WO2017183805A1 - 저저항 울트라 커패시터 - Google Patents

저저항 울트라 커패시터 Download PDF

Info

Publication number
WO2017183805A1
WO2017183805A1 PCT/KR2017/001404 KR2017001404W WO2017183805A1 WO 2017183805 A1 WO2017183805 A1 WO 2017183805A1 KR 2017001404 W KR2017001404 W KR 2017001404W WO 2017183805 A1 WO2017183805 A1 WO 2017183805A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode lead
lead tabs
bare cell
electrode plate
Prior art date
Application number
PCT/KR2017/001404
Other languages
English (en)
French (fr)
Inventor
배상현
이하영
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170014924A external-priority patent/KR20170120491A/ko
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to EP17786074.9A priority Critical patent/EP3447781B1/en
Priority to CN201780015256.1A priority patent/CN108780708B/zh
Publication of WO2017183805A1 publication Critical patent/WO2017183805A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an energy storage device, and more particularly to an ultra capacitor.
  • Ultra Capacitor also called Super Capacitor
  • Super Capacitor is an energy storage device that has intermediate characteristics between an electrolytic capacitor and a secondary battery. It is forming a market as an energy storage device to complement the high voltage problem.
  • Ultracapacitors have fast charging and discharging characteristics, so they are not only an auxiliary power source for mobile devices such as mobile phones, tablet PCs, or laptops, but also require high-capacity electric vehicles, hybrid cars, solar cell power supplies, and uninterruptible power supplies.
  • Power Supply It is also used as a main or auxiliary power source.
  • a typical ultracapacitor is composed of an activated carbon coated aluminum current collector and a separator wound in a circular shape and embedded in an aluminum case.
  • an ultracapacitor has a voltage of only 3V or less, if you want to use an ultracapacitor for high voltage applications, an ultracapacitor module consisting of multiple ultracapacitors in series is used.
  • a typical ultra capacitor includes a bare cell 110 disposed in a cylindrical case (not shown).
  • the bare cell 110 is formed by winding an anode (not shown), a cathode (not shown), and a separator (not shown) for electrically separating the anode and the cathode.
  • the positive electrode includes a positive electrode plate (not shown) and a positive electrode lead tab 112
  • the negative electrode includes a negative electrode plate (not shown) and a negative electrode lead tab 114.
  • the conventional ultracapacitor is configured to connect the positive lead tab 112 and the negative lead tab 114 to the positive electrode plate and the negative electrode plate, respectively, and to draw the positive and negative electrodes in a specific direction. These positive and negative lead tabs 112 and 114 are connected to an external load.
  • the present invention is to solve the above problems, to provide an ultra-capacitor capable of implementing a low resistance to the technical problem.
  • a low resistance ultracapacitor for achieving the above object is a first electrode plate 212 having a first polarity and a plurality of first electrode lead tabs connected to the first electrode plate 212 ( A first electrode 210 having a 214, a second electrode plate 222 having a second polarity opposite to the first polarity, and a plurality of second electrode lead tabs 224 connected to the second electrode plate 222.
  • the bare cell 200 includes the first electrode 210 and the separator so that the plurality of first electrode lead tabs 214 overlap each other and the plurality of second electrode lead tabs 224 overlap each other.
  • the second electrode 220 is formed to be wound, the length of the first and second electrode plates 212 and 222, and the number of the first and second electrode lead tabs 214 and 224.
  • the interval between the first and second electrode lead tabs 214 and 224 is represented by It depends on.
  • W is an interval between the first or second electrode lead tabs 214 and 224
  • Q LT is the number of the first or second electrode lead tabs 214 and 224
  • L is the first or second electrode lead tabs 214 and 224.
  • the lengths of the second electrode plates 212 and 222 are shown.
  • the first electrode plate 212 and the second electrode plate 222 may include a current collector 212a; And an active layer 212b formed on the current collector 212a, wherein the current collector 212a and the active layer 212b are It is formed to satisfy.
  • Tac is the thickness of the active layer 212b
  • Tcc is the thickness of the current collector 212a.
  • the thickness of the current collector 212a may be 22 ⁇ m to 52 ⁇ m, and the thickness of the active layer 212b may be 210 ⁇ m or less.
  • the active layer 212b includes activated carbon, and the ratio of the sum of mesoporous and macroporous specific surface areas of the total specific surface area in the pores of the activated carbon is 1.5% to 2.5%. It is done.
  • the low-resistance ultracapacitor described above one side is closed and the other side is open, the housing 610 for accommodating the bare cell 200, the electrolyte solution impregnated in the housing 610, and the other surface of the housing 610
  • the cover 620 may further include a cover.
  • the cover 620 may include a first electrode terminal 622 connecting the plurality of first electrode lead tabs 214 to a first electrode terminal of a load supplied with power from the ultra capacitor, and the plurality of second electrodes.
  • the electrode lead tab 224 may include a second electrode terminal 624 that connects the second electrode terminal of the load.
  • the plurality of first electrode lead tabs 214 protrude in a first direction from one side of the first electrode plate 212, and the plurality of second electrode lead tabs 224 One side of the second electrode plate 222 may protrude in the first direction.
  • the present invention by controlling the length of the electrode plate, the number of electrode lead tabs, and the distance between the electrode lead tabs, it is possible to mitigate mutual interference between the electrode lead tabs and to secure a current path, thereby reducing the resistance of the ultracapacitor. There is an effect.
  • the ultracapacitor has a low resistance, thereby minimizing heat generation and improving the energy efficiency of the ultracapacitor.
  • FIG. 1 is an exploded perspective view showing a configuration of a general ultra capacitor.
  • FIG. 2 is a view showing the configuration of a bare cell according to an embodiment of the present invention.
  • FIG. 3A is a diagram illustrating a configuration of the first electrode plate illustrated in FIG. 2.
  • 3B is a view showing that the first electrode plate and the first electrode lead tab are connected.
  • 5 is a table showing changes in relative resistance according to the length of the electrode plate, the number of electrode lead tabs, and the distance between the electrode lead tabs.
  • FIG. 6 is a diagram illustrating a configuration of a low resistance ultracapacitor including a bare cell illustrated in FIG. 2.
  • FIG. 7 is a perspective view of an ultra capacitor module connected without fastening busbars.
  • FIG. 8 is an exploded perspective view of an ultracapacitor module connected without fastening busbars.
  • At least one should be understood to include all combinations which can be presented from one or more related items.
  • the meaning of "at least one of the first item, the second item, and the third item” means not only the first item, the second item, or the third item, respectively, A combination of all items that can be presented from more than one.
  • FIG. 2 is a view showing the configuration of a bare cell according to an embodiment of the present invention.
  • the bare cell 200 illustrated in FIG. 2 is called an electrode element, and has a first electrode 210, a second electrode 220 having a polarity opposite to that of the first electrode 210, and a first electrode 210.
  • a separator 230 that electrically separates the second electrode 220 and the second electrode 220 is wound and formed.
  • the bare cell 200 may be formed by winding in a circular, elliptical, or angular shape.
  • the second electrode 220 is a negative electrode (-)
  • the second electrode 220 if the first electrode 210 is a negative electrode (-), the second electrode 220 Becomes a positive (+).
  • the separator 230 is illustrated as being interposed only between the first electrode 210 and the second electrode 220, but the first electrode 210 or the second electrode 220 is moved outward. In order not to be exposed, the separator 230 may be additionally disposed outside the first electrode 210 and the second electrode 220.
  • the bare cell 200 is stacked and wound in the order of the separator 230-the first electrode 210-the separator 230-the second electrode 220-the separator 230, or the separator 230-the second
  • the electrode 220, the separator 230, the first electrode 210, and the separator 230 may be stacked and wound in the order.
  • the first electrode 210 includes a first electrode plate 212 and a plurality of first electrode lead tabs 214
  • the second electrode 220 includes a second electrode plate 222 and a plurality of second electrode leads. Tab 224.
  • the bare cell 200 includes a plurality of second electrodes constituting the second electrode 220 with a plurality of first electrode lead tabs 214 overlapping each other.
  • the first electrode 210, the separator 230, and the second electrode 220 are wound so that the lead tabs 224 may overlap each other.
  • first electrode plate 212 and the second electrode plate 222 have the same configuration, and the first electrode lead tab 214 and the second electrode lead tab 224 have the same configuration, the first electrode plate 212 and the second electrode plate 222 have the same configuration.
  • the configuration will be described based on the first electrode plate 212 and the first electrode lead tab 214, and the configuration of the second electrode plate 222 and the second electrode lead tab 224 will be described. Description of the description is omitted.
  • FIG. 3A is a diagram illustrating a configuration of a first electrode plate
  • FIG. 3B is a diagram illustrating that a first electrode lead tab is connected to the first electrode plate.
  • the first electrode plate 212 includes a current collector 212a and an active layer 212b.
  • the current collector 212a serves as a movement path of charges emitted or supplied from the active layer 212b and is formed of a metal material.
  • the current collector may be constructed using a metal foil.
  • the active layer 212b is a portion in which the active layer 212b stores electrical energy, and may be formed on the current collector 212a made of metal using activated carbon.
  • the active layer 212b may be coated on both surfaces of the current collector 212a.
  • activated carbon manufactured by a vapor reactivation activation method or an alkali activation method may be applied to the active layer 212b.
  • the electrolyte cations and anions reduce the diffusion resistance of the charge by adsorption / desorption movement by charge and discharge in the activated carbon pores.
  • the higher the ratio of the mesopore (Mesopore) and the macropore (Macropore) that is the pore size to reduce the diffusion resistance can be expressed relatively low resistance.
  • the ratio of mesopore and macropore increases, the space for adsorption / desorption of electrolyte ions decreases, which may cause a decrease in capacity.
  • the ratio of the sum of the mesoporous and macroporous specific surface areas of the total specific surface area in the activated carbon pores is 1.5% to 2.5%.
  • Phosphorus activated carbon can be applied.
