WO2017183657A1 - 中空シリカ粒子及びその製造方法 - Google Patents

中空シリカ粒子及びその製造方法 Download PDF

Info

Publication number
WO2017183657A1
WO2017183657A1 PCT/JP2017/015722 JP2017015722W WO2017183657A1 WO 2017183657 A1 WO2017183657 A1 WO 2017183657A1 JP 2017015722 W JP2017015722 W JP 2017015722W WO 2017183657 A1 WO2017183657 A1 WO 2017183657A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow silica
silica particles
silica
outer shell
hollow
Prior art date
Application number
PCT/JP2017/015722
Other languages
English (en)
French (fr)
Inventor
星田浩樹
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201780019297.8A priority Critical patent/CN109071239B/zh
Priority to KR1020187024668A priority patent/KR102052893B1/ko
Publication of WO2017183657A1 publication Critical patent/WO2017183657A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present disclosure relates to hollow silica particles and a method for producing the same.
  • the hollow silica particles that include an outer shell part that forms an internal space and the outer shell part is composed of a component containing silica have characteristics such as low refractive index, low dielectric constant, low thermal conductivity, and low density. It is attracting attention because it can be expected to be used as an antireflection material, low dielectric material, heat insulating material, and low density filler.
  • an outer shell composed of a component containing silica on the surface of the template particles is obtained by collecting and condensing silica precursors on the surfaces of the template particles (emulsified oil droplets) which are spaces inside the particles
  • a method template method
  • hollow silica particles are produced by removing template particles after forming the part (for example, Patent Documents 1 and 2).
  • an aqueous solution of an alkali metal silicate such as sodium silicate (water glass) is spray-dried to produce silica precursor particles, and the silica precursor particles are treated with an acid.
  • an alkali metal silicate such as sodium silicate (water glass)
  • a method for producing hollow silica particles by removing alkali metals in precursor particles is known (for example, Patent Documents 3 and 4).
  • Patent Documents 1 and 2 The template method disclosed in Patent Documents 1 and 2 has a complicated process, and is costly because it is a synthesis with a low silica concentration.
  • Patent Documents 3 and 4 can be manufactured at a lower cost than the template method, it is necessary to remove the alkali metal by acid treatment after spray drying. And when using for the use of an electronic material, the further reduction of an alkali metal is calculated
  • the present disclosure provides a method for producing hollow silica particles, which can easily obtain hollow silica particles having a reduced alkali metal content.
  • the present disclosure relates to a method for producing hollow silica particles, which includes the following steps (1) and (2).
  • the present disclosure is a hollow silica particle that includes an outer shell portion that forms an internal space, and the outer shell portion includes a silica-containing component, and the outer shell portion includes closed pores.
  • the closed pores relate to hollow silica particles that have a pin-dot shape when the cut section of the outer shell portion is observed.
  • the present disclosure is a hollow silica particle that includes an outer shell portion that forms an internal space, and the outer shell portion includes a component containing silica, and the outer shell portion has closed pores.
  • the hollow silica particles have a BET specific surface area of 20 m 2 / g or less.
  • the present disclosure is a hollow silica particle that includes an outer shell portion that forms an internal space, and the outer shell portion includes a component containing silica, and the hollow silica particle is formed of silica.
  • a silica solution dissolved in an alkaline aqueous solution is spray-dried to obtain a hollow silica precursor and a step of firing the hollow silica precursor, and the outer shell portion has closed pores. It has a hollow silica particle.
  • the hollow silica particles according to the present disclosure include a catalyst carrier, an enzyme carrier, an adsorbing material, a separation material, an optical material, an insulating material, a semiconductor sealing material, an electronic material, a low dielectric constant material,
  • the present invention relates to use for at least one material selected from heat insulating materials, shielding materials, building materials, and cosmetic materials.
  • the present disclosure can produce an effect that hollow silica particles with a reduced alkali metal content can be easily obtained.
  • FIG. 1 is an example of an SEM image of the hollow silica particles of Example 1.
  • FIG. 2 is an example of an SEM image of a resin split cross section containing the hollow silica particles of Example 1.
