数据采集的功能,实时校准也占用反馈通道,几种功能的实现需要实施分时采集方案。分时方案由小信号通道选择模块来实现,具体包括:为了避免本振泄露对功放的损坏,如步骤300~步骤305所示,发射机在上电初始化后,先关闭功放即PA,小信号通道选择模块接收来自小信号耦合模块的信号,在经RFADC模块进行模数转换后输出给数字信号处理模块,以对泄露信号和调制镜像信号进行粗校准,待校准后如果连续预设次数次如3次检测到的泄露信号电平小于预先设置的安全门限值后再打开功放即PA,这个过程在发射机上电后只需要执行一次即可。上电后的实时校准是按照一定的时间周期进行的,如步骤306~步骤309所示,功放打开后正常发送业务数据,小信号通道选择模块接收来自频段处理模块的信号,在经RFADC模块进行模数转换后输出给数字信号处理模块,反馈通道按照预先设置的短周期分时进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集,同时,小信号通道选择模块接收来自小信号耦合模块的信号,在经RFADC模块进行模数转换后输出给数字信号处理模块,并选择实时校准通道,以完成一次对本振泄露和调制镜像的实时校准,校准完成后,小信号通道选择模块返回反馈通道,再进行上述N个周期的功率检测和预失真数据采集,如此反复循环,整个单通道实施校准过程如图3所示。
本发明实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一发射机及实现信号处理的方法。
下面对本发明提供的发射机的实际应用进行详细介绍。
图4为本发明发射机应用的第一实施例的架构示意图,如图4所示,在第一实施例中展现了一种F+A+D完全射频采样单通道三频发射机的实现方式,该F+A+D完全射频采样单通道三频发射机采用的是本发明提供的完全射频采样DAC架构。如图4所示,假设F、A、D分别表示三个非连续频段如1.9G、2.0G及2.6G,F+A+D三频信号同时从一个DAC输出口发出,后 面不需要合路器模块,F+A+D三频信号经过放大、低通滤波以及可变增益放大器增益调整后输入PA,再通过滤波器送到天线口发射出去。其中一部分信号经PA,输入到反馈链路的可变增益放大器完成功率调整,最后经过带通滤波器处理后输入RFADC模块以完成模数转换后再进行数字信号处理。
图5为本发明发射机应用的第二实施例的架构示意图,如图5所示,第二实施例中展示了一种1.8G+2.1G非完全射频采样双通道双频发射机的实现方式,该1.8G+2.1G非完全射频采样双通道双频发射机采用的是本发明提供的非完全射频采样DAC架构。如图5所示,双路发射通道共用一路反馈通道,两路发射通道完全一致,通过开关模块1分时对两个发射通道进行功率检测和预失真数据采集。其中,发射通道的可变增益放大器可以选用双路器件,也可以采用如图5所示的两个单路器件实现。
图6为本发明基于图5所示的架构的双通道实时校准的流程示意图,其中,两路发射通道即发射通道0和发射通道1通过时分方式共用一路反馈通道,相应的控制通过开关模块1或开关模块0来实现时分共用,如图6所示,为了描述方便,本实施例中假设每个发射通道中仅包括一个RFDAC模块,双通道实时校准的过程具体包括:
首先,如步骤600~步骤608所示,发射机在上电初始化后,先将两路功放模块即PA0和PA1都关闭,对本振泄露和调制镜像进行粗校准:先通过小信号通道选择模块即开关模块0选择发射通道0送来的信号,再经RFADC到数字信号处理模块,完成发射通道0的粗校准;待发射通道0完成粗校准后,小信号通道选择模块即开关模块0再选择发射通道1的信号,再经RFADC到数字信号处理模块,完成发射通道1的粗校准,两路发射通道均完成粗校准后同时打开两路功放即PA0和PA1,这个粗校准的过程在上电后仅执行一次即可。
接着,如步骤609~步骤611所示,开关模块0选择接收带通滤波器送来的信号,开关模块1选择PA 0的信号,进行发射通道0的前向功率检测、反向功率检测和预失真数据采集;之后,开关模块1选择PA1的信号,进行发射通道1的前向功率检测、反向功率检测和预失真数据采集。如果检测总时间小于次数阈值N倍的单通道检测周期,返回继续检测;如果检测总时间 等于次数阈值N倍的单通道检测周期,进入后续步骤;
然后,如步骤612~步骤613所示,开关模块0选择接收来自耦合器0的信号,对发射通道0进行本振泄露和调制镜像的一次实时校准,直到本振泄露和调制镜像的信号功率小于预先设置的安全门限值,结束本次校准;之后,开关模块0选择接收来自耦合器1的信号,对发射通道1进行本振泄露和调制镜像的一次实时校准,直到本振泄露和调制镜像的信号功率小于预先设置的安全门限值,结束本次校准;返回步骤609,如此反复循环,直至发射机停止正常工作如断电等。
本实施例中,实时校准、功率检测和预失真数据采集分时进行。实时校准周期相对较长,是功率检测和预失真采数周期的N倍,两路检测周期和校准周期一致。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提出的发射机及其实现信号处理的方法,至少包括:RFDAC模块、RFADC模块、滤波模块、第一增益调整模块和第二增益调整模块、频段处理模块、多频功率放大器(PA)、滤波器/双工器以及数字信号处理模块。一方面,由于链路采用射频AD/DA器件将数字信号直接转换成所需要的射频信号,实现了单通道支持多频段同时发射;另一方面,由于采用射频采样DAC架构,大大简化了模拟链路。而且,射频DAC实现数字变频,只需要提供时钟参考信号即可,时钟链路也得到了简化,从而在产品小型化设计和产品成本的降低方面具有更大优势。