  • the nanoporous material may be classified into microporous (Microporous, 2 nm or less), mesoporous (Mesoporous, 2-50 nm), and macroporous (Macroporous, 50 nm or more), depending on the pore size.
  • the proportion of mesoporous and macroporous specific surface area sums in the pores can be measured by excluding the microporous ratio of the total specific surface area.
  • the analysis of the ratio according to the pore size when measuring the specific surface area is modeled by the t-Plot (Harkins and Jura) method to calculate the ratio, based on the micropore (Mepore), mesopore (Mesopore)
  • the ratio of the specific surface area of the macropore can be calculated separately.
  • the current collector 212a and the active layer 212b may be formed to have a thickness ratio that satisfies the condition described in Equation 1 below.
  • Tac represents the thickness of the active layer 212b
  • Tcc represents the thickness of the current collector 212a
  • the reason why the current collector 212a and the active layer 212b according to the present invention are formed to have a thickness ratio as described in Equation 1 is the thickness of the current collector 212a and the active layer 212b as shown in FIG. 4. If the ratio exceeds 9.7, the relative resistance changes rapidly, making it difficult to implement low resistance. In addition, when the thickness ratio of the current collector 212a and the active layer 212b is less than 4, when the ultracapacitor is repeatedly used, the ratio of the active layer may decrease, thereby reducing the capacity of the ultracapacitor.
  • the contact efficiency between the activated carbons and the contact efficiency between the active layer and the current collector 212a in the active layer may be reduced.
  • the resistance of the capacitor can be increased.
  • the thickness of the current collector 212a and the active layer is excessively thick, it is difficult to maintain the bonding force between the activated carbons during the accelerated life test, thereby reducing the reliability of the ultracapacitor.
  • the thickness of the current collector 212a and the active layer is thick, the electron transfer path between the current collector 212a and the active layer becomes long, thereby increasing the internal resistance of the ultracapacitor.
  • the contact efficiency between the activated carbons and the contact efficiency between the active layer and the current collector 212a in the active layer are increased and ultra
  • the capacitance of the ultracapacitor may be reduced as the active layer is reduced.
  • the current collector 212a may be formed to have a thickness of 22 ⁇ m to 52 ⁇ m, and the active layer may be formed to have a thickness of 210 ⁇ m or less.
  • the first electrode lead tab 214 is connected to the first electrode plate 212 and serves as a passage for supplying power to an external load (not shown) that receives power from the ultra capacitor.
  • the first electrode 210 according to the present invention may include a plurality of first electrode lead tabs 214 as shown in FIG. 3B to secure a current movement path.
  • the distance between the first electrode plate 212, the number of first electrode lead tabs 214, and the plurality of first electrode lead tabs 214 is determined according to Equation 2 below.
  • Equation 2 W denotes an interval between the plurality of first electrode lead tabs 214, Q LT denotes the number of first electrode lead tabs 214, and L denotes the length of the first electrode plate 212. All.
  • the first electrode lead tab 214 may be integrally formed with the first electrode plate 212 and protrude in one direction from one side of the first electrode plate 212.
  • the first electrode lead tab 214 may be coupled to one surface of the first electrode plate 212 so as to protrude in one direction from one side of the first electrode plate 212.
  • the first electrode lead tab 214 may be coupled to one surface of the first electrode plate 212 through laser welding or the like.
  • FIG. 6 is a diagram illustrating a configuration of an ultracapacitor to which a bare cell illustrated in FIG. 2 is applied.
  • the low resistance ultracapacitor 600 includes a housing 610, a bare cell (not shown), and a cover 620.
  • the housing 610 is closed on one side and open on the other side to receive the bare cell 200 as shown in FIG. 2.
  • the bare cell 200 is inserted into the housing 610 so that the first electrode lead tab 214 and the second electrode lead tab 224 of the bare cell 200 may be exposed through the other surface of the housing 610. do.
  • the housing 610 may be formed of a plastic material.
  • the housing 610 is impregnated with an electrolyte (not shown) for charging electrical energy.
  • the bare cell 200 may be stored in the container filled with the electrolyte for a predetermined time so that the electrolyte may be impregnated in the bare cell 200.
  • the electrolyte may be coated on the first electrode 210 and the second electrode 220 of the bare cell 200.
  • the description of the bare cell 200 has been already described with reference to FIGS. 2 to 5, and thus a detailed description thereof will be omitted.
  • the cover 620 is coupled to the other surface of the housing 610 to block the other surface of the housing 610.
  • the cover 620 prevents the electrolyte inside the housing 610 from leaking to the outside.
  • the cover 620 connects the first electrode lead tab 214 of the bare cell 200 to a first electrode terminal (not shown) of an external load powered by the ultracapacitor 600.
  • Terminal 624 may be formed.
  • the cover 620 described above may be coupled to the housing 610 through laser welding or ultrasonic welding.
  • the low resistance ultracapacitor 600 may further include a vent hole for drawing out the pressure inside the low resistance ultracapacitor 600 to the outside.
  • a pressure regulating means eg, a vent valve, not shown
  • the vent hole may be formed in the cover 620.
  • the second electrode terminal of the first low resistance ultracapacitor is connected to the first electrode terminal of the second low resistance ultracapacitor by a bus bar or the like. Done.
  • the first electrode terminal of the first low resistance ultracapacitor is connected to the first electrode terminal of the external load
  • the second electrode terminal of the second low resistance ultracapacitor is connected to the second electrode terminal of the external load.
  • a plurality of low resistance ultracapacitors may be connected to each other without a separate busbar fastening.
  • an ultracapacitor module connected without fastening busbars will be described in more detail with reference to FIGS. 7 and 8.
  • FIG. 7 is a perspective view of an ultracapacitor module connected without fastening busbars
  • FIG. 8 is an exploded perspective view of an ultracapacitor module connected without fastening busbars.
  • FIGS. 7 and 8 illustrate an ultracapacitor module configured using two bare cells for convenience of description, the ultracapacitor module using three or more bare cells using the connection method illustrated in FIGS. 7 and 8. You can also configure
  • the ultra capacitor module 700 includes a housing 710, a first bare cell 720, a second bare cell 730, and a cover 740.
  • the housing 710 is closed on one side thereof, and the other side thereof is opened to accommodate the first bare cell 720 and the second bare cell 730 therein.
  • the housing 710 is formed with a first receiving hole 712 for receiving the first bare cell 720 and a second receiving hole 714 for receiving the second bare cell 730,
  • the first accommodating hole 712 and the second accommodating hole 714 are separated by the partition wall 716.
  • the first electrode lead tabs of the first bare cell 720 ( The first electrode lead tab 732 and the second electrode lead tab 734 of the second electrode lead tab 724 and the second bare cell 730 may be exposed through the other surface of the housing 710.
  • the first bare cell 720 and the second bare cell 730 are inserted into the first accommodating hole 712 and the second accommodating hole 714.
  • the housing 710 may be formed of a plastic material.
  • the housing 710 is impregnated with an electrolyte (not shown) for charging electrical energy.
  • the first and second bare cells 720 and 730 may be stored in the container filled with the electrolyte for a predetermined time so that the electrolyte may be impregnated into the first and second bare cells 720 and 730.
  • the electrolyte may be directly coated on the first electrode (not shown) and the second electrode (not shown) of the first and second bare cells 720 and 730.
  • first and second bare cells 720 and 730 are the same as those shown in FIG. 2, detailed descriptions thereof will be omitted.
  • the cover 740 is coupled to the other surface of the housing 710 to block the other surface of the housing 710.
  • the cover 740 prevents the electrolyte inside the housing 710 from flowing out.
  • the cover 740 includes a first groove 742 and a first groove for exposing the first electrode lead tab 722 of the first bare cell 720 for each region corresponding to the first and second bare cells 720 and 730.
  • the second groove 744 for exposing the second electrode lead tab 724 of the first bare cell 720 and the third groove for exposing the first electrode lead tab 732 of the second bare cell 730 ( 746 and a fourth groove 748 for exposing the second electrode lead tab 734 of the second bare cell 730 is formed.
  • the first electrode lead tab 722 of the first bare cell 720 is exposed to the outside through the first groove 742 and is connected to the first electrode terminal (not shown) of the external load.
  • the second electrode lead tab 724 of the first bare cell 720 exposed through the second groove 744 and the first electrode lead tab of the second bare cell 730 exposed through the third groove 746. 732 is electrically connected.
  • the second electrode lead tab 724 of the first bare cell 720 and the first electrode lead tab 732 of the second bare cell 730 may be coupled by laser welding. As a result, the first bare cell 720 and the second bare cell 730 are connected to each other in series. In this case, at least one of the second electrode lead tab 724 of the first bare cell 720 and the first electrode lead tab 732 of the second bare cell 730 may be bent to form the first bare cell 720.
  • the second electrode lead tab 724 and the first electrode lead tab 732 of the second bare cell 730 may be laser welded.
  • each electrode lead Each of the electrode lead tabs 724 and 732 may be bent such that at least some of the tabs 724 and 732 may overlap. According to this embodiment, after welding of the respective electrode lead tabs 724 and 732, there is an area where the electrode lead tabs 724 and 732 overlap.
  • the electrode lead tabs 724 and 732 do not overlap each other, that is, the ends of the respective electrode lead tabs 724 and 732 are bent. You may. However, among the above two embodiments, the embodiment in which the electrode lead tabs 724 and 732 are bent so that there is an overlap region between the electrode lead tabs 724 and 732 is superior in terms of work convenience and contact reliability. Do.
  • the second electrode lead tab 734 of the second bare cell 730 is exposed to the outside through the fourth groove 748 and is connected to a second electrode terminal (not shown) of an external load.
  • the first and second bare cells 720 and 730 may be directly inserted into the housing 710 without a separate casing. Therefore, it is possible to prevent the increase in manufacturing cost due to the double casing (casing and housing of each bare cell) and at the same time reduce the product weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