  • FIG. 3 is an example of an SEM image of a fractured section of the outer shell of the hollow silica particle of Example 1.
  • FIG. 4 is an example of an SEM image of a fractured section of the outer shell of the hollow silica particle of Comparative Example 3.
  • the present disclosure is based on the finding that hollow silica particles having a reduced alkali metal content can be easily obtained by spray drying a silica solution obtained by dissolving silica in an organic alkali aqueous solution.
  • this indication is related with the manufacturing method (henceforth "the manufacturing method concerning this indication") of hollow silica particles including the following processes (1) and (2) in one mode.
  • (1) A step of obtaining a hollow silica precursor by spray drying a silica solution obtained by dissolving silica in an organic alkali aqueous solution.
  • (2) A step of firing the hollow silica precursor to obtain hollow silica particles.
  • the details of the mechanism by which the effects of the present disclosure are manifest are not clear, but are estimated as follows. That is, by using an organic alkali aqueous solution for dissolving silica, the alkali metal content in the silica solution used for spray drying can be reduced, and hollow silica particles with a reduced alkali metal content can be obtained. Further, it is considered that the organic alkali in the hollow silica precursor disappears or evaporates in the firing step, whereby fine and uniform closed pores are formed in the outer shell portion, and the porosity of the hollow silica particles is improved.
  • the present disclosure need not be interpreted as being limited to these mechanisms.
  • the “hollow silica particle” is a hollow silica particle that includes an outer shell portion that forms an internal space, and the outer shell portion includes a component containing silica, and is formed by the outer shell portion. Silica particles in which a gas such as air exists in the internal space.
  • the “outer shell part composed of a component containing silica” means that the main component forming the skeleton of the outer shell part is silica, and preferably 50% by mass or more of the component of the outer shell part. More preferably, 70 mass% or more, still more preferably 90 mass% or more, and still more preferably 95 mass% or more is silicon dioxide.
  • the “hollow silica precursor” refers to powder particles obtained by spray-drying a silica solution, and particles that become hollow silica particles by firing in the step (2).
  • Step (1) in the production method according to the present disclosure is a spray drying step of obtaining a hollow silica precursor by spray drying a silica solution obtained by dissolving silica in an organic alkali aqueous solution.
  • a silica solution obtained by dissolving silica in an organic alkali aqueous solution.
  • the silica solution can be prepared, for example, by mixing silica with an organic alkali aqueous solution.
  • step (1) in the production method according to the present disclosure can include, for example, a dissolution step of mixing silica in an organic alkaline aqueous solution and dissolving silica in the organic alkaline aqueous solution to prepare a silica solution.
  • silica used for preparing the silica solution examples include crystalline silica, amorphous silica, fumed silica, wet silica, colloidal silica, and the like, from the viewpoint of ease of production, purity, and cost of the silica solution. Therefore, amorphous silica is preferable.
  • the state of silica before being mixed with the organic alkaline aqueous solution may not be particularly limited, and examples thereof include powder, sol, and gel. From the viewpoint of use in applications of electronic materials, the silica is preferably high-purity silica, and more preferably ultrahigh-purity silica.
  • Organic alkali aqueous solution used for the preparation of the silica solution may be any one that can dissolve silica, and examples thereof include an organic alkali aqueous solution having a pH of 11 or more.
  • the organic alkali contained in the organic alkali aqueous solution is not particularly limited as long as it can dissolve silica.
  • the particle structure of the hollow silica particles is uniform, the thickness of the outer shell is uniform, the formation of the stable outer shell, and the productivity. From the viewpoint of improvement, for example, secondary amines, tertiary amines, quaternary ammonium salts and the like can be mentioned. From the viewpoint of ease of production of the silica solution, quaternary ammonium salts are preferable. You may use an organic alkali individually by 1 type or in combination of 2 or more types.
  • the quaternary ammonium salt from the viewpoints of uniforming the particle structure of the hollow silica particles, uniforming the thickness of the outer shell, forming a stable outer shell, and improving productivity, for example, the following formula (I) And a salt composed of a quaternary ammonium cation and a hydroxide.
