WO2017185515A1 - 冷暖型空调器、单冷型空调器及空调器的控制方法 - Google Patents
冷暖型空调器、单冷型空调器及空调器的控制方法 Download PDFInfo
- Publication number
- WO2017185515A1 WO2017185515A1 PCT/CN2016/087934 CN2016087934W WO2017185515A1 WO 2017185515 A1 WO2017185515 A1 WO 2017185515A1 CN 2016087934 W CN2016087934 W CN 2016087934W WO 2017185515 A1 WO2017185515 A1 WO 2017185515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- throttle element
- exhaust
- opening degree
- air conditioner
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
Definitions
- the invention relates to the field of refrigeration, and in particular to a control method for a cold and warm air conditioner, a single cold air conditioner and an air conditioner.
- the air conditioning refrigeration system does not optimize the circulation design of the gaseous refrigerant before the throttle and enters the evaporator, which causes the gaseous refrigerant to affect the heat exchange performance of the evaporator and increase the compression power consumption of the compressor, thereby affecting the energy efficiency level of the air conditioner.
- Jet boosting and two-stage compression technology can improve the heating capacity of air conditioning systems at low and ultra-low temperatures, but for the cooling conditions often used in air conditioners, energy efficiency is very limited.
- the present invention aims to solve at least one of the technical problems in the related art to some extent.
- the present invention proposes a cold and warm type air conditioner, which can effectively improve the energy efficiency of the air conditioner and effectively promote energy saving and emission reduction.
- the invention also provides a single-cooling type air conditioner, which can effectively improve the energy efficiency of the air conditioner and effectively promote energy saving and emission reduction.
- the invention further proposes a control method for an air conditioner.
- a cooling and heating type air conditioner includes: a two-cylinder compressor including a casing, a first cylinder, a second cylinder, and a first accumulator, wherein the casing is provided with a row a first port and the second cylinder are respectively disposed in the housing, the first accumulator is disposed outside the housing, an intake port of the first cylinder and the first The accumulator is in communication, the ratio of the exhaust volume ratio of the second cylinder and the first cylinder is in the range of 1% to 10%; and the reversing assembly includes the first to fourth valves a first valve port communicating with one of the second valve port and the third valve port, the fourth valve port being in communication with the other of the second valve port and the third valve port, a first valve port is connected to the exhaust port, the fourth valve port is connected to the first reservoir; an outdoor heat exchanger and an indoor heat exchanger, and the first end of the outdoor heat exchanger is a second valve port is connected, a first end of the indoor heat exchanger is connected
- the energy efficiency of the air conditioner can be effectively improved, energy saving and emission reduction can be effectively promoted, and the heat exchange efficiency can be improved and the compressor compression can be reduced by providing a gas-liquid separator. Power consumption, further improve the capacity and energy efficiency of the air conditioner, and by setting the control valve and the refrigerant radiator, not only can the electronic control component be effectively cooled, but also the condensation of the electronic control component can be avoided.
- a solenoid valve is connected in series between the gas outlet and the suction port of the second cylinder.
- the volume of the gas-liquid separator ranges from 100 mL to 500 mL.
- control valve is a one-way valve that is unidirectionally conductive in a direction from the first throttling element to the outdoor heat exchanger.
- the two-cylinder compressor further includes a second accumulator disposed outside the housing, the second accumulator being connected in series at the gas outlet and the second cylinder Between the suction ports.
- the volume of the first reservoir is greater than the volume of the second reservoir.
- a single-cooling type air conditioner includes: a two-cylinder compressor including a housing, a first cylinder, a second cylinder, and a first accumulator, and the housing is provided with An exhaust port, the first cylinder and the second cylinder are respectively disposed in the housing, the first accumulator is disposed outside the housing, an intake port of the first cylinder and the first a reservoir is connected, the ratio of the exhaust volume ratio of the second cylinder and the first cylinder is in the range of 1% to 10%; the outdoor heat exchanger and the indoor heat exchanger, the outdoor heat exchanger a first end is connected to the exhaust port, a first end of the indoor heat exchanger is connected to the first accumulator; a gas-liquid separator, the gas-liquid separator comprises a gas outlet, a first interface, and a second interface, the gas outlet is connected to an air inlet of the second cylinder, the first interface is connected to a second end of the outdoor heat exchanger, and the second interface is connected to the indoor heat exchanger
- the single-cooling type air conditioner of the embodiment of the present invention by providing the above-mentioned two-cylinder compressor, the energy efficiency of the air conditioner can be effectively improved, energy saving and emission reduction can be effectively promoted, and the heat exchange efficiency can be improved and the compressor can be reduced by providing the gas-liquid separator. Compressing power consumption, further improving the capacity and energy efficiency of the air conditioner, and by setting a refrigerant radiator, the electronic control unit can be effectively cooled.
- a solenoid valve is connected in series between the gas outlet and the suction port of the second cylinder.
- the volume of the gas-liquid separator ranges from 100 mL to 500 mL.
- the two-cylinder compressor further includes a second accumulator disposed outside the housing, the second accumulator being connected in series at the gas outlet and the second cylinder Between the suction ports.
- the volume of the first reservoir is greater than the volume of the second reservoir.
- the air conditioner is the cold and warm type air conditioner according to the above embodiment of the present invention, or the single cold type air conditioner according to the above embodiment of the present invention, characterized in that the air conditioner
- the throttling element located upstream of the first throttling element and the second throttling element is a primary throttling element, and the first throttling element and the second throttling element are downstream
- the throttling element is a two-stage throttling element; when the opening degrees of the first throttling element and the second throttling element are both adjustable, the control method comprises the following steps: first, according to the first detection object The detection result adjusts the opening degree of the primary throttling element to the set opening degree, and then adjusts the opening degree of the secondary throttling element to the set opening degree according to the detection result of the second detection object, the one The set opening degree of the throttling element is smaller than the set opening degree of the second th
- the compressor operating parameter includes at least one of an operating current, an exhaust pressure, and an exhaust temperature
- the first detecting object includes an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, and a row
- the second detection object includes an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust temperature of the exhaust port, an exhaust pressure of the exhaust port, and is discharged from the gas outlet At least one of an intermediate pressure of the refrigerant, an intermediate temperature of the refrigerant discharged from the gas outlet, a gas-liquid separator temperature, and a gas-liquid separator pressure.
- the control method of the air conditioner according to the embodiment of the present invention makes the energy efficiency of the system optimal.
- the first detection object and/or the second detection object are an outdoor ambient temperature T4 and an operating frequency F, and are calculated according to the detected outdoor ambient temperature T4 and the operating frequency F.
- the corresponding throttle element with adjustable opening degree sets the opening degree, and then adjusts the opening degree of the corresponding throttle element according to the set opening degree.
- the first detection object and/or the second detection object are an outdoor ambient temperature T4, an operating frequency F, and an exhaust pressure; or an outdoor ambient temperature T4, an operating frequency F, and a row
- the gas temperature is first calculated according to the outdoor ambient temperature T4 and the operating frequency F to obtain a set exhaust pressure or set an exhaust temperature, and then adjust the corresponding opening according to the actually detected exhaust pressure or exhaust temperature.
- the opening of the throttle element is adjusted such that the detected exhaust pressure or exhaust temperature reaches a set exhaust pressure or sets an exhaust temperature.
- a plurality of outdoor temperature intervals are preset, each of the outdoor temperature intervals corresponding to an opening degree of a different throttling element, and the first detecting object and/or the second detecting object is an outdoor ambient temperature T4 According to the actual test The opening degree corresponding to the outdoor temperature range in which the outdoor ambient temperature T4 is located is adjusted to the opening degree of the throttle element with the adjustable opening degree.
- the intermediate temperature or the preset intermediate pressure is preset
- the first detection object and/or the second detection object is an intermediate pressure or an intermediate temperature, and is adjusted according to the actually detected intermediate pressure or intermediate temperature.
- the opening of the throttle element which is adjustable in opening degree, is such that the detected intermediate pressure or intermediate temperature reaches a preset intermediate pressure or a preset intermediate temperature.
- a plurality of outdoor temperature intervals are preset, each of the outdoor temperature intervals corresponding to a different set temperature of the gas-liquid separator, the first detection object and/or the first
- the second detection object is the outdoor ambient temperature T4 and the temperature of the gas-liquid separator.
- a plurality of different exhaust temperature intervals are preset, the plurality of exhaust temperatures
- the adjustment command of the operating frequency corresponding to the interval is different, and the exhaust gas temperature is detected and the operating frequency is adjusted according to an adjustment command corresponding to the exhaust gas temperature range in which the detected exhaust gas temperature is located.
- a plurality of outdoor temperature intervals, a heating shutdown protection current, and a cooling shutdown protection current are preset.
- the plurality of outdoor temperature intervals correspond to different frequency limiting protection currents, first detecting the outdoor ambient temperature, and then obtaining a corresponding frequency limiting protection current according to the detected outdoor temperature interval in which the outdoor ambient temperature is located, and adjusting the operating frequency to The actually detected operating current reaches the corresponding frequency limiting protection current, wherein the operating current detected when cooling is greater than the cooling shutdown protection current is directly stopped; the operating current detected when heating If it is greater than the heating shutdown protection current, it will stop directly.
- a plurality of different exhaust pressure intervals are preset, the plurality of exhaust pressures
- the adjustment command of the operating frequency corresponding to the interval is different, the exhaust pressure is detected, and the operating frequency is adjusted according to an adjustment command corresponding to the exhaust pressure range in which the detected exhaust pressure is located.
- FIG. 1 to 3 are schematic views of a cold and warm type air conditioner according to various embodiments of the present invention.
- FIGS. 4-6 are schematic views of a single-cooling type air conditioner according to various embodiments of the present invention.
- Figure 7 is a schematic illustration of a two-cylinder compressor in accordance with an embodiment of the present invention.
- FIG. 8 is a flow chart showing a control method of a cooling and heating type air conditioner/single-cool type air conditioner during cooling according to an embodiment of the present invention,
- the opening of the first throttle element and the second throttle element are adjustable;
- FIG. 9 is a flow chart of a control method for heating and heating of a cold and warm air conditioner according to an embodiment of the present invention, wherein opening degrees of the first throttle element and the second throttle element are both adjustable;
- FIG. 10 is a flow chart of a control method for cooling a cold air type air conditioner/single cold type air conditioner according to an embodiment of the present invention, wherein a first throttle element opening degree is fixed, and a second throttle element opening degree is adjustable;
- FIG. 11 is a flow chart of a control method for heating and heating of a cold and warm air conditioner according to an embodiment of the present invention, wherein a first throttle element has a fixed opening degree, and a second throttle element has an adjustable opening degree;
- FIG. 12 is a flowchart of a control method for cooling a cold-air type air conditioner/single-cool type air conditioner according to an embodiment of the present invention, wherein a first throttle element opening degree is adjustable, and a second throttle element opening degree is fixed;
- FIG. 13 is a flow chart of a control method for heating and heating of a cold and warm air conditioner according to an embodiment of the present invention, wherein a first throttle element opening degree is adjustable, and a second throttle element opening degree is fixed;
- FIG. 14 is a flowchart of a control method of a cold and warm type air conditioner according to an embodiment of the present invention, in which opening degrees of the first throttle element and the second throttle element are fixed;
- FIG. 15 is a flowchart of a control method of a single-cooling type air conditioner in which opening degrees of a first throttle element and a second throttle element are fixed, according to an embodiment of the present invention.
- Cooling and heating air conditioner 100 Cooling and heating air conditioner 100
- a two-cylinder compressor 1 a casing 10, a first cylinder 11, a second cylinder 12, a first accumulator 13, a second accumulator 14, an exhaust port 15,
- Reversing assembly 2 first valve port D, second valve port C, third valve port E, fourth valve port S,
- Outdoor heat exchanger 3 indoor heat exchanger 4
- Gas-liquid separator 5 gas outlet m, first interface f, second interface g,
- Solenoid valve 20 Solenoid valve 20.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- a cold and warm type air conditioner 100 according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3 and 7, in which a cooling and heating type air conditioner 100 has a cooling mode and a heating mode.
- the air-conditioning and air conditioner 100 includes: a two-cylinder compressor 1, a reversing component 2, an outdoor heat exchanger 3, and an indoor heat exchanger 4, and a gas.
- the two-cylinder compressor 1 includes a casing 10, a first cylinder 11, a second cylinder 12, and a first accumulator 13.
- the casing 10 is provided with an exhaust port 15, and the first cylinder 11 and the second cylinder 12 are respectively provided.
- the first accumulator 13 is disposed outside the casing 10, and the intake port of the first cylinder 11 communicates with the first accumulator 13.
- the first cylinder 11 and the second cylinder 12 perform an independent compression process, and the compressed refrigerant discharged from the first cylinder 11 and the compressed refrigerant discharged from the second cylinder 12 are discharged into the casing 10, respectively. It is discharged from the exhaust port 15.
- the ratio of the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 ranges from 1% to 10%. Further, the ratio of the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 ranges from 1% to 9%. Preferably, the ratio of the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 ranges from 4% to 9%.
- the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 may be a parameter such as 4%, 5%, 8%, or 8.5%.
- the reversing assembly 2 includes a first valve port D to a fourth valve port S, the first valve port D is in communication with one of the second valve port C and the third valve port E, and the fourth valve port S and the second valve port C communicates with the other of the third valve ports E, the first valve port D is connected to the exhaust port 15, and the fourth valve port S is connected to the first accumulator 13.
- the first end of the outdoor heat exchanger 3 is connected to the second valve port C, and the first end of the indoor heat exchanger 4 is connected to the third valve port E.
- the first valve port D is in communication with the second valve port C and the third valve port E is in communication with the fourth valve port S.
- the first The valve port D communicates with the third valve port E and the second valve port C communicates with the fourth valve port S.
- the reversing assembly 2 It is a four-way valve.
- the gas-liquid separator 5 includes a gas outlet m, a first interface f and a second interface g, the gas outlet m is connected to the suction port of the second cylinder 12, and the first interface f is connected to the second end of the outdoor heat exchanger 3,
- the second interface g is connected to the second end of the indoor heat exchanger 4, and the first throttle element 6 is connected in series between the first interface f and the outdoor heat exchanger 3, and the second interface g and the indoor heat exchanger 4 are connected in series There is a second throttle element 7.
- the opening degrees of the first throttle element 6 and the second throttle element 7 are both adjustable, optionally, the first throttle element 6 is an electronic expansion valve, and the second throttle element 7 is The electronic expansion valve, of course, can be understood that the first throttle element 6 and the second throttle element 7 can also be other adjustable opening elements such as thermal expansion valves.
- the opening of the first throttle element 6 is adjustable and the opening of the second throttle element 7 is fixed, optionally the first throttle element 6 is an electronic expansion valve, the second section
- the flow element 7 is a capillary or a throttle valve. It will of course be understood that the first throttle element 6 can also be other open-width adjustable elements such as a thermal expansion valve.
- the opening of the first throttle element 6 is fixed and the opening of the second throttle element 7 is fixed, optionally the first throttle element 6 is a capillary or a throttle valve, and second The throttle element 7 is an electronic expansion valve, although it will of course be understood that the second throttle element 7 can also be other adjustable opening elements such as a thermal expansion valve.
- both the opening degrees of the first throttle element 6 and the second throttle element 7 are both fixed.
- both the first throttle element 6 and the second throttle element 7 may be capillary tubes or Throttle valve.
- the refrigerant radiator 9 is used for dissipating heat from the electronic control unit, and the refrigerant radiator 9 and the control valve 8 connected in parallel are connected in series between the outdoor heat exchanger 3 and the first throttle element 6, and the control valve 8 is closed to the circulation of the refrigerant during cooling.
- the refrigerant flows through the control valve 8 during heating. That is, the control valve 8 is connected in series between the outdoor heat exchanger 3 and the first throttle element 6, and the refrigerant radiator 9 is connected in series between the outdoor heat exchanger 3 and the first throttle element 6, the control valve 8 and the refrigerant
- the heat sinks 9 are connected in parallel, and the refrigerant radiator 9 is used to dissipate heat from the electronic control components.
- control valve 8 is a one-way valve that is unidirectional in the direction from the first throttle element 6 to the outdoor heat exchanger 3. It will of course be understood that the control valve 8 can also be a solenoid valve. It can be understood that the structure of the refrigerant radiator 9 can be various as long as the refrigerant can be circulated, for example, the refrigerant radiator 9 can include a metal tube extending from the crucible.
- the high-temperature high-pressure refrigerant discharged from the exhaust port 15 of the two-cylinder compressor 1 is discharged into the outdoor heat exchanger 3 through the first valve port D and the second valve port C to perform condensation heat dissipation. Since the control valve 8 shuts off the flow of the refrigerant, the liquid refrigerant discharged from the outdoor heat exchanger 3 flows into the refrigerant radiator 9 to exchange heat with the electric control element, thereby achieving the purpose of lowering the temperature of the electronic control unit.
- the refrigerant flowing out of the refrigerant radiator 9 is discharged from the first interface f to the gas-liquid separator 5 through the first-stage throttling and depressurization of the first throttle element 6, and the gas-liquid separation is performed, and the separated intermediate pressure gaseous refrigerant is separated from the refrigerant.
- the gas outlet m is discharged into the second cylinder 12 for compression.
- the intermediate pressure liquid refrigerant discharged from the second port g of the gas-liquid separator 5 is depressurized by the secondary throttling of the second throttling element 7 and then discharged into the indoor heat exchanger 4 for heat exchange to reduce the indoor ambient temperature.
- Cold discharged from the indoor heat exchanger 4 The medium is discharged into the first accumulator 13 through the third port E and the fourth port S, and the refrigerant discharged from the first accumulator 13 is discharged into the first cylinder 11 for compression.
- the high temperature and high pressure refrigerant discharged from the exhaust port 15 of the twin cylinder compressor 1 is discharged into the indoor heat exchanger 4 through the first valve port D and the third valve port E for condensation heat dissipation.
- the high-pressure liquid refrigerant discharged from the indoor heat exchanger 4 is depressurized by the first throttling element 7 and then discharged from the second port g into the gas-liquid separator 5 for gas-liquid separation.
- the separated, separated intermediate pressure gaseous refrigerant is discharged from the gas outlet m into the second cylinder 12 for compression.
- the control valve 8 Since the control valve 8 is turned on, the intermediate pressure liquid refrigerant discharged from the first port f of the gas-liquid separator 5 is depressurized by the secondary throttling of the first throttle element 6, and most of the refrigerant is discharged through the control valve 8.
- the outdoor heat exchanger 3 performs heat exchange, and the refrigerant discharged from the outdoor heat exchanger 3 is discharged into the first accumulator 13 through the second port C and the fourth port S, and is discharged from the first accumulator 13.
- the refrigerant is discharged into the first cylinder 11 for compression.
- the cooling and heating type air conditioner 100 when the cooling and heating type air conditioner 100 is cooling, since the control valve 8 shuts off the flow of the refrigerant, the refrigerant discharged from the outdoor heat exchanger 3 flows into the refrigerant radiator 9 to exchange heat with the electric control element, thereby achieving reduction.
- the purpose of the temperature of the electronic control unit when the heating and cooling air conditioner 100 is heated, since the control valve 8 is turned on, most of the refrigerant discharged from the first throttle element 6 is discharged into the outdoor heat exchanger 3 through the control valve 8, with only a small portion or no refrigerant. Flowing through the refrigerant radiator 9, it is possible to prevent the refrigerant whose temperature is too low from flowing through the refrigerant radiator 9 to cause condensation to reduce the service life of the electronic control unit.
- the refrigerants of different pressure states enter the first cylinder 11 and the second cylinder 12, respectively, and the first cylinder 11 and the second cylinder 12 independently complete the compression process, from the first
- the compressed refrigerant discharged from the cylinder 11 and the compressed refrigerant discharged from the second cylinder 12 are discharged into the casing 10 and discharged from the exhaust port 15 while being exhausted by the second cylinder 12 and the first cylinder 11
- the ratio of the ratio is from 1% to 10%, and the refrigerant having a small flow rate and a high pressure state is discharged into the second cylinder 12 having a small exhaust volume for compression, thereby improving energy efficiency, energy saving and emission reduction.
- the gas-liquid separator 5 separates a part of the gaseous refrigerant and then discharges it back into the second cylinder 12 for compression.
- the gas content in the refrigerant flowing into the indoor heat exchanger 4 during cooling is reduced, and the gas content flowing into the refrigerant of the outdoor heat exchanger 3 during heating is reduced, and the gaseous refrigerant is reduced to the indoor heat exchanger as the evaporator. 4 or the influence of the heat exchange performance of the outdoor heat exchanger 3, thereby improving the heat exchange efficiency and reducing the compression power consumption of the compressor.
- the energy efficiency of the air conditioner can be effectively improved, energy saving and emission reduction can be effectively promoted, and the heat exchange efficiency can be improved and the heat exchange efficiency can be reduced by providing the gas-liquid separator 5.
- the compression power consumption of the compressor further improves the capacity and energy efficiency of the air conditioner.
- the electronic control component can be effectively cooled and the condensation of the electronic control component can be avoided.
- a solenoid valve 20 is connected in series between the gas outlet m and the suction port of the second cylinder 12, whereby the liquid refrigerant in the gas-liquid separator 5 exceeds the safety liquid.
- the liquid refrigerant can be prevented from entering the second cylinder 12 by closing the solenoid valve 20, so that the liquidostatic operation of the twin-cylinder compressor 1 can be avoided, and the service life of the twin-cylinder compressor 1 can be prolonged.
- a liquid level sensor may be provided on the gas-liquid separator 5, and the opening and closing state of the electromagnetic valve 20 may be controlled by the detection result of the liquid level sensor.
- the volume of the gas-liquid separator 5 ranges from 100 mL to 500 mL.
- the two-cylinder compressor 1 further includes a second accumulator 14 disposed outside of the housing 10, the second accumulator 14 being connected in series at the gas outlet m Between the suction port of the second cylinder 12. Therefore, by providing the second accumulator 14, the refrigerant discharged from the gas outlet m of the gas-liquid separator 5 can be further subjected to gas-liquid separation, and the liquid refrigerant can be further prevented from returning to the second cylinder 12, thereby avoiding twin-cylinder compression.
- the machine 1 has a liquid impact phenomenon, which improves the service life of the two-cylinder compressor 1.
- the volume of the first reservoir 13 is greater than the volume of the second reservoir 14.
- the cost can be reduced by making the volume of the second accumulator 14 small while ensuring the amount of compression of the second cylinder 12.
- the volume of the second reservoir 14 is no more than one-half the volume of the first reservoir 13.
- the inventors have the energy efficiency of the cold and warm type air conditioner according to the above embodiment of the present invention (setting the rated cooling capacity to be 3.5 kw and setting the exhaust volume ratio of the second cylinder and the first cylinder to 7.6%) under different working conditions. Comparing with the energy efficiency of the existing cold and warm air conditioner under the same working conditions, the following data are obtained:
- the air-conditioning type air conditioner according to the embodiment of the present invention has a significant improvement in energy efficiency and annual energy efficiency APF compared with the existing air-cooling type compressor.
- the inventors compared the cold and warm air conditioners of the embodiments of the present invention with different rated cooling capacities and different exhaust volume ratios with the existing cold and warm air conditioners under the same working conditions, and found that the energy efficiency is improved, for example, the inventors passed The test found that the cold and warm air conditioner according to the embodiment of the present invention (sets the rated cooling capacity to 2.6 kW, and sets the exhaust volume ratio of the second cylinder and the first cylinder to 9.2%) and the existing cold and warm under the same working condition. Compared with the type of air conditioner, the energy efficiency increased by 7.3%.
- a single-cooling type air conditioner 100 according to an embodiment of the present invention, in which a single-cooling type air conditioner is described in detail below, will be described in detail with reference to FIGS.
- the device 100 has a cooling mode.
- a single-cooling type air conditioner 100 includes: a two-cylinder compressor 1, an outdoor heat exchanger 3, an indoor heat exchanger 4, a gas-liquid separator 5, and a first The throttle element 6, the second throttle element 7, and the refrigerant radiator 9.