저저항 구현이 가능한 본 발명의 일 측면에 따른 저저항 울트라 커패시터는 제1 전극 플레이트(212) 및 상기 제1 전극 플레이트(212)에 연결된 복수개의 제1 전극 리드탭(214)을 갖는 제1 전극(210), 제2 전극 플레이트(222) 및 상기 제2 전극 플레이트(222)에 연결된 복수개의 제2 전극 리드탭(224)을 갖는 제2 전극(220)을 포함하는 베어셀(200)을 포함하고, 상기 제1 및 제2 전극 플레이트(212, 222)의 길이, 상기 제1 및 제2 전극 리드탭(214, 224)의 개수, 및 상기 제1 및 제2 전극 리드탭(214, 224) 간의 간격은 수학식 0.8≤(W*QLT)/L≤1에 따라 결정되며, 수학식에서 W는 상기 제1 또는 제2 전극 리드탭(214, 224) 간의 간격이고, QLT는 상기 제1 또는 제2 전극 리드탭(214, 224)의 개수이며, L은 상기 제1 또는 제2 전극 플레이트(212, 222)의 길이를 나타낸다.

Description

저저항 울트라 커패시터
본 발명은 에너지 저장 장치에 관한 것으로서, 보다 구체적으로 울트라 커패시터에 관한 것이다.
울트라 커패시터(Ultra Capacitor)는 슈퍼 커패시터(Super Capacitor)라고도 불리며, 전해 콘덴서와 이차전지의 중간적인 특성을 갖는 에너지 저장장치로써 높은 효율과 반영구적인 수명 특성을 가지고 있어, 이차전지의 약점인 짧은 싸이클과 순간 고전압 문제를 보완하는 에너지 저장장치로서 시장을 형성하고 있다.
울트라 커패시터는 빠른 충방전 특성을 가지므로 휴대폰, 테블릿 PC, 또는 노트북 등과 같은 모바일 디바이스의 보조 전원으로서뿐만 아니라, 고용량이 요구되는 전기 자동차나 하이브리드 자동차, 태양전지용 전원장치, 무정전 전원공급장치(Uninterruptible Power Supply: UPS) 등의 주전원 또는 보조전원으로도 이용된다.
일반적인 울트라 커패시터는 활성탄소(Activated Carbon)가 코팅된 알루미늄 집전체와 분리막(Separator)이 원형으로 권취되어 알루미늄 케이스 내에 내장된 형태로 구성된다.
울트라 커패시터 하나의 전압은 3V이하에 불과하므로 울트라 커패시터를 고전압 어플리케이션에 이용하고자 하는 경우, 다수개의 울트라 커패시터를 직렬로 연결하여 구성한 울트라 커패시터 모듈이 이용된다.
도 1에 일반적인 울트라 커패시터의 구성이 도시되어 있다. 도 1에 도시된 바와 같이, 일반적인 울트라 커패시터는 원통형의 케이스(미도시) 내에 배치된 베어셀(110)을 포함한다. 베어셀(110)은 양극(미도시), 음극(미도시), 및 양극과 음극을 전기적으로 분리하기 위한 분리막(미도시)이 권취되어 형성된다. 양극은 양극 플레이트(미도시) 및 양극 리드탭(112)을 포함하고, 음극은 음극 플레이트(미도시) 및 음극 리드탭(114)을 포함한다.
도 1에 도시된 바와 같이, 종래의 울트라 커패시터는, 양극 플레이트 및 음극 플레이트에 양극 리드탭(112) 및 음극 리드탭(114)을 각각 연결하여 특정 방향으로 인출함으로써 양극 및 음극을 구성하게 되고, 이 양극 및 음극 리드탭(112, 114)이 외부 부하에 연결된다.
하지만, 종래기술에 따른 울트라 커패시터(100)의 경우, 전극 플레이트의 길이 대비 리드탭의 간격과 리드탭의 개수 간의 관계가 고려되지 않았기 때문에, 저저항 구현이 어려워 저항이 증가하게 된다는 문제점이 있다.
이를 해결하기 위해, 양극 리드탭(112) 및 음극 리드탭(114)의 개수를 증가시켜 전류 이동경로를 확보하는 방법을 생각해 볼 수 있지만, 단순히 양극 리드탭(112) 및 음극 리드탭(114)의 개수를 늘리기만 한다면 리드탭(112, 114)간의 상호 간섭이 발생하여 저항 특성이 개선되지 않는다는 문제점이 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 저저항 구현이 가능한 울트라 커패시터를 제공하는 것을 그 기술적 과제로 한다.
상술한 목적을 달성하기 위한 본 발명의 일 측면에 따른 저저항 울트라 커패시터는 제1 극성을 갖는 제1 전극 플레이트(212) 및 상기 제1 전극 플레이트(212)에 연결된 복수개의 제1 전극 리드탭(214)을 갖는 제1 전극(210), 상기 제1 극성과 반대되는 제2 극성을 갖는 제2 전극 플레이트(222) 및 상기 제2 전극 플레이트(222)에 연결된 복수개의 제2 전극 리드탭(224)을 갖는 제2 전극(220), 상기 제1 전극(210) 및 상기 제2 전극(220) 사이에 배치되어 상기 제1 전극(210) 및 제2 전극(220)을 전기적으로 절연시키는 하나 이상의 분리막(230)을 갖는 베어셀(200)을 포함한다. 이때, 상기 베어셀(200)은 상기 복수개의 제1 전극 리드탭(214)이 서로 중첩되고, 상기 복수개의 제2 전극 리드탭(224)이 서로 중첩되도록 상기 제1 전극(210), 상기 분리막(230), 및 상기 제2 전극(220)이 권취되어 형성되고, 상기 제1 및 제2 전극 플레이트(212, 222)의 길이, 상기 제1 및 제2 전극 리드탭(214, 224)의 개수, 및 상기 제1 및 제2 전극 리드탭(214, 224) 간의 간격은 수학식
Figure PCTKR2017001404-appb-I000001
에 따라 결정된다. 상기 수학식에서 W는 상기 제1 또는 제2 전극 리드탭(214, 224) 간의 간격이고, QLT는 상기 제1 또는 제2 전극 리드탭(214, 224)의 개수이며, L은 상기 제1 또는 제2 전극 플레이트(212, 222)의 길이를 나타낸다.
상기 제1 전극 플레이트(212) 및 상기 제2 전극 플레이트(222)는, 집전체(212a); 및 상기 집전체(212a)에 형성된 활성층(212b)을 포함하고, 상기 집전체(212a) 및 상기 활성층(212b)은 수학식
Figure PCTKR2017001404-appb-I000002
를 만족하도록 형성된다. 상기 수학식에서 Tac는 상기 활성층(212b)의 두께이고, Tcc는 상기 집전체(212a)의 두께를 나타낸다.
이러한 실시예에 따르는 경우, 상기 집전체(212a)의 두께는 22μm 내지 52μm 이고, 상기 활성층(212b)의 두께는 210 μm 이하일 수 있다.
일 실시예에 있어서, 상기 활성층(212b)은 활성탄을 포함하고, 상기 활성탄의 기공 내 전체 비표면적 중 메조포러스(Mesoporous) 및 매크로포러스(Macroporous) 비표면적 합의 비율은 1.5% 내지 2.5%인 것을 특징으로 한다.
한편, 상술한 저저항 울트라 커패시터는, 일면은 패쇄되고 타면은 개방되어 상기 베어셀(200)을 수용하는 하우징(610), 상기 하우징(610) 내에 함침된 전해액, 및 상기 하우징(610)의 타면을 덮는 커버(620)를 더 포함할 수 있다.
상기 커버(620)는, 상기 복수개의 제1 전극 리드탭(214)을 상기 울트라 커패시터로부터 전력을 공급받는 부하의 제1 전극단자와 연결시키는 제1 전극단자(622), 및 상기 복수개의 제2 전극 리드탭(224)을 상기 부하의 제2 전극단자와 연결시키는 제2 전극단자(624)를 포함할 수 있다.