Claims (14)

  1. 一种发射机,包括数字信号处理模块,滤波器/双工器;
    对于发射通道,还包括:
    射频数模转换RFDAC模块,设置为对来自数字信号处理模块的发射信号完成数模转换,并将基带信号转换成射频信号;
    滤波模块,设置为对放大后的射频信号进行滤波处理;
    第一增益调整模块,设置为调整滤波处理后的发射信号的发射功率;
    宽带功率放大器PA,设置为将调整发射功率后的射频信号放大到所需的额定功率后由滤波器/双工器输出给天线口发射;其中,PA中设置有耦合模块,用于耦合发射通道的射频信号到反馈通道;
    对于反馈通道,还包括:
    第二增益调整模块,设置为调整来自PA耦合的信号的功率;
    频段处理模块,设置为对调整功率后的接收信号滤除多频交调信号;
    射频模数转换RFADC模块,设置为对接收到的信号完成模数转换,并将接收到的射频信号直接转换成基带信号后输出给数字信号处理模块。
  2. 根据权利要求1所述的发射机,其中,还包括:
    在所述发射通道上的小信号耦合模块,设置为对所述射频信号耦合射频小信号,再输出给所述滤波模块;以及,
    在所述反馈通道上的小信号通道选择模块,设置为完成对发射通道耦合的射频小信号进行实时校准,再将经过实时校准后的所述滤除多频交调信号的接收信号输出给所述RFADC模块。
  3. 根据权利要求2所述的发射机,其中,所述发射机在上电初始化后,关闭所述PA,所述小信号通道选择模块具体设置为:
    接收来自所述小信号耦合模块的信号,在经所述RFADC模块进行模数转换后输出给所述数字信号处理模块,以对所述耦合的射频小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开所述PA;
    所述PA正常发送业务数据,所述小信号通道选择模块接收来自所述频段处理模块的信号,对所述发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集;接收来自所述小信号耦合模块的信号,并对耦合的射频小信号的本振泄露和调制镜像进行实时校准,实时校准完成后返回对所述发射通道耦合的射频信号的前向功率检测、反向功率检测和预失真数据采集,直至发射机停止工作。
  4. 根据权利要求3所述的发射机,其中,所述发射通道包括一个以上;
    当所述发射通道包括两个以上时,所述小信号通道选择模块还设置为:分时选择不同的发射通道。
  5. 根据权利要求1或2所述的发射机,其中,所述发射通道上还包括放大器,设置为对来自所述RFDAC模块的射频信号进行放大后输出给所述滤波模块。
  6. 根据权利要求1或2所述的发射机,其中,所述RFDAC模块包括两个以上;
    所述发射机还包括合路器,设置为对多个RFDAC模块输出的信号进行合路处理后输出给所述放大器。
  7. 根据权利要求1或2所述的发射机,其中,当所述发射通道包括两个以上时,所述反馈通道上还包括:通道选择模块,设置为选择不同发射通道的所述PA耦合的信号。
  8. 一种发射机实现信号处理的方法,包括:
    对于发射部分,对经过数字信号处理的发射信号进行数模转换后获取所需的射频信号;
    对获得的射频信号进行滤波处理并调整发射功率;
    对处理后的信号进行宽带功率放大后输出给天线发射,同时耦合发射通道的射频信号到反馈通道;
    对于反馈部分,对来自发射通道耦合的信号进行信号功率和信号质量处理;
    对经处理后的射频信号进行模数转换后进行数字信号处理。