- the two-cylinder compressor 1 includes a casing 10, a first cylinder 11, a second cylinder 12, and a first accumulator 13.
- the casing 10 is provided with an exhaust port 15, and the first cylinder 11 and the second cylinder 12 are respectively provided.
- the first accumulator 13 is disposed outside the casing 10, and the intake port of the first cylinder 11 communicates with the first accumulator 13.
- the first cylinder 11 and the second cylinder 12 perform an independent compression process, and the compressed refrigerant discharged from the first cylinder 11 and the compressed refrigerant discharged from the second cylinder 12 are discharged into the casing 10, respectively. It is discharged from the exhaust port 15.
- the ratio of the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 ranges from 1% to 10%. Further, the ratio of the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 ranges from 1% to 9%. Preferably, the ratio of the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 ranges from 4% to 9%.
- the exhaust volume ratio of the second cylinder 12 and the first cylinder 11 may be a parameter such as 4%, 5%, 8%, or 8.5%.
- the first end of the outdoor heat exchanger 3 is connected to the exhaust port 15, and the first end of the indoor heat exchanger 4 is connected to the first accumulator 13.
- the gas-liquid separator 5 includes a gas outlet m, a first interface f and a second interface g, the gas outlet m is connected to the suction port of the second cylinder 12, and the first interface f is connected to the second end of the outdoor heat exchanger 3,
- the second interface g is connected to the second end of the indoor heat exchanger 4, and the first throttle element 6 is connected in series between the first interface f and the outdoor heat exchanger 3, and the second interface g and the indoor heat exchanger 4 are connected in series There is a second throttle element 7.
- the opening degrees of the first throttle element 6 and the second throttle element 7 are both adjustable, optionally, the first throttle element 6 is an electronic expansion valve, and the second throttle element 7 is The electronic expansion valve, of course, can be understood that the first throttle element 6 and the second throttle element 7 can also be other adjustable opening elements such as thermal expansion valves.
- the opening of the first throttle element 6 is adjustable and the opening of the second throttle element 7 is fixed, optionally the first throttle element 6 is an electronic expansion valve, the second section
- the flow element 7 is a capillary or a throttle valve. It will of course be understood that the first throttle element 6 can also be other open-width adjustable elements such as a thermal expansion valve.
- the opening of the first throttle element 6 is fixed and the opening of the second throttle element 7 is fixed, optionally the first throttle element 6 is a capillary or a throttle valve, and second The throttle element 7 is an electronic expansion valve, although it will of course be understood that the second throttle element 7 can also be other adjustable opening elements such as a thermal expansion valve.
- both the opening degrees of the first throttle element 6 and the second throttle element 7 are both fixed.
- both the first throttle element 6 and the second throttle element 7 may be capillary tubes or Throttle valve.
- the refrigerant radiator 9 is used to dissipate heat from the electronic control unit, and the refrigerant radiator 9 is connected in series between the outdoor heat exchanger 3 and the first throttle element 6. It can be understood that the structure of the refrigerant radiator 9 can be various as long as the refrigerant can be circulated, for example, the refrigerant radiator 9 can include a metal tube extending from the crucible.
- the single-cooling type air conditioner 100 When the single-cooling type air conditioner 100 is cooled, the high-temperature and high-pressure refrigerant discharged from the exhaust port 15 of the twin-cylinder compressor 1 is discharged to The outdoor heat exchanger 3 performs condensation heat dissipation, and the liquid refrigerant discharged from the outdoor heat exchanger 3 flows into the refrigerant radiator 9 to exchange heat with the electronic control unit, thereby achieving the purpose of lowering the temperature of the electronic control unit.
- the refrigerant flowing out of the refrigerant radiator 9 is discharged from the first interface f to the gas-liquid separator 5 through the first-stage throttling and depressurization of the first throttle element 6, and the gas-liquid separation is performed, and the separated intermediate pressure gaseous refrigerant is separated from the refrigerant.
- the gas outlet m is discharged into the second cylinder 12 for compression.
- the intermediate pressure liquid refrigerant discharged from the second port g of the gas-liquid separator 5 is depressurized by the secondary throttling of the second throttling element 7 and then discharged into the indoor heat exchanger 4 for heat exchange to reduce the indoor ambient temperature.
- the refrigerant discharged from the indoor heat exchanger 4 is discharged into the first accumulator 13, and the refrigerant discharged from the first accumulator 13 is discharged into the first cylinder 11 to be compressed.
- the refrigerants of different pressure states enter the first cylinder 11 and the second cylinder 12, respectively, and the first cylinder 11 and the second cylinder 12 independently complete the compression process.
- the compressed refrigerant discharged from one cylinder 11 and the compressed refrigerant discharged from the second cylinder 12 are discharged into the casing 10 and discharged from the exhaust port 15 while being exhausted by the second cylinder 12 and the first cylinder 11
- the volume ratio ranges from 1% to 10%, and the refrigerant having a small flow rate and a high pressure state is discharged into the second cylinder 12 having a small exhaust volume for compression, thereby improving energy efficiency, energy saving and emission reduction.
- the gas-liquid separator 5 separates a part of the gaseous refrigerant and then discharges it back into the second cylinder 12 for compression.
- the gas content in the refrigerant flowing into the indoor heat exchanger 4 during cooling is reduced, and the influence of the gaseous refrigerant on the heat exchange performance of the indoor heat exchanger 4 as an evaporator is reduced, thereby improving heat exchange efficiency and reducing compressor compression. Power consumption.
- the single-cooling type air conditioner 100 by providing the above-described two-cylinder compressor 1, the energy efficiency of the air conditioner can be effectively improved, energy saving and emission reduction can be effectively promoted, and the heat exchange efficiency can be improved by providing the gas-liquid separator 5.
- the compression power consumption of the compressor is reduced, the capacity and energy efficiency of the air conditioner are further improved, and the electronic radiator 9 can be effectively cooled by the refrigerant radiator 9.
- a solenoid valve 20 is connected in series between the gas outlet m and the suction port of the second cylinder 12, whereby the liquid refrigerant in the gas-liquid separator 5 exceeds the safety liquid.
- the liquid refrigerant can be prevented from entering the second cylinder 12 by closing the solenoid valve 20, so that the liquidostatic operation of the twin-cylinder compressor 1 can be avoided, and the service life of the twin-cylinder compressor 1 can be prolonged.
- a liquid level sensor may be provided on the gas-liquid separator 5, and the opening and closing state of the electromagnetic valve 20 may be controlled by the detection result of the liquid level sensor.
- the volume of the gas-liquid separator 5 ranges from 100 mL to 500 mL.
- the two-cylinder compressor 1 further includes a second accumulator 14 disposed outside the housing 10, the second accumulator 14 being connected in series at the gas outlet m Between the suction port of the second cylinder 12. Therefore, by providing the second accumulator 14, the refrigerant discharged from the gas outlet m of the gas-liquid separator 5 can be further subjected to gas-liquid separation, and the liquid refrigerant can be further prevented from returning to the second cylinder 12, thereby avoiding twin-cylinder compression.
- the machine 1 has a liquid impact phenomenon, which improves the service life of the two-cylinder compressor 1.
- the volume of the first reservoir 13 is greater than the volume of the second reservoir 14.
- the cost can be reduced by making the volume of the second accumulator 14 small while ensuring the amount of compression of the second cylinder 12.
- the volume of the second reservoir 14 is no more than one-half the volume of the first reservoir 13.
- the inventors will use a single-cooling type air conditioner according to the above embodiment of the present invention (set the rated cooling capacity to be 3.5 kw, and set the exhaust volume ratio of the second cylinder and the first cylinder to 7.6%) under different operating conditions.
- the energy efficiency is compared with the energy efficiency of the existing single-cooled air conditioner under the same working conditions, and the following data are obtained:
- the single-cooling type air conditioner according to the embodiment of the present invention has a significant improvement in energy efficiency and annual energy efficiency APF compared with the existing single-cooling type compressor.
- the inventors compared the single-cooling type air conditioner of the embodiment of the present invention with different rated cooling capacity and different exhaust volume ratios with the existing single-cooling type air conditioner under the same working condition, and found that the energy efficiency is improved, for example, the invention
- the single-cooling type air conditioner of the embodiment of the present invention (sets the rated cooling capacity to 2.6 kW, and sets the exhaust volume ratio of the second cylinder and the first cylinder to 9.2%) to the same working condition as the existing one. Compared with the single-cooled air conditioner, the energy efficiency increased by 7.3%.
- a control method of an air conditioner according to an embodiment of the present invention in which the air conditioner is a cold and warm type air conditioner according to the above embodiment of the present invention, will be described in detail with reference to FIGS. 1 to 3, 8, and 9.
- the opening of the first throttle element and the second throttle element are both adjustable.
- the throttling element located upstream of the first throttling element and the second throttling element is a primary throttling element
- the throttling element located downstream of the first throttling element and the second throttling element is two
- the throttling element in other words, during cooling, the first throttling element is a primary throttling element and the second throttling element is a secondary throttling element.
- the second throttle element is a primary throttling element and the first throttling element is a secondary throttling element.
- the control method includes the following steps: first, adjusting the opening degree of the primary throttling element according to the detection result of the first detection object, and then adjusting the opening of the secondary throttling element according to the detection result of the second detection object.
- the degree of opening of the first throttle element is smaller than the set opening degree of the secondary throttle element, and the detection result of the first detection object is different from the detection result of the second detection object.
- the difference between the detection result of the first detection object and the detection result of the second detection object means that the primary throttle element and the secondary throttle element cannot simultaneously use the same state parameter for adjustment control, in other words, for The required relevant parameters for adjusting the primary throttling element are different from the relevant parameters required for adjusting the secondary throttling element.
- the first detection object includes outdoor ambient temperature, operating frequency of the two-cylinder compressor, exhaust temperature of the exhaust port, At least one of an exhaust pressure of the exhaust port, an intermediate pressure of the refrigerant discharged from the gas outlet, and an intermediate temperature of the refrigerant discharged from the gas outlet.
- the second detection object includes an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust temperature of the exhaust port, an exhaust pressure of the exhaust port, an intermediate pressure of the refrigerant discharged from the gas outlet, and a refrigerant discharged from the gas outlet. At least one of the intermediate temperatures.
- the parameters required for controlling the primary throttle element and the secondary throttle element are collected and processed during the operation of the air conditioner, and then according to the obtained parameters.
- the opening of the first-stage throttling element is first adjusted until the opening degree is set, and then the opening degree of the two-stage throttling element is adjusted until the opening degree is set, when the primary throttling element and the secondary throttling element are adjusted to When the opening degree is set, the opening degree of the primary throttling element is smaller than the opening degree of the secondary throttling element.
- the first detection object and the second detection object may be re-detected after n seconds of operation, and then the first stage is adjusted according to the detection result.
- the opening of the flow element and the secondary throttle element is repeated as such.
- the repetition condition is not limited thereto.
- the first detection object and the second detection object may be re-detected, and then the opening degrees of the primary throttle element and the secondary throttle element are adjusted according to the detection result.
- the first throttle element can be operated after n seconds of operation or after receiving the user's operation signal.
- the relevant parameters of the opening degree of the second throttle element are re-detected, and then the opening degrees of the first throttle element and the second throttle element are adjusted according to the determination result, and thus repeated.
- the energy efficiency of the system is optimized by first adjusting the opening degree of the primary throttling element and then adjusting the opening degree of the secondary throttling element.
- a control method according to several embodiments of the present invention is described below, in which the opening degrees of the first throttle element and the second throttle element are both adjustable.
- the first detection object and the second detection object are both the outdoor ambient temperature T4 and the operating frequency F
- the primary throttling element and the secondary throttling are calculated according to the detected outdoor ambient temperature T4 and the operating frequency F.
- the component is set to the opening degree, and then the opening degree of the corresponding primary throttling element and the secondary throttling element is adjusted according to the set opening degree.
- calculation formula is pre-set in the electronic control component of the air conditioner, and the calculation formula can be specifically limited according to the actual situation.
- LA_cool_2 a 2 ⁇ F+b 2 T 4 +c 2
- LA_cool_2 a 2 ⁇ F+b 2 T 4 +c 2
- the opening degree of the second throttling element is increased to the calculated opening degree; otherwise, the closing is small.
- 0 ⁇ a 2 ⁇ 30,0 ⁇ b 2 ⁇ 30, -50 ⁇ c 2 ⁇ 150 a, b Both c and c can be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the opening of the throttle element.
- LA_heat_1 x 1 ⁇ F+y 1 T 4 +z 1 , when the calculated opening degree LA_heat_1 When the actual opening degree of the collected second throttle element is greater than the calculated opening degree of the second throttle element;
- LA_heat_2 x 2 ⁇ F+y 2 T 4 +z 2
- the opening degree LA_heat_2 is larger than the collected
- the opening of the first throttle element is increased to the calculated opening degree; otherwise, the opening is small.
- 0 ⁇ x 2 ⁇ 25,0 ⁇ y 2 ⁇ 25, -50 ⁇ z 2 ⁇ 150 control coefficients x, y Both z and z can be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient
- the outdoor ambient temperature is detected to be 35 ° C
- the compressor operating frequency is 58 Hz
- a 2 1.5
- the compressor operating frequency and the T4 value are re-detected; or the compressor operating frequency and the T4 value are detected according to the adjustment of the air conditioner by the user, for the first throttling element and the second throttling
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the system calculates that the opening degree of the second throttle element should be 187, adjusts the opening degree of the second throttle element to 187; and then calculates the opening degree of the first throttle element to be 100. , adjust the opening of the first throttle element to 100.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the first detection object is the outdoor ambient temperature T4 and the operating frequency F.
- the set opening degree of the primary throttle element is calculated according to the outdoor ambient temperature T4 and the operating frequency F, and then adjusted according to the set opening degree.
- the second detection object is the outdoor ambient temperature T4, the operating frequency F and the exhaust pressure; or the second detection object is the outdoor ambient temperature T4, the operating frequency F and the exhaust temperature, first calculated according to the outdoor ambient temperature T4 and the operating frequency F.
- the exhaust pressure is set or the exhaust temperature is set, and then the opening of the secondary throttle element is adjusted according to the actually detected exhaust pressure or exhaust temperature so that the detected exhaust pressure or exhaust temperature reaches the set exhaust Pressure or set the exhaust temperature.
- the opening degree of the second throttle element is opened; Wherein 0 ⁇ a 1 ⁇ 20,0 ⁇ b 1 ⁇ 20, -50 ⁇ c 1 ⁇ 100,0 ⁇ a 2 ⁇ 30,0 ⁇ b 2 ⁇ 30, -50 ⁇ c 2 ⁇ 150,0 ⁇ a 3 ⁇ 30,0 ⁇ b 3 ⁇ 30, -50 ⁇ c 3 ⁇ 150.
- the control coefficients a, b, and c can both be 0. When any one of the coefficients is zero
- LA_heat_1 x 1 ⁇ F+y 1 T 4 +z 1
- LA_heat_1 x 1 ⁇ F+y 1 T 4 +z 1
- the opening degree of the second throttle element is increased to calculate the opening degree
- the opening degree of the first throttling element is opened; otherwise, the opening is small.
- control coefficients x, y, and z can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the opening of the throttle element.
- the outdoor ambient temperature is detected to be 35 ° C
- the compressor operating frequency is 58 Hz
- the system calculates that the opening degree of the first throttling element should be 120, adjusts the opening degree of the first throttling element to 120, and then the system calculates according to the adopted frequency and the T4 value.
- the second throttle element corresponds to an exhaust gas temperature TP_cool of 74 ° C or an exhaust pressure P row _cool of 2.54 MPa, at which time the second throttle element is adjusted according to the detected exhaust gas temperature TP or the exhaust pressure P row.
- Degree when the detected exhaust gas temperature is greater than 74 ° C (or the detected exhaust pressure P row is greater than 2.54 MPa), gradually increase the opening of the second throttle element (can be adjusted 4 steps per adjustment).
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the system calculates that the opening degree of the second throttling element should be 187, adjusts the opening degree of the second throttling element to 187, and then the system calculates according to the adopted frequency and the T4 value.
- the exhaust gas temperature TP_heat corresponding to the first throttle element is 68.8 ° C, and the exhaust pressure P row _heat is 2.44 MPa.
- the opening degree of the first throttle element is adjusted according to the detected exhaust gas temperature TP or the exhaust pressure P, when the detected exhaust gas temperature is greater than 68.8 ° C (or the detected exhaust pressure P row is greater than 2.44 Mpa) , gradually increase the opening degree of the first throttle element (can be adjusted by 4 steps each time), and gradually reduce the opening degree of the first throttle element.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed. The component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- a plurality of outdoor temperature intervals are preset, each outdoor temperature interval corresponds to an opening degree of a different throttling element, and the first detection object is an outdoor ambient temperature T4, according to the actually detected outdoor ambient temperature T4.
- the opening value corresponding to the outdoor temperature interval adjusts the opening degree of the primary throttling element;
- the second detection object is the outdoor ambient temperature T4, the operating frequency F and the exhaust pressure; or the second detection object is the outdoor ambient temperature T4, the operating frequency F and the exhaust temperature, first calculated according to the outdoor ambient temperature T4 and the operating frequency F.
- the opening of the flow element is such that the exhaust pressure or the exhaust gas temperature is detected to reach the set exhaust pressure or set the exhaust temperature.
- the opening degree of the second throttle element is opened; Wherein 0 ⁇ a 1 ⁇ 20,0 ⁇ b 1 ⁇ 20, -50 ⁇ c 1 ⁇ 100,0 ⁇ a 2 ⁇ 30,0 ⁇ b 2 ⁇ 30, -50 ⁇ c 2 ⁇ 150.
- the control coefficients a, b, and c can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the opening of the throttle element.
- the opening degree of the first throttling element is opened; otherwise, the opening is small.
- control coefficients x, y, and z can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the opening of the throttle element.
- the system firstly calculates that the opening of the first throttling element should be 120, and adjusts the opening degree of the first throttling element to 120; then the system calculates the second throttling according to the frequency and the T4 value.
- the exhaust gas temperature TP_cool corresponding to the component is 74 ° C or the exhaust pressure P row _cool is 2.54 MPa, at which time the opening degree of the second throttle element is adjusted according to the detected exhaust gas temperature TP or the exhaust pressure P, for example, when detecting When the exhaust gas temperature is greater than 74 ° C (or the detected exhaust pressure P row is greater than 2.54 MPa), the opening of the second throttle element is gradually increased (4 steps can be adjusted each time).
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the system determines that the opening of the second throttling element should be 180, and adjusts the opening degree of the second throttling element to 180; then the system calculates according to the adopted frequency and the T4 value.
- the exhaust gas temperature TP_heat corresponding to the first throttle element is 68.8 ° C, and the exhaust pressure P row _heat is 3.7 MPa.
- the opening degree of the first throttle element is adjusted according to the detected exhaust gas temperature TP or the exhaust pressure P, when the detected exhaust gas temperature is greater than 68.8 ° C (or the detected exhaust pressure P row is greater than 3.7 Mpa) , gradually increase the opening degree of the first throttle element (can be adjusted by 4 steps each time), and gradually reduce the opening degree of the first throttle element.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed. The component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the intermediate temperature or the intermediate pressure is preset
- the first detection object is an intermediate pressure or an intermediate temperature
- the opening degree of the primary throttle element is adjusted according to the actually detected intermediate pressure or intermediate temperature to make the detected intermediate
- the pressure or intermediate temperature reaches a preset intermediate pressure or a preset intermediate temperature.
- the second detection object is the outdoor ambient temperature T4, the operating frequency F and the exhaust pressure; or the second detection object is the outdoor ambient temperature T4, the operating frequency F and the exhaust temperature, first calculated according to the outdoor ambient temperature T4 and the operating frequency F.
- the exhaust pressure is set or the exhaust temperature is set, and then the opening of the secondary throttle element is adjusted according to the actual detected exhaust pressure or exhaust temperature so that the detected exhaust pressure or exhaust temperature reaches the set exhaust pressure. Or set the exhaust temperature.
- the preset intermediate temperature may range from 20 ° C to 35 ° C, and the preset intermediate pressure may range from 0.8 MPa to 2.0 MPa.
- the opening degree of the first throttling element is opened, and vice versa.
- the opening degree of the second throttle element is opened; Wherein 0 ⁇ a 1 ⁇ 20,0 ⁇ b 1 ⁇ 20, -50 ⁇ c 1 ⁇ 100,0 ⁇ a 2 ⁇ 30,0 ⁇ b 2 ⁇ 30, -50 ⁇ c 2 ⁇ 150.
- the control coefficients a, b, and c can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the opening of the throttle element.
- the preset intermediate temperature may range from 20 ° C to 30 ° C, and the preset intermediate pressure may range from 1.0 MPa to 2.5 MPa.
- the opening degree of the second throttle element is opened, and vice versa.
- the opening degree of the first throttling element is opened; otherwise, the opening is small.
- control coefficients x, y, and z can both be 0. When any one of the coefficients is zero, it is proved that the parameter corresponding to the coefficient has no influence on the opening of the throttle element.
- the system adjusts the opening of the first throttle element based on the collected intermediate temperature or intermediate pressure value.
- the opening of the first throttling element is gradually reduced (4 steps can be adjusted each time). On the contrary, adjust the opening degree.
- the system calculates that the exhaust gas temperature TP_cool corresponding to the second throttle element is 74 ° C or the exhaust pressure P row _cool is 2.54 MPa, according to the detected exhaust gas temperature TP or exhaust pressure.
- P adjusts the opening degree of the second throttle element, and when detecting that the exhaust gas temperature is greater than 74 ° C (or the detected pressure P row is greater than 2.54 MPa), gradually increase the opening degree of the second throttle element (can be pressed each time Adjust the 4-step action).
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the intermediate temperature is set to 26 ° C
- the intermediate pressure is 1.6 MPa
- the outdoor ambient temperature is detected to be 7 ° C
- the compressor operating frequency is 72 Hz
- the system adjusts the opening of the second throttle element according to the collected intermediate temperature or intermediate pressure value.
- the collected intermediate temperature is greater than 26 ° C or the collected intermediate pressure is greater than 1.6 MPa
- the opening of the second throttle element is gradually increased (4 steps can be adjusted each time). On the contrary, adjust the opening degree.
- the system calculates that the exhaust gas temperature TP_heat corresponding to the first throttle element is 68.8 ° C, and the exhaust pressure P row _heat is 3.7 MPa.
- the opening degree of the first throttle element is adjusted according to the detected exhaust gas temperature TP or the exhaust pressure P, when the detected exhaust gas temperature is greater than 68.8 ° C (or the detected exhaust pressure P row is greater than 3.7 Mpa) , gradually increase the opening degree of the first throttle element (can be adjusted by 4 steps each time), and gradually reduce the opening degree of the first throttle element.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the intermediate temperature or the intermediate pressure is preset
- the first detection object is an intermediate pressure or an intermediate temperature
- the opening degree of the primary throttle element is adjusted according to the actually detected intermediate pressure or intermediate temperature to make the detected intermediate
- the pressure or the intermediate temperature reaches a preset intermediate pressure or a preset intermediate temperature
- the second detection object is an outdoor ambient temperature T4 and an operating frequency F.
- the set opening degree of the secondary throttle element is calculated according to the outdoor ambient temperature T4 and the operating frequency F, and then the secondary throttle element is adjusted according to the set opening degree. Opening degree.
- the preset intermediate temperature range during cooling may be 20° C.-35° C.
- the preset intermediate pressure may range from 0.8 MPa to 1.5 MPa.
- LA_cool_2 a 2 ⁇ F+b 2 T 4 +c 2
- LA_cool_2 a 2 ⁇ F+b 2 T 4 +c 2
- control coefficients a, b, c may be 0, when any one zero coefficient, this coefficient corresponding to demonstrate The parameters have no effect on the opening of the throttle element.
- the preset intermediate temperature may range from 20 ° C to 30 ° C, and the preset intermediate pressure may range from 1.0 MPa to 2.5 MPa.
- the opening degree of the second throttle element is opened, and vice versa.
