WO2017185331A1 - 用于电动洁齿器具高速往复旋转的驱动装置 - Google Patents

用于电动洁齿器具高速往复旋转的驱动装置 Download PDF

Info

Publication number
WO2017185331A1
WO2017185331A1 PCT/CN2016/080681 CN2016080681W WO2017185331A1 WO 2017185331 A1 WO2017185331 A1 WO 2017185331A1 CN 2016080681 W CN2016080681 W CN 2016080681W WO 2017185331 A1 WO2017185331 A1 WO 2017185331A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
driving
permanent magnet
magnetic
magnet
Prior art date
Application number
PCT/CN2016/080681
Other languages
English (en)
French (fr)
Inventor
尹显春
戴晓国
徐振武
Original Assignee
上海携福电器有限公司
尹显春
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海携福电器有限公司, 尹显春 filed Critical 上海携福电器有限公司
Priority to PCT/CN2016/080681 priority Critical patent/WO2017185331A1/zh
Publication of WO2017185331A1 publication Critical patent/WO2017185331A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/24Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like rotating continuously
    • A61C17/26Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like rotating continuously driven by electric motor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/16Power-driven cleaning or polishing devices
    • A61C17/22Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like
    • A61C17/32Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating
    • A61C17/34Power-driven cleaning or polishing devices with brushes, cushions, cups, or the like reciprocating or oscillating driven by electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the invention relates to a driving device for high-speed reciprocating rotation, in particular to a small, high-speed, reciprocating rotating driving device for an electric tooth cleaning device.
  • electric tooth cleaning appliances can be divided into three categories according to the realization of power.
  • the power output frequency is generally lower than 120 Hz. If the operating frequency exceeds 120 Hz, the high-speed running parts will wear too fast, resulting in short life and high noise.
  • the hollow embryo rotor technology Due to the reduction of the rotational inertia of the rotating shaft, the rated working frequency can be improved.
  • the vibration mode is basically driven by the direct driving eccentric. Work, although its cleaning ability has improved, but the motor vibration makes the handshake feel uncomfortable.
  • a tooth cleaning device that is transducibly driven by a piezoelectric ceramic sheet. It operates at frequencies up to 5Mhz and has a very high frequency, but the amplitude is very small, usually less than 100 microns. Because the amplitude is too small, the bristles are materials with very obvious vibration absorption damping, and ultimately the influence of the user is too small to affect the consumer's choice.
  • Another driving method is to use the alternating current to drive the coil, and use the alternating magnetic field to resonate with the permanent magnet to act on the vibration mode of the system.
  • This method is considered to be the most popular driving method at present, and is commonly used in the consumer market. Driven for sound waves.
  • the tooth cleaning device driven by such a driving method can quickly clean the plaque mucus and remove the scale in the tooth gap in a short time, and the cleaning effect is good.
  • the sonic toothbrush and its pendulum shaft motor disclosed in Chinese Patent Application Publication No. CN1830403A.
  • the toothbrush main body of the sonic toothbrush is provided with a swing shaft motor and a motor driving device.
  • the swing shaft motor includes a bracket, an electromagnetic coil disposed outside the bracket, and a swing shaft located in the inner cavity of the bracket, and two magnets are fixed at the end of the bracket, and the swing shaft is fixed. Fixing the rotating shaft, the swing shaft is mounted on the bracket through the rotating shaft, the power output end of the swing shaft is connected with the brush rod of the toothbrush head, and the other end of the swing shaft is close to the two magnets, and the pendulum is placed
  • the shaft drives the brush head to swing at a high speed under the joint action of the electromagnetic coil and the two magnets, and a frequency adjusting device for adjusting the swing frequency of the swing shaft is disposed on one side of the swing shaft motor. Also disclosed in the Chinese Utility Model Patent No.
  • a high frequency electric toothbrush comprising a main shaft, a main casing, a coil assembly, an elastic component and a control circuit board;
  • the main shaft is pivotally connected to the main casing And oscillating about a central axis of the main shaft, a front end of the main shaft is mounted with a toothbrush head, and a magnet is fixed on the main shaft;
  • the coil assembly is fixed on the main casing and is disposed outside the magnet for interacting with the magnet to drive the main shaft to swing
  • the elastic member is fixed to the housing at one free end, and the other free end is fixed to the main shaft.
  • the elastic member When the coil assembly drives the main shaft to swing, the elastic member is used to provide a torque applied to the main shaft and opposite to the swinging direction of the main shaft;
  • the control circuit board is coupled to the coil assembly electrode for outputting a high frequency pulse square wave to the coil assembly.
  • the electric tooth cleaning device with vibration frequency greater than 250 Hz and capable of maintaining amplitude above 0.5 mm under oral load conditions has the highest cleaning ability and efficiency, and is most popular among consumers.
  • the above patent applications or utility model patents can be higher than 250 Hz, they are bulky and heavy, and are particularly unsuitable for children.
  • the object of the present invention is to provide a driving device for high-speed reciprocating rotation of an electric tooth cleaning device, which can effectively reduce the size, reduce the weight, and improve the hand-shock sensitivity with respect to the existing driving device, thereby enabling the tooth cleaning device having the driving device.
  • the structure is simple, can be mass-produced, and is suitable for children and adolescents.
  • a high speed reciprocating rotary drive apparatus for an electric tooth cleaner comprising a drive coil, a spindle assembly, a drive permanent magnet, an energy storage device, a front end cover and a rear end cover.
  • the rotating shaft assembly includes a rotating shaft, a magnetizer fixed on the rotating shaft, the guiding magnet surrounds the rotating shaft and forms a one-side rotating shaft magnetizing protrusion on one side of the rotating shaft, and the rotating shaft guiding magnet protrudes through or through the hollow portion of the driving coil And having a pole yoke end away from the direction of the rotation axis.
  • the driving permanent magnets are respectively distributed on both sides of the pole yoke end of the protrusion of the rotating shaft magnet, and there is a magnetic gap between the driving pole and the yoke end of the rotating shaft magnet protrusion.
  • the magnetic The gap is maintained in the range of 0.1 mm to 2 mm.
  • the magnetic gap between the driving pole of the permanent magnet and the rotating shaft of the rotating shaft is 0.5 mm.
  • the angle between the axis of the rotating shaft magnet protrusion and the internal magnetic line of the driving permanent magnet is 0 to 90 degrees.
  • the pole yoke end of the rotating shaft magnet protrusion is at a center position, and the driving permanent magnet is symmetrically distributed with respect to the pole yoke end of the centrally located rotating shaft magnet protrusion.
  • the magnetizer comprises a stacked multi-layer sheet type high permeability material magnetic conductive sheet, and the magnetic conductive sheet has a thickness of 0.2 to 1.0 mm. Preferably, the magnetic conductive sheet has a thickness of 0.3 mm.
  • the drive device provided by the invention may further comprise at least one first energy storage device and/or at least one second energy storage device.
  • the first energy storage device constructs a resonance system of a high-speed reciprocating rotating drive device by utilizing a non-contact magnetic force between the permanent magnets and a change in the size of the magnetic gap.
  • the first energy storage device may include a connector fixed on the rotating shaft adjacent to the rear end cover, on the connector, and fixed in an axial direction substantially parallel to the rotation axis of the rotating shaft, and fixed toward the convex direction.
  • the main magnetic damping permanent magnets and the damping permanent magnets respectively fixed to the rear end cover.
  • the second energy storage device may include a connector fixed to the rotating shaft adjacent to the rear end cover, and an elastic member and a weight member on the connector that are fixed in an axial direction substantially parallel to the rotation axis of the rotating shaft and toward the convex direction
  • the elastic member is fixed to the balance block at a front end away from the connector.