일 실시예에있어서, 상기 복수개의 제1 전극 리드탭(214)은 상기 제1 전극 플레이트(212)의 일변에서 제1 방향으로 돌출되어 형성되고, 상기 복수개의 제2 전극 리드탭(224)은 상기 제2 전극 플레이트(222)의 일변에서 상기 제1 방향으로 돌출되어 형성될 수 있다.
본 발명에 따르면, 전극 플레이트의 길이, 전극 리드탭의 개수, 및 전극 리드탭간의 간격을 조절함으로써 전류 이동경로의 확보와 전극 리드탭간의 상호 간섭을 완화시킬 수 있어 울트라 커패시터의 저항을 감소시킬 수 있다는 효과가 있다.
또한, 본 발명에 따르면 울트라 커패시터가 저저항을 갖게 되어 발열을 최소화할 수 있고 울트라 커패시터의 에너지 효율을 향상시킬 수 있다는 효과가 있다.
도 1은 일반적인 울트라 커패시터의 구성을 보여주는 분해 사시도이다.
도 2는 본 발명의 일 실시예에 따른 베어셀의 구성을 보여주는 도면이다.
도 3a는 도 2에 도시된 제1 전극 플레이트의 구성을 보여주는 도면이다.
도 3b는 제1 전극 플레이트와 제1 전극 리드탭이 연결된 것을 보여주는 도면이다.
도 4는 집전체 및 활성층의 두께 비율 변화에 따른 상대저항의 변화를 보여주는 그래프이다.
도 5는 전극 플레이트의 길이, 전극 리드탭의 개수, 및 전극 리드탭간의 간격에 따른 상대저항의 변화를 보여주는 표이다.
도 6은 도 2에 도시된 베어셀을 포함하는 저저항 울트라 커패시터의 구성을 보여주는 도면이다.
도 7은 부스바 체결없이 연결된 울트라 커패시터 모듈의 사시도이다.
도 8은 부스바 체결없이 연결된 울트라 커패시터 모듈의 분해 사시도이다.
본 명세서에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 정의하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다.
"포함하다" 또는 "가지다" 등의 용어는 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제 3항목 중에서 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미한다.
이하, 첨부되는 도면을 참고하여 본 발명의 실시예들에 대해 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 베어셀의 구성을 보여주는 도면이다. 도 2에 도시된 베어셀(200)은 전극소자라 불리는 것으로서, 제1 전극(210), 제1 전극(210)과 반대되는 극성을 갖는 제2 전극(220), 및 제1 전극(210)과 제2 전극(220)을 전기적으로 분리시키는 분리막(Separator, 230)이 권취되어 형성된다.
베어셀(200)은 원형, 타원형, 또는 각형으로 권취되어 형성될 수 있다.
일 실시예에 있어서, 제1 전극(210)이 양극(+)이면 제2 전극(220)은 음극(-)이 되고, 제1 전극(210)이 음극(-)이면 제2 전극(220)은 양극(+)이 된다.
도 2에서는 설명의 편의를 위해 분리막(230)이 제1 전극(210) 및 제2 전극(220) 사이에만 개재되는 것으로 도시하였지만, 제1 전극(210) 또는 제2 전극(220)이 외부로 노출되지 않도록 하기 위해 제1 전극(210) 및 제2 전극(220)의 외부에도 분리막(230)이 추가로 배치될 수 있다.
즉, 베어셀(200)은 분리막(230)-제1 전극(210)-분리막(230)-제2 전극(220)-분리막(230) 순서로 적층되어 권취되거나, 분리막(230)-제2 전극(220)-분리막(230)-제1 전극(210)-분리막(230) 순서로 적층되어 권취될 수 있다.
제1 전극(210)은 제1 전극 플레이트(212) 및 복수개의 제1 전극 리드탭(214)을 포함하고, 제2 전극(220)은 제2 전극 플레이트(222) 및 복수개의 제2 전극 리드탭(224)을 포함한다.
일 실시예에 있어서, 베어셀(200)은 제1 전극(210)을 구성하는 복수개의 제1 전극 리드탭(214)이 서로 중첩되고, 제2 전극(220)을 구성하는 복수개의 제2 전극 리드탭(224)이 서로 중첩될 수 있도록 제1 전극(210), 분리막(230), 및 제2 전극(220)이 권취된다.
제1 전극 플레이트(212) 및 제2 전극 플레이트(222)는 구성이 동일하고, 제1 전극 리드탭(214) 및 제2 전극 리드탭(224)은 구성이 동일하므로, 이하의 도 3에 대한 설명에서는 설명의 편의를 위해 제1 전극 플레이트(212) 및 제1 전극 리드탭(214)을 기준으로 그 구성을 설명하고, 제2 전극 플레이트(222) 및 제2 전극 리드탭(224)의 구성에 대한 설명은 생략한다.
이하, 도 3을 참조하여 제1 전극 플레이트 및 제1 전극 리드탭에 대해 보다 구체적으로 설명한다.
도 3a는 제1 전극 플레이트의 구성을 보여주는 도면이고, 도 3b는 제1 전극 플레이트에 제1 전극 리드탭이 연결되어 있는 것을 보여주는 도면이다.
먼저, 도 3a를 참조하여 제1 전극 플레이트(212)의 구성에 대해 설명한다. 도 3a에 도시된 바와 같이, 제1 전극 플레이트(212)는 집전체(212a) 및 활성층(212b)을 포함한다.
집전체(212a)는 활성층(212b)으로부터 방출되거나 공급되는 전하의 이동통로 역할을 하는 것으로서, 금속재질로 형성된다. 집전체는 금속 포일(Foil)을 이용하여 구성될 수 있다.
활성층(212b)은 활성층(212b)은 전기에너지가 저장되는 부분으로서, 금속재질의 집전체(212a) 상에 활성탄소(Activated Carbon)를 이용하여 형성될 수 있다. 활성층(212b)은 집전체(212a)의 양면에 코팅되어 구성될 수 있다.
일 실시예에 있어서, 활성층(212b)에는 울트라 커패시터가 저저항을 갖도록 하기 위해, 증기부활 활성화법 또는 알칼리 활성화법으로 제조된 활성탄이 적용될 수 있다. 이러한 실시예에 따르는 경우, 전해질 양이온 및 음이온이 활성탄 기공 내에서 충방전에 의한 흡/탈착 이동에 의해 전하의 확산 저항을 감소시키게 된다.
이때, 확산 저항을 감소시키는 기공 크기인 메조포어(Mesopore) 및 매크로포어(Macropore)의 비율이 높을수록 상대적으로 저저항이 발현될 수 있다. 하지만, 메조포어(Mesopore) 및 매크로포어(Macropore)의 비율이 높아질 수록 전해질 이온이 흡/탈착될 공간이 감소하게 되므로 용량 저하의 원인이 될 수 있다.
따라서, 본 발명에 따른 활성층(212b)에는 용량저하 없이 저저항 발현을 구현 하기 위해, 활성탄 기공 내 전체 비표면적 중 메조포러스(Mesoporous) 및 매크로포러스(Macroporous) 비표면적 합의 비율이 1.5% 내지 2.5%인 활성탄이 적용될 수 있다.
이때, 나노 다공성 물질은 기공의 크기에 따라 마이크로포러스(Microporous, 2 ㎚이하), 메조포러스(Mesoporous, 2 ~ 50 ㎚), 및 매크로포러스(Macroporous, 50 ㎚ 이상)으로 분류될 수 있기 때문에, 활성탄 기공 내 메조포러스(Mesoporous)및 매크로포러스(Macroporous) 비표면적 합의 비율은 전체 비표면적 중 마이크로포러스(Microporous) 비율을 제외함으로써 측정될 수 있다.