  9. 根据权利要求8所述的方法,其中,在所述发射通道上,所述获取所需的射频信号之后,所述对获得的射频信号进行滤波处理并调整发射功率之前,还包括:对所述发射信号耦合射频小信号;
    相应地,
    在所述反馈通道上,所述进行信号功率和信号质量处理之后,所述对经处理后的射频信号进行模数转换之前,还包括:对所述发射通道耦合的射频小信号进行实时校准。
  10. 根据权利要求9所述的方法,其中,所述对耦合的射频小信号进行实时校准包括:
    所述发射机在上电初始化后,关闭所述发射机中的PA,对耦合的射频小信号的泄露信号和调制镜像信号进行粗校准,如果连续预设次数次检测到的泄露信号电平小于预先设置的安全门限值后打开所述发射机中的PA;
    所述发射机中的PA正常发送业务数据,按照预先设置的周期对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集,进行预先设置的次数阈值N个周期后,停止功率检测和预失真数据采集;对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准,实时校准完成后返回对所述发射通道耦合的射频信号的前向功率检测、反向功率检测和预失真数据采集,直至发射机停止工作。
  11. 根据权利要求10所述的方法,其中,所述发射通道包括一个以上;
    当所述发射通道包括两个以上时,所述对发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集包括:分时选择不同的发射通道以对选出的发射通道耦合的射频信号进行前向功率检测、反向功率检测和预失真数据采集;以及,
    所述对发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准包括:分时选择同步的发射通道以对选出发射通道耦合的射频小信号的本振泄露和调制镜像进行实时校准。
  12. 根据权利要求8或9所述的方法,其中,所述获取所需的射频信号 包括两个以上;
    所述获取所需的射频信号之后,所述对所需的射频信号进行滤波处理并调整发射功率之前,该方法还包括:对所述获得的所需的射频信号进行信号合路处理。
  13. 根据权利要求8或9所述的方法,其中,所述对获得的射频信号进行滤波处理并调整发射功率之前还包括:对所述获得的射频信号进行放大处理。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8~权利要求13任一项所述的发射机实现信号处理的方法。
PCT/CN2017/081975 2016-04-26 2017-04-26 一种发射机及其实现信号处理的方法 WO2017186116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610264358.4A CN107317592B (zh) 2016-04-26 2016-04-26 一种发射机及其实现信号处理的方法
CN201610264358.4 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017186116A1 true WO2017186116A1 (zh) 2017-11-02

Family

ID=60160706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081975 WO2017186116A1 (zh) 2016-04-26 2017-04-26 一种发射机及其实现信号处理的方法

Country Status (2)