  • the elastic member may have a rectangular parallelepiped shape or a sheet metal elastic member.
  • the miniaturization of the electric tooth cleaning device can be realized, thereby meeting the urgent need for miniaturization of the tooth cleaning device for children.
  • the actual measurement of the product according to the present invention shows that when the operating frequency is in the range of 230-330 Hz, the vibration amplitude can reach 0.5 mm or more under the condition of oral load.
  • the outer diameter of the product can be reduced to 18 ⁇ 22 mm, and the structure is simple, the process precision is low, and the service life is relatively long.
  • Figure 1a is an assembled perspective view of a drive device in accordance with the present invention
  • Figure 1b is a cross-sectional view of the driving device of Figure 1a;
  • Figure 2 is an exploded view of the driving device shown in Figure 1a;
  • FIG. 3 is a schematic diagram of a magnetic circuit model of the driving device shown in FIG. 1a;
  • 4a-f are schematic diagrams showing the positional relationship between the driving permanent magnet and the magnetizer of the driving device shown in Fig. 1a;
  • Figure 5a is a perspective view of the assembly of the first energy storage device
  • FIG. 5b-d are schematic diagrams showing motion analysis of the energy storage device shown in Fig. 5a;
  • Figure 6 shows schematically the pitch-frequency characteristics of the drive device using the first energy storage device shown in Figure 5a;
  • Figure 7a-c is a perspective view of the assembly of the second energy storage device
  • FIG. 8a-c are schematic diagrams showing typical applications of the driving device shown in Fig. 1a;
  • FIG. 9a-c are cross-sectional views showing the action of the driving device shown in Fig. 1a.
  • A1 is the main magnetic damping permanent magnet
  • A2 is the drive coil
  • A3 is a magnetizer
  • A4, A5 are driving permanent magnets
  • A6 is the front end cover
  • A7 is the shaft
  • A8 is the bearing
  • A9 is the connector
  • A10 is the rear end cover
  • A11 and A12 are damping permanent magnets
  • A13 is a balance block
  • A15 is a magnetic enclosure
  • A16 is the coil bracket
  • A31 is the shaft magnetizer bulge
  • G1 is the drive unit
  • G2 is the switch
  • G3 is the control circuit board
  • G4 is the indicator light
  • G5 is the battery
  • G6 is the brush head
  • L0 is the axis of the shaft
  • L1 is the axis of the rotating shaft magnet protrusion
  • D1 is the magnetic gap between the pole yoke end of the driving permanent magnet and the rotating shaft magnet protrusion
  • D2 is the spacing between the two driving permanent magnets
  • ANG1 and ANG2 are the angles between the central axis of the rotating shaft magnet and the magnetic field line of a driving permanent magnet, respectively.
  • W is the tongue width of the rotating shaft magnet
  • the driving device for high-speed reciprocating rotation of an electric tooth cleaning device comprises a set of driving coils A2, a rotating shaft assembly, a bearing A8, a coil holder A16, driving permanent magnets A4 and A5, and a magnetic enclosure A15. , an energy storage device, and a front end cover A6 and a rear end cover A10.
  • the rotating shaft assembly includes a rotating shaft A7, and a magnetizer A3 which is fixed on the rotating shaft A7 and laminated by a multi-layer sheet type magnetic conductive sheet.
  • the rotating shaft A7 is substantially a cylinder, and the rotating shaft A7 is in the direction of its axis L0.
  • a brush head interface is disposed at one end of the brush head G6, and the brush head interface detachably couples the brush head with the rotating shaft A7 and enables the brush head to be driven by the rotating shaft A7 to reciprocate at a high speed.
  • the middle portion of the rotating shaft A7 is fixed with a magnetizer A3 stacked by a multi-layered sheet-type magnetic conductive sheet.
  • the magnetizer A3 surrounds the rotating shaft A7 and a single-sided rotating shaft magnetizing protrusion A31 is formed on one side of the rotating shaft A7 (see the figure). 2,4a-4f).
  • the center line of the above-described one-sided rotating shaft magnet protrusion A31 is defined as the axis L1 of the rotating shaft magnet protrusion A31, and the axis L1 of the rotating shaft magnet protrusion A31 extends in the direction from the axis A0 of the rotating shaft A7 toward the driving permanent magnets A4 and A5.
  • the rotating shaft magnet protrusion A31 penetrates or passes through the hollow portion of the driving coil A2, and defines the end of the rotating shaft magnet protrusion A31 away from the rotating shaft A7 as the pole yoke end of the rotating shaft magnet protrusion A31.
  • a bearing A8 is disposed on the rotating shaft A7 and at both ends of the rotating shaft magnet protrusion A31.
  • the bearing A8 is concentric with the rotating shaft A7 and fixed in the coil holder A16, so that the bearing A8 constrains the rotating shaft A7 to rotate only relative to the bearing A8.
  • Driving permanent magnets A4, A5 are respectively distributed on both sides of the pole yoke end of the rotating shaft magnet protrusion A31.
  • the driving permanent magnets A4, A5 are identical in size and shape to each other and have a substantially rectangular parallelepiped shape.
  • the magnetic poles of the driving permanent magnet A4 and the driving permanent magnet A5 are opposite in the direction toward the pole yoke end of the rotating shaft magnet protrusion A31.
  • the polarity of the driving permanent magnet A4 in the direction toward the pole yoke end of the rotating shaft magnet protrusion A31 is N pole
  • the polarity of the driving permanent magnet A5 in the direction toward the pole yoke end of the rotating shaft magnet protrusion A31 is S pole and vice versa.
  • the pole yoke end of the rotating shaft magnet protrusion A31 is at a center position, and the pole yoke ends of the rotating shaft magnet protrusion A31 of the driving center of the permanent magnets A4 and A5 are symmetrically distributed and driven.
  • the internal magnetic lines of the permanent magnets A4, A5 are parallel to the axis L1 of the rotating shaft magnet protrusion A31 or at an angle of less than 90 degrees with the axis L1 of the rotating shaft magnet protrusion A31.
  • the end faces of the driving permanent magnets A4, A5 which are away from the direction of the yoke end of the rotating shaft magnet projecting projection A31 are fixed to the magnetic closing body A15.
  • the material of the magnetic enclosure A15 is a material having a high magnetic permeability, and the magnetic enclosure A15 may also have a substantially rectangular parallelepiped shape, and the magnetic enclosure A15 and the coil holder A16 are fixed.
  • a drive coil A2 is fixed to the coil bobbin A16, and the drive coil A2 is annular, and a hollow region inside the loop drive coil A2 can accommodate the spindle magnetizer projection A31 and allow the spindle magnetizer projection A31 to move without interference therein.
  • the driving coil A2 can be wound, for example, by an enameled wire, and driven Coil A2 has lead terminals that can be coupled to a control circuit board or power supply that can provide alternating current to drive coil A2.
  • the high speed reciprocating rotary drive of the present invention may also include an energy storage device as shown in Figures 1a, 1b, 2 and 4a-4f.
  • the energy storage device used in the present invention may include two types, a first energy storage device and a second energy storage device.
  • the driving device of the present invention comprises a first energy storage device (see Fig.
  • the energy storage device comprising a connector A9 attached to the rotating shaft A7 adjacent to the rear end cover A10, on the connector A9 a main magnetic damping permanent magnet A1 substantially parallel to the direction of the axis L1 of the rotating shaft magnet protrusion A31 and fixed toward the convex direction, and a damping permanent magnet A11 and a damping permanent magnet A12 respectively fixed to the rear end cover A10 .
  • the main magnetic damping permanent magnet A1 also has a substantially rectangular parallelepiped shape.
  • the damping permanent magnet A11 and the damping permanent magnet A12 are symmetrically distributed with respect to the main magnetic damping permanent magnet A1, and the internal magnetic lines of the permanent magnets A11 and A12 are damped.
  • the internal magnetic lines of force relative to the main magnetic damping permanent magnet A1 face or face each other, and the internal magnetic lines of force have an angle of 150 to 210 degrees.
  • the magnetic poles of the damping permanent magnet A11 and the main magnetic damping permanent magnet A1 face each other have the same polarity, and the magnetic poles of the damping permanent magnet A12 and the main magnetic damping permanent magnet A1 face each other.
  • the polarities are the same, and the extension of the internal magnetic lines of force of the main magnetic damping permanent magnet A1 at least partially passes through the damping permanent magnets A11 or A12.