일 실시예에 있어서, 비표면적 측정시 기공 크기에 따른 비율의 분석은 t-Plot (Harkins and Jura) 방법에 의하여 모델링되어 비율이 산정되며, 이를 기초로 마이크로포어(Micropore), 메조포어(Mesopore), 매크로포어(Macropore)의 비표면적 비율이 구분되어 계산될 수 있다.
일 실시예에 있어서, 집전체(212a) 및 활성층(212b)은 아래의 수학식 1에 기재된 조건을 만족하는 두께 비율을 갖도록 형성될 수 있다.
Figure PCTKR2017001404-appb-M000001
수학식 1에서, Tac는 활성층(212b)의 두께를 나타내고, Tcc는 집전체(212a)의 두께를 나타낸다.
본 발명에 따른 집전체(212a) 및 활성층(212b)이 수학식 1에 기재된 바와 같은 두께 비율을 갖도록 형성되는 이유는, 도 4에 도시된 바와 같이 집전체(212a) 및 활성층(212b)의 두께 비율이 9.7을 초과하게 되면 상대저항이 급변하여 저저항 구현이 어려워지기 때문이다. 또한, 집전체(212a) 및 활성층(212b)의 두께 비율이 4 미만이 되면 울트라 커패시터를 반복하여 사용하게 되는 경우 활성층의 비율이 감소하여 울트라 커패시터의 용량이 감소할 수 있기 때문이다.
한편, 수학식 1을 만족시키는 두께 비율 범위 내에서도 집전체(212a) 및 활성층의 적절한 두께 범위 설정이 필요하다.
집전체(212a) 및 활성층의 두께가 너무 두꺼우면(집전체(212a) 및 활성층의 밀도가 낮은 경우), 활성층 내에서 활성탄들간의 접촉효율과 활성층과 집전체(212a) 간의 접촉효율이 낮아져 울트라 커패시터의 저항이 증가될 수 있다. 특히, 집전체(212a) 및 활성층의 두께가 과도하게 두꺼울 경우, 가속수명 시험 시 활성탄간의 결합력이 유지되기 어렵기 때문에 울트라 커패시터의 신뢰성이 저하된다. 또한, 집전체(212a) 및 활성층의 두께가 두꺼우면 집전체(212a)와 활성층 간의 전자 이동 경로가 길어지게 되므로 울트라 커패시터의 내부 저항이 높아지게 된다는 문제점이 있다.
반대로 집전체(212a) 및 활성층의 두께가 얇으면(집전체(212a) 및 활성층의 밀도가 높은 경우), 활성층 내에서 활성탄들간의 접촉효율과 활성층과 집전체(212a) 간의 접촉효율이 높아져 울트라 커패시터의 저저항 구현에 유리하지만, 활성층 감소에 따라 울트라 커패시터의 전기용량이 작아질 수 있다는 단점이 있다.
따라서, 울트라 커패시터의 저저항 구현과 적절한 전기용량의 확보를 위해서는 집전체(212a) 및 활성층의 두께 범위를 적절하게 설정할 필요가 있다. 일 실시예에 있어서, 수학식 1에 정의된 범위 내에서 집전체(212a)는 22㎛내지 52㎛의 두께를 갖도록 형성되고, 활성층은 210㎛이하의 두께를 갖도록 형성될 수 있다.
다음으로, 도 3b를 참조하여 제1 전극 플레이트(212)에 연결된 제1 전극 리드탭(214)에 대해 설명한다.
제1 전극 리드탭(214)은 제1 전극 플레이트(212)에 연결되어 울트라 커패시터로부터 전력을 공급받는 외부부하(미도시)로 전력을 공급하기 위한 통로 역할을 수행한다. 이때, 본 발명에 따른 제1 전극(210)은 전류 이동 경로의 확보를 위해 도 3b에 도시된 바와 같이 복수개의 제1 전극 리드탭(214)을 포함할 수 있다.
일 실시예에 있어서, 제1 전극 플레이트(212), 제1 전극 리드탭(214)의 개수, 및 복수개의 제1 전극 리드탭(214)간의 간격은 아래의 수학식 2에 따라 결정된다.
Figure PCTKR2017001404-appb-M000002
수학식 2에서 W는 복수개의 제1 전극 리드탭(214) 간의 간격을 나타내고, QLT는 제1 전극 리드탭(214)의 개수를 나타내며, L은 제1 전극 플레이트(212)의 길이를 나타내다.
도 5에 도시된 바와 같이, 수학식 2에 기재된 제1 전극 플레이트(212), 제1 전극 리드탭(214)의 개수, 및 복수개의 제1 전극 리드탭(214)간의 간격에 대한 관계식(이하, '관계식'이라 함)의 값이 0.5일 때 상대저항은 100%로 매우 높은 값을 갖고, 관계식의 값이 0.67로 증가하면 상대저항은 49.3%으로 감소하며, 관계식의 값이 0.75로 증가하면 상대저항은 34.3%로 감소하고, 관계식의 값이 0.80으로 증가하면 상대저항은 20.9%로 감소하며, 관계식의 값이 0.9로 증가하면 상대저항은 9.4%로 감소하고, 관계식의 값이 0.05로 증가하면 상대저항은 4.2%로 감소하며, 관계식의 값이 0.99로 증가하면 상대저항은 1.0%로 감소한다는 것을 알 수 있다. 즉, 관계식의 값이 1미만의 범위 내에서 그 값이 증가할 수록 상대저항은 감소한다는 것을 알 수 있다.
일 실시예에 있어서, 제1 전극 리드탭(214)은 제1 전극 플레이트(212)와 일체로 형성되고, 제1 전극 플레이트(212)의 일변에서 제1 방향으로 돌출되도록 형성될 수 있다.
다른 실시예에 있어서, 제1 전극 리드탭(214)은 제1 전극 플레이트(212)의 일변에서 제1 방향으로 돌출되도록 제1 전극 플레이트(212)의 일면 상에 결합되어 형성될 수 있다. 이때, 제1 전극 리드탭(214)은 레이저 용접 등을 통해 제1 전극 플레이트(212)의 일면에 결합될 수 있다.
이하, 도 6을 참조하여 본 발명에 따른 베어셀이 적용된 울트라 커패시터에 대해 간략히 설명한다.
도 6은 도 2에 도시된 베어셀이 적용된 울트라 커패시터의 구성을 보여주는 도면이다.
도 6에 도시된 바와 같이, 본 발명에 따른 저저항 울트라 커패시터(600)는 하우징(610), 베어셀(미도시), 및 커버(620)를 포함한다.
하우징(610)은 일면은 패쇄되고, 타면은 개방되어 그 내부에 도 2에 도시된 바와 같은 베어셀(200)을 수용한다.
이때, 베어셀(200)의 제1 전극 리드탭(214) 및 제2 전극 리드탭(224)이 하우징(610)의 타면을 통해 노출될 수 있도록 베어셀(200)이 하우징(610) 내에 삽입된다.
일 실시예에 있어서, 하우징(610)은 플라스틱 재질로 형성될 수 있다.
하우징(610) 내에는 전기 에너지의 충전을 위한 전해액(미도시)이 함침된다. 다른 실시예에 있어서, 베어셀(200)을 전해액이 채워져 있는 용기속에 일정시간 보관함으로써 베어셀(200) 내에 전해액이 함침되도록 할 수도 있다. 또 다른 실시예에 있어서, 전해액이 베어셀(200)의 제1 전극(210) 및 제2 전극(220)에 코팅될 수도 있다.
베어셀(200)은 도 2에 도시된 것과 동일한 것으로서, 베어셀(200)에 대한 설명은 도 2 내지 도 5에서 이미 설명하였으므로 구체적인 설명은 생략하기로 한다.
커버(620)는 하우징(610)의 타면에 결합되어 하우징(610)의 타면을 패쇄시킨다. 커버(620)로 인해 하우징(610) 내부의 전해액이 외부로 유출되는 것이 방지된다.