  • R 1, R 2, R 3 and R 4 at least each independently carbon atoms selected from 1 to 22 alkyl group, hydroxymethyl group, hydroxyethyl group and hydroxypropyl group One type.
  • the number of carbon atoms of the alkyl group is preferably 1 or more and 12 or less from the viewpoints of uniforming the particle structure of the hollow silica particles, uniforming the thickness of the outer shell, forming a stable outer shell, and improving productivity, 1 or more and 3 or less are more preferable.
  • Examples of the alkyl group include a linear alkyl group and a branched alkyl group, and a linear alkyl group is preferable from the viewpoint of uniform thickness of the outer shell.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • dimethylbis (2-hydroxyethyl) ammonium hydroxide and trimethyl.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • dimethylbis (2-hydroxyethyl) ammonium hydroxide and trimethyl.
  • ethylammonium hydroxide At least one selected from ethylammonium hydroxide. From the viewpoints of homogenizing the particle structure of the hollow silica particles, uniforming the thickness of the outer shell, forming a stable outer shell, and improving productivity, TMAH or TEAH is preferred.
  • Examples of secondary amines include dimethylamine, diethylamine, dipropylamine, diethanolamine, diisopropanolamine, and hexamethylenediamine.
  • Examples of the tertiary amine include trimethylamine, triethylamine triethanolamine, tetramethylhexanediamine, dimethylaminohexanol, butyldiethanolamine, and tetramethylethylenediamine.
  • the silica solution can be obtained, for example, by mixing silica and an organic alkali aqueous solution and dissolving the silica.
  • the dissolution method is not particularly limited as long as silica can be dissolved, and a known dissolution method can be used.
  • Examples of the dissolution method include heating treatment, pressure treatment, mechanical pulverization treatment, and the like, and these may be used in combination.
  • the heating condition can be set to 60 to 200 ° C., for example.
  • As the pressurizing condition for example, 0 to 3 MPa can be set.
  • the mechanical pulverization can be performed using, for example, a ball mill.
  • ultrasonic vibration may be applied.
  • the silica concentration in the silica solution is preferably 2% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, from the viewpoint of suppressing the generation of irregularly shaped particles and improving productivity. 30 mass% or less is preferable, 25 mass% or less is more preferable, and 20 mass% or less is still more preferable.
  • the content of silica in the silica solution can be measured using, for example, a thermogravimetric apparatus.
  • the molar ratio of silica to organic alkali in the silica solution is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 1.5 or more. And, 3.5 or less is preferable, 3.0 or less is more preferable, and 2.5 or less is still more preferable.
  • the silica solution may contain an aqueous solvent.
  • the aqueous solvent include distilled water, ion exchange water, and ultrapure water.
  • ⁇ Spray drying method examples include known methods such as a rotating disk method, a pressure nozzle, a two-fluid nozzle method, and a four-fluid nozzle method.
  • a commercially available spray drying apparatus can be used.
  • the inlet temperature of the hot air in the spray drying is 80 ° C. to 250 ° C. from the viewpoints of uniforming the particle structure of the hollow silica particles, uniforming the thickness of the outer shell, forming a stable outer shell, and improving productivity. It is preferably 100 ° C. to 220 ° C., more preferably 120 ° C. to 200 ° C. From the same viewpoint, the inlet temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, further preferably 120 ° C. or higher, more preferably 250 ° C. or lower, more preferably 220 ° C. or lower, and even more preferably 200 ° C. or lower. .
  • the outlet temperature of the hot air in the spray drying is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 110 ° C., and further preferably 70 ° C. to 100 ° C.
  • the outlet temperature is preferably 50 ° C or higher, more preferably 60 ° C or higher, further preferably 70 ° C or higher, more preferably 120 ° C or lower, more preferably 110 ° C or lower, and still more preferably 100 ° C or lower.
  • the outlet temperature can be adjusted by controlling the inlet temperature.
  • the spray pressure, spray amount, air volume, and the like during the spray drying may be set as appropriate according to the spray drying device used.
  • the silica solution used for spray drying may be diluted during use.