- the opening degree of the first throttle element is increased to the calculated opening degree; otherwise, the opening is small.
- the control coefficients x, y, z can both be 0, and when any one of the coefficients is zero, the corresponding coefficient is proved
- the parameters have no effect on the opening of the throttle element.
- the system adjusts the opening of the first throttle element based on the collected intermediate temperature or intermediate pressure value.
- the opening of the first throttling element is gradually reduced (4 steps can be adjusted each time).
- the system calculates the set opening degree of the second throttle element to 160 according to the detected outdoor ambient temperature and the compressor running frequency, and then adjusts the opening degree of the second throttle element to 160.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the system adjusts the opening of the second throttle element according to the collected intermediate temperature or intermediate pressure value.
- the opening of the second throttle element is gradually increased (4 steps can be adjusted each time).
- the opening degree of the first throttle element is calculated to be 100, and the opening degree of the first throttle element is adjusted to 100.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- a plurality of outdoor temperature intervals are preset, each outdoor temperature interval corresponds to an opening degree of a different throttling element, and the first detection object is an outdoor ambient temperature T4, according to the actually detected outdoor ambient temperature T4.
- the opening value corresponding to the outdoor temperature interval adjusts the opening degree of the primary throttle element.
- the second detection object is an outdoor ambient temperature T4 and an operating frequency F.
- the set opening degree of the secondary throttle element is calculated according to the outdoor ambient temperature T4 and the operating frequency F, and then the secondary throttle element is adjusted according to the set opening degree. Opening degree.
- LA_cool_2 a 2 ⁇ F+b 2 T 4 +c 2
- LA_cool_2 a 2 ⁇ F+b 2 T 4 +c 2
- control coefficients a, b, c may be 0, when any one zero coefficient, this coefficient corresponding to demonstrate The parameters have no effect on the opening of the throttle element.
- the opening of the first throttle element is increased to the calculated opening degree; otherwise, the opening is small.
- the control coefficients x, y, z can both be 0, and when any one of the coefficients is zero, the corresponding coefficient is proved
- the parameters have no effect on the opening of the throttle element.
- the outdoor ambient temperature is detected to be 35 ° C
- the compressor operating frequency is 58 Hz
- a 2 1.5
- b 2 1.6
- c 2 17.
- the system firstly calculates that the opening degree of the first throttle element should be 120, and adjusts the opening degree of the first throttle element to 120.
- the system calculates the set opening degree of the second throttle element to 160 according to the detected outdoor ambient temperature and the compressor running frequency, and then adjusts the opening degree of the second throttle element to 160.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed.
- the component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- the outdoor ambient temperature was detected to be 7 ° C
- the compressor operating frequency was 72 Hz
- z 2 7.0 were set.
- the system should obtain that the opening degree of the second throttle element should be 180, and adjust the opening degree of the second throttle element to 180; then calculate the opening degree of the first throttle element as 100. Adjust the opening of the first throttle element to 100.
- the compressor operating frequency and the T4 value are re-detected, or the compressor operating frequency and the T4 value are detected according to the user's adjustment of the air conditioner, and the first throttling element and the second throttling are performed. The component is re-adjusted.
- the energy efficiency of the air conditioner is 6.5% higher than that of the air conditioner of the same specification on the market.
- control method of the embodiment of the present invention is not limited to the above six types, for example, the first-stage throttling element and the two-stage throttling element in the six examples.
- the adjustment mode of the opening degree is randomly combined; or the operating frequency of the compressor in the above embodiment may also be obtained from the actually detected outdoor environmental temperature, for example, a preset plurality of outdoor environmental temperature intervals, and a plurality of outdoor environmental temperature intervals corresponding to Different compressor operating frequencies.
- FIGS. 1 to 3, 10, and 11 wherein the air conditioner is a cold and warm type air conditioner according to the above embodiment of the present invention.
- the opening of the first throttling element is fixed, and the opening of the second throttling element is adjustable.
- a method of controlling an air conditioner includes the step of adjusting an opening degree of a second throttle element to a set opening degree according to a detection result of the first detection object during a cooling operation.
- the opening degree of the second throttle element is adjusted to the set opening degree according to the detection result of the second detection object. That is to say, during cooling and heating, the parameters required to control the second throttle element are collected and processed, and then the opening degree of the second throttle element is controlled according to the obtained parameters until the condition is satisfied.
- the first detection object includes an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust temperature of the exhaust port, an exhaust pressure of the exhaust port, an intermediate pressure of the refrigerant discharged from the gas outlet, and a refrigerant discharged from the gas outlet. At least one of an intermediate temperature, a gas-liquid separator temperature, and a gas-liquid separator pressure.
- the second detection object includes an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust pressure of the exhaust port, an exhaust temperature of the exhaust port, an intermediate pressure of the refrigerant discharged from the gas outlet, and a refrigerant discharged from the gas outlet. At least one of an intermediate temperature, a gas-liquid separator temperature, and a gas-liquid separator pressure. It can be understood that the first detection object and the second detection object may be the same or different. It should be noted that the intermediate pressure and the intermediate temperature can be obtained by detecting the refrigerant in the line connecting the gas outlet and the second accumulator.
- the first detection object or the first detection object may be re-detected after n seconds of operation.
- the object is detected, and then the opening degree of the second throttle element is adjusted according to the detection result, and thus repeated.
- the repetition condition is not limited thereto.
- the first detection object or the second detection object may be re-detected, and then the opening degree of the second throttle element is adjusted according to the detection result.
- the relevant parameter of the opening degree of the second throttle element can be re-run after n seconds of operation or after receiving the operation signal of the user. The judgment is detected, and then the opening degree of the second throttle element is adjusted according to the determination result, and thus repeated.
- the opening degree of the second throttle element can be well controlled to reach the preset opening degree, thereby achieving the best energy saving effect.
- the control method according to the embodiment of the present invention is described in detail below by taking six specific embodiments as an example.
- the opening of the first throttling element is fixed, and the opening degree of the second throttling element is adjustable.
- the first detection object and/or the second detection object are the outdoor ambient temperature T4 and the exhaust gas temperature
- the operating frequency F is first obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4.
- the set exhaust temperature is calculated with the operating frequency F, and then the opening of the second throttle element is adjusted such that the detected exhaust temperature reaches the set exhaust temperature.
- the calculation formula is pre-set in the electronic control component of the air conditioner, and the calculation formula can be specifically limited according to the actual situation.
- the range of values of a1, b1, and c1 may correspond to the outdoor ambient temperature T4, for example, when 20°C ⁇ T4: a1 takes -10-10; b1 takes -100 -100; c1 takes -10-10; when 20 °C ⁇ T4 ⁇ 30 °C: a1 takes -8--8; b1 takes -80--80; c1 takes -8-8; when 30 °C ⁇ T4 ⁇ At 40 ° C: a1 take -9--9; b1 take -90--90; c1 take -6-6; when 40 ° C ⁇ T4 ⁇ 50 ° C: a1 take -8--8
- the operating opening of the second throttle element is then adjusted according to TP.
- the second throttle element is adjusted to be in position and stable operation. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the opening degree of the second throttle element is adjusted according to the relevant change.
- the T4 temperature is detected to be 35 ° C.
- the corresponding compressor operating frequency under the T4 should be 90 HZ, and the exhaust temperature coefficient a1 of the corresponding temperature interval is 0.6, b1 is 20, and c1 is 0.2.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the second detection object is the outdoor ambient temperature T4 and the exhaust temperature
- the outdoor ambient temperature T4 is detected during the heating startup
- the operating frequency F of the compressor is determined according to T4
- the operating opening of the second throttle element is then adjusted according to TP.
- the second throttle element is adjusted to be in position and stable operation. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the second throttle element opening degree is adjusted according to the relevant change.
- the T4 temperature is detected to be 7 ° C.
- the corresponding compressor operating frequency under the T4 should be 75 HZ, and the exhaust temperature coefficient a2 of the corresponding temperature range is 0.4, b2 is 10, and c2 is 5.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- the first detection object and/or the second detection object are the outdoor ambient temperature T4 and the exhaust pressure
- the operating frequency F is first obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4.
- the operating frequency F is calculated to obtain the set exhaust pressure, and then the opening of the second throttle element is adjusted to make the detected exhaust pressure The set exhaust pressure is reached.
- the outdoor ambient temperature T4 is detected when the cooling is turned on, the operating frequency F of the compressor is determined according to T4, and the exhaust pressure Pp is determined according to T4 and F;
- Pp a3*F+b3+c3*T4;
- the range of values of a3, b3, and c3 may correspond to the outdoor ambient temperature T4, for example, when 20 ° C ⁇ T4: a3 takes -5 - 5; b3 takes -8 --8; c3 takes -1 -1; when 20 ° C ⁇ T4 ⁇ 30 ° C: a3 takes -5 - 5; b3 takes -10--10; c3 takes -2 - 2; when 30 ° C ⁇ T4 ⁇ 40 °C: a3 take -5--5; b3 take -12--12; c3 take -3-3; when 40 °C ⁇ T4 ⁇ 50 °C: a3 take
- the operating opening of the second throttle element is then adjusted according to Pp.
- the second throttle element is adjusted to be in position and stable operation. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the second throttle element opening degree is adjusted according to the relevant change.
- the startup cooling operation detects that the T4 temperature is 35 °C, and the corresponding compressor operating frequency under the T4 should be 80HZ, and the exhaust pressure coefficient a3 of the corresponding temperature interval is 0.02, b3 is 0.7, and c3 is 0.02, and the exhaust is calculated.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the operating opening of the second throttle element is then adjusted according to Pp.
- the second throttle element is adjusted to be in position and stable operation. After n seconds, re-detect whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then adjust the second throttle according to the relevant change. Component opening.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- the first detection object and/or the second detection object is the outdoor ambient temperature T4, and the operating frequency F is first obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4 and the operating frequency F.
- the set opening degree of the second throttle element is calculated, and then the opening degree of the second throttle element is adjusted to the set opening degree.
- the first detection object is the outdoor ambient temperature T4
- the outdoor ambient temperature T4 is detected at the start of cooling
- the compressor operating frequency F is determined according to T4
- the set opening degree Lr of the second throttle element is determined according to T4 and F
- the range of values of c5, and then the values of a5, b5, and c5 can be limited according to actual conditions.
- the second throttle element Comparing the difference between the set opening degree Lr of the second throttle element and the initial opening degree of the second throttle element, if it is consistent, there is no adjustment, and if it is inconsistent, it is adjusted to the set opening degree Lr.
- the second throttle element is adjusted to be in position and stable operation. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the second throttle element opening degree is adjusted according to the relevant change.
- the second detection object is the outdoor ambient temperature T4
- the outdoor ambient temperature T4 is detected at the start of heating
- the compressor operating frequency F is determined according to T4
- the set opening degree Lr of the second throttle element is determined according to T4 and F
- the opening degree Lr a6*F+b6+c6*T4; wherein the range of values of a6, b6, and c6 may correspond to the outdoor ambient temperature T4, for example, when -15 ° C ⁇ T4: a6 takes -20--20; B6 takes -200--200; c6 takes -10-10; when -15 °C ⁇ T4 ⁇ -5 °C: a6 takes -18--18; b6 takes -180--180; c6 takes -9-9; When -5 ° C ⁇ T4 ⁇ 5 ° C: a6 take -15--15; b6 take -150--150; c6 take -8-8.
- the second throttle element Comparing the difference between the set opening degree Lr of the second throttle element and the initial opening degree of the second throttle element, if it is consistent, there is no adjustment, and if it is inconsistent, it is adjusted to the set opening degree Lr.
- the second throttle element is adjusted to be in position and stable operation. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the second throttle element opening degree is adjusted according to the relevant change.
- the corresponding compressor operating frequency should be 90HZ
- the expansion valve opening coefficient a6 of the corresponding temperature range is 1.2
- b6 is 80
- c6 is 3.
- the second throttle element runs stably after reaching the set opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- a plurality of outdoor temperature intervals are preset, each outdoor temperature interval corresponds to a temperature of a different gas-liquid separator, and the first detection object and/or the second detection object is an outdoor ambient temperature T4 and a gas-liquid separator.
- the temperature firstly obtains the set temperature of the gas-liquid separator corresponding to the outdoor temperature range according to the actually detected outdoor ambient temperature T4, and then adjusts the opening degree of the second throttle element until the actually detected temperature of the gas-liquid separator Meet the set temperature.
- the outdoor ambient temperature T4 and the temperature Ts of the gas-liquid separator are detected during the cooling start-up operation, and the corresponding outdoor is inquired according to the detected outdoor ambient temperature T4.
- the set temperature of the gas-liquid separator corresponding to the temperature interval for example, the corresponding relationship between the outdoor temperature interval and the set temperature of the gas-liquid separator can be as follows: when 20 ° C ⁇ T4: Ts takes 0-30; when 0 ° C ⁇ T4 ⁇ 30°C: Ts takes 0-40; when 30°C ⁇ T4 ⁇ 40°C: Ts takes 0-50; when 40°C ⁇ T4 ⁇ 50°C: Ts takes 0-60; when 50°C ⁇ T4: Ts Take 0-65. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the opening of the second throttle element is then adjusted such that the detected temperature Ts of the gas-liquid separator satisfies the set temperature.
- the startup cooling operation detects that the T4 temperature is 35 ° C.
- the temperature Ts of the corresponding gas-liquid separator under the T4 interval should be 26 ° C.
- the temperature Ts of the gas-liquid separator is detected to be 20 ° C under the initial opening degree.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the outdoor ambient temperature T4 and the temperature Ts of the gas-liquid separator are detected during the heating start operation, and the corresponding outdoor temperature interval is inquired according to the detected outdoor ambient temperature T4.
- the corresponding set temperature of the gas-liquid separator for example, the outdoor temperature interval and the set temperature of the gas-liquid separator can be as follows: when -15 ° C ⁇ T4: Ts takes -50 - 30; when -15 ° C ⁇ When T4 ⁇ -5°C: Ts is -45-40; when -5°C ⁇ T4 ⁇ 5°C: Ts is -40-50; when 5°C ⁇ T4 ⁇ 15°C: Ts is -35-60; When 15 ° C ⁇ T4: Ts takes -30-65. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the opening of the second throttle element is then adjusted such that the detected temperature Ts of the gas-liquid separator satisfies the set temperature.
- the temperature of the T4 is 6 °C
- the temperature Ts of the corresponding gas-liquid separator should be 20 °C under the T4 interval, and the Ts detected under the initial opening has reached 25 °C.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the first detection object and/or the second detection object are the outdoor ambient temperature T4 and the intermediate pressure; firstly, the operating frequency F is obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4 and The operating frequency F is calculated to obtain a set intermediate pressure, and then the opening of the second throttle element is adjusted such that the detected intermediate pressure reaches the set intermediate pressure.
- the temperature T4 corresponds to, for example, preset different outdoor ambient temperature intervals corresponding to different values of a7, b7, and c7, and then the values of a7, b7, and c7 can be limited according to actual conditions. It can be understood that the values of a7, b7, and c7 during cooling and the values of a7, b7, and c7 during heating may be the same or different.
- the temperature of T4 is detected to be 7 °C.
- the corresponding operating frequency of the compressor under T4 should be 75HZ.
- the pressure coefficient a7 of the corresponding temperature interval is 0.01, b7 is 0.6, and c7 is 0.1. Calculate the set intermediate pressure.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- a plurality of outdoor temperature intervals are preset, each outdoor temperature interval corresponds to a different gas-liquid separator pressure, and the first detection object and/or the second detection object is an outdoor ambient temperature T4 and a gas-liquid separator.
- the pressure firstly obtains the set pressure of the gas-liquid separator corresponding to the outdoor temperature range according to the actually detected outdoor ambient temperature T4.
- the opening of the second throttle element is then adjusted until the pressure of the actually detected gas-liquid separator satisfies the set pressure.
- the outdoor ambient temperature T4 and the pressure of the gas-liquid separator are detected during the cooling start-up operation, and the corresponding outdoor is inquired according to the detected outdoor ambient temperature T4.
- the set pressure of the gas-liquid separator corresponding to the temperature interval for example, the corresponding relationship between the outdoor temperature interval and the set pressure of the gas-liquid separator can be as follows: when 20 ° C ⁇ T4: Ps takes 0.1-8; when 20 ° C ⁇ T4 When ⁇ 30°C: Ps is 0.1-10; when 30°C ⁇ T4 ⁇ 40°C: Ps is 0.1-15; when 40°C ⁇ T4 ⁇ 50°C: Ps is 0.1-20; when 50°C ⁇ T4: Ps takes 0.1-25. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the opening degree of the second throttle element is adjusted so that the detected pressure Ps of the gas-liquid separator satisfies the set pressure.
- the startup cooling operation detects that the T4 temperature is 50 °C.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the outdoor ambient temperature T4 and the pressure of the gas-liquid separator are detected during the heating start operation, and the corresponding outdoor temperature interval is inquired according to the detected outdoor ambient temperature T4.
- the corresponding set pressure of the gas-liquid separator for example, the corresponding relationship between the outdoor temperature interval and the set pressure of the gas-liquid separator can be as follows: when -15 ° C ⁇ T4: Ps takes 0.1-10; when -15 ° C ⁇ T4 ⁇ -5°C: Ps is 0.1-12; when -5°C ⁇ T4 ⁇ 5°C: Ps is 0.1-15; when 5°C ⁇ T4 ⁇ 15°C: Ps is 0.1-20; when 15°C ⁇ T4 Time: Ps takes 0.1-25. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the set pressure Ps of the corresponding gas-liquid separator should be 1.2 MPa.
- the second throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- control method of the embodiment of the present invention is not limited to the above six types, for example, the opening degree of the second throttle element during cooling in the above six examples may be used.
- the adjustment mode and the adjustment method of the opening degree of the second throttle element during heating are randomly combined.
- the set parameters such as the set exhaust pressure, the set exhaust temperature, the set opening degree, and the set intermediate pressure calculated in the above embodiment may also be obtained by other methods, for example, may be set. Different outdoor temperature intervals, multiple outdoor temperature intervals are not used Set the parameters and get the corresponding setting parameters according to the outdoor temperature range where the actual detected outdoor ambient temperature is located. It can also be understood that the above parameters obtained through the outdoor ambient temperature review can also be obtained by a preset calculation formula.
- a control method of an air conditioner according to an embodiment of the present invention, wherein the air conditioner is a cold and warm type air conditioner according to the above embodiment of the present invention, a first throttle element opening degree, will be described in detail below with reference to FIGS. 1 to 3, 12, and 13.
- Adjustable, the second throttle element has a fixed opening.
- a method of controlling an air conditioner includes the step of adjusting an opening degree of the first throttle element to a set opening degree according to a detection result of the first detection object during a cooling operation.
- the opening degree of the first throttle element is adjusted to the set opening degree according to the detection result of the second detection object. That is to say, in the cooling and heating, the parameters required for controlling the first throttle element are collected and processed, and then the opening degree of the first throttle element is controlled according to the obtained parameters until the condition is satisfied.
- the first detection object includes an outdoor ambient temperature, an operating frequency exhaust temperature of the two-cylinder compressor, an exhaust pressure of the exhaust port, an intermediate pressure of the refrigerant discharged from the gas outlet, an intermediate temperature of the refrigerant discharged from the gas outlet, and a gas. At least one of a liquid separator temperature and a gas-liquid separator pressure.
- the second detection object includes an outdoor ambient temperature, an operating frequency of the two-cylinder compressor, an exhaust pressure of the exhaust port, an exhaust temperature of the exhaust port, an intermediate pressure of the refrigerant discharged from the gas outlet, and a refrigerant discharged from the gas outlet. At least one of an intermediate temperature, a gas-liquid separator temperature, and a gas-liquid separator pressure. It can be understood that the first detection object and the second detection object may be the same or different. It should be noted that the intermediate pressure and the intermediate temperature can be obtained by detecting the refrigerant in the line connecting the gas outlet and the second accumulator.
- the first detection object or the second detection object may be re-detected after n seconds of operation, and then the opening degree of the first throttle element is adjusted according to the detection result, and thus repeated.
- the repetition condition is not limited thereto.
- the first detection object or the second detection object may be re-detected, and then the opening degree of the first throttle element is adjusted according to the detection result.
- the relevant parameter of the opening degree of the first throttle element can be re-run after n seconds of operation or after receiving the operation signal of the user. The judgment is detected, and then the opening degree of the first throttle element is adjusted according to the determination result, and thus repeated.
- the opening degree of the first throttle element can be well controlled to reach the preset opening degree, thereby achieving the best energy saving effect.
- the control method according to the embodiment of the present invention is described in detail below by taking six specific embodiments as an example.
- the opening degree of the first throttling element is adjustable, and the opening degree of the second throttling element is fixed.
- the first detection object and/or the second detection object are the outdoor ambient temperature T4 and the exhaust gas temperature
- the operating frequency F is first obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4.
- transport The row frequency F is calculated to obtain the set exhaust gas temperature, and then the opening degree of the first throttle element is adjusted so that the detected exhaust gas temperature reaches the set exhaust gas temperature.
- the calculation formula is pre-set in the electronic control component of the air conditioner, and the calculation formula can be specifically limited according to the actual situation.
- the range of values of a1, b1, and c1 may correspond to the outdoor ambient temperature T4, for example, when 20°C ⁇ T4: a1 takes -10-10; b1 takes -100 -100; c1 takes -10-10; when 20 °C ⁇ T4 ⁇ 30 °C: a1 takes -8--8; b1 takes -80--80; c1 takes -8-8; when 30 °C ⁇ T4 ⁇ At 40 ° C: a1 take -9--9; b1 take -90--90; c1 take -6-6; when 40 ° C ⁇ T4 ⁇ 50 ° C: a1 take -8--8
- the operating opening of the first throttle element is then adjusted according to TP.
- the first throttling element is in stable operation after being adjusted in place. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the opening degree of the first throttle element is adjusted according to the relevant change.
- the T4 temperature is detected to be 35 ° C.
- the corresponding compressor operating frequency under the T4 should be 90 HZ, and the exhaust temperature coefficient a1 of the corresponding temperature interval is 0.6, b1 is 20, and c1 is 0.2.
- the first throttling element reaches stable operation after reaching the target opening degree.
- the T4 was detected to be unchanged and continued to operate stably.
- the second detection object is the outdoor ambient temperature T4 and the exhaust temperature
- the outdoor ambient temperature T4 is detected during the heating startup
- the operating frequency F of the compressor is determined according to T4
- the operating opening of the first throttle element is then adjusted according to TP.
- the first throttling element is in stable operation after being adjusted in place. After n seconds, re-detect whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then adjust the first throttle according to the relevant change. Component opening.
- the T4 temperature is detected to be 7 ° C.
- the corresponding compressor operating frequency under the T4 should be 75 HZ, and the exhaust temperature coefficient a2 of the corresponding temperature range is 0.4, b2 is 10, and c2 is 5.
- the first throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- the first detection object and/or the second detection object are the outdoor ambient temperature T4 and the exhaust pressure
- the operating frequency F is first obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4.
- the set exhaust pressure is calculated with the operating frequency F, and then the opening of the first throttle element is adjusted such that the detected exhaust pressure reaches the set exhaust pressure.
- the outdoor ambient temperature T4 is detected when the cooling is turned on, the operating frequency F of the compressor is determined according to T4, and the exhaust pressure Pp is determined according to T4 and F;
- Pp a3*F+b3+c3*T4;
- the range of values of a3, b3, and c3 may correspond to the outdoor ambient temperature T4, for example, when 20 ° C ⁇ T4: a3 takes -5 - 5; b3 takes -8 --8; c3 takes -1 -1; when 20 ° C ⁇ T4 ⁇ 30 ° C: a3 takes -5 - 5; b3 takes -10--10; c3 takes -2 - 2; when 30 ° C ⁇ T4 ⁇ 40 °C: a3 take -5--5; b3 take -12--12; c3 take -3-3; when 40 °C ⁇ T4 ⁇ 50 °C: a3 take
- the operating opening of the first throttle element is then adjusted according to Pp.