  • the driving device of the present invention includes a second energy storage device (see FIGS. 7a-c), and the second energy storage device includes a connector A9 attached to the rotating shaft A7 adjacent to the rear end cover A10, and connected
  • the elastic member A14 and the weight A13 are fixed on the A9 in a direction substantially parallel to the axis L1 of the rotating shaft magnet protrusion A31 and toward the convex direction.
  • the elastic member A14 is fixed to the balance block A13 at the front end away from the connector A9.
  • the elastic member A14 may be a rectangular parallelepiped metal elastic member or a sheet-like elastic member.
  • the weight A13 may be a metal piece or a plastic piece or the like having a suitable quality.
  • the driving device comprises a first energy storage device or a second energy storage device
  • the driving device may also include a plurality of first energy storage devices or a plurality of second energy storage devices, and may further include a combination of the first energy storage device and the second energy storage device, and these technical solutions are not exceeded. The scope of the invention.
  • the front end cover A6, the coil support A16, and the rear end cover A10 are fixed together by fasteners such as bolts.
  • the front end cover A6, the coil support A16 and the rear end cover A10 of the fixed joint can accommodate the drive coil A2, the shaft assembly, the bearing A8, the drive permanent magnets A4 and A5, the magnetic enclosure A15 and the energy storage device, and the above-mentioned components are accommodated
  • the movable member can move without interference with respect to the assembly of the front end cover A6, the coil support A16, and the rear end cover A10.
  • the driving coil A2 when the alternating current passes through the driving coil A2, the driving coil A2 generates an alternating magnetic field, and the magnetizer A3 is periodically magnetized, so that the pole yoke end of the rotating shaft magnetizing protrusion A31 is at the frequency of the alternating current. Produces an alternating magnetic polarity. Since the hollow region of the driving coil A2 is the most dense magnetic field, and the magnetic conductor A3 penetrating or passing through the hollow region of the driving coil A2 is made of a high magnetic permeability material, the driving coil generated by the energized driving coil A2 is located at the driving coil.
  • the pole yoke end of the rotating shaft magnet protrusion A31 and the driving permanent magnet A5 will be attractive, stationary.
  • the repulsive force and attractive force of the stationary driving permanent magnet A4 and the driving permanent magnet A5 on the pole yoke end of the rotating shaft magnetizer projection A31 form a clockwise torque on the rotating shaft A7.
  • the bearing A8 is distributed on the rotating shaft A7 along the rotating shaft axis L0 and on both sides of the rotating shaft magnetizing protrusion A31, the bearing A8 is fixed in the coil holder A16, and the bearing A8 restrains the rotating shaft A7 only. Relative to its rotation. Thereby, the repulsive force and the attractive force of the stationary permanent magnet A4 and the driving permanent magnet A5 to the pole yoke end of the rotating shaft magnet protrusion A31 are clockwisely driven by the clockwise torque shaft A7 formed on the rotating shaft A7 about the rotating shaft axis L0. .
  • the driving coil A2 when the alternating current passes through the driving coil A2, the driving coil A2 generates an alternating magnetic field, and the magnetizer A3 is periodically magnetized, so that the pole yoke end of the rotating shaft magnetizing protrusion A31 generates magnetic polarity according to the frequency of the alternating current. Alternating.
  • the interaction force of the stationary driving permanent magnet A4 and the driving permanent magnet A5 on the pole yoke end of the rotating shaft magnetizing projection A31 drives the rotating shaft A7 to reciprocally rotate around the rotating shaft axis L0 at the same frequency as the alternating current.
  • the Applicant has found through a large number of experiments that it is preferable to keep the magnetic gap D1 in the range of 0.1 mm to 2 mm during the movement of the rotating shaft magnet protrusion A31.
  • the drive permanent magnet A4 and the drive permanent magnet A5 may also be distributed non-parallel.
  • the angle ANG1 of the axis L1 of the rotating shaft magnet protrusion A31 and the internal magnetic line of the driving permanent magnet A4 is 0 to 90 degrees
  • the angle ANG2 of the axis L1 of the protrusion A31 and the internal magnetic line of the driving permanent magnet A5 is 0 to 90 degrees
  • the angle ANG1 and the angle ANG2 are the same
  • the magnetic gap D1 is always during the movement of the rotating shaft magnet protrusion A31. It is kept in the range of 0.1 mm to 2 mm.
  • the pole yoke end of the rotating shaft magnet protrusion A31 may have a different geometry as long as the magnetic gap D1 is maintained within the range of 0.1 mm to 2 mm during the movement of the rotating shaft magnet protrusion A31.
  • the invention provides a structure for forming a single-sided rotating shaft magnet protrusion A31 on one side of the rotating shaft A7.
  • the rotating shaft magnet protruding structure asymmetrically distributed with respect to the rotating shaft axis L0 can ensure sufficient torque output.
  • the peripheral size of the driving device can be effectively reduced.
  • the driving force f0 in the present invention is a periodically alternating force, and the energy storage device can compensate for large fluctuations in the output torque due to the change in the driving force, and can suppress the harmonic vibration caused by the driving device.
  • Figure 5a shows a first energy storage device comprising a connector A9 fixed to the rear end cover A10 on the rotating shaft A7, on the connector A9 in a direction substantially parallel to the axis L1 of the rotating shaft magnet protrusion A31 And facing the bulge
  • the damping permanent magnet A11 and the damping permanent magnet A12 are symmetrically distributed with respect to the main magnetic damping permanent magnet A1, and the internal magnetic line of the damping permanent magnet A11 is opposite to the main
  • the angle between the internal magnetic lines of the magnetically damped permanent magnet A1 is 180 degrees
  • the angle between the internal magnetic lines of the damped permanent magnet A12 and the internal magnetic lines of the main magnetic damper permanent magnet A1 is 180 degrees
  • the main magnetic damping permanent magnet A1 is internally The extension of the magnetic field lines at least partially passes through the damper permanent magnet A11 or the damped permanent magnet A12.
  • FIG. 5b-5d are schematic diagrams showing the motion analysis of the energy storage device shown in Fig. 5a.
  • the driving coil A2 switches the current direction, and the generated driving force f0 causes the rotating shaft A7 to revolve around the rotating shaft axis L0.
  • the main magnetic damping permanent magnet A1 that rotates in the clockwise direction and has no relative motion with the rotating shaft A7 also rotates clockwise about the rotating shaft axis L0, while the damper permanent magnet A12 and the damper permanent magnet A11 fixed to the rear end cover A10 are stationary.
  • the gap between the main magnetic damping permanent magnet A1 and the damper permanent magnet A12 becomes small, and the gap between the main magnetic damper permanent magnet A1 and the damper permanent magnet A11 becomes large. Since the gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A12 becomes small under the action of the driving force f0, the magnetic energy in the magnetic gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A12 increases. Large, the storage of magnetic energy in the magnetic gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A12 can be realized, thereby realizing the energy storage process.
  • the gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A11 becomes large, so the magnetic energy in the magnetic gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A11 Reducing, the magnetic energy originally stored in the magnetic gap between the main magnetic damping permanent magnet A1 and the damping permanent magnet A11 is released, and the released magnetic energy drives the main magnetic damping permanent magnet A1 to rotate clockwise about the axis L0 of the rotating shaft A7. Therefore, the driving shaft A7 is rotated clockwise about the rotating shaft axis L0 to realize the discharging process.
  • the driving coil A2 just switches the current direction, and the generated driving force f0 causes the rotating shaft A7 to rotate counterclockwise about the rotating shaft axis L0.
  • Rotating, and the main magnetic damping permanent magnet A1 without relative movement of the shaft A7 is also along Rotate counterclockwise.