  • an aqueous solvent such as distilled water, ion-exchanged water, or ultrapure water can be used for dilution.
  • the silica concentration in the spray liquid is preferably 2% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and preferably 30% by mass or less, and 25% by mass. The following is more preferable, and 20% by mass or less is still more preferable.
  • the content of silica in the spray liquid can be calculated by, for example, the same method as that for the silica solution.
  • the silica solution and the spray solution may contain other components as long as the effects of the present disclosure are not impaired.
  • other components include an organic binder and an activator.
  • the silica solution and the spray liquid contain substantially no alkali metal such as Na or K from the viewpoint of application of the hollow silica particles to the electronic material. That is, from the same viewpoint, the total amount of alkali metals in the silica solution or spray is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and further preferably 0.005% by mass or less. .
  • the alkali metal content in the silica solution or spray can be measured, for example, by the same method as for hollow silica particles described later.
  • the hollow silica precursor obtained in step (1) can be recovered, for example, by air classification. Therefore, the manufacturing method according to the present disclosure includes an air classification step of selectively recovering the hollow silica precursor obtained by spray drying between the step (1) and the later-described step (2). Can be included. By classifying with air, the particle size can be made uniform, and particles having a particle size suitable for the intended use can be obtained.
  • the air classification can be performed by a known method using, for example, an airflow classifier or a bag filter.
  • Step (2) in the production method according to the present disclosure is a firing step of firing the hollow silica precursor obtained in the step (1).
  • the organic alkali contained in the outer shell portion of the hollow silica precursor disappears or evaporates, so that a plurality of fine closed pores resulting from the organic alkali are formed as shown in FIG. Hollow silica particles having a shell can be obtained.
  • the firing temperature is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, still more preferably 900 ° C. or higher, and 1500 ° C. or lower, from the viewpoint of appropriately baking the pores, improving porosity and improving particle strength. Is preferable, 1300 degrees C or less is more preferable, 1200 degrees C or less is still more preferable.
  • Calcination can be performed using, for example, an electric furnace.
  • the firing time varies depending on the firing temperature and the like, it can usually be set to 0.5 to 100 hours, and 0.5 to 48 hours is preferable from the viewpoint of productivity.
  • the hollow silica particles obtained by the production method of the present disclosure are spherical particles as shown in FIG. And in one or some embodiment, the hollow silica particle obtained by the manufacturing method of this indication has a hollow structure as shown in FIG. 2, when the SEM image of the resin split cross section containing this hollow silica particle is observed. Particles. In the SEM image of FIG. 2, the circular black portion is the space inside the particle. That is, in one or a plurality of embodiments, the present disclosure includes a hollow silica particle (hereinafter referred to as “the present disclosure”) that includes an outer shell portion that forms an internal space, and the outer shell portion includes a component containing silica.
  • the present disclosure includes a hollow silica particle (hereinafter referred to as “the present disclosure”) that includes an outer shell portion that forms an internal space, and the outer shell portion includes a component containing silica.
  • hollow silica particles Also referred to as “hollow silica particles”. And the hollow silica particle which concerns on this indication WHEREIN: The process (1) which obtains a hollow silica precursor by spray-drying the silica solution which melt
  • the outer shell portion of the hollow silica particle according to the present disclosure has closed pores.
  • the closed pore has a pin-dot shape as shown in FIG. 3 when the split cross section of the outer shell portion is observed by SEM.
  • a portion that can be visually recognized as a black dot is a pin-dot closed pore.
  • “closed pores” refers to pores caused by organic alkali as shown in FIG. 3 as described above in one or a plurality of embodiments.
  • pores resulting from organic alkali are formed by disappearance or evaporation of organic alkali in the hollow silica precursor during the firing in the above-described step (2). It is.
  • rupture section of an outer shell part is 5 nm or more and 100 nm or less, for example. In the present disclosure, it is preferable that a plurality of closed pores are formed in the outer shell portion from the viewpoint of improving porosity and particle strength.
  • the average number of closed pores per 1 ⁇ m 2 of the split section of the outer shell is preferably 30 or more, more preferably 50 or more, and further 80 or more. It is preferably 300 or less, more preferably 250 or less, and even more preferably 200 or less.