- the first throttling element is in stable operation after being adjusted in place. After n seconds, re-detect whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then adjust the first throttle according to the relevant change. Component opening.
- the startup cooling operation detects that the T4 temperature is 35 °C, and the corresponding compressor operating frequency under the T4 should be 80HZ, and the exhaust pressure coefficient a3 of the corresponding temperature interval is 0.02, b3 is 0.7, and c3 is 0.02, and the exhaust is calculated.
- the operating opening of the first throttle element is then adjusted according to Pp.
- the first throttling element is in stable operation after being adjusted in place. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the first throttle element opening degree is adjusted according to the relevant change.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- the first detection object and/or the second detection object is the outdoor ambient temperature T4, and the operating frequency F is first obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4 and the operating frequency F.
- the set opening degree of the first throttle element is calculated, and then the opening degree of the first throttle element is adjusted to the set opening degree.
- the first detection object is the outdoor ambient temperature T4
- the outdoor ambient temperature T4 is detected at the start of cooling
- the compressor operating frequency F is determined according to T4
- the set opening degree Lr of the first throttle element is determined according to T4 and F
- the range of values of c5, and then the values of a5, b5, and c5 can be limited according to actual conditions.
- the first throttling element is in stable operation after being adjusted in place. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the first throttle element opening degree is adjusted according to the relevant change.
- the second detection object is the outdoor ambient temperature T4
- the outdoor ambient temperature T4 is detected at the start of heating
- the compressor operating frequency F is determined according to T4
- the set opening degree Lr of the first throttle element is determined according to T4 and F
- the opening degree Lr a6*F+b6+c6*T4; wherein the range of values of a6, b6, and c6 may correspond to the outdoor ambient temperature T4, for example, when -15 ° C ⁇ T4: a6 takes -20--20; B6 takes -200--200; c6 takes -10-10; when -15 °C ⁇ T4 ⁇ -5 °C: a6 takes -18--18; b6 takes -180--180; c6 takes -9-9; When -5 ° C ⁇ T4 ⁇ 5 ° C: a6 take -15--15; b6 take -150--150; c6 take -8-8.
- the first throttling element is in stable operation after being adjusted in place. After n seconds, it is re-detected whether there is a change in the outdoor temperature T4 or whether the user has an operation, and then the first throttle element opening degree is adjusted according to the relevant change.
- the corresponding compressor operating frequency should be 90HZ
- the expansion valve opening coefficient a6 of the corresponding temperature range is 1.2
- b6 is 80
- c6 is 3.
- the first throttling element reaches stable operation after reaching the set opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- a plurality of outdoor temperature intervals are preset, each outdoor temperature interval corresponds to a temperature of a different gas-liquid separator, and the first detection object and/or the second detection object is an outdoor ambient temperature T4 and a gas-liquid separator.
- the temperature firstly obtains the set temperature of the gas-liquid separator corresponding to the outdoor temperature range according to the actually detected outdoor ambient temperature T4, and then adjusts the opening degree of the first throttle element until the actually detected temperature of the gas-liquid separator Meet the set temperature.
- the outdoor ambient temperature T4 and the temperature Ts of the gas-liquid separator are detected during the cooling start-up operation, and the corresponding outdoor is inquired according to the detected outdoor ambient temperature T4.
- the set temperature of the gas-liquid separator corresponding to the temperature interval for example, the corresponding relationship between the outdoor temperature interval and the set temperature of the gas-liquid separator can be as follows: when 20 ° C ⁇ T4: Ts takes 0-30; when 0 ° C ⁇ T4 ⁇ 30°C: Ts takes 0-40; when 30°C ⁇ T4 ⁇ 40°C: Ts takes 0-50; when 40°C ⁇ T4 ⁇ 50°C: Ts takes 0-60; when 50°C ⁇ T4: Ts Take 0-65. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the opening degree of the first throttle element is adjusted such that the detected temperature Ts of the gas-liquid separator satisfies the set temperature.
- the startup cooling operation detects that the T4 temperature is 35 ° C.
- the temperature Ts of the corresponding gas-liquid separator under the T4 interval should be 26 ° C.
- the temperature is turned on.
- the first throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the outdoor ambient temperature T4 and the temperature Ts of the gas-liquid separator are detected during the heating start operation, and the corresponding outdoor temperature interval is inquired according to the detected outdoor ambient temperature T4.
- the corresponding set temperature of the gas-liquid separator for example, the outdoor temperature interval and the set temperature of the gas-liquid separator can be as follows: when -15 ° C ⁇ T4: Ts takes -50 - 30; when -15 ° C ⁇ When T4 ⁇ -5°C: Ts is -45-40; when -5°C ⁇ T4 ⁇ 5°C: Ts is -40-50; when 5°C ⁇ T4 ⁇ 15°C: Ts is -35-60; When 15 ° C ⁇ T4: Ts takes -30-65. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the opening degree of the first throttle element is adjusted such that the detected temperature Ts of the gas-liquid separator satisfies the set temperature.
- the temperature of the T4 is 6 °C
- the temperature Ts of the corresponding gas-liquid separator should be 20 °C under the T4 interval, and the Ts detected at the initial opening has reached 25 °C.
- the first throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the first detection object and/or the second detection object are the outdoor ambient temperature T4 and the intermediate pressure; firstly, the operating frequency F is obtained according to the detected outdoor ambient temperature T4, and according to the detected outdoor ambient temperature T4 and The operating frequency F is calculated to obtain a set intermediate pressure, and then the opening of the first throttle element is adjusted such that the detected intermediate pressure reaches the set intermediate pressure.
- the temperature T4 corresponds to, for example, preset different outdoor ambient temperature intervals corresponding to different values of a7, b7, and c7, and then the values of a7, b7, and c7 can be limited according to actual conditions. It can be understood that the values of a7, b7, and c7 during cooling and the values of a7, b7, and c7 during heating may be the same or different.
- the temperature of T4 is detected to be 7 °C.
- the corresponding operating frequency of the compressor under T4 should be 75HZ.
- the pressure coefficient a7 of the corresponding temperature interval is 0.01, b7 is 0.6, and c7 is 0.1. Calculate the set intermediate pressure.
- the operating frequency of the compressor is determined by the outdoor ambient temperature, for example, a predetermined plurality of outdoor ambient temperature intervals, and the plurality of outdoor ambient temperature intervals respectively correspond to the plurality of compressor operating frequencies, and the detected outdoor ambient temperature is queried. In the outdoor ambient temperature range, the corresponding compressor operating frequency can be obtained. It will of course be understood that the operating frequency of the compressor can also be detected by means of a detection device provided on the compressor.
- a plurality of outdoor temperature intervals are preset, each outdoor temperature interval corresponds to a different gas-liquid separator pressure, and the first detection object and/or the second detection object is an outdoor ambient temperature T4 and a gas-liquid separator.
- the pressure firstly obtains the set pressure of the gas-liquid separator corresponding to the outdoor temperature range according to the actually detected outdoor ambient temperature T4, and then adjusts the opening degree of the first throttle element until the actually detected pressure of the gas-liquid separator Meet the set pressure.
- the outdoor ambient temperature T4 and the pressure of the gas-liquid separator are detected during the cooling start-up operation, and the corresponding outdoor is inquired according to the detected outdoor ambient temperature T4.
- the set pressure of the gas-liquid separator corresponding to the temperature interval for example, the corresponding relationship between the outdoor temperature interval and the set pressure of the gas-liquid separator can be as follows: when 20 ° C ⁇ T4: Ps takes 0.1-8; when 20 ° C ⁇ T4 When ⁇ 30°C: Ps is 0.1-10; when 30°C ⁇ T4 ⁇ 40°C: Ps is 0.1-15; when 40°C ⁇ T4 ⁇ 50°C: Ps is 0.1-20; when 50°C ⁇ For T4: Ps takes 0.1-25. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the opening degree of the first throttle element is adjusted so that the detected pressure Ps of the gas-liquid separator satisfies the set pressure.
- the startup cooling operation detects that the T4 temperature is 50 °C.
- the first throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- the outdoor ambient temperature T4 and the pressure of the gas-liquid separator are detected during the heating start operation, and the corresponding outdoor temperature interval is inquired according to the detected outdoor ambient temperature T4.
- the corresponding set pressure of the gas-liquid separator for example, the corresponding relationship between the outdoor temperature interval and the set pressure of the gas-liquid separator can be as follows: when -15 ° C ⁇ T4: Ps takes 0.1-10; when -15 ° C ⁇ T4 ⁇ -5°C: Ps is 0.1-12; when -5°C ⁇ T4 ⁇ 5°C: Ps is 0.1-15; when 5°C ⁇ T4 ⁇ 15°C: Ps is 0.1-20; when 15°C ⁇ T4 Time: Ps takes 0.1-25. It is to be understood that the above numerical values are only illustrative and are not intended to limit the invention.
- the set pressure Ps of the corresponding gas-liquid separator should be 1.2 MPa.
- the first throttling element reaches stable operation after reaching the target opening degree. After n seconds, the T4 was detected to be unchanged and continued to operate stably.
- control method of the embodiment of the present invention is not limited to the above six types, for example, the opening degree of the first throttle element during cooling in the above six examples may be used.
- the adjustment mode and the adjustment method of the opening degree of the first throttle element during heating are randomly combined.
- the set parameters such as the set exhaust pressure, the set exhaust temperature, the set opening degree, and the set intermediate pressure calculated in the above embodiment may also be obtained by other methods, for example, may be set.
- Different outdoor temperature intervals, multiple outdoor temperature intervals correspond to unused setting parameters, and corresponding setting parameters can be obtained according to the outdoor temperature range in which the actually detected outdoor ambient temperature is located. It can also be understood that the above parameters obtained through the outdoor ambient temperature review can also be obtained by a preset calculation formula.
- a control method of an air conditioner according to an embodiment of the present invention wherein the air conditioner is a cold and warm type air conditioner according to the above embodiment of the present invention, a first throttle element and a second throttle, will be described in detail below with reference to FIGS. 1-3 and 14.
- the opening of the component is fixed.
- a method for controlling an air conditioner includes the following steps: detecting according to cooling or heating operation
- the compressor operating parameters and/or the outdoor ambient temperature are adjusted to meet the operating conditions of the two-cylinder compressor, wherein the compressor operating parameters include at least one of an operating current, an exhaust pressure, and an exhaust temperature.
- the operating frequency of the two-cylinder compressor is adjusted according to the detection result of the detection object, wherein the detection object includes the outdoor ambient temperature, the exhaust temperature of the exhaust port, the exhaust pressure of the exhaust port, and the double cylinder. At least one of the operating currents of the compressor.
- the compressor operating parameters and/or the outdoor ambient temperature may be re-detected after n seconds of operation, and then the operating frequency of the compressor is adjusted according to the re-detected detection result, thus repeating .
- the repetition condition is not limited thereto.
- the compressor operation parameter and/or the outdoor environment temperature may be re-detected, and then the operating frequency of the compressor may be adjusted according to the re-detected detection result.
- the compressor operating parameters and/or the outdoor ambient temperature may be re-detected after n seconds of operation or after receiving the user's operating signal, and then according to the detection. As a result, the operating frequency is adjusted and repeated.
- the compressor stops operating.
- the system by adjusting the operating frequency of the compressor according to the detection result during the operation, the system can be operated within a suitable parameter range, and the reliability of the operation of the air conditioner can be improved.
- a plurality of different exhaust gas temperature intervals are first preset, and the plurality of exhaust gas temperature ranges have different adjustment commands corresponding to the operating frequency, and then the exhaust gas temperature is detected and according to the detected exhaust gas temperature.
- the adjustment command corresponding to the exhaust temperature range adjusts the operating frequency.