Country Link
CN (1) CN107317592B (zh)
WO (1) WO2017186116A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412708A (zh) * 2018-12-12 2019-03-01 中国电子科技集团公司第五十四研究所 一种射频收发电路中本振泄漏检测电路
CN110333505A (zh) * 2019-07-18 2019-10-15 成都市克莱微波科技有限公司 一种基于数字列阵的雷达通信一体化系统及方法
CN111650861A (zh) * 2020-06-05 2020-09-11 成都玖锦科技有限公司 一种用于atc和dme测试系统的数字信号处理模块
CN112217583A (zh) * 2020-10-13 2021-01-12 北京电子工程总体研究所 一种在轨无线通信设备内嵌式自检系统和方法
CN113055058A (zh) * 2019-12-27 2021-06-29 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法
CN113193892A (zh) * 2021-04-29 2021-07-30 陕西天基通信科技有限责任公司 一种低功率5g室分系统及方法
CN114095328A (zh) * 2021-10-28 2022-02-25 成都中科微信息技术研究院有限公司 一种基于apd技术的uv频段5g大功率终端
CN114355388A (zh) * 2021-12-30 2022-04-15 浙江时空道宇科技有限公司 一种用于低轨卫星导航增强系统的双频发射组件及系统
CN114389624A (zh) * 2021-12-29 2022-04-22 中电科思仪科技(安徽)有限公司 一种多通道频段覆盖广的带宽信号发生装置及方法
CN114726455A (zh) * 2022-03-28 2022-07-08 展讯通信(上海)有限公司 终端设备自校准方法及装置
CN115441837A (zh) * 2022-11-09 2022-12-06 广东省新一代通信与网络创新研究院 5g频段的射频功率放大器控制电路、射频电路
WO2024104198A1 (zh) * 2022-11-17 2024-05-23 中兴通讯股份有限公司 射频信号处理方法、电路、通信装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123764B (zh) * 2017-12-26 2024-03-19 三维通信股份有限公司 一种具有链路自适应性的镜像校准装置及方法
CN110198174B (zh) * 2019-05-29 2022-03-25 京信网络系统股份有限公司 射频前端发射电路、射频前端电路、收发机和基站设备
CN112436857B (zh) * 2020-07-21 2022-03-29 珠海市杰理科技股份有限公司 检测电路及检测方法、无线射频收发器、电器设备
CN114448454B (zh) * 2021-12-28 2024-05-10 西安邮电大学 一种可抑制谐波和互调失真的短波发射机
CN114123979B (zh) * 2022-01-25 2022-05-03 电子科技大学 一种太赫兹全双工共本振固态前端发射电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664653A (zh) * 2012-05-17 2012-09-12 天津里外科技有限公司 移动终端及其具有射频数模转换式线性发射机的射频前端
US20140044155A1 (en) * 2012-08-10 2014-02-13 Walter Honcharenko Frequency agile multiband transmitter using a radio frequency digital to analog converter
CN103999423A (zh) * 2011-12-21 2014-08-20 英特尔移动通信有限责任公司 电路和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100589462C (zh) * 2005-12-20 2010-02-10 中兴通讯股份有限公司 宽带码分多址基站系统多通道多载波数字预失真发信机
CN101651474B (zh) * 2008-08-12 2012-11-14 电信科学技术研究院 多天线零中频发射机及其校准方法
CN101635697B (zh) * 2009-08-04 2012-02-15 京信通信系统(中国)有限公司 一种发射机及发射机处理信号的方法
CN102158265B (zh) * 2010-08-25 2014-04-30 华为技术有限公司 多天线系统及其反馈信号接收链路复用方法
CN103684492A (zh) * 2012-09-24 2014-03-26 中兴通讯股份有限公司 射频信号的采样装置、接收机及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999423A (zh) * 2011-12-21 2014-08-20 英特尔移动通信有限责任公司 电路和方法
CN102664653A (zh) * 2012-05-17 2012-09-12 天津里外科技有限公司 移动终端及其具有射频数模转换式线性发射机的射频前端
US20140044155A1 (en) * 2012-08-10 2014-02-13 Walter Honcharenko Frequency agile multiband transmitter using a radio frequency digital to analog converter