  • the average number of closed pores can be measured by, for example, the method described in Examples.
  • hollow silica particles having closed pores in the outer shell portion can be obtained.
  • the average particle diameter and the thickness of the outer shell portion are the same, compared to hollow silica particles that do not have closed pores in the outer shell portion, It is considered that the porosity can be improved, and further, when the hollow silica particles of the present disclosure have a large amount of closed pores in the outer shell portion, the porosity can be further improved.
  • the hollow silica particles of the present disclosure for example, when the size of closed pores formed in the outer shell portion is very small (for example, about 5 to 30 nm), or a plurality of closed pores are uniformly formed in the outer shell portion.
  • the size of closed pores formed in the outer shell portion is very small (for example, about 5 to 30 nm), or a plurality of closed pores are uniformly formed in the outer shell portion.
  • the average particle diameter of the hollow silica particles according to the present disclosure can be appropriately adjusted in consideration of the use and the like. However, from the viewpoint of dispersibility in a resin when the hollow silica particles are used as a resin-added filler, 0.1 ⁇ m The above is preferable, 0.5 ⁇ m or more is more preferable, 1.0 ⁇ m or more is even more preferable, and 50 ⁇ m or less is preferable.
  • the average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution measuring device (“LA-750” manufactured by Horiba, Ltd.) or a Coulter counter (“Multizer 3” manufactured by Beckman Coulter, Inc.).
  • BET specific surface area of the hollow silica particles according to the present disclosure in order to ensure the compactness of the outer shell surface of the hollow silica particles is preferably not more than 20 m 2 / g, more preferably not more than 15m 2 / g, 10m 2 / More preferably, it is g or less.
  • the “BET specific surface area” can be measured, for example, by the method described in Examples below.
  • the average particle diameter of the hollow silica particles can be appropriately adjusted depending on, for example, the concentration of each component in the silica solution, spray conditions, firing conditions, and the like.
  • the bulk density of the hollow silica particles according to the present disclosure is preferably 0.44 g / cm 3 or more, more preferably 0.66 g / cm 3 or more, from the viewpoint of reducing the dielectric constant of the hollow silica particles and improving the particle strength. , 0.88 g / cm 3 or more, and then, preferably 1.98 g / cm 3 or less, more preferably 1.76 g / cm 3 or less, more preferably preferably 1.54 g / cm 3 or less.
  • the “bulk density” can be measured by, for example, a gas pycnometer. Specifically, it can be measured by the method described in the examples.
  • the porosity of the hollow silica particles according to the present disclosure is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more, from the viewpoint of reducing the dielectric constant of the hollow silica particles and the strength. 80% or less, more preferably 70% or less, and still more preferably 60% or less.
  • the hollow silica particles according to the present disclosure preferably do not substantially contain alkali metals such as Na and K from the viewpoint of improving the quality of the electronic material. That is, the total content of alkali metals in the hollow silica particles is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and further preferably 0.005% by mass or less.
  • the alkali metal content in the hollow silica particles can be measured, for example, by the method described in the examples.
  • the hollow silica particles according to the present disclosure can be used in various fields in which the hollow silica particles can be used. For example, they are used in a multilayer wiring structure of a catalyst carrier; an enzyme carrier; an adsorbing material; a separating material; Insulating materials; Semiconductor encapsulating materials; Electronic materials; Low dielectric constant materials used for coatings for low dielectric films and low dielectric films; Insulating materials; Shielding materials; Building materials; Skin care cosmetics and makeup cosmetics , Body care cosmetics, fragrance cosmetics and other cosmetic materials;
  • the present disclosure further discloses the following production method, hollow silica particles, or use.
  • a method for producing hollow silica particles comprising the following steps (1) and (2).
  • ⁇ 2> The production method according to ⁇ 1>, wherein the step (1) includes a dissolving step of preparing a silica solution by mixing silica in an organic alkaline aqueous solution and dissolving the silica in the organic alkaline aqueous solution.
  • the organic alkali is a quaternary ammonium salt.