- the adjustment command may include instructions of down-converting, up-converting, maintaining frequency, shutting down, and releasing the frequency limit. Therefore, by detecting the exhaust gas temperature and adjusting the operating frequency of the compressor, the operating state of the system can be directly reacted to ensure that the system operates within a suitable parameter range, thereby further improving the reliability of the operation of the air conditioner.
- the release of the frequency limit means that the operating frequency of the compressor is not limited, and it is not necessary to adjust the operating frequency of the compressor.
- the air conditioner is turned on and off, and the exhaust temperature TP is detected during operation.
- the following adjustment commands are set: 115 °C ⁇ TP, shutdown; 110 ° C ⁇ TP ⁇ 115 ° C, down frequency to TP ⁇ 110 ° C; 105 ° C ⁇ TP ⁇ 110°C, frequency hold; TP ⁇ 105°C, release frequency limit.
- a corresponding adjustment command is executed, and after the adjustment is completed, the TP is detected again. If the adjustment is satisfied, the determination is ended.
- the exhaust gas temperature TP is detected again, and the determination is repeated. While running for n seconds, if the user shutdown command is detected or the set temperature is reached, the operation ends.
- a plurality of outdoor temperature intervals, a heating shutdown protection current, and a cooling shutdown protection current are preset, and the plurality of outdoor temperature intervals correspond to different frequency limiting protection currents.
- the outdoor ambient temperature is detected, and then the corresponding frequency-limiting protection current is obtained according to the detected outdoor temperature range of the outdoor ambient temperature, and the operating frequency is adjusted so that the actually detected operating current reaches a corresponding frequency-limiting protection current, wherein when cooling When the detected running current is greater than the cooling shutdown protection current, it will stop directly; when the running current detected during heating is greater than the heating shutdown protection current, it will be straight. Stop the machine.
- the correspondence between the plurality of outdoor temperature intervals and the corresponding frequency limiting protection current during cooling can be as follows: when T4>50.5° C., the frequency limiting protection current is CL5; when 49.5° C ⁇ T4>45.5° C., the limit is The frequency protection current is CL4; when 44.5°C ⁇ T4>41°C, the frequency limiting protection current is CL3; when 40°C ⁇ T4>33°C, the frequency limiting protection current is CL2; when 32 ⁇ T4°C, the frequency limiting protection current is CL1.
- the specific values of the CL5, CL4, CL3, CL2, and CL1 and the cooling shutdown protection current may be specifically limited according to actual conditions, and are not limited herein.
- the outdoor ambient temperature T4 detected during the cooling operation is within the outdoor temperature range of 40 ° C ⁇ T4 > 33 ° C, it means that the operating current is not allowed to exceed the frequency limiting protection current CL2. If it is exceeded, the frequency will be reduced to lower than the operating current.
- the frequency limiting protection current is CL2.
- the corresponding relationship between multiple outdoor temperature intervals and the corresponding frequency limiting protection current during heating can be as follows: when T4>15°C, the frequency limiting protection current is HL5; when 14°C>T4 ⁇ 10°C, the frequency limiting protection The current is HL4; when 9°C>T4 ⁇ 6°C, the current limiting protection current is HL3; when 5°C>T4 ⁇ -19°C, the frequency limiting protection current is HL2; when -20°C>T4, the frequency limiting protection current is HL1.
- the specific values of HL5, HL4, HL3, HL2, HL1 and the heating shutdown protection current can be specifically limited according to the actual situation, and are not limited herein.
- the outdoor ambient temperature T4 detected during heating operation is located in the outdoor temperature range of 9 °C>T4 ⁇ 6 °C, it means that the operating current is not allowed to exceed the frequency limiting protection current HL3. If it exceeds, the frequency will be reduced to lower than the running current. Frequency limiting protection current HL3.
- a plurality of outdoor temperature intervals may be preset, and the plurality of outdoor temperature intervals correspond to different set operating frequencies, and the set operating frequency corresponding to the outdoor temperature range in which the actually detected outdoor ambient temperature is located Adjust the operating frequency of the compressor.
- a plurality of different exhaust pressure intervals are first preset, and the adjustment commands of the operating frequencies corresponding to the plurality of exhaust pressure intervals are different, and then the exhaust pressure is detected and according to the detected exhaust pressure.
- the adjustment command corresponding to the exhaust pressure range adjusts the operating frequency.
- the adjustment command may include instructions of down-converting, up-converting, maintaining frequency, shutting down, and releasing the frequency limit. Therefore, by detecting the exhaust pressure to adjust the operating frequency of the compressor, the operating state of the system can be directly reacted to ensure that the system operates within a suitable parameter range, thereby further improving the reliability of the operation of the air conditioner.
- the control method of the single-cooling type air conditioner is the same as that of the cooling and cooling type air conditioner, and will not be described in detail herein.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or oblique to the second feature Above, or simply indicating that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
一种冷暖型空调器(100)、单冷型空调器(100)及空调器(100)的控制方法。冷暖型空调器(100)包括:双缸压缩机(1)、换向组件(2)、室外换热器(3)、室内换热器(4)、气液分离器(5)、并联连接的控制阀(8)和冷媒散热器(9),第一气缸(11)的吸气口与第一储液器(13)连通,第二气缸(12)和第一气缸(11)的排气容积比值的取值范围为1%~10%;气液分离器(5)包括气体出口(m)、第一接口(f)和第二接口(g),气体出口(m)与第二气缸(12)相连,第一接口(f)和室外换热器(3)之间串联有第一节流元件(6),第二接口(g)和室内换热器(4)之间串联有第二节流元件(7),并联连接的冷媒散热器(9)和控制阀(8)串联在室外换热器(3)和第一节流元件(6)之间。
Description
本发明涉及制冷领域,尤其是涉及一种冷暖型空调器、单冷型空调器及空调器的控制方法。
目前的空调制冷系统没有对节流后并进入蒸发器前的气态制冷剂进行优化循环设计,导致气态制冷剂影响蒸发器换热性能,并且增加压缩机压缩功耗,从而影响到空调器能效水平。喷气增焓和双级压缩技术可以提高空调系统在低温和超低温下的制热能力水平,但对于空调经常使用的制冷工况,能效提升非常有限。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明提出一种冷暖型空调器,可以有效提高空调器能效,有效促进节能减排。
本发明还提出一种单冷型空调器,可以有效提高空调器能效,有效促进节能减排。
本发明又提出一种空调器的控制方法。
根据本发明实施例的冷暖型空调器,包括:双缸压缩机,所述双缸压缩机包括壳体、第一气缸、第二气缸和第一储液器,所述壳体上设有排气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一储液器设在所述壳体外,所述第一气缸的吸气口与所述第一储液器连通,所述第二气缸和所述第一气缸的排气容积比值的取值范围为1%~10%;换向组件,所述换向组件包括第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述第一储液器相连;室外换热器和室内换热器,所述室外换热器的第一端与所述第二阀口相连,所述室内换热器的第一端与所述第三阀口相连;气液分离器,所述气液分离器包括气体出口、第一接口和第二接口,所述气体出口与所述第二气缸的吸气口相连,所述第一接口与所述室外换热器的第二端相连,所述第二接口与所述室内换热器的第二端相连,所述第一接口和所述室外换热器之间串联有第一节流元件,所述第二接口和所述室内换热器之间串联有第二节流元件;并联连接的控制阀和用于对电控元件进行散热的冷媒散热器,并联连接的所述冷媒散热器和所述控制阀串联在所述室外换热器和所述第一节流元件之间,制冷时所述控制阀截止冷媒的流通,制热
时冷媒流过所述控制阀。
根据本发明实施例的冷暖型空调器,通过设置上述双缸压缩机,可以有效提高空调器能效,有效促进节能减排,同时通过设置气液分离器,可以提高换热效率,降低压缩机压缩功耗,进一步提高空调器能力及能效,又通过设置控制阀和冷媒散热器,不仅可以对电控元件进行有效降温而且可以避免电控元件出现凝露现象。
在本发明的一些实施例中,所述气体出口和所述第二气缸的吸气口之间串联有电磁阀。
在本发明的一些实施例中,所述气液分离器的容积的取值范围为100mL-500mL。
在本发明的一些实施例中,所述控制阀为在从所述第一节流元件到所述室外换热器的方向上单向导通的单向阀。
在本发明的一些实施例中,所述双缸压缩机还包括设在所述壳体外的第二储液器,所述第二储液器串联在所述气体出口和所述第二气缸的吸气口之间。
在本发明的一些实施例中,所述第一储液器的容积大于所述第二储液器的容积。
根据本发明实施例的单冷型空调器,包括:双缸压缩机,所述双缸压缩机包括壳体、第一气缸、第二气缸和第一储液器,所述壳体上设有排气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一储液器设在所述壳体外,所述第一气缸的吸气口与所述第一储液器连通,所述第二气缸和所述第一气缸的排气容积比值的取值范围为1%~10%;室外换热器和室内换热器,所述室外换热器的第一端与所述排气口相连,所述室内换热器的第一端与所述第一储液器相连;气液分离器,所述气液分离器包括气体出口、第一接口和第二接口,所述气体出口与所述第二气缸的吸气口相连,所述第一接口与所述室外换热器的第二端相连,所述第二接口与所述室内换热器的第二端相连,所述第一接口和所述室外换热器之间串联有第一节流元件,所述第二接口和所述室内换热器之间串联有第二节流元件;用于对电控元件进行散热的冷媒散热器,所述冷媒散热器串联在所述室外换热器和所述第一节流元件之间。
根据本发明实施例的单冷型空调器,通过设置上述双缸压缩机,可以有效提高空调器能效,有效促进节能减排,同时通过设置气液分离器,可以提高换热效率,降低压缩机压缩功耗,进一步提高空调器能力及能效,又通过设置冷媒散热器,可以对电控元件进行有效降温。
在本发明的一些实施例中,所述气体出口和所述第二气缸的吸气口之间串联有电磁阀。
在本发明的一些实施例中,所述气液分离器的容积的取值范围为100mL-500mL。
在本发明的一些实施例中,所述双缸压缩机还包括设在所述壳体外的第二储液器,所述第二储液器串联在所述气体出口和所述第二气缸的吸气口之间。
在本发明的一些实施例中,所述第一储液器的容积大于所述第二储液器的容积。
根据本发明实施例的空调器的控制方法,所述空调器为根据本发明上述实施例的冷暖型空调器,或者为根据本发明上述实施例的单冷型空调器,其特征在于,空调器运行时,所述第一节流元件和所述第二节流元件中位于上游的节流元件为一级节流元件,所述第一节流元件和所述第二节流元件中位于下游的节流元件为二级节流元件;当所述第一节流元件和所述第二节流元件的开度均可调时,所述控制方法包括如下步骤:首先根据对第一检测对象的检测结果调整所述一级节流元件的开度至设定开度,然后根据对第二检测对象的检测结果调整所述二级节流元件的开度至设定开度,所述一级节流元件的设定开度小于所述二级节流元件的设定开度,所述第一检测对象的检测结果与所述第二检测对象的检测结果不同;当所述第一节流元件和所述第二节流元件中的其中一个开度可调且另一个开度固定时,所述控制方法包括如下步骤:在制冷运行时根据对第一检测对象的检测结果调整开度可调的节流元件的开度至设定开度;当所述空调器为冷暖型空调器时,制热运行时还根据对第二检测对象的检测结果调整开度可调的节流元件的开度至设定开度;当所述第一节流元件和所述第二节流元件的开度均固定时,所述控制方法包括如下步骤:根据检测到的压缩机运行参数和/或室外环境温度调整所述双缸压缩机的运行频率至满足条件,其中所述压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个;其中所述第一检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、排气口的排气压力、从所述气体出口排出的冷媒的中间压力、从所述气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个;所述第二检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、排气口的排气压力、从所述气体出口排出的冷媒的中间压力、从所述气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个。
根据本发明实施例的空调器的控制方法,使得系统的能效达到最优。
在本发明的一些实施例中,所述第一检测对象和/或所述第二检测对象为室外环境温度T4和运行频率F,根据检测到的所述室外环境温度T4和运行频率F计算得到相应的开度可调的节流元件设定开度,然后根据设定开度调整对应的节流元件的开度。
在本发明的一些实施例中,所述第一检测对象和/或所述第二检测对象为室外环境温度T4、运行频率F和排气压力;或者为室外环境温度T4、运行频率F和排气温度,首先根据所述室外环境温度T4和所述运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到的排气压力或者排气温度调整相应的开度可调的节流元件的开度以使得检测到的排气压力或排气温度达到设定排气压力或者设定排气温度。
在本发明的一些实施例中,预设多个室外温度区间,每个所述室外温度区间对应不同的节流元件的开度,第一检测对象和/或第二检测对象为室外环境温度T4,根据实际检测
到的室外环境温度T4所在的室外温度区间对应的开度值调整相应的开度可调的节流元件的开度。
在本发明的一些实施例中,预设中间温度或者预设中间压力,所述第一检测对象和/或第二检测对象为中间压力或者中间温度,根据实际检测到的中间压力或者中间温度调整相应的开度可调的节流元件的开度以使得检测到的中间压力或者中间温度达到预设中间压力或者预设中间温度。
在本发明的一些实施例中,预设多个室外温度区间,每个所述室外温度区间对应不同的所述气液分离器的设定温度,所述第一检测对象和/或所述第二检测对象为室外环境温度T4和所述气液分离器的温度,首先根据实际检测到的室外环境温度T4得到所在的室外温度区间对应的气液分离器的设定温度,然后调整相应的开度可调的节流元件的开度直至实际检测到的所述气液分离器的温度满足所述设定温度。
在本发明的一些实施例中,当所述第一节流元件和所述第二节流元件的开度均固定时,预设多个不同的排气温度区间,所述多个排气温度区间对应的运行频率的调节指令不同,检测排气温度并根据检测到的排气温度所在的排气温度区间对应的调节指令调节所述运行频率。
在本发明的一些实施例中,当所述第一节流元件和所述第二节流元件的开度均固定时,预设多个室外温度区间、制热停机保护电流和制冷停机保护电流,多个室外温度区间对应不同的限频保护电流,首先检测室外环境温度,然后根据检测到的所述室外环境温度所在的室外温度区间得到对应的限频保护电流,调整所述运行频率以使实际检测到的运行电流达到相应的所述限频保护电流,其中当制冷时检测到的所述运行电流大于所述制冷停机保护电流时则直接停机;当制热时检测到的所述运行电流大于所述制热停机保护电流时则直接停机。
在本发明的一些实施例中,当所述第一节流元件和所述第二节流元件的开度均固定时,预设多个不同的排气压力区间,所述多个排气压力区间对应的运行频率的调节指令不同,检测排气压力并根据检测到的排气压力所在的排气压力区间对应的调节指令调节所述运行频率。
图1-图3为根据本发明不同实施例的冷暖型空调器的示意图;
图4-图6为根据本发明不同实施例的单冷型空调器的示意图;
图7为根据本发明实施例的双缸压缩机的示意图;
图8为根据本发明实施例的冷暖型空调器/单冷型空调器制冷时的控制方法的流程图,
其中第一节流元件和第二节流元件的开度均可调;
图9为根据本发明实施例的冷暖型空调器制热时的控制方法的流程图,其中第一节流元件和第二节流元件的开度均可调;
图10为根据本发明实施例的冷暖型空调器/单冷型空调器制冷时的控制方法的流程图,其中第一节流元件开度固定,第二节流元件开度可调;
图11为根据本发明实施例的冷暖型空调器制热时的控制方法的流程图,其中第一节流元件开度固定,第二节流元件开度可调;
图12为根据本发明实施例的冷暖型空调器/单冷型空调器制冷时的控制方法的流程图,其中第一节流元件开度可调,第二节流元件开度固定;
图13为根据本发明实施例的冷暖型空调器制热时的控制方法的流程图,其中第一节流元件开度可调,第二节流元件开度固定;
图14为根据本发明实施例的冷暖型空调器的控制方法的流程图,其中第一节流元件和第二节流元件的开度固定;
图15为根据本发明实施例的单冷型空调器的控制方法的流程图,其中第一节流元件和第二节流元件的开度固定。
附图标记:
冷暖型空调器100、
双缸压缩机1、壳体10、第一气缸11、第二气缸12、第一储液器13、第二储液器14、排气口15、
换向组件2、第一阀口D、第二阀口C、第三阀口E、第四阀口S、
室外换热器3、室内换热器4、
气液分离器5、气体出口m、第一接口f、第二接口g、
第一节流元件6、第二节流元件7、
控制阀8、冷媒散热器9、
电磁阀20。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、
“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图3、图7详细描述根据本发明实施例的冷暖型空调器100,其中冷暖型空调器100具有制冷模式和制热模式。
如图1-图4、图7所示,根据本发明实施例的冷暖型空调器100,包括:双缸压缩机1、换向组件2、室外换热器3和室内换热器4、气液分离器5、第一节流元件6、第二节流元件7、控制阀8和冷媒散热器9。其中双缸压缩机1包括壳体10、第一气缸11、第二气缸12和第一储液器13,壳体10上设有排气口15,第一气缸11和第二气缸12分别设在壳体10内,第一储液器13设在壳体10外,第一气缸11的吸气口与第一储液器13连通。也就是说,第一气缸11和第二气缸12进行独立压缩过程,从第一气缸11排出的压缩后的冷媒和从第二气缸12排出的压缩后的冷媒分别排入到壳体10内然后从排气口15排出。
第二气缸12和第一气缸11的排气容积比值的取值范围为1%~10%。进一步地,第二气缸12和第一气缸11的排气容积比值的取值范围为1%~9%,优选地,第二气缸12和第一气缸11的排气容积比值的取值范围为4%~9%。例如第二气缸12和第一气缸11的排气容积比值可以为4%、5%、8%或8.5%等参数。
换向组件2包括第一阀口D至第四阀口S,第一阀口D与第二阀口C和第三阀口E中的其中一个连通,第四阀口S与第二阀口C和所述第三阀口E中的另一个连通,第一阀口D与排气口15相连,第四阀口S与第一储液器13相连。室外换热器3的第一端与第二阀口C相连,室内换热器4的第一端与第三阀口E相连。具体地,当冷暖型空调器100制冷时,第一阀口D与第二阀口C连通且第三阀口E与第四阀口S连通,当冷暖型空调器100制热时,第一阀口D与第三阀口E连通且第二阀口C与第四阀口S连通。优选地,换向组件2
为四通阀。
气液分离器5包括气体出口m、第一接口f和第二接口g,气体出口m与第二气缸12的吸气口相连,第一接口f与室外换热器3的第二端相连,第二接口g与室内换热器4的第二端相连,第一接口f和室外换热器3之间串联有第一节流元件6,第二接口g和室内换热器4之间串联有第二节流元件7。在本发明的一些示例中,第一节流元件6和第二节流元件7的开度均可调,可选地,第一节流元件6为电子膨胀阀,第二节流元件7为电子膨胀阀,当然可以理解的是,第一节流元件6和第二节流元件7均还可以是其他开度可调的元件例如热力膨胀阀。
在本发明的另一些示例中,第一节流元件6的开度可调且第二节流元件7的开度固定,可选地,第一节流元件6为电子膨胀阀,第二节流元件7为毛细管或者节流阀,当然可以理解的是,第一节流元件6还可以是其他开度可调的元件例如热力膨胀阀。
在本发明的又一些示例中,第一节流元件6的开度固定且第二节流元件7的开度固定,可选地,第一节流元件6为毛细管或者节流阀,第二节流元件7为电子膨胀阀,当然可以理解的是,第二节流元件7还可以是其他开度可调的元件例如热力膨胀阀。
在本发明的再一些示例中,第一节流元件6和第二节流元件7的开度均固定,可选地,第一节流元件6和第二节流元件7均可以是毛细管或者节流阀。
冷媒散热器9用于对电控元件进行散热,并联连接的冷媒散热器9和控制阀8串联在室外换热器3和第一节流元件6之间,制冷时控制阀8截止冷媒的流通,制热时冷媒流过控制阀8。也就是说,控制阀8串联在室外换热器3和第一节流元件6之间,冷媒散热器9串联在室外换热器3和第一节流元件6之间,控制阀8和冷媒散热器9并联连接,冷媒散热器9用于对电控元件进行散热。可选地,控制阀8为在从第一节流元件6到室外换热器3的方向上单向导通的单向阀。当然可以理解的是,控制阀8还可以电磁阀。可以理解的是,冷媒散热器9的结构可以为多种多样只要可以流通冷媒即可,例如冷媒散热器9可以包括蜿蜒延伸的金属管。
当冷暖型空调器100制冷时,从双缸压缩机1的排气口15排出的高温高压冷媒通过第一阀口D和第二阀口C排入到室外换热器3中进行冷凝散热,由于控制阀8截止冷媒的流通,从室外换热器3排出的液态冷媒流入到冷媒散热器9中与电控元件进行换热,从而实现降低电控元件的温度的目的。从冷媒散热器9流出的冷媒经过第一节流元件6的一级节流降压后从第一接口f排入到气液分离器5中进行气液分离,分离出来的中间压力气态冷媒从气体出口m排入到第二气缸12内进行压缩。
从气液分离器5的第二接口g排出的中间压力液态冷媒经过第二节流元件7的二级节流降压后排入到室内换热器4内进行换热以降低室内环境温度,从室内换热器4排出的冷
媒通过第三阀口E和第四阀口S排入到第一储液器13中,从第一储液器13排出的冷媒排入到第一气缸11内进行压缩。
当冷暖型空调器100制热时,从双缸压缩机1的排气口15排出的高温高压冷媒通过第一阀口D和第三阀口E排入到室内换热器4中进行冷凝散热以升高室内环境温度,从室内换热器4排出的高压液态冷媒经过第二节流元件7的一级节流降压后从第二接口g排入到气液分离器5中进行气液分离,分离出来的中间压力气态冷媒从气体出口m排入到第二气缸12内进行压缩。
由于控制阀8导通,从气液分离器5的第一接口f排出的中间压力液态冷媒经过第一节流元件6的二级节流降压后,大部分冷媒通过控制阀8排入到室外换热器3内进行换热,从室外换热器3排出的冷媒通过第二阀口C和第四阀口S排入到第一储液器13中,从第一储液器13排出的冷媒排入到第一气缸11内进行压缩。
也就是说,在冷暖型空调器100制冷时,由于控制阀8截止冷媒的流通,因此从室外换热器3排出的冷媒流入到冷媒散热器9中与电控元件进行换热,从而实现降低电控元件的温度的目的。在冷暖型空调器100制热时,由于控制阀8导通,从第一节流元件6排出的大部分冷媒经过控制阀8排入到室外换热器3中,只有一小部分或者没有冷媒流经冷媒散热器9,从而可以避免温度过低的冷媒流经冷媒散热器9而出现凝露现象从而降低电控元件的使用寿命。
由此分析可知,在冷暖型空调器100运行时,不同压力状态的冷媒分别进入到第一气缸11和第二气缸12内,第一气缸11和第二气缸12独立完成压缩过程,从第一气缸11排出的压缩后的冷媒和从第二气缸12排出的压缩后的冷媒排到壳体10内混合后从排气口15排出,同时由于第二气缸12和第一气缸11的排气容积比值的取值范围为1%~10%,流量较少且压力状态较高的冷媒排入到排气容积较小的第二气缸12内进行压缩,从而可以提高能效,节能减排。
同时通过在室外换热器3和室内换热器4之间设有气液分离器5,从而气液分离器5将一部分气态冷媒分离出来后排回到第二气缸12内进行压缩,由此降低了制冷时流入到室内换热器4的冷媒中的气体含量且降低了制热时流入到室外换热器3的冷媒中的气体含量,减少了气态冷媒对作为蒸发器的室内换热器4或者室外换热器3的换热性能的影响,从而可以提高换热效率,降低压缩机压缩功耗。
根据本发明实施例的冷暖型空调器100,通过设置上述双缸压缩机1,可以有效提高空调器能效,有效促进节能减排,同时通过设置气液分离器5,可以提高换热效率,降低压缩机压缩功耗,进一步提高空调器能力及能效,又由于设置控制阀8和冷媒散热器9,不仅可以对电控元件进行有效降温而且可以避免电控元件出现凝露现象。
如图3所示,在本发明的一些实施例中,气体出口m和第二气缸12的吸气口之间串联有电磁阀20,由此当气液分离器5中的液体冷媒超出安全液位时,通过关闭电磁阀20可以避免液态冷媒进入到第二气缸12中,从而可以避免双缸压缩机1发生液击,延长双缸压缩机1的使用寿命。进一步地,可以在在气液分离器5上设置液位传感器,通过液位传感器的检测结果控制电磁阀20的开闭状态。
在本发明的一些实施例中,气液分离器5的容积的取值范围为100mL-500mL。
在本发明的一些实施例中,如图2和图3所示,双缸压缩机1还包括设在壳体10外的第二储液器14,第二储液器14串联在气体出口m和第二气缸12的吸气口之间。从而通过设置有第二储液器14,可以对从气液分离器5的气体出口m排出的冷媒进行进一步气液分离,可以进一步避免液体冷媒回到第二气缸12内,从而避免双缸压缩机1发生液击现象,提高双缸压缩机1的使用寿命。