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412708A (zh) * 2018-12-12 2019-03-01 中国电子科技集团公司第五十四研究所 一种射频收发电路中本振泄漏检测电路
CN109412708B (zh) * 2018-12-12 2024-04-09 中国电子科技集团公司第五十四研究所 一种射频收发电路中本振泄漏检测电路
CN110333505A (zh) * 2019-07-18 2019-10-15 成都市克莱微波科技有限公司 一种基于数字列阵的雷达通信一体化系统及方法
CN113055058B (zh) * 2019-12-27 2023-09-08 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法
CN113055058A (zh) * 2019-12-27 2021-06-29 中兴通讯股份有限公司 一种基站、多天线收发装置及其控制方法
CN111650861A (zh) * 2020-06-05 2020-09-11 成都玖锦科技有限公司 一种用于atc和dme测试系统的数字信号处理模块
CN112217583B (zh) * 2020-10-13 2022-04-19 北京电子工程总体研究所 一种在轨无线通信设备内嵌式自检系统和方法
CN112217583A (zh) * 2020-10-13 2021-01-12 北京电子工程总体研究所 一种在轨无线通信设备内嵌式自检系统和方法
CN113193892B (zh) * 2021-04-29 2024-04-05 陕西天基通信科技有限责任公司 一种低功率5g室分系统及方法
CN113193892A (zh) * 2021-04-29 2021-07-30 陕西天基通信科技有限责任公司 一种低功率5g室分系统及方法
CN114095328A (zh) * 2021-10-28 2022-02-25 成都中科微信息技术研究院有限公司 一种基于apd技术的uv频段5g大功率终端
CN114095328B (zh) * 2021-10-28 2024-04-26 成都中科微信息技术研究院有限公司 一种基于apd技术的uv频段5g大功率终端
CN114389624A (zh) * 2021-12-29 2022-04-22 中电科思仪科技(安徽)有限公司 一种多通道频段覆盖广的带宽信号发生装置及方法
CN114355388A (zh) * 2021-12-30 2022-04-15 浙江时空道宇科技有限公司 一种用于低轨卫星导航增强系统的双频发射组件及系统
CN114726455A (zh) * 2022-03-28 2022-07-08 展讯通信(上海)有限公司 终端设备自校准方法及装置
CN115441837A (zh) * 2022-11-09 2022-12-06 广东省新一代通信与网络创新研究院 5g频段的射频功率放大器控制电路、射频电路
WO2024104198A1 (zh) * 2022-11-17 2024-05-23 中兴通讯股份有限公司 射频信号处理方法、电路、通信装置、设备及存储介质

Also Published As

Publication number Publication date
CN107317592B (zh) 2020-12-11
CN107317592A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2017186116A1 (zh) 一种发射机及其实现信号处理的方法
US10778152B2 (en) Methods for amplifying signals using a Doherty amplifier
EP2822242B1 (en) Digital predistortion processing method and device
US8615207B2 (en) Power amplifier linearization feedback methods and systems
US9300335B2 (en) Device and method for communication correction
US10090873B2 (en) Signal processing apparatus, method, and system
US9231626B2 (en) Wireless communication apparatus, Doherty amplifier, and method for controlling wireless communication
KR101868965B1 (ko) 분산 안테나 시스템의 리모트 장치
WO2017063415A1 (zh) 一种收发信机及工作方法
WO2015127610A1 (zh) 一种功率放大的方法及功率放大器
WO2014012430A1 (zh) 一种适应多模多频宽频的功放方法及系统
CN105391456A (zh) 多频段Doherty功放系统
US20220407556A1 (en) Systems and methods for multi-transceiver radio frequency signal processing systems
US10637525B2 (en) Wireless device and wireless communication method
US11909443B2 (en) ROF communication remote machine and ROF system
JP6424891B2 (ja) 送信回路、高周波フロントエンド回路、送信信号の制御方法、および、高周波フロントエンドの送受信制御方法
WO2016112711A1 (zh) 一种多模终端的射频电路及多模终端
US9276784B2 (en) Frequency selective predistortion
CN108900207B (zh) 功放装置、射频信号处理系统和基站
KR20050027798A (ko) Gsm/td-scdma 이중모드 단말기의 송신장치
US20230140184A1 (en) Analog pre-distortion processing circuit and signal processing device
CN108574497B (zh) 带有线性化技术的宽带发射方法、装置和系统
CN210693998U (zh) 模拟预失真处理电路和信号处理设备
KR101436926B1 (ko) 전력증폭기용 동시 이중대역 디지털 전치왜곡 장치 및 그 방법
CN114785386A (zh) 高集成射频前端

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788768

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788768

Country of ref document: EP

Kind code of ref document: A1