  • the quaternary ammonium salt is a salt composed of a quaternary ammonium cation and a hydroxide represented by the following formula (I).
  • R 1 , R 2 , R 3 and R 4 are each independently selected from alkyl groups having 1 to 22 carbon atoms, hydroxymethyl groups, hydroxyethyl groups and hydroxypropyl groups.
  • the production method according to ⁇ 4> which is at least one kind.
  • the alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 3 carbon atoms, and the production method according to ⁇ 5>.
  • the alkyl group is a linear alkyl group or a branched alkyl group, and the linear alkyl group is preferable.
  • the quaternary ammonium salt is at least one selected from tetramethylammonium hydroxide, tetraethylammonium hydroxide, dimethylbis (2-hydroxyethyl) ammonium hydroxide, and trimethylethylammonium hydroxide.
  • the silica concentration in the silica solution is preferably 2% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more. .
  • ⁇ 10> The production method according to any one of ⁇ 1> to ⁇ 9>, wherein the silica concentration in the silica solution is preferably 30% by mass or less, more preferably 25% by mass or less, and further preferably 20% by mass or less. . ⁇ 11> The production method according to any one of ⁇ 1> to ⁇ 10>, wherein the silica concentration in the silica solution is 2% by mass or more and 30% by mass or less. ⁇ 12> The molar ratio of silica to organic alkali (silica / organic alkali) in the silica solution is preferably 0.5 or more, more preferably 1.0 or more, and further preferably 1.5 or more, from ⁇ 1>.
  • ⁇ 11> The production method according to any one of the above.
  • ⁇ 13> The molar ratio of silica to organic alkali (silica / organic alkali) in the silica solution is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.5 or less, from ⁇ 1>.
  • ⁇ 12> The production method according to any one of the above.
  • ⁇ 14> The total amount of alkali metals in the silica solution is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and still more preferably 0.005% by mass or less, ⁇ 1> to ⁇ 13>.
  • the manufacturing method in any one of.
  • the inlet temperature of the hot air in the spray drying in the step (1) is preferably 80 ° C. to 250 ° C., more preferably 100 ° C. to 220 ° C., and still more preferably 120 ° C. to 200 ° C., ⁇ 1> to ⁇ 14>
  • the outlet temperature of the hot air in the spray drying in the step (1) is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 110 ° C., and further preferably 70 ° C. to 100 ° C., ⁇ 1> to ⁇ 15>
  • the method further includes an air classification step of selectively recovering the hollow silica precursor obtained by spray drying by air classification, from ⁇ 1> to ⁇ 16 >
  • ⁇ 18> The production method according to any one of ⁇ 1> to ⁇ 17>, wherein the firing temperature in the step (2) is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and further preferably 900 ° C. or higher.
  • the firing temperature in the step (2) is preferably 1500 ° C. or lower, more preferably 1300 ° C. or lower, and further preferably 1200 ° C. or lower.
  • a hollow silica particle comprising an outer shell portion forming an internal space, wherein the outer shell portion is composed of a component containing silica, the outer shell portion having closed pores, and the closed pores are Hollow silica particles that are in the form of pin dots when the cut surface of the outer shell is observed.
  • Hollow silica particles that include an outer shell portion that forms an internal space, and the outer shell portion includes a silica-containing component, the outer shell portion having closed pores, and the hollow silica particles Hollow silica particles having a BET specific surface area of 20 m 2 / g or less.
  • a hollow silica particle comprising an outer shell part that forms an internal space, wherein the outer shell part is composed of a component containing silica, and the hollow silica particle is a silica-dissolved material in which silica is dissolved in an organic alkali aqueous solution.
  • Hollow silica particles obtained by spray-drying a liquid to obtain a hollow silica precursor and a step of firing the hollow silica precursor in this order, wherein the outer shell portion has closed pores.
  • ⁇ 23> Preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably 95% by mass or more of the component of the outer shell part is silicon dioxide, from ⁇ 20>
  • ⁇ 24> The hollow silica particles according to any one of ⁇ 20> to ⁇ 23>, wherein the closed pores are pores resulting from organic alkali.