在本发明的进一步实施例中,第一储液器13的容积大于第二储液器14的容积。从而在保证第二气缸12的压缩量的前提下,通过使得第二储液器14的容积较小,可以降低成本。优选地,第二储液器14的容积不大于第一储液器13容积的二分之一。
发明人将根据本发明上述实施例的冷暖型空调器(设定额定制冷量为3.5kw,将第二气缸和第一气缸的排气容积比值设定为7.6%)在不同工况下的能效与现有的冷暖型空调器在相同的工况下的能效进行比较,得到如下数据:
测试工况 | 现有技术方案能效 | 本发明技术方案能效 | 提升比例 |
额定制冷 | 3.93 | 4.26 | 8.40% |
中间制冷 | 5.88 | 6.18 | 5.10% |
额定制热 | 3.64 | 3.91 | 7.42% |
中间制热 | 5.55 | 5.89 | 6.13% |
低温制热 | 2.57 | 2.73 | 6.23% |
APF | 4.61 | 4.92 | 6.72% |
由此可知,根据本发明实施例的冷暖型空调器相对于现有的冷暖型压缩机,各工况能效及全年能效APF均有明显的提升。
同时发明人将不同额定制冷量和不同排气容积比的本发明实施例的冷暖型空调器与现有的相同工况下的冷暖型空调器进行比较,发现能效均有提升,例如发明人经过试验发现本发明实施例的冷暖型空调器(设定额定制冷量为2.6kw,将第二气缸和第一气缸的排气容积比值设定为9.2%)与现有的相同工况下的冷暖型空调器相比,能效提升了7.3%。
下面参考图4-图7详细描述根据本发明实施例的单冷型空调器100,其中单冷型空调
器100具有制冷模式。
如图4-图7所示,根据本发明实施例的单冷型空调器100,包括:双缸压缩机1、室外换热器3和室内换热器4、气液分离器5、第一节流元件6、第二节流元件7、冷媒散热器9。其中双缸压缩机1包括壳体10、第一气缸11、第二气缸12和第一储液器13,壳体10上设有排气口15,第一气缸11和第二气缸12分别设在壳体10内,第一储液器13设在壳体10外,第一气缸11的吸气口与第一储液器13连通。也就是说,第一气缸11和第二气缸12进行独立压缩过程,从第一气缸11排出的压缩后的冷媒和从第二气缸12排出的压缩后的冷媒分别排入到壳体10内然后从排气口15排出。
第二气缸12和第一气缸11的排气容积比值的取值范围为1%~10%。进一步地,第二气缸12和第一气缸11的排气容积比值的取值范围为1%~9%,优选地,第二气缸12和第一气缸11的排气容积比值的取值范围为4%~9%。例如第二气缸12和第一气缸11的排气容积比值可以为4%、5%、8%或8.5%等参数。
室外换热器3的第一端与排气口15相连,室内换热器4的第一端与第一储液器13相连。气液分离器5包括气体出口m、第一接口f和第二接口g,气体出口m与第二气缸12的吸气口相连,第一接口f与室外换热器3的第二端相连,第二接口g与室内换热器4的第二端相连,第一接口f和室外换热器3之间串联有第一节流元件6,第二接口g和室内换热器4之间串联有第二节流元件7。在本发明的一些示例中,第一节流元件6和第二节流元件7的开度均可调,可选地,第一节流元件6为电子膨胀阀,第二节流元件7为电子膨胀阀,当然可以理解的是,第一节流元件6和第二节流元件7均还可以是其他开度可调的元件例如热力膨胀阀。
在本发明的另一些示例中,第一节流元件6的开度可调且第二节流元件7的开度固定,可选地,第一节流元件6为电子膨胀阀,第二节流元件7为毛细管或者节流阀,当然可以理解的是,第一节流元件6还可以是其他开度可调的元件例如热力膨胀阀。
在本发明的又一些示例中,第一节流元件6的开度固定且第二节流元件7的开度固定,可选地,第一节流元件6为毛细管或者节流阀,第二节流元件7为电子膨胀阀,当然可以理解的是,第二节流元件7还可以是其他开度可调的元件例如热力膨胀阀。
在本发明的再一些示例中,第一节流元件6和第二节流元件7的开度均固定,可选地,第一节流元件6和第二节流元件7均可以是毛细管或者节流阀。
冷媒散热器9用于对电控元件进行散热,冷媒散热器9串联在室外换热器3和第一节流元件6之间。可以理解的是,冷媒散热器9的结构可以为多种多样只要可以流通冷媒即可,例如冷媒散热器9可以包括蜿蜒延伸的金属管。
当单冷型空调器100制冷时,从双缸压缩机1的排气口15排出的高温高压冷媒排入到
室外换热器3中进行冷凝散热,从室外换热器3排出的液态冷媒流入到冷媒散热器9中与电控元件进行换热,从而实现降低电控元件的温度的目的。从冷媒散热器9流出的冷媒经过第一节流元件6的一级节流降压后从第一接口f排入到气液分离器5中进行气液分离,分离出来的中间压力气态冷媒从气体出口m排入到第二气缸12内进行压缩。
从气液分离器5的第二接口g排出的中间压力液态冷媒经过第二节流元件7的二级节流降压后排入到室内换热器4内进行换热以降低室内环境温度,从室内换热器4排出的冷媒排入到第一储液器13中,从第一储液器13排出的冷媒排入到第一气缸11内进行压缩。
由此分析可知,在单冷型空调器100运行时,不同压力状态的冷媒分别进入到第一气缸11和第二气缸12内,第一气缸11和第二气缸12独立完成压缩过程,从第一气缸11排出的压缩后的冷媒和从第二气缸12排出的压缩后的冷媒排到壳体10内混合后从排气口15排出,同时由于第二气缸12和第一气缸11的排气容积比值的取值范围为1%~10%,流量较少且压力状态较高的冷媒排入到排气容积较小的第二气缸12内进行压缩,从而可以提高能效,节能减排。
同时通过在室外换热器3和室内换热器4之间设有气液分离器5,从而气液分离器5将一部分气态冷媒分离出来后排回到第二气缸12内进行压缩,由此降低了制冷时流入到室内换热器4的冷媒中的气体含量,减少了气态冷媒对作为蒸发器的室内换热器4的换热性能的影响,从而可以提高换热效率,降低压缩机压缩功耗。
根据本发明实施例的单冷型空调器100,通过设置上述双缸压缩机1,可以有效提高空调器能效,有效促进节能减排,同时通过设置气液分离器5,可以提高换热效率,降低压缩机压缩功耗,进一步提高空调器能力及能效,又由于设置冷媒散热器9,可以对电控元件进行有效降温。
如图6所示,在本发明的一些实施例中,气体出口m和第二气缸12的吸气口之间串联有电磁阀20,由此当气液分离器5中的液体冷媒超出安全液位时,通过关闭电磁阀20可以避免液态冷媒进入到第二气缸12中,从而可以避免双缸压缩机1发生液击,延长双缸压缩机1的使用寿命。进一步地,可以在在气液分离器5上设置液位传感器,通过液位传感器的检测结果控制电磁阀20的开闭状态。
在本发明的一些实施例中,气液分离器5的容积的取值范围为100mL-500mL。
在本发明的一些实施例中,如图5和图6所示,双缸压缩机1还包括设在壳体10外的第二储液器14,第二储液器14串联在气体出口m和第二气缸12的吸气口之间。从而通过设置有第二储液器14,可以对从气液分离器5的气体出口m排出的冷媒进行进一步气液分离,可以进一步避免液体冷媒回到第二气缸12内,从而避免双缸压缩机1发生液击现象,提高双缸压缩机1的使用寿命。
在本发明的进一步实施例中,第一储液器13的容积大于第二储液器14的容积。从而在保证第二气缸12的压缩量的前提下,通过使得第二储液器14的容积较小,可以降低成本。优选地,第二储液器14的容积不大于第一储液器13容积的二分之一。
发明人将根据本发明上述实施例的单冷型空调器(设定额定制冷量为3.5kw,将第二气缸和第一气缸的排气容积比值设定为7.6%)在不同工况下的能效与现有的单冷型空调器在相同的工况下的能效进行比较,得到如下数据:
测试工况 | 现有技术方案能效 | 本发明技术方案能效 | 提升比例 |
额定制冷 | 3.93 | 4.26 | 8.40% |
中间制冷 | 5.88 | 6.18 | 5.10% |
APF | 4.61 | 4.92 | 6.72% |
由此可知,根据本发明实施例的单冷型空调器相对于现有的单冷型压缩机,各工况能效及全年能效APF均有明显的提升。
同时发明人将不同额定制冷量和不同排气容积比的本发明实施例的单冷型空调器与现有的相同工况下的单冷型空调器进行比较,发现能效均有提升,例如发明人经过试验发现本发明实施例的单冷型空调器(设定额定制冷量为2.6kw,将第二气缸和第一气缸的排气容积比值设定为9.2%)与现有的相同工况下的单冷型空调器相比,能效提升了7.3%。
参考图1-图3、图8和图9详细描述根据本发明实施例的空调器的控制方法,其中空调器为根据本发明上述实施例的冷暖型空调器。第一节流元件和第二节流元件的开度均可调。
空调器运行时,第一节流元件和第二节流元件中位于上游的节流元件为一级节流元件,第一节流元件和第二节流元件中位于下游的节流元件为二级节流元件,换言之,在制冷时,第一节流元件为一级节流元件,第二节流元件为二级节流元件。在制热时,第二节流元件为一级节流元件,第一节流元件为二级节流元件。
根据本发明实施例的控制方法包括如下步骤:首先根据对第一检测对象的检测结果调整一级节流元件的开度,然后根据对第二检测对象的检测结果调整二级节流元件的开度,一级节流元件的设定开度小于二级节流元件的设定开度,第一检测对象的检测结果与第二检测对象的检测结果不同。需要进行说明的是,第一检测对象的检测结果与第二检测对象的检测结果不同指的是一级节流元件和二级节流元件不能同时采用同一状态参数进行调节控制,换言之,用于调节一级节流元件的所需的相关参数和用于调节二级节流元件的所需的相关参数不同。
其中第一检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、
排气口的排气压力、从气体出口排出的冷媒的中间压力、从气体出口排出的冷媒的中间温度中的至少一个。第二检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、排气口的排气压力、从气体出口排出的冷媒的中间压力、从气体出口排出的冷媒的中间温度中的至少一个。
也就是说,如图8和图9所示,无论制冷或者制热,在空调器运行时,均采集处理控制一级节流元件和二级节流元件所需的参数,然后根据得到的参数都是先调节一级节流元件的开度直至设定开度,然后再调节二级节流元件的开度直至设定开度,当一级节流元件和二级节流元件均调节至设定开度时,一级节流元件的开度小于二级节流元件的开度。当然可以理解的是,采集处理控制一级节流元件所需的参数和采集处理控制二级节流元件所需的参数的步骤可以同时进行也可以先后进行。
当一级节流元件的开度和二级节流元件的开度均满足条件后,可以在运行n秒后,重新检测第一检测对象和第二检测对象,然后根据检测结果调整一级节流元件和二级节流元件的开度,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测第一检测对象和第二检测对象,然后根据检测结果调整一级节流元件和二级节流元件的开度。换言之,在制冷或者制热时,在一级节流元件和二级节流元件的开度均满足条件后,可以在运行n秒或者在接收到用户的操作信号后,对第一节流元件和第二节流元件的开度的相关参数重新检测判断,然后根据判定结果调整第一节流元件和第二节流元件的开度,如此重复。
根据本发明实施例的空调器的控制方法,通过先调节一级节流元件的开度然后再调节二级节流元件的开度,从而使得系统的能效达到最优。
下面描述根据本发明几个具体实施例的控制方法,其中第一节流元件和第二节流元件的开度均可调。
实施例1:
在该实施例中,第一检测对象和第二检测对象均为室外环境温度T4和运行频率F,根据检测到的室外环境温度T4和运行频率F计算得到一级节流元件和二级节流元件的设定开度,然后根据设定开度调整对应的一级节流元件和二级节流元件的开度。
可以理解的是,计算公式预先设在空调器的电控元件内,计算公式可以根据实际情况具体限定。
具体地,制冷时,第一节流元件的开度LA_cool_1与室外环境温度T4和运行频率F之间的关系式为:LA_cool_1=a1·F+b1T4+c1,当计算的开度LA_cool_1大于采集的第一节流元件的实际开度时,将第一节流元件的开度增大到计算开度;反之关小。
第二节流元件的开度LA_cool_2与室外环境温度T4和运行频率F之间的关系式为:LA_cool_2=a2·F+b2T4+c2,当计算的开度LA_cool_2大于采集的第二节流元件的实际开度时,将第二节流元件的开度增大到计算开度;反之关小。其中,0≤a1≤20,0≤b1≤20,-50≤c1≤100;0≤a2≤30,0≤b2≤30,-50≤c2≤150控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
制热时,第二节流元件的开度LA_heat_1与室外环境温度T4和运行频率F之间的关系式为:LA_heat_1=x1·F+y1T4+z1,当计算的开度LA_heat_1大于采集的第二节流元件的实际开度时,将第二节流元件的开度增大至计算开度;反之关小。
第一节流元件的开度LA_heat_2与室外环境温度T4和运行频率F之间的关系式为:LA_heat_2=x2·F+y2T4+z2,当计算的开度LA_heat_2大于采集的第一节流元件的实际开度时,将第一节流元件的开度增大到计算开度;反之关小。其中,0≤x1≤15,0≤y1≤15,-50≤z1≤100;0≤x2≤25,0≤y2≤25,-50≤z2≤150控制系数x、y、z均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
例如在制冷时,检测到室外环境温度为35℃,压缩机运行频率为58Hz,设定a1=1,b1=1.6,c1=6;a2=1.5,b2=1.6,c2=17。首先系统根据采集到的频率和T4值,计算出第一节流元件的开度应该为120,调整第一节流元件的开度到120;然后计算出第二节流元件的开度为160,调整第二节流元件的开度到160。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值;或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
在制热时,检测到室外环境温度为7℃,压缩机运行频率为72Hz,设定x1=2.0,y1=3.0,z1=22.0;x2=1,y2=3.0,z2=7.0。首先系统根据采集到的频率和T4值,计算出第二节流元件的开度应该为187,调整第二节流元件的开度到187;然后计算出第一节流元件的开度为100,调整第一节流元件的开度到100。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
实施例2:
在该实施例中,第一检测对象为室外环境温度T4和运行频率F,首先根据室外环境温度T4和运行频率F计算得到一级节流元件的设定开度,然后根据设定开度调整一级节流元件的开度;
第二检测对象为室外环境温度T4、运行频率F和排气压力;或者第二检测对象为室外环境温度T4、运行频率F和排气温度,首先根据室外环境温度T4和运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到的排气压力或者排气温度调整二级节流元件的开度以使得检测到的排气压力或者排气温度达到设定排气压力或者设定排气温度。
具体地,制冷时,第一节流元件的开度LA_cool_1与室外环境温度T4和运行频率F之间的关系式为:LA_cool_1=a1·F+b1T4+c1,当计算的开度LA_cool_1大于采集的第一节流元件的实际开度时,将第一节流元件的开度增大到计算开度;反之关小。
当第二检测对象包括排气温度时,排气温度TP与室外环境温度T4和运行频率F之间的关系式为:TP_cool=a2·F+b2T4+c2,当第二检测对象包括排气压力时,排气压力P排与室外环境温度T4和运行频率F之间的关系式为:P排_cool=a3·F+b3T4+c3,当采集到的排气温度或者排气压力大于计算的设定排气温度或者设定排气压力时,开大第二节流元件的开度;反之关小。其中0≤a1≤20,0≤b1≤20,-50≤c1≤100,0≤a2≤30,0≤b2≤30,-50≤c2≤150,0≤a3≤30,0≤b3≤30,-50≤c3≤150。控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
制热时,第二节流元件的开度LA_heat_1与室外环境温度T4和运行频率F之间的关系式为:LA_heat_1=x1·F+y1T4+z1,当计算的开度LA_heat_1大于采集的第二节流元件的实际开度时,将第二节流元件的开度增大计算开度;反之关小。
当第二检测对象包括排气温度时,排气温度TP与室外环境温度T4和运行频率F之间的关系式为:TP_heat=x2·F+y2T4+z2,当第二检测对象包括排气压力时,排气压力P排与室外环境温度T4和运行频率F之间的关系式为:P排_heat=x3·F+y3T4+z3,当采集到的排气温度或者排气压力大于计算的设定排气温度或者设定排气压力时,开大第一节流元件的开度;反之关小。其中0≤x1≤15,0≤y1≤15,-50≤z1≤100,0≤x2≤25,0≤y2≤25,
-50≤z2≤150,0≤x3≤25,0≤y3≤25,-50≤z3≤150。控制系数x、y、z均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
例如在制冷时,检测到室外环境温度为35℃,压缩机运行频率为58Hz,设定a1=1,b1=1.6,c1=6;a2=0.5,b2=0.4,c2=31;a3=0.25,b3=0.2,c2=3.9。首先系统根据采集到的频率和T4值,计算出第一节流元件的开度应该为120,调整第一节流元件的开度到120,然后系统根据采用到的频率和T4值,计算出第二节流元件对应的排气温度TP_cool为74℃或者排气压力P排_cool为2.54MPa,这时根据检测到的排气温度TP或者排气压力P排调整第二节流元件的开度,当检测到的排气温度大于74℃(或者检测到的排气压力P排大于2.54Mpa)时,逐步加大第二节流元件的开度(可按每次调节4步动作)。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
制热时,检测到室外环境温度为7℃时,压缩机运行频率为72Hz,设定x1=2.0,y1=3.0,z1=22.0;x2=0.5,y2=0.4,z2=30;x3=0.25,y3=0.2,z3=5。首先系统根据采集到的频率和T4值,计算出第二节流元件的开度应该为187,调整第二节流元件的开度到187,然后系统根据采用到的频率和T4值,计算出第一节流元件对应的排气温度TP_heat为68.8℃,排气压力P排_heat为2.44MPa。这时根据检测到的排气温度TP或者排气压力P调整第一节流元件的开度,当检测到的排气温度大于68.8℃(或者检测到的排气压力P排大于2.44Mpa)时,逐步加大第一节流元件的开度(可按每次调节4步动作),反之逐渐减小第一节流元件的开度。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
实施例3:
在该实施例中,预设多个室外温度区间,每个室外温度区间对应不同的节流元件的开度,第一检测对象为室外环境温度T4,根据实际检测到的室外环境温度T4所在的室外温度区间对应的开度值调整一级节流元件的开度;
第二检测对象为室外环境温度T4、运行频率F和排气压力;或者第二检测对象为室外环境温度T4、运行频率F和排气温度,首先根据室外环境温度T4和运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到排气压力或者排气温度调整二级节
流元件的开度以使得检测到排气压力或排气温度达到设定排气压力或者设定排气温度。
具体地,制冷时,不同的室外温度区间对应的第一节流元件的开度的具体情况如下表:
T4 | 开度 |
10≤T4<20 | 100 |
20≤T4<30 | 110 |
30≤T4<40 | 120 |
40≤T4<50 | 150 |
50≤T4<60 | 180 |
当第二检测对象包括排气温度时,排气温度TP与室外环境温度T4和运行频率F之间的关系式为:TP_cool=a1·F+b1T4+c1,当第二检测对象包括排气压力时,排气压力P排与室外环境温度T4和运行频率F之间的关系式为:P排_cool=a2·F+b2T4+c2,当采集到的排气温度或者排气压力大于计算的设定排气温度或者设定排气压力时,开大第二节流元件的开度;反之关小。其中0≤a1≤20,0≤b1≤20,-50≤c1≤100,0≤a2≤30,0≤b2≤30,-50≤c2≤150。控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
制热时,不同的室外温度区间对应的第二节流元件的开度的具体情况如下表:
T4 | 开度 |
10≤T4<20 | 160 |
5≤T4<10 | 180 |
-5≤T4<5 | 200 |
-10≤T4<-5 | 250 |
-15≤T4<-10 | 300 |
当第二检测对象包括排气温度时,排气温度TP与室外环境温度T4和运行频率F之间的关系式为:TP_heat=x1·F+y1T4+z1,当第二检测对象包括排气压力时,排气压力P排与室外环境温度T4和运行频率F之间的关系式为:P排_heat=x2·F+y2T4+z2,当采集到的排气温度或者排气压力大于计算的设定排气温度或者设定排气压力时,开大第一节流元件的开度;反之关小。其中0≤x1≤25,0≤y1≤25,-50≤z1≤150,0≤x2≤25,0≤y2≤25,-50≤z2≤150。控制系数x、y、z均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
例如,制冷时检测室外环境温度为35℃,压缩机运行频率为58Hz,设定a1=0.5,b1=0.4,c1=31;a2=0.25,b2=0.2,c2=3.9。首先系统根据采集到室外环境温度T4,得出第一节流元件的开度应该为120,调整第一节流元件的开度到120;然后系统根据频率和T4值,计算出第二节流元件对应的排气温度TP_cool为74℃或者排气压力P排_cool为2.54MPa,这时根据检测到的排气温度TP或者排气压力P调整第二节流元件的开度,例如当检测到的排气温度大于74℃(或者检测到的排气压力P排大于2.54Mpa)时,逐步加大第二节流元件的开度(可按每次调节4步动作)。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
制热时,检测到室外环境温度为7℃,压缩机运行频率为72Hz,设定x1=0.5,y1=0.4,z1=30;x2=0.25,y2=2,z2=5。首先系统根据采集到的室外环境温度T4,得出第二节流元件的开度应该为180,调整第二节流元件的开度到180;然后系统根据采用到的频率和T4值,计算出第一节流元件对应的排气温度TP_heat为68.8℃,排气压力P排_heat为3.7MPa。这时根据检测到的排气温度TP或者排气压力P调整第一节流元件的开度,当检测到的排气温度大于68.8℃(或者检测到的排气压力P排大于3.7Mpa)时,逐步加大第一节流元件的开度(可按每次调节4步动作),反之逐渐减小第一节流元件的开度。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
实施例4:
在该实施例中,预设中间温度或者中间压力,第一检测对象为中间压力或者中间温度,根据实际检测到的中间压力或者中间温度调整一级节流元件的开度以使得检测到的中间压力或者中间温度达到预设中间压力或者预设中间温度。
第二检测对象为室外环境温度T4、运行频率F和排气压力;或者第二检测对象为室外环境温度T4、运行频率F和排气温度,首先根据室外环境温度T4和运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到排气压力或者排气温度调整二级节流元件的开度以使得检测到的排气压力或排气温度达到设定排气压力或者设定排气温度。
具体地,制冷时,预设的中间温度的取值区间可以为20℃-35℃,预设的中间压力的取值区间可以为0.8MPa-2.0MPa。当检测到中间压力或者中间温度低于设定值时,开大第一节流元件的开度,反之关小。
当第二检测对象包括排气温度时,排气温度TP与室外环境温度T4和运行频率F之间的关系式为:TP_cool=a1·F+b1T4+c1,当第二检测对象包括排气压力时,排气压力P排与室外环境温度T4和运行频率F之间的关系式为:P排_cool=a2·F+b2T4+c2,当采集到的排气温度或者排气压力大于计算的设定排气温度或者设定排气压力时,开大第二节流元件的开度;反之关小。其中0≤a1≤20,0≤b1≤20,-50≤c1≤100,0≤a2≤30,0≤b2≤30,-50≤c2≤150。控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
制热时,预设的中间温度的取值区间可以为20℃-30℃,预设的中间压力的取值区间可以为1.0MPa-2.5MPa。当检测到中间压力或者中间温度高于设定值时,开大第二节流元件的开度,反之关小。
当第二检测对象包括排气温度时,排气温度TP与室外环境温度T4和运行频率F之间的关系式为:TP_heat=x1·F+y1T4+z1,当第二检测对象包括排气压力时,排气压力P排与室外环境温度T4和运行频率F之间的关系式为:P排_heat=x2·F+y2T4+z2,当采集到的排气温度或者排气压力大于计算的设定排气温度或者设定排气压力时,开大第一节流元件的开度;反之关小。其中0≤x1≤25,0≤y1≤25,-50≤z1≤150,0≤x2≤25,0≤y2≤25,-50≤z2≤150。控制系数x、y、z均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
例如制冷时,设定中间温度为26℃或者设定中间压力1.65MPa,检测到室外环境温度为35℃,压缩机运行频率为58Hz,设定a1=0.5,b1=0.4,c1=31;a2=0.25,b2=0.2,c2=3.9。首先,系统根据采集到的中间温度或者中间压力值调整第一节流元件的开度。当采集到的中间温度大于26℃或者采集到的中间压力大于1.65MPa时,逐步关小第一节流元件的开度(可按每次调节4步动作)。反之调小开度。然后系统根据频率和T4值,计算出第二节流元件对应的排气温度TP_cool为74℃或者排气压力P排_cool为2.54MPa,这时根据检测到的排气温度TP或者排气压力P调整第二节流元件的开度,当检测到排气温度大于74℃(或者检测到的压力P排大于2.54Mpa)时,逐步加大第二节流元件的开度(可按每次调节4步动作)。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
制热时,设定中间温度为26℃,中间压力1.6MPa,检测到室外环境温度为7℃,压缩机运行频率为72Hz,设定x1=0.5,y1=0.4,z1=30;x2=0.25,y2=2,z2=5。首先系统根据采集到的中间温度或者中间压力值调整第二节流元件的开度。当采集到的中间温度大于26℃或者采集到的中间压力大于1.6MPa时,逐步加大第二节流元件的开度(可按每次调节4步动作)。反之调小开度。然后系统根据检测到的频率和T4值,计算出第一节流元件对应的排气温度TP_heat为68.8℃,排气压力P排_heat为3.7MPa。这时根据检测到的排气温度TP或者排气压力P调整第一节流元件的开度,当检测到的排气温度大于68.8℃(或者检测到的排气压力P排大于3.7Mpa)时,逐步加大第一节流元件的开度(可按每次调节4步动作),反之逐渐减小第一节流元件的开度。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
实施例5:
在该实施例中,预设中间温度或者中间压力,第一检测对象为中间压力或者中间温度,根据实际检测到的中间压力或者中间温度调整一级节流元件的开度以使得检测到的中间压力或者中间温度达到预设中间压力或者预设中间温度;
第二检测对象为室外环境温度T4和运行频率F,首先根据室外环境温度T4和运行频率F计算得到二级节流元件的设定开度,然后根据设定开度调整二级节流元件的开度。
具体地,制冷时预设的中间温度的取值区间可以为20℃-35℃,预设的中间压力的取值区间可以为0.8MPa-1.5MPa。当检测到中间压力或者温度低于设定值时,开大第一节流元件的开度,反之关小。
第二节流元件的开度LA_cool_2与室外环境温度T4和运行频率F之间的关系式为:LA_cool_2=a2·F+b2T4+c2,当计算的开度LA_cool_2大于采集的第二节流元件的实际开度时,将第二节流元件的开度增大到计算开度;反之关小。其中,0≤a2≤30,0≤b2≤30,-50≤c2≤150,控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
制热时,预设的中间温度的取值区间可以为20℃-30℃,预设的中间压力的取值区间可以为1.0MPa-2.5MPa。当检测到中间压力或者温度高于设定值时,开大第二节流元件的开度,反之关小。
第一节流元件的开度LA_heat_2与室外环境温度T4和运行频率F之间的关系式为:LA_heat_2=x2·F+y2T4+z2,当计算的开度LA_heat_2大于采集的第一节流元件的实际开度时,将第一节流元件的的开度增大到计算开度;反之关小。其中,0≤x2≤25,0≤y2≤25,-50≤z2≤150,控制系数x、y、z均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
例如制冷时,设定中间温度为26℃或者设定中间压力1.65MPa,检测到室外环境温度为35℃,压缩机运行频率为58Hz,设定a2=1.5,b2=1.6,c2=17。首先,系统根据采集到的中间温度或者中间压力值调整第一节流元件的开度。当采集到的中间温度大于26℃或者采集到的中间压力大于1.65MPa时,逐步关小第一节流元件的开度(可按每次调节4步动作)。反之调小开度。然后系统根据检测到室外环境温度和压缩机运行频率计算出第二节流元件的设定开度为160,然后调整第二节流元件的开度至160。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
制热时,设定中间温度为26℃,中间压力1.6MPa,检测到室外环境温度为7℃,压缩机运行频率为72Hz,设定x2=1,y2=3.0,z2=7.0。首先系统根据采集到的中间温度或者中间压力值调整第二节流元件的开度。当检测到的中间温度大于26℃或者检测到的中间压力大于1.6MPa时,逐步加大第二节流元件的开度(可按每次调节4步动作)。反之调小开度。然后计算得出第一节流元件的开度为100,调整第一节流元件的开度至100。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
实施例6:
在该实施例中,预设多个室外温度区间,每个室外温度区间对应不同的节流元件的开度,第一检测对象为室外环境温度T4,根据实际检测到的室外环境温度T4所在的室外温度区间对应的开度值调整一级节流元件的开度。
第二检测对象为室外环境温度T4和运行频率F,首先根据室外环境温度T4和运行频率F计算得到二级节流元件的设定开度,然后根据设定开度调整二级节流元件的开度。
具体地,制冷时,不同的室外温度区间对应的第一节流元件的开度的具体情况如下表:
T4 | 开度 |
10≤T4<20 | 100 |
20≤T4<30 | 110 |
30≤T4<40 | 120 |
40≤T4<50 | 150 |
50≤T4<60 | 180 |
第二节流元件的开度LA_cool_2与室外环境温度T4和运行频率F之间的关系式为:LA_cool_2=a2·F+b2T4+c2,当计算的开度LA_cool_2大于采集的第二节流元件的实际开度时,将第二节流元件的开度增大到计算开度;反之关小。其中,0≤a2≤30,0≤b2≤30,-50≤c2≤150,控制系数a、b、c均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
制热时,不同的室外温度区间对应的第二节流元件的开度的具体情况如下表:
T4 | 开度 |
10≤T4<20 | 160 |
5≤T4<10 | 180 |
-5≤T4<5 | 200 |
-10≤T4<-5 | 250 |
-15≤T4<-10 | 300 |
第一节流元件的开度LA_heat_2与室外环境温度T4和运行频率F之间的关系式为:LA_heat_2=x2·F+y2T4+z2,当计算的开度LA_heat_2大于采集的第一节流元件的实际开度时,将第一节流元件的开度增大到计算开度;反之关小。其中,0≤x2≤25,0≤y2≤25,-50≤z2≤150,控制系数x、y、z均可为0,当其中任何一个系数为零时,证明该系数对应的参数对节流元件开度无影响。
例如,制冷时,检测到室外环境温度为35℃,压缩机运行频率为58Hz,设定a2=1.5,b2=1.6,c2=17。首先,首先系统根据采集到室外环境温度T4,得出第一节流元件的开度应该为120,调整第一节流元件的开度到120。然后系统根据检测到室外环境温度和压缩机运行频率计算出第二节流元件的设定开度为160,然后调整第二节流元件的开度至160。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户
对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