  • the magnetic energy in the magnetic gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A12 is released, and the released magnetic energy can be used to drive the main magnetic damping permanent magnet A1 to rotate counterclockwise about the axis L0 of the rotating shaft A7, thereby realizing The process of releasing energy.
  • the magnetic energy in the magnetic gap between the main magnetic damping permanent magnet A1 and the damped permanent magnet A11 is saved, thereby realizing the energy storage process.
  • the energy storage process and the discharge process of the magnetic energy in the magnetic gap between the main magnetic damping permanent magnet A1 and the damper permanent magnets A11, A12 and the movement of the rotating shaft A7 are similar to the above analysis, and will not be described herein.
  • the first energy storage device provided by the present invention can form a resonance system with the moving parts such as the brush head G6, the rotating shaft A7, and the magnetic conductor A3, thereby greatly improving the mechanical efficiency of the high-speed reciprocating rotating driving device.
  • the natural frequency of the above resonant system can be adjusted by adjusting the magnetic induction intensity of the main magnetic damping permanent magnet A1 and the damping permanent magnets A11, A12, and/or the permanent magnet volume and/or the main magnetic damping permanent magnet A1 and the damping permanent magnet A11. , the spacing between A12 is achieved.
  • the natural frequency of the adjusted high-speed reciprocating rotating drive device is greater than 0.9 times the current frequency in the drive coil and less than 1.1 times the current frequency in the drive coil. Thereby, it is ensured that the high-speed reciprocating rotating drive device of the present invention is in a resonant state when a current of a fixed frequency flows through the drive coil.
  • Figure 6 shows the relationship between different damped permanent magnet spacings and frequency (Hz). The curve shows that the magnetic spacing of the damped permanent magnets directly affects the resonant frequency.
  • the first energy storage device constructs a resonance system of a high-speed reciprocating driving device by utilizing a non-contact magnetic force between the permanent magnets and a change in the size of the magnetic gap, and the above-described resonance system is defined as a magnetic resonance system.
  • a significant advantage of the magnetic resonance system of the present invention is that the force between the permanent magnets is performed in a non-contact manner.
  • the vibration of the housing is smaller than that of the conventional resonant system constructed by the resonant spring, thereby improving the user's grip comfort and improving the noise caused by the higher harmonics of the conventional energy storage device.
  • the force transmission in the magnetic resonance system adopts the non-contact method, the fatigue problem of the resonant spring in the conventional resonant system is solved, and the reliability and service life of the resonant system are greatly improved.
  • the main magnetic damping permanent magnet A1 and the damper permanent magnets A11 and A12 are made of a neodymium iron boron magnet having a stronger magnetic force.
  • a second energy storage device which includes a connector A9 attached to the rear end cover A10 on the rotating shaft A7, and a direction on the connector A9 substantially parallel to the axis L1 of the rotating shaft magnet protrusion A31.
  • the elastic member A14 and the weight A13 which are fixed in the convex direction.
  • Figure 7b shows that when the drive coil is not energized, the pole yoke end of the spindle magnetizer projection A31 is in the centered position, and the drive permanent magnets A4, A5 are in a symmetric distribution with respect to the pole yoke end of the centered spindle magnetizer projection A31.
  • 7a and 7c respectively show a state in which the spindle A7 is rotated in the counterclockwise direction and rotated in the clockwise direction.
  • the driving force f0 is equivalently applied to the centroid of the moving member such as the brush head G6, the rotating shaft A7, and the magnetizer A3.
  • the inertial force f1 is equivalently applied to the centroid of the weight A13. If the connector A9 and the elastic member A14 are not provided, the direction of the driving force f0 periodically changes with the frequency of the alternating current in the driving coil, and the alternating driving force f0 is transmitted to the housing of the driving device through the moving member, forming a non- The parasitic vibration of the power demand makes the gripper uncomfortable.
  • the second energy storage device includes a balance block A13 and an elastic member A14 in addition to the connector A9.
  • the balance block A13 when the magnetizer A3 rotates counterclockwise about the axis L0 of the rotation axis A7 by the driving force f0, the balance block A13 generates an inertial force f1 in the opposite direction to f0 due to inertia, and the inertia force f1 Acting on the elastic member A14, the elastic member A14 is deformed by pressure to store energy, and at the same time, kinetic energy is generated on the balance block A13 to realize energy storage of the balance block A13.
  • the second energy storage device can effectively suppress the non-powered parasitic vibration generated by the moving parts such as the brush head G6, the rotating shaft A7, and the magnetizer A3.
  • the magnetizer A3 stacked by the multilayer sheet-type magnetic conductive sheet may be made of a highly magnetically conductive metal material having a thickness of 0.2 to 1.0 mm. Thinner, it can effectively reduce the skin effect of the magnetic conductive process, reduce the eddy current caused by high-frequency current, improve the energy transfer efficiency, reduce the temperature rise and increase the torque output of the power. However, if the laminate is too thin, it is easy to be deformed during the production process, which increases the process difficulty. Therefore, the reasonable choice of stack thickness requires a compromise between energy efficiency and process difficulty. In the present embodiment, a laminate having a thickness of 0.3 mm is preferably used.
  • 9a-c are cross-sectional views showing the action of the driving device of the present invention.
  • important factors affecting the power output performance include driving the permanent magnets A4, A5 and the rotating shaft magnetizing protrusion A31.
  • a magnetic gap D1 between the pole yoke ends a distance D2 between the two driving permanent magnets A4, A5, and a material of the permanent magnet, wherein the driving permanent magnets A4, A5 are preferably high magnetic NdFeB magnets having a volume The characteristics of small magnetic force.
  • the distance D2 between the driving permanent magnets A4 and A5 can be set to 0 to 2 mm.
  • the spacing D2 between the driving permanent magnets A4, A5 is equal to 0.8 times the tongue width W of the rotating shaft magnetizer projection A31, and the width of the driving permanent magnets A4, A5 is equal to the tongue width of the rotating shaft magnetizing projection A31. W. If the distance D2 between the two driving permanent magnets A4 and A5 is too small, the vibration amplitude of the rotating shaft A7 is small and the torque is large. The excessive distance D2 between the two driving permanent magnets A4 and A5 causes the vibration amplitude of the rotating shaft A7 to be large. The torque is small.
  • the magnetic gap D1 between the driving permanent magnets A4, A5 and the pole yoke end of the rotating shaft magnet protrusion A31 may be set to 0.1 to 2 mm.
  • a large number of tests have shown that the magnetic gap D1 between the driving poles A4, A5 and the pole yoke end of the rotating shaft magnet protrusion A31 also affects the torque output, the magnetic gap D1 is too small, the assembly is difficult, and the power device during operation of the driving device
  • the rise in temperature easily causes the magnetic gap D1 to become small, resulting in the pincer yoke ends of the driving permanent magnets A4, A5 and the rotating shaft magnetizing projection A31 being stuck.
  • the magnetic gap D1 between the driving poles A4, A5 and the pole yoke end of the rotating shaft magnet protrusion A31 is 0.5 mm.
  • a complete electric tooth cleaner can be constructed using the power drive of the present invention, wherein G1 is the high speed drive of the present invention.
  • G5 is a battery that provides electrical energy
  • G3 is a control circuit board that provides alternating current.
  • the control circuit board G3 is provided with a switch G2 for controlling the operation mode and an LED indicator G4 for indicating the operation state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种用于电动洁齿器具的高速往复旋转的驱动装置,包括驱动线圈(A2)、转轴组件、驱动永磁体(A4,A5)、蓄能装置、前端盖(A6)和后端盖(A10)。转轴组件包括转轴(A7),固联在转轴(A7)上的导磁体(A3),导磁体(A3)环绕转轴(A7)且在转轴(A7)的一侧形成单侧转轴导磁体凸起(A31),转轴导磁体凸起(A31)穿入或穿过驱动线圈(A2)的中空部分且具有远离转轴(A7)方向的极轭端。驱动永磁体(A4,A5)分别分布在靠近转轴导磁体凸起(A31)的极轭端两侧,驱动永磁体(A4,A5)和转轴导磁体凸起(A31)的极轭端之间存在磁隙(D1),在转轴导磁体凸起(A31)的运动过程中,磁隙(D1)保持在0.1mm至2mm的范围内。从而实现了电动洁齿器具的小型化,可用于儿童洁齿器。