일 실시예에 있어서, 커버(620)에는 베어셀(200)의 제1 전극 리드탭(214)을 울트라 커패시터(600)로부터 전력을 공급받는 외부 부하의 제1 전극단자(미도시)에 연결시키는 제1 전극단자(622) 및 베어셀(200)의 제2 전극 리드탭(224)을 울트라 커패시터(600)로부터 전력을 공급받는 외부 부하의 제2 전극단자(미도시)에 연결시키는 제2 전극단자(624)가 형성될 수 있다.
상술한 커버(620)는 레이저 용접 또는 초음파 융착 방식을 통해 하우징(610)에 결합될 수 있다.
한편, 도시하지는 않았지만 저저항 울트라 커패시터(600)는 저저항 울트라 커패시터(600) 내부의 압력을 외부로 인출하기 위한 벤트홀(Vent Hole)을 추가로 포함할 수 있다. 이러한 벤트홀에 저저항 울트라 커패시터(600) 내부의 압력을 조절하기 위한 압력 조절 수단(예컨대, 벤트 밸브, 미도시)이 삽입되어 저저항 울트라 커패시터(600) 내부의 압력이 조절된다. 일 실시예에 있어서, 벤트홀은 커버(620)에 형성될 수 있다.
도 6에 도시된 바와 같은 저저항 울트라 커패시터를 이용하여 울트라 커패시터 모듈을 구성하는 경우 제1 저저항 울트라 커패시터의 제2 전극단자를 부스바 등으로 제2 저저항 울트라 커패시터의 제1 전극단자와 연결하게 된다. 이때, 제1 저저항 울트라 커패시터의 제1 전극단자는 외부부하의 제1 전극단자에 연결하고, 제2 저저항 울트라 커패시터의 제2 전극단자는 외부부하의 제2 전극단자에 연결하게 된다.
다른 실시예에 있어서, 별도의 부스바 체결 없이도 복수개의 저저항 울트라 커패시터들을 서로 연결시킬 수 있다. 이하, 부스바 체결없이 연결된 울트라 커패시터 모듈을 도 7 및 도 8을 참조하여 보다 구체적으로 설명한다.
도 7은 부스바 체결없이 연결된 울트라 커패시터 모듈의 사시도이고, 도 8은 부스바 체결없이 연결된 울트라 커패시터 모듈의 분해 사시도이다.
도 7 및 도 8에서는 설명의 편의를 위해 2개의 베어셀을 이용하여 구성된 울트라 커패시터 모듈을 도시하였지만, 도 7 및 도 8에 도시된 연결방법을 이용하여 3개 이상의 베어셀을 이용하여 울트라 커패시터 모듈을 구성할 수도 있을 것이다.
도 7 및 도 8에 도시된 바와 같이, 울트라 커패시터 모듈(700)은 하우징(710), 제1 베어셀(720), 제2 베어셀(730), 및 커버(740)를 포함한다.
하우징(710)은 일면은 패쇄되고, 타면은 개방되어 그 내부에 제1 베어셀(720)및 제2 베어셀(730)을 수용한다. 이를 위해, 하우징(710)에는 제1 베어셀(720)의 수용을 위한 제1 수용홀(712) 및 제2 베어셀(730)의 수용을 위한 제2 수용홀(714)이 형성되어 있고, 제1 수용홀(712) 및 제2 수용홀(714)은 격벽(716)에 의해 분리된다.
제1 베어셀(720) 및 제2 베어셀(730)을 제1 수용홀(712) 및 제2 수용홀(714)에 각각 삽입시, 제1 베어셀(720)의 제1 전극 리드탭(722) 및 제2 전극 리드탭(724)과 제2 베어셀(730)의 제1 전극 리드탭(732) 및 제2 전극 리드탭(734)이 하우징(710)의 타면을 통해 노출될 수 있도록 제1 베어셀(720) 및 제2 베어셀(730)이 제1 수용홀(712) 및 제2 수용홀(714) 내에 삽입된다.
일 실시예에 있어서, 하우징(710)은 플라스틱 재질로 형성될 수 있다.
하우징(710) 내에는 전기 에너지의 충전을 위한 전해액(미도시)이 함침된다. 다른 실시예에 있어서, 제1 및 제2 베어셀(720, 730)을 전해액이 채워져 있는 용기속에 일정시간 보관함으로써 제1 및 제2 베어셀(720, 730)내에 전해액이 함침되도록 할 수도 있다. 또 다른 실시예에 있어서, 전해액이 제1 및 제2 베어셀(720, 730)의 제1 전극(미도시) 및 제2 전극(미도시)에 직접 코팅될 수도 있다.
제1 및 제2 베어셀(720, 730)은 도 2에 도시된 것과 동일한 것이므로 구체적인 설명은 생략하기로 한다.
커버(740)는 하우징(710)의 타면에 결합되어 하우징(710)의 타면을 패쇄시킨다. 커버(740)로 인해 하우징(710) 내부의 전해액이 외부로 유출되는 것이 방지된다.
커버(740)에는 제1 및 제2 베어셀(720, 730)에 상응하는 영역 별로 제1 베어셀(720)의 제1 전극 리드탭(722)을 노출시키기 위한 제1 홈(742), 제1 베어셀(720)의 제2 전극 리드탭(724)을 노출시키기 위한 제2 홈(744), 제2 베어셀(730)의 제1 전극 리드탭(732)을 노출시키기 위한 제3 홈(746), 제2 베어셀(730)의 제2 전극 리드탭(734)을 노출시키기 위한 제4 홈(748)이 형성되어 있다.
제1 홈(742)을 통해 제1 베어셀(720)의 제1 전극 리드탭(722)이 외부로 노출되어 외부부하의 제1 전극단자(미도시)에 연결된다.
제2 홈(744)을 통해 노출된 제1 베어셀(720)의 제2 전극 리드탭(724)과 제3 홈(746)을 통해 노출된 제2 베어셀(730)의 제1 전극 리드탭(732)이 전기적으로 연결된다. 제1 베어셀(720)의 제2 전극 리드탭(724)과 제2 베어셀(730)의 제1 전극 리드탭(732)은 레이저 용접을 통해 결합될 수 있다. 이를 통해 제1 베어셀(720)과 제2 베어셀(730)이 서로 직렬로 연결된다. 이때, 제1 베어셀(720)의 제2 전극 리드탭(724) 및 제2 베어셀(730)의 제1 전극 리드탭(732) 중 적어도 하나를 절곡하여 제1 베어셀(720)의 제2 전극 리드탭(724)과 제2 베어셀(730)의 제1 전극 리드탭(732)을 레이저 용접할 수 있다.
일 실시예에 있어서, 제1 베어셀(720)의 제2 전극 리드탭(724) 및 제2 베어셀(730)의 제1 전극 리드탭(732) 중 적어도 하나를 절곡함에 있어서, 각 전극 리드탭(724, 732) 중 적어도 일부가 중첩될 수 있도록 각 전극 리드탭(724, 732)들을 절곡할 수 있다. 이러한 실시예에 따르는 경우 각 전극 리드탭(724, 732)들의 용접 이후에 각 전극 리드탭(724, 732)들이 중첩되는 영역이 존재하게 된다.
다른 실시예에 있어서, 각 전극 리드탭(724, 732)들을 절곡함에 있어서 각 전극 리드탭(724, 732)들이 서로 중첩되지 않도록, 즉 각 전극 리드탭(724, 732)들의 끝단이 맞닿도록 절곡할 수도 있다. 다만, 위의 2가지 실시예들 중 각 전극 리드탭(724, 732)들간의 중첩 영역이 존재하도록 각 전극 리드탭(724, 732)들을 절곡하는 실시예가 작업 편이성과 접촉 신뢰성 측면에서 보다 더 우수하다.
제4 홈(748)을 통해 제2 베어셀(730)의 제2 전극 리드탭(734)이 외부로 노출되어 외부 부하의 제2 전극단자(미도시)에 연결된다.
도 7 및 도 8에 도시된 바와 같이, 별도의 부스바 체결 없이 울트라 커패시터 모듈을 구성하는 경우 제1 및 제2 베어셀(720, 730)을 별도의 케이싱 없이 하우징(710)에 바로 삽입할 수 있어, 이중 케이싱(각 베어셀의 케이싱과 하우징)으로 인한 제조단가의 상승을 방지함과 동시에 제품무게를 감소시킬 수 있다.
본 발명이 속하는 기술분야의 당업자는 상술한 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (8)