制热时,检测到室外环境温度为7℃,压缩机运行频率为72Hz,设定x2=1,y2=3.0,z2=7.0。首先系统根据采集到的室外环境温度T4,得出第二节流元件的开度应该为180,调整第二节流元件的开度到180;然后计算得出第一节流元件的开度为100,调整第一节流元件的开度至100。维持两个节流元件的开度200s后,重新检测压缩机运行频率和T4值,或者根据用户对空调的调整,检测压缩机运行频率和T4值,对第一节流元件和第二节流元件进行重新调整。
按照这种调整方式,空调整机能效比目前市场上同等规格空调器,能效高6.5%。
可以理解的是,上述六个实施例只是给出的具体示例说明,本发明实施例的控制方法不限于上述六种,例如可以将六种示例中的一级节流元件和二级节流元件的开度的调节方式进行随机组合;或者上述实施例中的压缩机运行频率也可以由实际检测到的室外环境温度得出,例如预设多个室外环境温度区间,多个室外环境温度区间对应不同的压缩机运行频率。
下面参考图1-图3、图10和图11详细描述根据本发明实施例的空调器的控制方法,其中空调器为根据本发明上述实施例的冷暖型空调器。其中第一节流元件开度固定,第二节流元件开度可调。
根据本发明实施例的空调器的控制方法,包括如下步骤:制冷运行时根据对第一检测对象的检测结果调整第二节流元件的开度至设定开度。制热运行时根据对第二检测对象的检测结果调整第二节流元件的开度至设定开度。也就是说,制冷和制热时,均采集处理控制第二节流元件所需的参数,然后根据得到的参数控制第二节流元件的开度直至满足条件。
其中第一检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、排气口的排气压力、从气体出口排出的冷媒的中间压力、从气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个。
第二检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气压力、排气口的排气温度、从气体出口排出的冷媒的中间压力、从气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个。可以理解的是,第一检测对象和第二检测对象可以相同也可以不同。需要进行说明的是,中间压力和中间温度可以通过检测连接气体出口和第二储液器的管路中的冷媒得出。
当第二节流元件的开度满足条件后,可以在运行n秒后,重新检测第一检测对象或第
二检测对象,然后根据检测结果调整第二节流元件的开度,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测第一检测对象或第二检测对象,然后根据检测结果调整第二节流元件的开度。换言之,在制冷或者制热时,在第二节流元件的开度满足条件后,可以在运行n秒或者在接收到用户的操作信号后,对第二节流元件的开度的相关参数重新检测判断,然后根据判定结果调整第二节流元件的开度,如此重复。
根据本发明实施例的空调器的控制方法,可以很好的控制第二节流元件的开度到达预设开度,达到最佳节能效果。
下面以六个具体实施例为例详细描述根据本发明实施例的控制方法,第一节流元件开度固定,第二节流元件开度可调。
实施例7:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4和排气温度,首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到设定排气温度,然后调整第二节流元件的开度以使得检测到的排气温度达到设定排气温度。可以理解的是,计算公式预先设在空调器的电控元件内,计算公式可以根据实际情况具体限定。
具体地,当第一检测对象为室外环境温度T4和排气温度时,制冷开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气温度TP,其中TP=a1*F+b1+c1*T4,a1、b1、c1的取值范围可以与室外环境温度T4对应,例如当20℃≥T4时:a1取-10--10;b1取-100--100;c1取-10—10;当20℃<T4≤30℃时:a1取-8--8;b1取-80--80;c1取-8—8;当30℃<T4≤40℃时:a1取-9--9;b1取-90--90;c1取-6—6;当40℃<T4≤50℃时:a1取-8--8;b1取-90--90;c1取-5—5;当50℃<T4时:a1取-10--10;b1取-100--100;c1取-5—5。当然可以理解的是,a1、b1、c1的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。
需要说明的是,当a1、b1其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a1=0时,即认为与频率F无关。
然后根据TP调节第二节流元件的运行开度。第二节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第二节流元件的开度。
例如,开机制冷运行,检测到T4温度为35℃,查询该T4下对应压缩机运行频率应为90HZ,对应温度区间的排气温度系数a1为0.6、b1为20、c1为0.2,计算出设定排气温度TP=0.6*90+20+0.2*35=81,按照设定排气温度Tp=81℃,调节第二节流元件开度:初始开
度下检测到的TP已达到90度,则开大第二节流元件,达到设定排气温度Tp=81℃对应的第二节流元件开度,也就是说使得检测到的排气温度达到设定排气温度。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和排气温度时,制热开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气温度TP,其中TP=a2*F+b2+c2*T4;a2、b2、c2的取值范围可以与室外环境温度T4对应,例如当5℃<T4≤15℃时:a2取-8--8;b2取-80--80;c2取-8—8;当15℃<T4时:a2取-9--9;b2取-90--90;c2取-6—6。当然可以理解的是,a2、b2、c2的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a2、b2其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a2=0时,即认为与频率F无关。
然后根据TP调节第二节流元件的运行开度。第二节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第二节流元件开度。
例如开机制热运行时,检测到T4温度为7℃,查询该T4下对应压缩机运行频率应为75HZ,对应温度区间的排气温度系数a2为0.4、b2为10、c2为5,计算出排气温度Tp=0.4*75+10+5*7=75,按照设定排气温度Tp=75℃,调节第二节流元件开度:初始开度下检测到的Tp已达到70℃,则关小膨胀阀,达到设定排气温度Tp=75℃对应的第二节流元件开度,也就是说使得检测到的排气温度达到设定排气温度。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
需要进行说明的是,空调器在室外环境温度T4低于5℃以下时,很容易结霜,排气温度会不断发生变化,则在该种情况下不能根据排气温度进行调节。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例8:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4和排气压力,首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到设定排气压力,然后调整第二节流元件的开度以使得检测到的排气压力
达到设定排气压力。
具体地,当第一检测对象为室外环境温度T4和排气压力时,制冷开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气压力Pp;其中Pp=a3*F+b3+c3*T4;a3、b3、c3的取值范围可以与室外环境温度T4对应,例如当20℃≥T4时:a3取-5--5;b3取-8--8;c3取-1—1;当20℃<T4≤30℃时:a3取-5—5;b3取-10--10;c3取-2—2;当30℃<T4≤40℃时:a3取-5--5;b3取-12--12;c3取-3—3;当40℃<T4≤50℃时:a3取-6--6;b3取-15--15;c3取-4—4;当50℃<T4时:a3取-7--7;b3取-20--20;c3取-5—5。当然可以理解的是,a3、b3、c3的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a3、b3其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a3=0时,即认为与频率F无关。
然后根据Pp调节第二节流元件的运行开度。第二节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第二节流元件开度。
例如开机制冷运行,检测到T4温度为35℃,查询该T4下对应压缩机运行频率应为80HZ,对应温度区间的排气压力系数a3为0.02、b3为0.7、c3为0.02,计算出排气压力Pp=0.02*80+0.7+0.02*35=3.0,按照设定排气压力Pp=3.0MPa调节第二节流元件开度:初始开度下检测到排气压力Pp已达到2.5MPa,则关小第二节流元件,达到设定排气压力Pp=3.0MPa对应的第二节流元件开度,也就是说使得检测到的排气压力达到设定排气压力。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和排气压力时,制热开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气压力Pp;其中Pp=a4*F+b4+c4*T4;a4、b4、c4的取值范围可以与室外环境温度T4对应,例如当-15℃≥T4时:a4取-10--10;b4取-8--8;c4取-5—5;当-15℃<T4≤-5℃时:a4取-12—12;b4取-10--10;c4取-6—6;当-5℃<T4≤5℃时:a4取-15--15;b4取-12--12;c4取-7—7;当5℃<T4≤15℃时:a4取-18--18;b4取-15--15;c4取-8—8;当15℃<T4时:a4取-20--20;b4取-18--18;c4取-9—9。当然可以理解的是,a4、b4、c4的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a4、b4其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a4=0时,即认为与频率F无关。
然后根据Pp调节第二节流元件的运行开度。第二节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第二节流
元件开度。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例9:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4,首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到第二节流元件的设定开度,然后调整第二节流元件的开度至设定开度。
具体地,当第一检测对象为室外环境温度T4时,制冷开始时检测室外环境温度T4;根据T4确定压缩机运行频率F,根据T4和F确定第二节流元件的设定开度Lr;其中设定开度Lr=a5*F+b5+c5*T4;其中a5、b5、c5的取值范围可以与室外环境温度T4对应,例如预设不同的室外环境温度区间对应不同的a5、b5、c5的取值范围,然后可以根据实际情况限定a5、b5、c5的取值。
比较第二节流元件的设定开度Lr和第二节流元件初始开度的差异,如一致,不用调节,如不一致,则调节到设定开度Lr。第二节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第二节流元件开度。
当第二检测对象为室外环境温度T4时,制热开始时检测室外环境温度T4;根据T4确定压缩机运行频率F,根据T4和F确定第二节流元件的设定开度Lr;其中设定开度Lr=a6*F+b6+c6*T4;其中a6、b6、c6的取值范围可以与室外环境温度T4对应,例如当-15℃≥T4时:a6取-20--20;b6取-200--200;c6取-10—10;当-15℃<T4≤-5℃时:a6取-18--18;b6取-180--180;c6取-9—9;当-5℃<T4≤5℃:a6取-15--15;b6取-150--150;c6取-8—8。当然可以理解的是,a6、b6、c6的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a6、b6其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a6=0时,即认为与频率F无关。
比较第二节流元件的设定开度Lr和第二节流元件初始开度的差异,如一致,不用调节,如不一致,则调节到设定开度Lr。第二节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第二节流元件开度。
例如开机制热运行,检测到T4温度为-7℃,查询该T4下对应压缩机运行频率应为90HZ,对应温度区间的膨胀阀开度系数a6为1.2、b6为80、c6为3,计算出膨胀阀开度Lr=1.2*90+80+3*(-7)=167,按照设定开度Lr=167步,调节第二节流元件开度:第二节流
元件初始开度Lr为200步,则关小第二节流元件,达到设定开度Lr=167步。第二节流元件达到设定开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例10:
在该实施例中,预设多个室外温度区间,每个室外温度区间对应不同的气液分离器的温度,第一检测对象和/或第二检测对象为室外环境温度T4和气液分离器的温度,首先根据实际检测到的室外环境温度T4得到所在的室外温度区间对应的气液分离器的设定温度,然后调整第二节流元件的开度直至实际检测到的气液分离器的温度满足设定温度。
具体地,当第一检测对象为室外环境温度T4和气液分离器的温度时,制冷开机运行时检测室外环境温度T4和气液分离器的温度Ts,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定温度,例如室外温度区间与气液分离器的设定温度的对应关系可以如下:当20℃≥T4时:Ts取0—30;当0℃<T4≤30℃:Ts取0—40;当30℃<T4≤40℃时:Ts取0—50;当40℃<T4≤50℃时:Ts取0—60;当50℃<T4时:Ts取0—65。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
然后调整第二节流元件的开度,使得检测到的气液分离器的温度Ts满足设定温度。
例如开机制冷运行,检测到T4温度为35℃,查询该T4区间下对应气液分离器温度Ts应为26℃,初始开度下检测到气液分离器的温度Ts已达到20℃,则关小第二节流元件,达到设定温度Ts=26℃对应的第二节流元件开度,也就是说使得检测到的气液分离器的温度Ts达到设定温度。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和气液分离器的温度时,制热开机运行时检测室外环境温度T4和气液分离器的温度Ts,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定温度,例如室外温度区间与气液分离器的设定温度的对应关系可以如下:当-15℃≥T4时:Ts取-50—30;当-15℃<T4≤-5℃时:Ts取-45—40;当-5℃<T4≤5℃时:Ts取-40—50;当5℃<T4≤15℃时:Ts取-35—60;当15℃<T4时:Ts取-30—65。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
然后调整第二节流元件的开度,使得检测到的气液分离器的温度Ts满足设定温度。
例如开机制热运行,检测到T4温度为6℃,查询该T4区间下对应气液分离器温度Ts应为20℃,初始开度下检测到的Ts已达到25℃,则关小第二节流元件,达到设定温度Ts=20℃对应的第二节流元件开度,也就是说,使得检测到的气液分离器的温度Ts达到设定温度。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
实施例11:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4和中间压力;首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到设定中间压力,然后调整第二节流元件的开度以使得检测到的中间压力达到设定中间压力。
具体地,设定中间压力Ps与室外环境温度T4和运行频率F之间的关系式可以为Ps=a7*F+b7+c7*T4,其中a7、b7、c7的取值范围可以与室外环境温度T4对应,例如预设不同的室外环境温度区间对应不同的a7、b7、c7的取值区间,然后可以根据实际情况限定a7、b7、c7的取值。可以理解的是,制冷时a7、b7、c7的取值与制热时a7、b7、c7的取值可以相同也可以不同。
例如制热时,检测到T4温度为7℃,查询该T4下对应压缩机运行频率应为75HZ,对应温度区间的压力系数a7为0.01、b7为0.6、c7为0.1,计算出设定中间压力Ps=0.01*75+0.6+0.1*7=2.05,按照设定中间压力Ps=2.05MPa,调节第二节流元件开度:初始开度下检测中间压力Ps已达到1.8MPa,则开大第二节流元件,达到设定中间压力Ps=2.05MPa对应的第二节流元件开度,也就是说,调整第二节流元件的开度以使得检测到的中间压力达到设定中间压力,第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例12:
在该实施例中,预设多个室外温度区间,每个室外温度区间对应不同的气液分离器的压力,第一检测对象和/或第二检测对象为室外环境温度T4和气液分离器的压力,首先根据实际检测到的室外环境温度T4得到所在的室外温度区间对应的气液分离器的设定压力,
然后调整第二节流元件的开度直至实际检测到的气液分离器的压力满足设定压力。
具体地,当第一检测对象为室外环境温度T4和气液分离器的压力时,制冷开机运行时检测室外环境温度T4和气液分离器的压力Ps,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定压力,例如室外温度区间与气液分离器的设定压力的对应关系可以如下:当20℃≥T4时:Ps取0.1—8;当20℃<T4≤30℃时:Ps取0.1—10;当30℃<T4≤40℃时:Ps取0.1—15;当40℃<T4≤50℃时:Ps取0.1—20;当50℃<T4时:Ps取0.1—25。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
然后调整第二节流元件的开度,使得检测到的气液分离器的压力Ps满足设定压力。
例如开机制冷运行,检测到T4温度为50℃,查询该T4区间下对应气液分离器的设定压力Ps应为2.0MPa,初始开度下检测到的气液分离器的压力Ps已达到2.2MPa,则开大第二节流元件,达到设定压力Ps=2.2MPa对应的第二节流元件开度,也就是说使得检测到的气液分离器的压力Ps满足设定压力。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和气液分离器的压力时,制热开机运行时检测室外环境温度T4和气液分离器的压力Ps,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定压力,例如室外温度区间与气液分离器的设定压力的对应关系可以如下:当-15℃≥T4时:Ps取0.1—10;当-15℃<T4≤-5℃时:Ps取0.1—12;当-5℃<T4≤5℃时:Ps取0.1—15;当5℃<T4≤15℃时:Ps取0.1—20;当15℃<T4时:Ps取0.1—25。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
例如开机制热运行,检测到T4温度为-8℃,查询该T4区间下对应气液分离器的设定压力Ps应为1.2MPa,初始开度下检测到气液分离器的压力Ps已达到1.3MPa,则关小第二节流元件,达到设定压力Ps=1.2MPa对应的第二节流元件开度,也就是说使得检测到的气液分离器的压力Ps满足设定压力。第二节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
可以理解的是,上述六个具体实施例只是给出的示例说明,本发明实施例的控制方法不限于上述六种,例如可以将上述六种示例中的制冷时第二节流元件的开度的调节方式和制热时第二节流元件的开度的调节方式进行随机组合。同时可以理解的是,上述实施例中通过计算得到的设定排气压力、设定排气温度、设定开度、设定中间压力等设定参数也可以采用其他方式得出,例如可以设置不同的室外温度区间,多个室外温度区间对应不用的
设定参数,根据实际检测到的室外环境温度所在的室外温度区间即可得到相应的设定参数。还可以理解的是,上述通过室外环境温度查阅得到的参数也可以通过预设的计算公式得出。
下面参考图1-图3、图12和图13详细描述根据本发明实施例的空调器的控制方法,其中空调器为根据本发明上述实施例的冷暖型空调器,第一节流元件开度可调,第二节流元件开度固定。
根据本发明实施例的空调器的控制方法,包括如下步骤:制冷运行时根据对第一检测对象的检测结果调整第一节流元件的开度至设定开度。制热运行时根据对第二检测对象的检测结果调整第一节流元件的开度至设定开度。也就是说,制冷和制热时,均采集处理控制第一节流元件所需的参数,然后根据得到的参数控制第一节流元件的开度直至满足条件。
其中第一检测对象包括室外环境温度、双缸压缩机的运行频率排气温度、排气口的排气压力、从气体出口排出的冷媒的中间压力、从气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个。
第二检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气压力、排气口的排气温度、从气体出口排出的冷媒的中间压力、从气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个。可以理解的是,第一检测对象和第二检测对象可以相同也可以不同。需要进行说明的是,中间压力和中间温度可以通过检测连接气体出口和第二储液器的管路中的冷媒得出。
当第一节流元件的开度满足条件后,可以在运行n秒后,重新检测第一检测对象或第二检测对象,然后根据检测结果调整第一节流元件的开度,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测第一检测对象或第二检测对象,然后根据检测结果调整第一节流元件的开度。换言之,在制冷或者制热时,在第一节流元件的开度满足条件后,可以在运行n秒或者在接收到用户的操作信号后,对第一节流元件的开度的相关参数重新检测判断,然后根据判定结果调整第一节流元件的开度,如此重复。
根据本发明实施例的空调器的控制方法,可以很好的控制第一节流元件的开度到达预设开度,达到最佳节能效果。
下面以六个具体实施例为例详细描述根据本发明实施例的控制方法,第一节流元件开度可调,第二节流元件开度固定。
实施例13:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4和排气温度,首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运
行频率F计算得到设定排气温度,然后调整第一节流元件的开度以使得检测到的排气温度达到设定排气温度。可以理解的是,计算公式预先设在空调器的电控元件内,计算公式可以根据实际情况具体限定。
具体地,当第一检测对象为室外环境温度T4和排气温度时,制冷开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气温度TP,其中TP=a1*F+b1+c1*T4,a1、b1、c1的取值范围可以与室外环境温度T4对应,例如当20℃≥T4时:a1取-10--10;b1取-100--100;c1取-10—10;当20℃<T4≤30℃时:a1取-8--8;b1取-80--80;c1取-8—8;当30℃<T4≤40℃时:a1取-9--9;b1取-90--90;c1取-6—6;当40℃<T4≤50℃时:a1取-8--8;b1取-90--90;c1取-5—5;当50℃<T4时:a1取-10--10;b1取-100--100;c1取-5—5。当然可以理解的是,a1、b1、c1的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。
需要说明的是,当a1、b1其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a1=0时,即认为与频率F无关。
然后根据TP调节第一节流元件的运行开度。第一节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第一节流元件的开度。
例如,开机制冷运行,检测到T4温度为35℃,查询该T4下对应压缩机运行频率应为90HZ,对应温度区间的排气温度系数a1为0.6、b1为20、c1为0.2,计算出设定排气温度TP=0.6*90+20+0.2*35=81,按照设定排气温度Tp=81℃,调节第一节流元件开度:初始开度下检测到的TP已达到90度,则开大第一节流元件,达到设定排气温度Tp=81℃对应的第一节流元件开度,也就是说使得检测到的排气温度达到设定排气温度。第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和排气温度时,制热开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气温度TP,其中TP=a2*F+b2+c2*T4;a2、b2、c2的取值范围可以与室外环境温度T4对应,例如当5℃<T4≤15℃时:a2取-8--8;b2取-80--80;c2取-8—8;当15℃<T4时:a2取-9--9;b2取-90--90;c2取-6—6。当然可以理解的是,a2、b2、c2的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a2、b2其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a2=0时,即认为与频率F无关。
然后根据TP调节第一节流元件的运行开度。第一节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第一节流
元件开度。
例如开机制热运行时,检测到T4温度为7℃,查询该T4下对应压缩机运行频率应为75HZ,对应温度区间的排气温度系数a2为0.4、b2为10、c2为5,计算出排气温度Tp=0.4*75+10+5*7=75,按照设定排气温度Tp=75℃,调节第一节流元件开度:初始开度下检测到的Tp已达到70℃,则关小膨胀阀,达到设定排气温度Tp=75℃对应的第一节流元件开度,也就是说使得检测到的排气温度达到设定排气温度。第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
需要进行说明的是,空调器在室外环境温度T4低于5℃以下时,很容易结霜,排气温度会不断发生变化,则在该种情况下不能根据排气温度进行调节。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例14:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4和排气压力,首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到设定排气压力,然后调整第一节流元件的开度以使得检测到的排气压力达到设定排气压力。
具体地,当第一检测对象为室外环境温度T4和排气压力时,制冷开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气压力Pp;其中Pp=a3*F+b3+c3*T4;a3、b3、c3的取值范围可以与室外环境温度T4对应,例如当20℃≥T4时:a3取-5--5;b3取-8--8;c3取-1—1;当20℃<T4≤30℃时:a3取-5—5;b3取-10--10;c3取-2—2;当30℃<T4≤40℃时:a3取-5--5;b3取-12--12;c3取-3—3;当40℃<T4≤50℃时:a3取-6--6;b3取-15--15;c3取-4—4;当50℃<T4时:a3取-7--7;b3取-20--20;c3取-5—5。当然可以理解的是,a3、b3、c3的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a3、b3其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a3=0时,即认为与频率F无关。
然后根据Pp调节第一节流元件的运行开度。第一节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第一节流
元件开度。
例如开机制冷运行,检测到T4温度为35℃,查询该T4下对应压缩机运行频率应为80HZ,对应温度区间的排气压力系数a3为0.02、b3为0.7、c3为0.02,计算出排气压力Pp=0.02*80+0.7+0.02*35=3.0,按照设定排气压力Pp=3.0MPa调节第一节流元件开度:初始开度下检测到排气压力Pp已达到2.5MPa,则关小第一节流元件,达到设定排气压力Pp=3.0MPa对应的第一节流元件开度,也就是说使得检测到的排气压力达到设定排气压力。第一节流元件达到目标开度后稳定运行,n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和排气压力时,制热开机时检测室外环境温度T4,根据T4确定压缩机的运行频率F,根据T4和F确定设定排气压力Pp;其中Pp=a4*F+b4+c4*T4;a4、b4、c4的取值范围可以与室外环境温度T4对应,例如当-15℃≥T4时:a4取-10--10;b4取-8--8;c4取-5—5;当-15℃<T4≤-5℃时:a4取-12—12;b4取-10--10;c4取-6—6;当-5℃<T4≤5℃时:a4取-15--15;b4取-12--12;c4取-7—7;当5℃<T4≤15℃时:a4取-18--18;b4取-15--15;c4取-8—8;当15℃<T4时:a4取-20--20;b4取-18--18;c4取-9—9。当然可以理解的是,a4、b4、c4的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a4、b4其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a4=0时,即认为与频率F无关。
然后根据Pp调节第一节流元件的运行开度。第一节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第一节流元件开度。
例如开机制热运行,检测到T4温度为7℃,查询该T4下对应压缩机运行频率应为75HZ,对应温度区间的a4为0.02、b4为0.9、c4为0.02,计算出排气压力Pp=0.02*80+0.9+0.02*35=3.2,按照设定排气压力Pp=3.2MPa,调节第一节流元件的开度:初始开度下检测到的排气压力Ps已达到3.0MPa,则关小第一节流元件,达到设定排气压力Ps=3.2MPa对应的第一节流元件开度,也就是说使得检测到的排气压力达到设定排气压力。达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例15:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4,首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到第一节流元件的设定开度,然后调整第一节流元件的开度至设定开度。
具体地,当第一检测对象为室外环境温度T4时,制冷开始时检测室外环境温度T4;根据T4确定压缩机运行频率F,根据T4和F确定第一节流元件的设定开度Lr;其中设定开度Lr=a5*F+b5+c5*T4;其中a5、b5、c5的取值范围可以与室外环境温度T4对应,例如预设不同的室外环境温度区间对应不同的a5、b5、c5的取值范围,然后可以根据实际情况限定a5、b5、c5的取值。
比较第一节流元件的设定开度Lr和第一节流元件初始开度的差异,如一致,不用调节,如不一致,则调节到设定开度Lr。第一节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第一节流元件开度。