Description

用于电动洁齿器具高速往复旋转的驱动装置 技术领域
本发明涉及一种高速往复旋转的驱动装置,尤其涉及一种用于电动洁齿器具的小型、高速、往复旋转的驱动装置。
背景技术
随着生活品质提升,电动洁齿器具因其能高效地清洁聚集在牙缝及牙龈上的食物残渣,在消费市场扮演着越来越重要的角色。
目前,电动洁齿器具按动力的实现方式可分为三大类。
最早出现的是电动机驱动的回转或震动型洁齿器具。这类洁齿器具因传动电机的局限性,动力输出频率一般低于120Hz,如强行使其工作频率超过120Hz,将出现高速运转部件过快磨损,致使寿命短,噪音大。随着电机技术的发展出现了空心胚转子技术,因其转轴转动惯量减小,可提升其额定工作频率,但因高速运动转换机械结构的潜在局限性,目前基本以直接驱动偏心轮产生震动方式工作,其清洁能力虽有所提升,但马达震动使得使用时持握手感不适。
另一类的代表例如是以压电陶瓷片进行换能驱动的洁齿器具。其工作频率最高可达到5Mhz,频率非常高,但振幅非常小,通常小于100微米。因为其振幅过小,刷毛又是震动吸收阻尼非常明显的材料,最终因使用者感受到的动力太小而影响消费者的选择。
另一种驱动方式是将线圈通以交变驱动电流,利用交变磁场与永磁体谐振而作用于系统的振动方式,这种方式被认为是目前最受青睐的驱动方式,在消费市场中俗称为声波驱动。采用这类驱动方式驱动的洁齿器具因其在较短的时间内能迅速实现对牙斑粘液的清洁和剔除牙缝中的垢物,其清洁效果良好。例如,在公开号为CN1830403A的中国发明专利申请中披露的声波牙刷及其摆轴电机。该声波牙刷的牙刷主体内设置摆轴电机和电机驱动装置,摆轴电机包括支架、设于支架外的电磁线圈及位于支架内腔中的摆轴,在支架末端固定两块磁体,摆轴上固定转轴,摆轴通过转轴安装于支架上,摆轴的动力输出端与牙刷头的刷杆连接,摆轴的另一端与所述两块磁体接近,摆 轴在所述电磁线圈和所述两块磁体的共同作用下驱动牙刷头高速摆动,摆轴电机一侧设置用于调节摆轴摆动频率的频率调节装置。在授权公告号为CN203539472 U的中国实用新型专利中也披露了一种高频电动牙刷,其包括主轴、主壳体、线圈组件、弹性元件及控制电路板;所述主轴枢接于主壳体上并可绕主轴的中心轴线摆动,主轴前端安装有牙刷头,主轴上固定有磁体;所述线圈组件固定于主壳体上并罩设于磁体外,用于与磁体相互作用从而带动主轴摆动;所述弹性元件一自由端固定于壳体上,另一自由端固定于主轴上,在线圈组件带动主轴摆动时该弹性元件用于提供施加于主轴上且与主轴摆动方向相反的扭矩;所述控制电路板与线圈组件电极连接,其用于对线圈组件输出高频脉冲方波。
实践证明震动频率大于250Hz且在口腔负载条件下仍能保持振幅0.5毫米以上的电动洁齿器具清洁能力及效率最高,最受消费者欢迎。虽然上述专利申请或实用新型专利的频率都可高于250Hz,但它们的体积较大,重量较重,尤其不适合儿童使用。
发明内容
本发明目的是提供一种用于电动洁齿器具高速往复旋转的驱动装置,其相对于现有驱动装置可有效缩小尺寸、减轻重量、改善手持震感,从而使得具备这种驱动装置的洁齿器具结构简单、可批量生产、适合少年儿童使用。
根据本发明,提供一种用于电动洁齿器具的高速往复旋转的驱动装置,其包括驱动线圈、转轴组件、驱动永磁体、蓄能装置、前端盖和后端盖。转轴组件包括转轴、固联在转轴上的导磁体,该导磁体环绕转轴且在转轴的一侧形成单侧转轴导磁体凸起,该转轴导磁体凸起穿入或穿过驱动线圈的中空部分且具有远离转轴方向的极轭端。驱动永磁体分别分布在靠近转轴导磁体凸起的极轭端两侧,驱动永磁体和转轴导磁体凸起的极轭端之间存在磁隙,在转轴导磁体凸起的运动过程中,磁隙保持在0.1mm至2mm的范围内。优选在所述转轴导磁体凸起的运动过程中,驱动永磁体和转轴导磁体凸起的极轭端之间的磁隙为0.5mm
优选转轴导磁体凸起的轴线和驱动永磁体的内部磁力线的夹角为0度至90度。
优选驱动线圈未通电时,转轴导磁体凸起的极轭端处于居中位置,驱动永磁体相对居中的转轴导磁体凸起的极轭端对称分布。
在一实施例中,导磁体包括叠装而成的多层薄片型高导磁率材料导磁片,导磁片的厚度为0.2~1.0mm。优选导磁片的厚度为0.3mm。
本发明提供的驱动装置还可包括至少一个第一蓄能装置和/或至少一个第二蓄能装置。第一蓄能装置利用永磁体之间非接触性的磁力作用以及磁隙大小的变化构建高速往复旋转的驱动装置的谐振系统。具体而言,第一蓄能装置可以包括固联于转轴上邻近后端盖的连接器、处于连接器上并沿大致平行于转轴导磁体凸起的轴线方向且朝向该凸起方向固联的主磁阻尼永磁体、以及分别固联于后端盖上的阻尼永磁体。第二蓄能装置可以包括固联于转轴上邻近后端盖的连接器、处于连接器上沿大致平行于转轴导磁体凸起的轴线方向且朝向该凸起方向固联的弹性件及平衡块,该弹性件在远离连接器的前端和平衡块固联。
在一实施例中,弹性件可以为长方体形,也可以是片状金属弹性件。
采用本发明的驱动装置,能实现电动洁齿器具的小型化,从而满足少年儿童对洁齿器具小型化的迫切需要。对根据本发明的产品进行实际测量得出,工作频率在230~330Hz范围时,在口腔负载条件下震动振幅可达0.5毫米以上。而且产品的外壳体直径可以缩小到18×22毫米,且结构简单,工艺精度要求低,使用寿命相对较长。
附图说明
图1a为根据本发明的驱动装置的装配透视图;
图1b为图1a所示驱动装置的剖视图;
图2为图1a所示驱动装置的分解图;
图3为图1a所示驱动装置的磁路模型示意图;
图4a-f为图1a所示驱动装置的驱动永磁体与导磁体位置关系示意图;
图5a为第一蓄能装置装配透视图;
图5b-d为图5a所示蓄能装置的运动分析示意图;
图6示意地示出了采用图5a所示第一蓄能装置的驱动装置的间距-频率特性;
图7a-c为第二蓄能装置装配透视图;
图8a-c为图1a所示驱动装置的典型应用示意图;
图9a-c为图1a所示驱动装置动作截面图。
附图标记说明
A1为主磁阻尼永磁体
A2为驱动线圈
A3为导磁体
A4、A5为驱动永磁体
A6为前端盖
A7为转轴
A8为轴承
A9为连接器
A10为后端盖
A11、A12为阻尼永磁体;
A13为平衡块
A14为弹性件
A15为磁封闭体
A16为线圈支架
A31为转轴导磁体凸起
G1为驱动装置
G2为开关
G3为控制线路板
G4为指示灯
G5为电池
G6为刷头
L0为转轴轴线
L1为转轴导磁体凸起的轴线
D1为驱动永磁体和转轴导磁体凸起的极轭端之间的磁隙
D2为两个驱动永磁体之间的间距
ANG1、ANG2分别为居中的转轴导磁体凸起轴线和一驱动永磁体内部磁力线的夹角
F0为驱动力
f1为惯性力
W为转轴导磁体凸起的舌宽
具体实施方式
下文以电动牙刷为例并结合附图更详细地描述本发明的示例性实施例。虽然下面仅以电动牙刷为例进行解释说明,但本发明不限于此。本发明也适用于电动剃须刀、电动洁面器、电动沐浴器等。
在全部附图中,类似的附图标记表示相似的部件。
为了清楚起见,在本说明书中采用了表述空间相对位置的词语,如“前”、“后”、“左”、“右”、“横向”等来简单描述如图所示的一个元件或特征与另一元件(一或多个)或特征(一或多个)的相互关系,其中,“前”、“后”是相对于转轴轴线而言的,远离位于转轴上的连接器的一端定义为“前”,与“前”相对的一端(即,邻近连接器的一端)定义为“后”;“左”和“右”是相对于转轴轴线而言的,面向相应视图沿垂直于转轴轴线的方向在转轴轴线的左侧定义为“左”,其右侧定义为“右”;“横向”是指垂直于转轴轴线的方向。
尽管本说明书中使用了词语第一、第二等来描述多个元件或构成部分,这些元件或构成部分不应受这些词语的限制。这些词语仅用于区分一个元件或构成部分和另一元件或构成部分,而不包含“顺序”。因此,将下面讨论的那些元件或构成部分的序数词相互变换也没有超出本发明的构思和范围。
此外,本申请中使用的词汇“和/或”包括所列出的一或多个相关联的词汇中的任一个和所有组合。
参考附图,本发明所提供的用于电动洁齿器具的高速往复旋转的驱动装置包括一组驱动线圈A2、转轴组件、轴承A8、线圈支架A16、驱动永磁体A4和A5、磁封闭体A15、蓄能装置、以及前端盖A6和后端盖A10。
转轴组件包括转轴A7、固联在转轴A7上的由多层薄片型导磁片叠装而成的导磁体A3。转轴A7大致为圆柱体,在转轴A7沿其轴线L0的方向靠 近刷头G6的一端分布有刷头接口,刷头接口使刷头可拆卸地和转轴A7联结且可使刷头被转轴A7驱动而高速往复旋转。转轴A7的中部固联有由多层薄片型导磁片叠装而成的导磁体A3,导磁体A3环绕转轴A7且在转轴A7的一侧形成有单侧转轴导磁体凸起A31(参见图2,4a-4f)。将上述单侧转轴导磁体凸起A31的中位线定义为转轴导磁体凸起A31轴线L1,转轴导磁体凸起A31的轴线L1沿从转轴A7轴线L0指向驱动永磁体A4和A5的方向延伸,转轴导磁体凸起A31穿入或穿过驱动线圈A2的中空部分,并定义转轴导磁体凸起A31的远离转轴A7方向的那端为转轴导磁体凸起A31的极轭端。