  1. 제1 극성을 갖는 제1 전극 플레이트 및 상기 제1 전극 플레이트에 연결된 복수개의 제1 전극 리드탭을 갖는 제1 전극;
    상기 제1 극성과 반대되는 제2 극성을 갖는 제2 전극 플레이트 및 상기 제2 전극 플레이트에 연결된 복수개의 제2 전극 리드탭을 갖는 제2 전극; 및
    상기 제1 전극 및 상기 제2 전극 사이에 배치되어 상기 제1 전극 및 제2 전극을 전기적으로 절연시키는 하나 이상의 분리막을 갖는 베어셀을 포함하고,
    상기 베어셀은 상기 복수개의 제1 전극 리드탭이 서로 중첩되고, 상기 복수개의 제2 전극 리드탭이 서로 중첩되도록 상기 제1 전극, 상기 분리막, 및 상기 제2 전극이 권취되어 형성되고,
    상기 제1 및 제2 전극 플레이트의 길이, 상기 제1 및 제2 전극 리드탭의 개수, 및 상기 제1 및 제2 전극 리드탭 간의 간격은
    수학식
    Figure PCTKR2017001404-appb-I000003
    에 따라 결정되며,
    상기 수학식에서 W는 상기 제1 또는 제2 전극 리드탭 간의 간격이고, QLT는 상기 제1 또는 제2 전극 리드탭의 개수이며, L은 상기 제1 또는 제2 전극 플레이트의 길이인 것을 특징으로 하는 저저항 울트라 커패시터.
  2. 제1항에 있어서,
    상기 제1 전극 플레이트 및 상기 제2 전극 플레이트는,
    집전체; 및
    상기 집전체에 형성된 활성층을 포함하고,
    상기 집전체 및 상기 활성층은
    수학식
    Figure PCTKR2017001404-appb-I000004
    를 만족하도록 형성되고,
    상기 수학식에서 Tac는 상기 활성층의 두께이고, Tcc는 상기 집전체의 두께인 것을 특징으로 하는 저저항 울트라 커패시터.
  3. 제2항에 있어서,
    상기 활성층은 활성탄을 포함하고,
    상기 활성탄의 기공 내 전체 비표면적 중 메조포러스(Mesoporous) 및 매크로포러스(Macroporous) 비표면적 합의 비율은 1.5% 내지 2.5%인 것을 특징으로 하는 저저항 울트라 커패시터.
  4. 제2항에 있어서,
    상기 집전체의 두께는 22㎛내지 52㎛인 것을 특징으로 하는 울트라 커패시터.
  5. 제2항에 있어서,
    상기 활성층의 두께는 210㎛이하인 것을 특징으로 하는 저저항 울트라 커패시터.
  6. 제1항에 있어서,
    일면은 패쇄되고 타면은 개방되어 상기 베어셀을 수용하는 하우징;
    상기 하우징 내에 함침된 전해액; 및
    상기 하우징의 타면을 덮는 커버를 더 포함하는 것을 특징으로 하는 저저항 울트라 커패시터.
  7. 제6항에 있어서,
    상기 커버는,
    상기 복수개의 제1 전극 리드탭을 상기 울트라 커패시터로부터 전력을 공급받는 부하의 제1 전극단자와 연결시키는 제1 전극단자; 및
    상기 복수개의 제2 전극 리드탭을 상기 부하의 제2 전극단자와 연결시키는 제2 전극단자를 포함하는 것을 특징으로 하는 저저항 울트라 커패시터.
  8. 제1항에 있어서,
    상기 복수개의 제1 전극 리드탭은 상기 제1 전극 플레이트의 일변에서 제1 방향으로 돌출되어 형성되고,
    상기 복수개의 제2 전극 리드탭은 상기 제2 전극 플레이트의 일변에서 상기 제1 방향으로 돌출되어 형성된 것을 특징으로 하는 저저항 울트라 커패시터.
PCT/KR2017/001404 2016-04-21 2017-02-09 저저항 울트라 커패시터 WO2017183805A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17786074.9A EP3447781B1 (en) 2016-04-21 2017-02-09 Low-resistance ultra capacitor
CN201780015256.1A CN108780708B (zh) 2016-04-21 2017-02-09 低电阻的超电容器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0048640 2016-04-21
KR20160048640 2016-04-21
KR10-2017-0014924 2017-02-02
KR1020170014924A KR20170120491A (ko) 2016-04-21 2017-02-02 저저항 울트라 커패시터