当第二检测对象为室外环境温度T4时,制热开始时检测室外环境温度T4;根据T4确定压缩机运行频率F,根据T4和F确定第一节流元件的设定开度Lr;其中设定开度Lr=a6*F+b6+c6*T4;其中a6、b6、c6的取值范围可以与室外环境温度T4对应,例如当-15℃≥T4时:a6取-20--20;b6取-200--200;c6取-10—10;当-15℃<T4≤-5℃时:a6取-18--18;b6取-180--180;c6取-9—9;当-5℃<T4≤5℃:a6取-15--15;b6取-150--150;c6取-8—8。当然可以理解的是,a6、b6、c6的取值不限于此,例如还可以与室外环境温度T4无关,而是系统内预先设定的。需要说明的是,当a6、b6其中之一或同时取值为0时,可认为上面公式中与该项参数无关,例如当a6=0时,即认为与频率F无关。
比较第一节流元件的设定开度Lr和第一节流元件初始开度的差异,如一致,不用调节,如不一致,则调节到设定开度Lr。第一节流元件调节到位后稳定运行。n秒后重新检测室外温度T4是否有变化或者用户是否有操作,然后根据相关变化调节第一节流元件开度。
例如开机制热运行,检测到T4温度为-7℃,查询该T4下对应压缩机运行频率应为90HZ,对应温度区间的膨胀阀开度系数a6为1.2、b6为80、c6为3,计算出膨胀阀开度Lr=1.2*90+80+3*(-7)=167,按照设定开度Lr=167步,调节第一节流元件开度:第一节流元件初始开度Lr为200步,则关小第一节流元件,达到设定开度Lr=167步。第一节流元件达到设定开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例16:
在该实施例中,预设多个室外温度区间,每个室外温度区间对应不同的气液分离器的温度,第一检测对象和/或第二检测对象为室外环境温度T4和气液分离器的温度,首先根据实际检测到的室外环境温度T4得到所在的室外温度区间对应的气液分离器的设定温度,然后调整第一节流元件的开度直至实际检测到的气液分离器的温度满足设定温度。
具体地,当第一检测对象为室外环境温度T4和气液分离器的温度时,制冷开机运行时检测室外环境温度T4和气液分离器的温度Ts,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定温度,例如室外温度区间与气液分离器的设定温度的对应关系可以如下:当20℃≥T4时:Ts取0—30;当0℃<T4≤30℃:Ts取0—40;当30℃<T4≤40℃时:Ts取0—50;当40℃<T4≤50℃时:Ts取0—60;当50℃<T4时:Ts取0—65。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
然后调整第一节流元件的开度,使得检测到的气液分离器的温度Ts满足设定温度。
例如开机制冷运行,检测到T4温度为35℃,查询该T4区间下对应气液分离器温度Ts应为26℃,初始开度下检测到气液分离器的温度Ts已达到20℃,则开大第一节流元件,达到设定温度Ts=26℃对应的第一节流元件开度,也就是说使得检测到的气液分离器的温度Ts达到设定温度。第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和气液分离器的温度时,制热开机运行时检测室外环境温度T4和气液分离器的温度Ts,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定温度,例如室外温度区间与气液分离器的设定温度的对应关系可以如下:当-15℃≥T4时:Ts取-50—30;当-15℃<T4≤-5℃时:Ts取-45—40;当-5℃<T4≤5℃时:Ts取-40—50;当5℃<T4≤15℃时:Ts取-35—60;当15℃<T4时:Ts取-30—65。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
然后调整第一节流元件的开度,使得检测到的气液分离器的温度Ts满足设定温度。
例如开机制热运行,检测到T4温度为6℃,查询该T4区间下对应气液分离器温度Ts应为20℃,初始开度下检测到的Ts已达到25℃,则开大第一节流元件,达到设定温度Ts=20℃对应的第一节流元件开度,也就是说,使得检测到的气液分离器的温度Ts达到设定温度。第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
实施例17:
在该实施例中,第一检测对象和/或第二检测对象为室外环境温度T4和中间压力;首先根据检测到的室外环境温度T4得到运行频率F,并根据检测到的室外环境温度T4和运行频率F计算得到设定中间压力,然后调整第一节流元件的开度以使得检测到的中间压力达到设定中间压力。
具体地,设定中间压力Ps与室外环境温度T4和运行频率F之间的关系式可以为Ps=a7*F+b7+c7*T4,其中a7、b7、c7的取值范围可以与室外环境温度T4对应,例如预设不同的室外环境温度区间对应不同的a7、b7、c7的取值区间,然后可以根据实际情况限定a7、b7、c7的取值。可以理解的是,制冷时a7、b7、c7的取值与制热时a7、b7、c7的取值可以相同也可以不同。
例如制热时,检测到T4温度为7℃,查询该T4下对应压缩机运行频率应为75HZ,对应温度区间的压力系数a7为0.01、b7为0.6、c7为0.1,计算出设定中间压力Ps=0.01*75+0.6+0.1*7=2.05,按照设定中间压力Ps=2.05MPa,调节第一节流元件开度:初始开度下检测中间压力Ps已达到1.8MPa,则开大第一节流元件,达到设定中间压力Ps=2.05MPa对应的第一节流元件开度,也就是说,调整第一节流元件的开度以使得检测到的中间压力达到设定中间压力,第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
在该实施例中,压缩机的运行频率是由室外环境温度确定的,例如预定多个室外环境温度区间,多个室外环境温度区间分别对应多个压缩机运行频率,查询检测到的室外环境温度所在的室外环境温度区间,即可得到相应的压缩机运行频率。当然可以理解的是,压缩机的运行频率也可以通过设在压缩机上的检测装置而检测出。
实施例18:
在该实施例中,预设多个室外温度区间,每个室外温度区间对应不同的气液分离器的压力,第一检测对象和/或第二检测对象为室外环境温度T4和气液分离器的压力,首先根据实际检测到的室外环境温度T4得到所在的室外温度区间对应的气液分离器的设定压力,然后调整第一节流元件的开度直至实际检测到的气液分离器的压力满足设定压力。
具体地,当第一检测对象为室外环境温度T4和气液分离器的压力时,制冷开机运行时检测室外环境温度T4和气液分离器的压力Ps,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定压力,例如室外温度区间与气液分离器的设定压力的对应关系可以如下:当20℃≥T4时:Ps取0.1—8;当20℃<T4≤30℃时:Ps取0.1—10;当30℃<T4≤40℃时:Ps取0.1—15;当40℃<T4≤50℃时:Ps取0.1—20;当50℃<
T4时:Ps取0.1—25。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
然后调整第一节流元件的开度,使得检测到的气液分离器的压力Ps满足设定压力。
例如开机制冷运行,检测到T4温度为50℃,查询该T4区间下对应气液分离器的设定压力Ps应为2.0MPa,初始开度下检测到的气液分离器的压力Ps已达到2.2MPa,则关小第一节流元件,达到设定压力Ps=2.2MPa对应的第一节流元件开度,也就是说使得检测到的气液分离器的压力Ps满足设定压力。第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
当第二检测对象为室外环境温度T4和气液分离器的压力时,制热开机运行时检测室外环境温度T4和气液分离器的压力Ps,根据检测到的室外环境温度T4查询相应的室外温度区间对应的气液分离器的设定压力,例如室外温度区间与气液分离器的设定压力的对应关系可以如下:当-15℃≥T4时:Ps取0.1—10;当-15℃<T4≤-5℃时:Ps取0.1—12;当-5℃<T4≤5℃时:Ps取0.1—15;当5℃<T4≤15℃时:Ps取0.1—20;当15℃<T4时:Ps取0.1—25。当然可以理解的是,上述数值只是示例性说明,而并不是对本发明的具体限定。
例如开机制热运行,检测到T4温度为-8℃,查询该T4区间下对应气液分离器的设定压力Ps应为1.2MPa,初始开度下检测到气液分离器的压力Ps已达到1.3MPa,则开大第一节流元件,达到设定压力Ps=1.2MPa对应的第一节流元件开度,也就是说使得检测到的气液分离器的压力Ps满足设定压力。第一节流元件达到目标开度后稳定运行。n秒后检测T4没有变化,继续稳定运行。
可以理解的是,上述六个具体实施例只是给出的示例说明,本发明实施例的控制方法不限于上述六种,例如可以将上述六种示例中的制冷时第一节流元件的开度的调节方式和制热时第一节流元件的开度的调节方式进行随机组合。同时可以理解的是,上述实施例中通过计算得到的设定排气压力、设定排气温度、设定开度、设定中间压力等设定参数也可以采用其他方式得出,例如可以设置不同的室外温度区间,多个室外温度区间对应不用的设定参数,根据实际检测到的室外环境温度所在的室外温度区间即可得到相应的设定参数。还可以理解的是,上述通过室外环境温度查阅得到的参数也可以通过预设的计算公式得出。
下面参考图1-图3、图14详细描述根据本发明实施例的空调器的控制方法,其中空调器为根据本发明上述实施例的冷暖型空调器,第一节流元件和第二节流元件的开度固定。
根据本发明实施例的空调器的控制方法,包括如下步骤:制冷或制热运行时根据检测
到的压缩机运行参数和/或室外环境温度调整双缸压缩机的运行频率至满足条件,其中压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个。换言之,制冷或制热运行时根据对检测对象的检测结果调整双缸压缩机的运行频率,其中检测对象包括室外环境温度、排气口的排气温度、排气口的排气压力、双缸压缩机的运行电流中的至少一个。
当双缸压缩机的运行频率调整至满足条件后,可以在运行n秒后重新检测压缩机运行参数和/或室外环境温度,然后根据重新检测到的检测结果调整压缩机的运行频率,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测压缩机运行参数和/或室外环境温度,然后根据重新检测到的检测结果调整压缩机的运行频率。换言之,在制冷或制热时,在压缩机的运行频率满足条件后,可以在运行n秒或者在接收到用户的操作信号后,重新检测压缩机运行参数和/或室外环境温度,然后根据检测结果调整运行频率,如此重复。
在本发明的具体示例中,在空调器运行的过程中,如果检测到用户关机指令或者室内环境温度达到设定温度,压缩机停止运行。
根据本发明实施例的空调器的控制方法,通过在运行过程中根据检测结果调整压缩机的运行频率,从而可以让系统运行在合适的参数范围内,提高空调器运行的可靠性。
在本发明的一些实施例中,首先预设多个不同的排气温度区间,多个排气温度区间对应的运行频率的调节指令不同,然后检测排气温度并根据检测到的排气温度所在的排气温度区间对应的调节指令调节运行频率。其中调节指令可以包括降频、升频、保持频率、关机、解除频率限制等指令。从而通过检测排气温度调整压缩机的运行频率,可以直接的反应系统的运行状态,保证系统运行在合适的参数范围内,进一步提高空调器运行的可靠性。需要进行说明的是,解除频率限制指的是压缩机的运行频率不受限制,无需调整压缩机的运行频率。
例如空调器开机制冷运行,运行过程中检测排气温度TP,设定以下几个调节指令:115℃≤TP,停机;110℃≤TP<115℃,降频至TP<110℃;105℃≤TP<110℃,频率保持;TP<105℃,解除频率限制。然后根据实际检测到的排气温度TP执行相应的调节指令,在调节完成后再次检测TP,如果满足调节就结束判定,运行n秒后,对排气温度TP再次检测,重复判断。运行n秒的同时,如果检测到用户关机命令或者设定温度达到,结束运行。
在本发明的一些实施例中,预设多个室外温度区间、制热停机保护电流和制冷停机保护电流,多个室外温度区间对应不同的限频保护电流。首先检测室外环境温度,然后根据检测到的室外环境温度所在的室外温度区间得到对应的限频保护电流,调整运行频率以使实际检测到的运行电流达到相应的限频保护电流,其中当制冷时检测到的运行电流大于制冷停机保护电流时则直接停机;当制热时检测到的运行电流大于制热停机保护电流时则直
接停机。
具体地,制冷时多个室外温度区间与相应的限频保护电流的对应关系可以如下所示:当T4>50.5℃时,限频保护电流为CL5;当49.5℃≥T4>45.5℃时,限频保护电流为CL4;当44.5℃≥T4>41℃时,限频保护电流为CL3;当40℃≥T4>33℃,限频保护电流为CL2;当32≥T4℃,限频保护电流为CL1。其中CL5、CL4、CL3、CL2、CL1和制冷停机保护电流的具体数值可以根据实际情况具体限定,在此不做限定。
例如当制冷运行时检测到的室外环境温度T4位于室外温度区间40℃≥T4>33℃内时,则表示运行电流不允许超过限频保护电流CL2,如果超过,将降频至运行电流低于限频保护电流CL2。
制热时多个室外温度区间与相应的限频保护电流的对应关系可以如下所示:当T4>15℃时,限频保护电流为HL5;当14℃>T4≥10℃时,限频保护电流为HL4;当9℃>T4≥6℃时,限频保护电流为HL3;当5℃>T4≥-19℃,限频保护电流为HL2;当-20℃>T4,限频保护电流为HL1。其中HL5、HL4、HL3、HL2、HL1和制热停机保护电流的具体数值可以根据实际情况具体限定,在此不做限定。
例如当制热运行时检测到的室外环境温度T4位于室外温度区间9℃>T4≥6℃时,则表示运行电流不允许超过限频保护电流HL3,如果超过,将降频至运行电流低于限频保护电流HL3。
在本发明的一些实施例中,可以预设多个室外温度区间,多个室外温度区间对应不同的设定运行频率,根据实际检测到的室外环境温度所在的室外温度区间对应的设定运行频率调整压缩机的运行频率。
在本发明的一些实施例中,首先预设多个不同的排气压力区间,多个排气压力区间对应的运行频率的调节指令不同,然后检测排气压力并根据检测到的排气压力所在的排气压力区间对应的调节指令调节运行频率。其中调节指令可以包括降频、升频、保持频率、关机、解除频率限制等指令。从而通过检测排气压力调整压缩机的运行频率,可以直接的反应系统的运行状态,保证系统运行在合适的参数范围内,进一步提高空调器运行的可靠性。
需要进行说明的是,当空调器为单冷型空调器时,单冷型空调器的控制方法与冷暖型空调器制冷时的控制方法相同,这里就不进行详细描述。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜
上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (20)
- 一种冷暖型空调器,其特征在于,包括:双缸压缩机,所述双缸压缩机包括壳体、第一气缸、第二气缸和第一储液器,所述壳体上设有排气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一储液器设在所述壳体外,所述第一气缸的吸气口与所述第一储液器连通,所述第二气缸和所述第一气缸的排气容积比值的取值范围为1%~10%;换向组件,所述换向组件包括第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述第一储液器相连;室外换热器和室内换热器,所述室外换热器的第一端与所述第二阀口相连,所述室内换热器的第一端与所述第三阀口相连;气液分离器,所述气液分离器包括气体出口、第一接口和第二接口,所述气体出口与所述第二气缸的吸气口相连,所述第一接口与所述室外换热器的第二端相连,所述第二接口与所述室内换热器的第二端相连,所述第一接口和所述室外换热器之间串联有第一节流元件,所述第二接口和所述室内换热器之间串联有第二节流元件;并联连接的控制阀和用于对电控元件进行散热的冷媒散热器,并联连接的所述冷媒散热器和所述控制阀串联在所述室外换热器和所述第一节流元件之间,制冷时所述控制阀截止冷媒的流通,制热时冷媒流过所述控制阀。
- 根据权利要求1所述的冷暖型空调器,其特征在于,所述气体出口和所述第二气缸的吸气口之间串联有电磁阀。
- 根据权利要求1所述的冷暖型空调器,其特征在于,所述气液分离器的容积的取值范围为100mL-500mL。
- 根据权利要求1所述的冷暖型空调器,其特征在于,所述控制阀为在从所述第一节流元件到所述室外换热器的方向上单向导通的单向阀。
- 根据权利要求1-4中任一项所述的冷暖型空调器,其特征在于,所述双缸压缩机还包括设在所述壳体外的第二储液器,所述第二储液器串联在所述气体出口和所述第二气缸的吸气口之间。
- 根据权利要求5所述的冷暖型空调器,其特征在于,所述第一储液器的容积大于所述第二储液器的容积。
- 一种单冷型空调器,其特征在于,包括:双缸压缩机,所述双缸压缩机包括壳体、第一气缸、第二气缸和第一储液器,所述壳体上设有排气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一储液器设 在所述壳体外,所述第一气缸的吸气口与所述第一储液器连通,所述第二气缸和所述第一气缸的排气容积比值的取值范围为1%~10%;室外换热器和室内换热器,所述室外换热器的第一端与所述排气口相连,所述室内换热器的第一端与所述第一储液器相连;气液分离器,所述气液分离器包括气体出口、第一接口和第二接口,所述气体出口与所述第二气缸的吸气口相连,所述第一接口与所述室外换热器的第二端相连,所述第二接口与所述室内换热器的第二端相连,所述第一接口和所述室外换热器之间串联有第一节流元件,所述第二接口和所述室内换热器之间串联有第二节流元件;用于对电控元件进行散热的冷媒散热器,所述冷媒散热器串联在所述室外换热器和所述第一节流元件之间。
- 根据权利要求7所述的单冷型空调器,其特征在于,所述气体出口和所述第二气缸的吸气口之间串联有电磁阀。
- 根据权利要求7所述的单冷型空调器,其特征在于,所述气液分离器的容积的取值范围为100mL-500mL。
- 根据权利要求7-9中任一项所述的单冷型空调器,其特征在于,所述双缸压缩机还包括设在所述壳体外的第二储液器,所述第二储液器串联在所述气体出口和所述第二气缸的吸气口之间。
- 根据权利要求10所述的单冷型空调器,其特征在于,所述第一储液器的容积大于所述第二储液器的容积。
- 一种空调器的控制方法,所述空调器为根据权利要求1-6中任一项所述的冷暖型空调器,或者为根据权利要求7-11中任一项所述的单冷型空调器,其特征在于,空调器运行时,所述第一节流元件和所述第二节流元件中位于上游的节流元件为一级节流元件,所述第一节流元件和所述第二节流元件中位于下游的节流元件为二级节流元件;当所述第一节流元件和所述第二节流元件的开度均可调时,所述控制方法包括如下步骤:首先根据对第一检测对象的检测结果调整所述一级节流元件的开度至设定开度,然后根据对第二检测对象的检测结果调整所述二级节流元件的开度至设定开度,所述一级节流元件的设定开度小于所述二级节流元件的设定开度,所述第一检测对象的检测结果与所述第二检测对象的检测结果不同;当所述第一节流元件和所述第二节流元件中的其中一个开度可调且另一个开度固定时,所述控制方法包括如下步骤:在制冷运行时根据对第一检测对象的检测结果调整开度可调的节流元件的开度至设定开度;当所述空调器为冷暖型空调器时,制热运行时还根据对第二检测对象的检测结果调整开度可调的节流元件的开度至设定开度;当所述第一节流元件和所述第二节流元件的开度均固定时,所述控制方法包括如下步骤:根据检测到的压缩机运行参数和/或室外环境温度调整所述双缸压缩机的运行频率至满足条件,其中所述压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个;其中所述第一检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、排气口的排气压力、从所述气体出口排出的冷媒的中间压力、从所述气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个;所述第二检测对象包括室外环境温度、双缸压缩机的运行频率、排气口的排气温度、排气口的排气压力、从所述气体出口排出的冷媒的中间压力、从所述气体出口排出的冷媒的中间温度、气液分离器温度、气液分离器压力中的至少一个。
- 根据权利要求12所述的空调器的控制方法,其特征在于,所述第一检测对象和/或所述第二检测对象为室外环境温度T4和运行频率F,根据检测到的所述室外环境温度T4和运行频率F计算得到相应的开度可调的节流元件设定开度,然后根据设定开度调整对应的节流元件的开度。
- 根据权利要求12所述的空调器的控制方法,其特征在于,所述第一检测对象和/或所述第二检测对象为室外环境温度T4、运行频率F和排气压力;或者为室外环境温度T4、运行频率F和排气温度,首先根据所述室外环境温度T4和所述运行频率F计算得到设定排气压力或者设定排气温度,然后根据实际检测到的排气压力或者排气温度调整相应的开度可调的节流元件的开度以使得检测到的排气压力或排气温度达到设定排气压力或者设定排气温度。
- 根据权利要求12所述的空调器的控制方法,其特征在于,预设多个室外温度区间,每个所述室外温度区间对应不同的节流元件的开度,第一检测对象和/或第二检测对象为室外环境温度T4,根据实际检测到的室外环境温度T4所在的室外温度区间对应的开度值调整相应的开度可调的节流元件的开度。
- 根据权利要求12所述的空调器的控制方法,其特征在于,预设中间温度或者预设中间压力,所述第一检测对象和/或第二检测对象为中间压力或者中间温度,根据实际检测到的中间压力或者中间温度调整相应的开度可调的节流元件的开度以使得检测到的中间压力或者中间温度达到预设中间压力或者预设中间温度。
- 根据权利要求12所述的空调器的控制方法,其特征在于,预设多个室外温度区间,每个所述室外温度区间对应不同的所述气液分离器的设定温度,所述第一检测对象和/或所述第二检测对象为室外环境温度T4和所述气液分离器的温度,首先根据实际检测到的室外环境温度T4得到所在的室外温度区间对应的气液分离器的设定温度,然后调整相应的开度可调的节流元件的开度直至实际检测到的所述气液分离器的温度满足所述设定温度。
- 根据权利要求12所述的空调器的控制方法,其特征在于,当所述第一节流元件和所述第二节流元件的开度均固定时,预设多个不同的排气温度区间,所述多个排气温度区间对应的运行频率的调节指令不同,检测排气温度并根据检测到的排气温度所在的排气温度区间对应的调节指令调节所述运行频率。
- 根据权利要求12所述的空调器的控制方法,其特征在于,当所述第一节流元件和所述第二节流元件的开度均固定时,预设多个室外温度区间、制热停机保护电流和制冷停机保护电流,多个室外温度区间对应不同的限频保护电流,首先检测室外环境温度,然后根据检测到的所述室外环境温度所在的室外温度区间得到对应的限频保护电流,调整所述运行频率以使实际检测到的运行电流达到相应的所述限频保护电流,其中当制冷时检测到的所述运行电流大于所述制冷停机保护电流时则直接停机;当制热时检测到的所述运行电流大于所述制热停机保护电流时则直接停机。
- 根据权利要求12所述的空调器的控制方法,其特征在于,当所述第一节流元件和所述第二节流元件的开度均固定时,预设多个不同的排气压力区间,所述多个排气压力区间对应的运行频率的调节指令不同,检测排气压力并根据检测到的排气压力所在的排气压力区间对应的调节指令调节所述运行频率。
Applications Claiming Priority (32)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620390517.0U CN205860538U (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器 |
CN201610286116.5A CN105783311B (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器及其控制方法 |
CN201620390518.5 | 2016-04-29 | ||
CN201610286811.1A CN105758043A (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器及其控制方法 |
CN201610286812.6 | 2016-04-29 | ||
CN201620388622.0 | 2016-04-29 | ||
CN201620388335.X | 2016-04-29 | ||
CN201620390776.3 | 2016-04-29 | ||
CN201610286813.0 | 2016-04-29 | ||
CN201610286091.9A CN105910321A (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器及其控制方法 |
CN201610286117.XA CN105783324B (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器及其控制方法 |
CN201620389772.3U CN205641639U (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器 |
CN201620390776.3U CN205641645U (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器 |
CN201620388622.0U CN205641257U (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器 |
CN201610286116.5 | 2016-04-29 | ||
CN201610286812.6A CN105783315B (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器及其控制方法 |
CN201610286813.0A CN106052177A (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器及其控制方法 |
CN201610286094.2 | 2016-04-29 | ||
CN201620388335.XU CN205641660U (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器 |
CN201620387935.4 | 2016-04-29 | ||
CN201610286091.9 | 2016-04-29 | ||
CN201620388623.5 | 2016-04-29 | ||
CN201610281186.1 | 2016-04-29 | ||
CN201610286811.1 | 2016-04-29 | ||
CN201610281186.1A CN105783301A (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器及其控制方法 |
CN201620389772.3 | 2016-04-29 | ||
CN201620387935.4U CN205641633U (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器 |
CN201620388623.5U CN205641638U (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器 |
CN201620390517.0 | 2016-04-29 | ||
CN201610286094.2A CN105737424A (zh) | 2016-04-29 | 2016-04-29 | 冷暖型空调器及其控制方法 |
CN201620390518.5U CN205641643U (zh) | 2016-04-29 | 2016-04-29 | 单冷型空调器 |
CN201610286117.X | 2016-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017185515A1 true WO2017185515A1 (zh) | 2017-11-02 |
Family
ID=60161806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/087934 WO2017185515A1 (zh) | 2016-04-29 | 2016-06-30 | 冷暖型空调器、单冷型空调器及空调器的控制方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017185515A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304714A (ja) * | 2000-04-19 | 2001-10-31 | Daikin Ind Ltd | Co2冷媒を用いた空気調和機 |
CN102022853A (zh) * | 2010-11-18 | 2011-04-20 | 海尔集团公司 | 空调器系统 |
CN204786771U (zh) * | 2015-05-29 | 2015-11-18 | 广东美的制冷设备有限公司 | 空调器 |
-
2016
- 2016-06-30 WO PCT/CN2016/087934 patent/WO2017185515A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001304714A (ja) * | 2000-04-19 | 2001-10-31 | Daikin Ind Ltd | Co2冷媒を用いた空気調和機 |
CN102022853A (zh) * | 2010-11-18 | 2011-04-20 | 海尔集团公司 | 空调器系统 |
CN204786771U (zh) * | 2015-05-29 | 2015-11-18 | 广东美的制冷设备有限公司 | 空调器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107421161B (zh) | 热泵式饮水系统及其控制方法、热泵式饮水装置 | |
CN109458683B (zh) | 干式辐射热泵与单元式分户空调一体机及其控制方法 | |
CN104567135A (zh) | 空调装置 | |
CN106500390A (zh) | 冷暖型空调器及其控制方法 | |
JP2014169854A (ja) | 冷凍サイクル装置およびそれを備えた温水生成装置 | |
CN105737423A (zh) | 冷暖型空调器及其控制方法 | |
CN105783313B (zh) | 单冷型空调器及其控制方法 | |
CN107965853B (zh) | 三管制多联机系统的室外机及控制方法 | |
US20220412609A1 (en) | Carbon dioxide overlapping type heating system, and control method therefor | |
WO2018018767A1 (zh) | 冷暖型空调器及控制方法 | |
JP2009092258A (ja) | 冷凍サイクル装置 | |
WO2017185514A1 (zh) | 冷暖型空调器、单冷型空调器及空调器的控制方法 | |
WO2017185517A1 (zh) | 冷暖型空调器、单冷型空调器及空调器的控制方法 | |
CN204154039U (zh) | 空调装置 | |
EP2375187A2 (en) | Heat pump apparatus and operation control method of heat pump apparatus | |
WO2018018764A1 (zh) | 冷暖型空调器及控制方法 | |
CN211119734U (zh) | 一种四管制中央空调系统 | |
CN105783324B (zh) | 冷暖型空调器及其控制方法 | |
CN105783310B (zh) | 冷暖型空调器及其控制方法 | |
WO2017185513A1 (zh) | 冷暖型空调器、单冷型空调器及空调器的控制方法 | |
WO2017185516A1 (zh) | 冷暖型空调器的控制方法及单冷型空调器的控制方法 | |
JP2003148814A (ja) | 冷凍装置 | |
KR100528292B1 (ko) | 히트펌프식 공기조화기 | |
WO2017185515A1 (zh) | 冷暖型空调器、单冷型空调器及空调器的控制方法 | |
CN110057144A (zh) | 一种膨胀阀组件、双向节流系统及空调器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16900025 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/07/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16900025 Country of ref document: EP Kind code of ref document: A1 |