在转轴A7上且在转轴导磁体凸起A31两端分别分布有轴承A8,轴承A8与转轴A7同心并被固定在线圈支架A16中,致使轴承A8约束转轴A7只能相对于轴承A8旋转。
在靠近转轴导磁体凸起A31的极轭端两侧分别分布有驱动永磁体A4、A5。在本实施例中,驱动永磁体A4、A5彼此尺寸和形状相同,大致呈长方体形。驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端之间存在磁隙D1,磁隙D1可以保证驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端无干涉地相对运动。驱动永磁体A4和驱动永磁体A5在朝向转轴导磁体凸起A31的极轭端方向上的磁极极性相反。例如,驱动永磁体A4在朝向转轴导磁体凸起A31的极轭端方向上的极性为N极,则驱动永磁体A5在朝向转轴导磁体凸起A31的极轭端的方向上的极性为S极,反之亦然。
本实施例中,在驱动线圈A2未通电时,转轴导磁体凸起A31的极轭端处于居中位置,驱动永磁体A4、A5相对居中的转轴导磁体凸起A31的极轭端对称分布,驱动永磁体A4、A5内部磁力线平行于转轴导磁体凸起A31的轴线L1或与转轴导磁体凸起A31的轴线L1呈小于90度的夹角。驱动永磁体A4、A5的远离转轴导磁体凸起A31的极轭端方向的端面和磁封闭体A15固联。优选磁封闭体A15的材料为具有高导磁率的材料,磁封闭体A15也可大致呈长方体形,磁封闭体A15和线圈支架A16固联。
在线圈支架A16上固定有驱动线圈A2,驱动线圈A2呈环形,环形驱动线圈A2内部的中空区域可容纳转轴导磁体凸起A31且允许转轴导磁体凸起A31在其中无干涉地运动。驱动线圈A2例如可由漆包线绕制而成,驱动 线圈A2具有引线端,这些引线端可联结到控制线路板或电源,控制线路板或电源可为驱动线圈A2提供交变电流。
本发明的高速往复旋转的驱动装置还可包括蓄能装置,如附图1a、1b、2和4a-4f所示。用于本发明的蓄能装置可以包括两种,第一蓄能装置和第二蓄能装置。在一实施例中,本发明的驱动装置包括第一蓄能装置(参见图5a),该蓄能装置包括固联于转轴A7上邻近后端盖A10的连接器A9、在连接器A9上沿大致平行于转轴导磁体凸起A31的轴线L1的方向且朝向该凸起方向固联的主磁阻尼永磁体A1及分别固联于后端盖A10上的阻尼永磁体A11和阻尼永磁体A12。主磁阻尼永磁体A1也大致呈长方体形。在驱动线圈A2未通电、转轴导磁体凸起A31极轭端处于居中位置时,阻尼永磁体A11和阻尼永磁体A12相对主磁阻尼永磁体A1对称分布,阻尼永磁体A11、A12的内部磁力线相对主磁阻尼永磁体A1的内部磁力线相互面对或背对,所述内部磁力线的夹角为150度至210度。本实施例中优选为180度,即阻尼永磁体A11和主磁阻尼永磁体A1相互面对的磁极的极性相同,阻尼永磁体A12和主磁阻尼永磁体A1相互面对的磁极的极性相同,主磁阻尼永磁体A1的内部磁力线的延长线至少部分地穿过阻尼永磁体A11或A12。阻尼永磁体A11和主磁阻尼永磁体A1之间存在磁阻尼间隙,该磁阻尼间隙可允许主磁阻尼永磁体A1相对阻尼永磁体A11无干涉地运动。阻尼永磁体A12和主磁阻尼永磁体A1之间也存在磁阻尼间隙,该磁阻尼间隙也可允许主磁阻尼永磁体A1相对阻尼永磁体A11无干涉地运动。
在另一实施例中,本发明的驱动装置包括第二蓄能装置(参见图7a-c),第二蓄能装置包括固联于转轴A7上邻近后端盖A10的连接器A9、在连接器A9上沿大致平行于转轴导磁体凸起A31的轴线L1的方向且朝向该凸起方向固联的弹性件A14及平衡块A13。弹性件A14在远离连接器A9的前端和平衡块A13固联。弹性件A14可以为长方体形金属弹性件,也可以是片状弹性件。平衡块A13可以为具有合适质量的金属件或塑料件等。在驱动线圈A2未通电、转轴导磁体凸起A31的极轭端处于居中位置时,平衡块A13相对弹性件A14居中分布,弹形件A14位于平衡块A13和连接器A9之间的长度可以保证平衡块A13和连接器A9无干涉地相对运动。虽然在本发明的实施例中,驱动装置包括一个第一蓄能装置或一个第二蓄能装置,但所属 领域技术人员可以想到,驱动装置也可包括多个第一蓄能装置或多个第二蓄能装置,还可包括第一蓄能装置和第二蓄能装置的组合,这些技术方案均未超出本发明的范围。
前端盖A6、线圈支架A16及后端盖A10通过如螺栓之类的紧固件固联在一起。固联的前端盖A6、线圈支架A16及后端盖A10可容纳驱动线圈A2、转轴组件、轴承A8、驱动永磁体A4和A5、磁封闭体A15及蓄能装置,且上述被容纳的部件中的可运动部件可以相对于前端盖A6、线圈支架A16及后端盖A10的组合件无干涉地运动。
下面结合附图进行运动分析。
如附图3所示,当交变电流通过驱动线圈A2时,驱动线圈A2产生交变磁场,导磁体A3被周期性磁化,从而转轴导磁体凸起A31的极轭端按交变电流的频率产生磁极性的交变。由于驱动线圈A2中空区域为磁力线最为密集区域,而且穿入或穿过驱动线圈A2的中空区域的导磁体A3由高导磁率材料制作而成,因此,由通电的驱动线圈A2产生的位于驱动线圈A2中空区域中的绝大部分磁力线流过导磁体A3,因而这种结构有效地提高了转轴导磁体凸起A31的极轭端处的磁感应强度。当转轴导磁体凸起A31的极轭端处的磁极与驱动永磁体A4的磁极极性相同时,转轴导磁体凸起A31极轭端与驱动永磁体A4将产生排斥力。由于驱动永磁体A4和驱动永磁体A5在朝向转轴导磁体凸起A31极轭端方向上的磁极极性相反,因此转轴导磁体凸起A31极轭端与驱动永磁体A5将产生吸引力,静止不动的驱动永磁体A4和驱动永磁体A5对转轴导磁体凸起A31极轭端的排斥力和吸引力在转轴A7上形成顺时针转矩。本实施例中,如上所述,在转轴A7上沿转轴轴线L0且在转轴导磁体凸起A31两侧分别分布有轴承A8,轴承A8被固定在线圈支架A16中,轴承A8约束转轴A7只能相对于其旋转。从而,静止不动的驱动永磁体A4和驱动永磁体A5对转轴导磁体凸起A31极轭端的排斥力和吸引力在转轴A7上形成的顺时针转矩驱动转轴A7绕转轴轴线L0顺时针转动。同理当转轴导磁体凸起A31极轭端处的磁极与驱动永磁体A5的磁极极性相同时,静止不动的驱动永磁体A4和驱动永磁体A5对转轴导磁体凸起A31极轭端的吸引力和排斥力和在转轴A7上形成的逆时针转矩驱动转轴A7绕转轴轴线L0逆时针转动。
综上所述,交变电流通过驱动线圈A2时,驱动线圈A2产生交变磁场,导磁体A3被周期性磁化,从而转轴导磁体凸起A31极轭端按交变电流的频率产生磁极性的交变。静止不动的驱动永磁体A4和驱动永磁体A5对转轴导磁体凸起A31极轭端的相互作用力驱动转轴A7绕转轴轴线L0以相同于交变电流的频率周期性地往复旋转。
如附图4a-4f所示,转轴导磁体凸起A31极轭端与驱动永磁体A4、A5之间存在磁隙D1,磁隙D1为转轴导磁体凸起A31极轭端与驱动永磁体A4或驱动永磁体A5之间的最短距离。众所周知,在相同的驱动线圈电流和相同的驱动永磁体A4,A5下,磁隙D1越小,转轴导磁体凸起A31极轭端与驱动永磁体A4,A5之间的相互作用力越大,因而高速往复旋转的驱动装置的效率越高,但磁隙D1太小将导致附加噪音和发热。本申请人通过大量试验得出,在转轴导磁体凸起A31运动过程中始终保持磁隙D1在0.1mm至2mm的范围内是可取的。显然,如附图4d-4f所示,驱动永磁体A4与驱动永磁体A5也可以非平行地分布。优选在转轴导磁体凸起A31的极轭端处于居中位置时,转轴导磁体凸起A31的轴线L1和驱动永磁体A4的内部磁力线的夹角ANG1为0度至90度,同样,转轴导磁体凸起A31的轴线L1和驱动永磁体A5的内部磁力线的夹角ANG2为0度至90度,夹角ANG1和夹角ANG2大小相同,且磁隙D1在转轴导磁体凸起A31运动过程中始终保持在0.1mm至2mm的范围内。当然,转轴导磁体凸起A31的极轭端可以呈不同的几何形状,只要保证磁隙D1在转轴导磁体凸起A31运动过程中始终保持在0.1mm至2mm的范围内即可。
本发明提供了一种在转轴A7的一侧形成单侧转轴导磁体凸起A31的结构,这种相对于转轴轴线L0为非对称分布的转轴导磁体凸起结构,既能保证足够的扭力输出,又可以有效地减小驱动装置的外围尺寸。
为了提高负载能力,在驱动装置中设置蓄能装置是十分必要的。本发明中的驱动力f0为周期性交变的力,蓄能装置可以补偿因驱动力变化而导致的输出力矩的大幅波动,同时能抑制驱动装置引起的高次谐波振动。