Publications (1)

Publication Number Publication Date
WO2017183805A1 true WO2017183805A1 (ko) 2017-10-26

Family

ID=60116093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001404 WO2017183805A1 (ko) 2016-04-21 2017-02-09 저저항 울트라 커패시터

Country Status (2)

Country Link
EP (1) EP3447781B1 (ko)
WO (1) WO2017183805A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110090351A (ko) * 2010-02-03 2011-08-10 엘에스엠트론 주식회사 원통형 에너지 저장장치
KR20120103991A (ko) * 2011-03-11 2012-09-20 엘에스엠트론 주식회사 울트라 캐패시터 어셈블리
KR20130116466A (ko) * 2012-03-30 2013-10-24 비나텍주식회사 폴딩 셀 및 그를 갖는 폴딩형 슈퍼 커패시터
JP2014072348A (ja) * 2012-09-28 2014-04-21 Tdk Corp 電気化学デバイス
KR20150130905A (ko) * 2014-05-14 2015-11-24 한국제이씨씨(주) 전기 이중층 커패시터의 저저항 전극 및 그의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091585A (ja) * 2006-09-30 2008-04-17 Nippon Chemicon Corp 電気二重層キャパシタの製造方法及びその電気二重層キャパシタ
US7983021B2 (en) * 2007-10-31 2011-07-19 Corning Incorporated Oblong electrochemical double layer capacitor
JP5735368B2 (ja) * 2011-07-20 2015-06-17 ニチコン株式会社 電気二重層コンデンサ
WO2014080638A1 (ja) * 2012-11-26 2014-05-30 日本ケミコン株式会社 蓄電デバイスおよびその製造方法
JP2014225574A (ja) * 2013-05-16 2014-12-04 住友電気工業株式会社 キャパシタおよびその充放電方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110090351A (ko) * 2010-02-03 2011-08-10 엘에스엠트론 주식회사 원통형 에너지 저장장치
KR20120103991A (ko) * 2011-03-11 2012-09-20 엘에스엠트론 주식회사 울트라 캐패시터 어셈블리
KR20130116466A (ko) * 2012-03-30 2013-10-24 비나텍주식회사 폴딩 셀 및 그를 갖는 폴딩형 슈퍼 커패시터
JP2014072348A (ja) * 2012-09-28 2014-04-21 Tdk Corp 電気化学デバイス
KR20150130905A (ko) * 2014-05-14 2015-11-24 한국제이씨씨(주) 전기 이중층 커패시터의 저저항 전극 및 그의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447781A4 *

Also Published As

Publication number Publication date
EP3447781A1 (en) 2019-02-27
EP3447781B1 (en) 2022-07-06
EP3447781A4 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2013168980A1 (ko) 비정형 구조의 전지팩
WO2015020313A1 (ko) 울트라 커패시터
AU2021200028B2 (en) Stacking power supply cabinet
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2013151233A1 (ko) 배터리셀
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2012044035A2 (ko) 부식방지용 보호층을 포함하는 전극리드, 및 이를 포함하는 이차전지
WO2014107057A1 (ko) 케이블형 이차전지
WO2014084474A1 (en) Battery module and battery pack having the same
JP2022533789A (ja) 電池モジュール、動力電池パック及び車両
CN112534624A (zh) 电极组件以及包括该电极组件的二次电池
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
AU2011314138A1 (en) High voltage electric double layer capacitor device and methods of manufacture
WO2018155853A2 (ko) 대칭형 멀티탭을 갖는 이차 전지
WO2021118020A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2018155815A1 (ko) 버스바를 적용한 배터리 셀
WO2018106054A1 (ko) 이차 전지
WO2020036318A1 (ko) 전극조립체 및 그 전극조립체의 제조 방법
EP3817123A1 (en) Electrode assembly and rechargeable battery comprising same
WO2010062071A9 (ko) 고출력 전기에너지 저장장치
WO2016018113A1 (ko) 배터리 셀의 치수 고정을 위한 배터리모듈
WO2016064100A1 (ko) 스텝 셀 구조를 가지는 이차전지
WO2018216891A1 (ko) 이차 전지
WO2018030835A1 (ko) 이차 전지
WO2018038448A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017786074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017786074

Country of ref document: EP

Effective date: 20181121

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786074

Country of ref document: EP

Kind code of ref document: A1