根据本发明的不同实施例,引入了两种蓄能装置。附图5a示出了第一蓄能装置,其包括固联于转轴A7上邻近后端盖A10的连接器A9、在连接器A9上沿大致平行于转轴导磁体凸起A31的轴线L1的方向且朝向该凸起 方向固联的主磁阻尼永磁体A1及分别固联于后端盖A10上的阻尼永磁体A11和阻尼永磁体A12。在驱动线圈A2未通电、转轴导磁体凸起A31极轭端处于居中位置时,阻尼永磁体A11和阻尼永磁体A12相对主磁阻尼永磁体A1对称分布,阻尼永磁体A11的内部磁力线相对主磁阻尼永磁体A1的内部磁力线的夹角为180度,阻尼永磁体A12的内部磁力线相对主磁阻尼永磁体A1的内部磁力线的夹角为180度,主磁阻尼永磁体A1的内部磁力线的延长线至少部分穿过阻尼永磁体A11或阻尼永磁体A12。阻尼永磁体A11和主磁阻尼永磁体A1之间存在磁阻尼间隙,所述磁阻尼间隙可允许主磁阻尼永磁体A1相对阻尼永磁体A11无干涉地运动。阻尼永磁体A12和主磁阻尼永磁体A1之间存在磁阻尼间隙,所述磁阻尼间隙可允许主磁阻尼永磁体A1相对于阻尼永磁体A12无干涉地运动。
图5b-图5d为图5a所示蓄能装置的运动分析示意图。如附图5d所示,当主磁阻尼永磁体A1处于绕转轴轴线L0逆时针地旋转到左侧的极限位置时,驱动线圈A2切换电流方向,产生的驱动力f0使转轴A7绕转轴轴线L0沿顺时针方向旋转,和转轴A7无相对运动的主磁阻尼永磁体A1也绕转轴轴线L0沿顺时针方向旋转,而固定在后端盖A10的阻尼永磁体A12和阻尼永磁体A11静止不动,主磁阻尼永磁体A1和阻尼永磁体A12之间的间隙变小,主磁阻尼永磁体A1和阻尼永磁体A11之间的间隙变大。由于在驱动力f0的作用下,主磁阻尼永磁体A1和阻尼永磁体A12之间的间隙变小,因此主磁阻尼永磁体A1和阻尼永磁体A12之间的磁隙中的磁能增大,可实现主磁阻尼永磁体A1和阻尼永磁体A12之间的磁隙中的磁能的储蓄,从而实现储能过程。同时,在驱动力f0的作用下,主磁阻尼永磁体A1和阻尼永磁体A11之间的间隙变大,因此主磁阻尼永磁体A1和阻尼永磁体A11之间的磁隙中的磁能减小,原先储蓄在主磁阻尼永磁体A1和阻尼永磁体A11之间的磁隙中的磁能得到释放,此释放的磁能驱动主磁阻尼永磁体A1绕转轴A7的轴线L0顺时针旋转,从而驱动转轴A7绕转轴轴线L0顺时针旋转,实现放能过程。
如附图5b所示,当主磁阻尼永磁体A1沿顺时针方向旋转到极限位置后,此时驱动线圈A2刚好切换电流方向,产生的驱动力f0使转轴A7绕转轴轴线L0沿逆时针方向旋转,和转轴A7无相对运动的主磁阻尼永磁体A1也沿 逆时针方向旋转。主磁阻尼永磁体A1和阻尼永磁体A12之间的磁隙中的磁能得到释放,此释放的磁能可用来驱动主磁阻尼永磁体A1绕转轴A7的轴线L0逆时针地旋转,从而实现放能过程。而主磁阻尼永磁体A1和阻尼永磁体A11之间的磁隙中的磁能得到储蓄,从而实现储能过程。此时的主磁阻尼永磁体A1和阻尼永磁体A11,A12之间的磁隙中的磁能的储能过程和放能过程以及转轴A7的运动和上述分析类似,在此不再赘述。
综上所述,本发明提供的第一蓄能装置可以和刷头G6、转轴A7、及导磁体A3等运动件构成谐振系统,从而大大提高了高速往复旋转的驱动装置的机械效率。上述谐振系统的固有频率的调整可通过调整主磁阻尼永磁体A1与阻尼永磁体A11、A12的磁感应强度、和/或永磁体体积和/或主磁阻尼永磁体A1与阻尼永磁体A11、A12之间的间距来实现。调整后的高速往复旋转的驱动装置的固有频率大于驱动线圈中电流频率的0.9倍且小于驱动线圈中电流频率的1.1倍。从而可确保以固定频率的电流流过驱动线圈时,本发明的高速往复旋转的驱动装置处于谐振状态。
附图6示出了不同的阻尼永磁体间距与频率(Hz)的关系。曲线表明阻尼永磁体的磁间距直接影响谐振频率。
上述第一蓄能装置利用永磁体之间非接触性的磁力作用以及磁隙大小的变化构建高速往复旋转的驱动装置的谐振系统,在这里定义上述谐振系统为磁谐振系统。本发明的磁谐振系统显著的优点在于永磁体间的作用力是通过非接触的方式进行的。由于力的传递采用非接触方式,因此阻断了高次谐波振动的传递路径,从而磁谐振系统大大地抑制了各种高次谐波振动的传递,因此磁谐振系统对壳体的振动也比传统的由谐振弹簧构建的谐振系统对壳体的振动小,从而提升了使用者的持握舒适性,同时也改善了传统蓄能装置由高次谐波引发的噪音。又由于磁谐振系统中力的传递采用非接触方式,从而解决了传统谐振系统中谐振弹簧的疲劳问题,大大提高了谐振系统的可靠性和使用寿命。优选主磁阻尼永磁体A1和阻尼永磁体A11、A12采用磁力较强的钕铁硼磁体。
此外,相对于转轴A7的轴线L0非对称分布的转轴导磁体凸起A31给装置小型化带来显而易见的优势,但这种非对称的转轴导磁体凸起A31加大了高速运转的驱动装置壳体的整体震动。在另一实施例中,如图7a-c所示, 才用了第二蓄能装置,该装置包括固联于转轴A7上邻近后端盖A10的连接器A9、在连接器A9上沿大致平行于转轴导磁体凸起A31的轴线L1的方向且朝向该凸起方向固联的弹性件A14及平衡块A13。附图7b表示驱动线圈未通电时,转轴导磁体凸起A31的极轭端处于居中位置,驱动永磁体A4、A5相对于居中的转轴导磁体凸起A31的极轭端处于对称分布状态。附图7a和7c分别示出了主轴A7沿逆时针方向转动及沿顺时针方向转动的状态。
为了便于描述,当主轴A7受到电磁力作用下绕其轴线L0旋转时,将驱动力f0等效作用到刷头G6、转轴A7、导磁体A3等运动件的质心。将惯性力f1等效作用到平衡块A13的质心。如果没有设置连接器A9及弹性件A14,驱动力f0的方向随驱动线圈中交变电流的频率而周期性变化,交变的驱动力f0通过运动件传递到驱动装置的壳体,形成了非动力需求的寄生震动,令持握者不适。
在本实施例中,第二蓄能装置除包括连接器A9外,还包括平衡块A13及弹性件A14。如图7a所示,当导磁体A3在驱动力f0的作用下绕转轴A7的轴线L0沿逆时针方向旋转时,平衡块A13因惯性作用,产生与f0相反方向的惯性力f1,惯性力f1作用于弹性件A14上,弹性件A14受压发生变形进而储能,同时平衡块A13上产生动能,实现平衡块A13的储能。因f0与f1的矢量方向相反,平衡块A13和弹性件A14在转轴A7上产生的转矩的方向相反于驱动力f0在转轴A7上产生的转矩的方向。通过调整弹性件A14的劲度系数和平衡块A13的质量以匹配由驱动力f0导致的转轴A7、导磁体A3等运动件产生的非动力寄生震动的频率,从而使第二蓄能装置和上述的驱动力f0产生的非动力寄生震动产生谐振,此时由刷头G6、转轴A7、导磁体A3等运动件产生的非动力寄生震动将被大大抵消。因此第二蓄能装置可有效地抑制因刷头G6、转轴A7、导磁体A3等运动件产生的非动力寄生震动。
参见附图2,在本发明的驱动装置中,由多层薄片型导磁片叠装而成的导磁体A3,可选用厚度为0.2~1.0mm的高导磁的金属材料构成,叠层越薄,越可有效减少导磁过程的集肤效应,减少高频电流引致的涡流,提高能量传递效率,降低温升和提升动力的扭矩输出。但叠层片过薄也容易在制作过程中变形,增加工艺难度。因此合理选用叠厚需要在能效及工艺难度上折衷。 在本实施例中,优选采用厚度为0.3mm的叠片。
图9a-c为本发明的驱动装置动作截面图,如图所示,在本发明所提供的驱动装置中,影响动力输出性能重要因素包括驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端之间的磁隙D1、两个驱动永磁体A4、A5之间的间距D2以及永磁体的材料,其中,驱动永磁体A4、A5优选为高磁力的钕铁硼磁铁,其具备体积小磁力强的特点。驱动永磁体A4、A5之间的间距D2可设置为0~2mm。大量试验表明,优选驱动永磁体A4、A5之间的间距D2等于转轴导磁体凸起A31的舌宽W的0.8倍,而驱动永磁体A4、A5的宽度等于转轴导磁体凸起A31的舌宽W。两个驱动永磁体A4、A5之间的间距D2过小会造成转轴A7的震动振幅小而转矩大,两个驱动永磁体A4、A5之间的间距D2过大会造成转轴A7的震动振幅大而转矩小。驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端之间的磁隙D1可设置为0.1~2mm。大量试验表明,驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端之间的磁隙D1也会影向扭矩输出,磁隙D1过小,装配困难,且驱动装置工作期间功率器件的温度上升容易导致磁隙D1变小,从而导致驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端卡死。如果磁隙D1设置过大,会存在驱动装置效率下降,转矩不足的缺点。本实施例中,优选驱动永磁体A4、A5和转轴导磁体凸起A31的极轭端之间的磁隙D1为0.5mm。
如附图8a-c所示,采用本发明的动力驱动装置可构建完整的电动洁齿器具,其中G1为本发明实施的高速驱动装置。G5为提供电能的电池,G3为提供可产生交变电流的控制线路板。控制线路板G3上设置有控制动作模式的开关G2及指示工作状态的LED指示灯G4。
显然,以上描述只是示例性的,在不超出本发明的由权利要求所限定的范围的前提下,所属领域技术人员还可以作出多种变换和改型,这些变换和改型均应落入本发明的由权利要求所限定的范围。

Claims (12)

  1. 一种用于电动洁齿器具的高速往复旋转的驱动装置,包括:驱动线圈(A2)、转轴组件、驱动永磁体(A4,A5)、蓄能装置、前端盖(A6)和后端盖(A10),其中,所述转轴组件包括转轴(A7),固联在转轴上的导磁体(A3),其中,所述导磁体(A3)环绕转轴(A7)且在转轴(A7)的一侧形成单侧转轴导磁体凸起(A31),该转轴导磁体凸起穿入或穿过驱动线圈(A2)的中空部分且具有远离转轴(A7)方向的极轭端,所述驱动永磁体(A4,A5)分别分布在靠近转轴导磁体凸起(A31)的极轭端两侧,驱动永磁体(A4,A5)和转轴导磁体凸起(A31)的极轭端之间存在磁隙(D1),在转轴导磁体凸起(A31)的运动过程中,磁隙(D1)保持在0.1mm至2mm的范围内。
  2. 如权利要求1所述的驱动装置,其中,在所述转轴导磁体凸起(A31)的运动过程中,所述驱动永磁体(A4、A5)和转轴导磁体凸起(A31)的极轭端之间的磁隙(D1)为0.5mm。
  3. 如权利要求1或2所述的驱动装置,其中,在驱动线圈(A2)未通电时,转轴导磁体凸起(A31)的极轭端处于居中位置,驱动永磁体(A4、A5)相对居中的转轴导磁体凸起(A31)的极轭端对称分布。
  4. 如权利要求1或2所述的驱动装置,其中,所述转轴导磁体凸起(A31)的轴线(L1)和驱动永磁体(A4,A5)的内部磁力线的夹角为0度至90度。
  5. 如权利要求1或2所述的驱动装置,其中,所述导磁体(A3)包括叠装而成的多层薄片型高导磁率材料导磁片,所述导磁片的厚度为0.2~1.0mm。
  6. 如权利要求5所述的驱动装置,其中,所述导磁片的厚度为0.3mm。
  7. 如权利要求1或2所述的驱动装置,其中,还包括至少一个第一蓄能装置和/或至少一个第二蓄能装置,所述第一蓄能装置利用永磁体之间非接触性的磁力作用以及磁隙大小的变化构建高速往复旋转的驱动装置的谐振系统。
  8. 如权利要求7所述的驱动装置,其中,所述第一蓄能装置包括固联于转轴(A7)上邻近后端盖(A10)的连接器(A9)、处于连接器(A9)上沿大致平行于转轴导磁体凸起(A31)的轴线(L1)方向且朝向该凸起方向 固联的主磁阻尼永磁体(A1)及分别固联于后端盖(A10)上的阻尼永磁体(A11)和阻尼永磁体(A12)。
  9. 如权利要求7所述的驱动装置,其中,通过调整主磁阻尼永磁体(A1)与阻尼永磁体(A11、A12)的磁感应强度、和/或永磁体体积和/或主磁阻尼永磁体(A1)与阻尼永磁体(A11、A12)之间的间距来调整所述谐振系统的固有频率,使得所述驱动装置的固有频率大于驱动线圈中电流频率的0.9倍且小于驱动线圈中电流频率的1.1倍。
  10. 如权利要求8所述的驱动装置,其中,所述谐振系统的固有频率的调整可通过调整主磁阻尼永磁体(A1)与阻尼永磁体(A11、A12)的磁感应强度、和/或永磁体体积和/或主磁阻尼永磁体(A1)与阻尼永磁体(A11、A12)之间的间距来实现,并使所述驱动装置的固有频率大于驱动线圈中电流频率的0.9倍且小于驱动线圈中电流频率的1.1倍。
  11. 如权利要求7所述的驱动装置,其中,所述第二蓄能装置包括固联于转轴(A7)上邻近后端盖(A10)的连接器(A9)、在连接器(A9)上沿大致平行于转轴导磁体凸起(A31)的轴线(L1)方向且朝向该凸起方向固联的弹性件(A14)及平衡块(A13),该弹性件(A14)在远离连接器(A9)的前端和平衡块(A13)固联。
  12. 如权利要求11所述的驱动装置,其中,所述弹性件(A14)为长方体形或片状金属弹性件。
PCT/CN2016/080681 2016-04-29 2016-04-29 用于电动洁齿器具高速往复旋转的驱动装置 WO2017185331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080681 WO2017185331A1 (zh) 2016-04-29 2016-04-29 用于电动洁齿器具高速往复旋转的驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080681 WO2017185331A1 (zh) 2016-04-29 2016-04-29 用于电动洁齿器具高速往复旋转的驱动装置

Publications (1)

Publication Number Publication Date
WO2017185331A1 true WO2017185331A1 (zh) 2017-11-02

Family

ID=60161575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080681 WO2017185331A1 (zh) 2016-04-29 2016-04-29 用于电动洁齿器具高速往复旋转的驱动装置

Country Status (1)

Country Link
WO (1) WO2017185331A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109875708A (zh) * 2019-03-08 2019-06-14 漯河医学高等专科学校 一种用于口腔检查的口腔清洗装置
CN112087084A (zh) * 2019-06-14 2020-12-15 英属处女岛沃辉有限公司 高频振动电机
EP3821988A4 (en) * 2018-07-11 2022-04-13 Minebea Mitsumi Inc. VIBRATION ACTUATOR AND ELECTRONIC EQUIPMENT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1866565A (en) * 1926-04-10 1932-07-12 Rca Corp Device for converting electric oscillations into mechanical vibrations
US3538359A (en) * 1968-05-02 1970-11-03 Braun Ag Oscillating motor structure
CN1830403A (zh) * 2005-03-10 2006-09-13 沃辉有限公司 声波牙刷及其摆轴电机
CN1875537A (zh) * 2003-10-29 2006-12-06 布劳恩股份有限公司 用于产生小型电器的振荡运动的驱动单元
CN1886885A (zh) * 2003-11-27 2006-12-27 布劳恩股份有限公司 用于小型电器的电动机
CN104600948A (zh) * 2015-01-27 2015-05-06 宁波赛嘉电器有限公司 一种电机
CN105997288A (zh) * 2016-04-29 2016-10-12 上海携福电器有限公司 用于电动洁齿器具高速往复旋转的驱动装置
CN205729551U (zh) * 2016-04-29 2016-11-30 上海携福电器有限公司 用于电动洁齿器具高速往复旋转的驱动装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1866565A (en) * 1926-04-10 1932-07-12 Rca Corp Device for converting electric oscillations into mechanical vibrations
US3538359A (en) * 1968-05-02 1970-11-03 Braun Ag Oscillating motor structure
CN1875537A (zh) * 2003-10-29 2006-12-06 布劳恩股份有限公司 用于产生小型电器的振荡运动的驱动单元
CN1886885A (zh) * 2003-11-27 2006-12-27 布劳恩股份有限公司 用于小型电器的电动机
CN1830403A (zh) * 2005-03-10 2006-09-13 沃辉有限公司 声波牙刷及其摆轴电机
CN104600948A (zh) * 2015-01-27 2015-05-06 宁波赛嘉电器有限公司 一种电机
CN105997288A (zh) * 2016-04-29 2016-10-12 上海携福电器有限公司 用于电动洁齿器具高速往复旋转的驱动装置
CN205729551U (zh) * 2016-04-29 2016-11-30 上海携福电器有限公司 用于电动洁齿器具高速往复旋转的驱动装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3821988A4 (en) * 2018-07-11 2022-04-13 Minebea Mitsumi Inc. VIBRATION ACTUATOR AND ELECTRONIC EQUIPMENT
US12046975B2 (en) 2018-07-11 2024-07-23 Minebea Mitsumi Inc. Vibration actuator and electronic apparatus
CN109875708A (zh) * 2019-03-08 2019-06-14 漯河医学高等专科学校 一种用于口腔检查的口腔清洗装置
CN112087084A (zh) * 2019-06-14 2020-12-15 英属处女岛沃辉有限公司 高频振动电机
CN112087084B (zh) * 2019-06-14 2023-03-03 英属处女岛沃辉有限公司 高频振动电机

Similar Documents

Publication Publication Date Title
WO2016119136A1 (zh) 个人清洁护理用具
US10177639B2 (en) Actuator and electric beauty appliance
JP5379011B2 (ja) パーソナルケア電気器具における使用のための振動相殺二次共振器
WO2010055641A1 (ja) アクチュエータ及びこれを用いた電動歯ブラシ
US10792138B2 (en) Cleaning device
WO2018000448A1 (zh) 用于电动清洁用具驱动装置的固定结构
WO2017185331A1 (zh) 用于电动洁齿器具高速往复旋转的驱动装置
JP2003210493A (ja) 電動歯ブラシ
JP2010125263A (ja) 電動歯ブラシ
CN105997288B (zh) 用于电动洁齿器具高速往复旋转的驱动装置
WO2015162933A1 (ja) アクチュエータ及びエアポンプ、理美容機器及びレーザー走査機器
EP3451512B1 (en) Electric toothbrush and driving electric motor therefor
WO2016109293A1 (en) Oscillating motor
WO2017140179A1 (zh) 用于生物体体表清洁的电动清洁毛刷
JP5168087B2 (ja) アクチュエータ及びこれを用いた電動歯ブラシ
JP2004073983A (ja) 軸方向駆動の振動体
CN205729551U (zh) 用于电动洁齿器具高速往复旋转的驱动装置
KR102605967B1 (ko) 액추에이터 및 전동 이미용 기구
KR101094651B1 (ko) 감각신호출력장치
JP7129467B2 (ja) パーソナルケアデバイス用の調節可能な振動吸収器
CN216162590U (zh) 清洁护理用具及其换能装置和压力报警机构
JP5795435B2 (ja) 手持ち式小型電気装置用リニアモータ
CN205456951U (zh) 用于生物体体表清洁的电动清洁毛刷
CN208479445U (zh) 一种电动牙刷及其磁场四极定位转角限制振动电机
WO2023071604A1 (zh) 清洁护理用具及其换能装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899843

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899843

Country of ref document: EP

Kind code of ref document: A1