  • BET specific surface area of the hollow silica particles is preferably 20 m 2 / g or less, more preferably 15m 2 / g, 10m 2 / g or less is more preferred, according to any one of ⁇ 24> to ⁇ 20> Hollow silica particles.
  • the average number of closed pores per 1 ⁇ m 2 of the split section of the outer shell is preferably 30 or more, more preferably 50 or more, and even more preferably 80 or more, ⁇ 20> to ⁇ 25>
  • the average number of closed pores per 1 ⁇ m 2 of the cut surface of the outer shell is preferably 300 or less, more preferably 250 or less, and even more preferably 200 or less, according to any one of ⁇ 20> to ⁇ 26>
  • ⁇ 28> average closed pores per fractured 1 [mu] m 2 of the outer shell portion is 300 or less 30 or more, the hollow silica particles according to any one of ⁇ 27> to ⁇ 20>.
  • ⁇ 29> The hollow silica particles according to any one of ⁇ 20> to ⁇ 28>, wherein the closed pore size when observing the fractured surface of the outer shell portion is 5 nm or more and 100 nm or less.
  • ⁇ 30> The hollow silica particles according to any one of ⁇ 20> to ⁇ 29>, wherein the porosity of the hollow silica particles is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more.
  • ⁇ 31> The hollow silica particles according to any one of ⁇ 20> to ⁇ 30>, wherein the porosity of the hollow silica particles is preferably 80% or less, more preferably 70% or less, and further preferably 60% or less.
  • ⁇ 32> The hollow silica particles according to any one of ⁇ 20> to ⁇ 31>, wherein the porosity of the hollow silica particles is from 10% to 80%.
  • ⁇ 33> The hollow silica particles according to any one of ⁇ 20> to ⁇ 32>, wherein the average particle diameter of the hollow silica particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1.0 ⁇ m or more.
  • ⁇ 34> The hollow silica particles according to any one of ⁇ 20> to ⁇ 33>, wherein the average particle diameter of the hollow silica particles is 50 ⁇ m or less.
  • the bulk density of the hollow silica particles is preferably 0.44 g / cm 3 or more, more preferably 0.66 g / cm 3 or more, and further preferably 0.88 g / cm 3 or more, from ⁇ 20> to ⁇ 35>.
  • the bulk density of ⁇ 37> hollow silica particles is preferably from 1.98 g / cm 3 or less, more preferably 1.76 g / cm 3 or less, more preferably preferably 1.54 g / cm 3 or less, from the ⁇ 20> ⁇ 36>
  • the total content of alkali metals in the hollow silica particles is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and still more preferably 0.005% by mass, from ⁇ 20> to ⁇ 37.
  • Catalyst carrier, enzyme carrier, adsorbing material, separation material, optical material, insulating material, semiconductor encapsulating material, electronic material, low dielectric constant of the hollow silica particles according to any one of ⁇ 20> to ⁇ 38> Use for at least one material selected from materials, insulating materials, shielding materials, building materials, and cosmetic materials.
  • the porosity was calculated from the density measured using a gas pycnometer (“Ultrapyc 1200e” manufactured by Cantachrome Instruments Japan GK) according to the following formula.
  • the true density of the silica particles is 2.2 g / cm 3 .
  • Porosity (%) [1 ⁇ (true density of hollow silica particles / true density of silica particles)] ⁇ 100
  • the BET specific surface area of the hollow silica particles was measured using a specific surface area measurement device (manufactured by Shimadzu Corporation, trade name “Flowsorb III2305”). The sample was pretreated by heating at 200 ° C. for 15 minutes.
  • the average particle size of the hollow silica particles is determined by using a laser diffraction / scattering particle size distribution measuring device ("LA-920" manufactured by HORIBA, Ltd. with a relative refractive index set to 1.4) and measuring the volume-based median diameter ( D50). Furthermore, the average particle diameter of the hollow silica particles was measured using a Coulter counter (manufactured by Coulter Corporation, using a 50 ⁇ m aperture tube).
  • particle strength The particle strength was evaluated from the increase in the specific gravity of the particles before and after pulverization (95 rpm, 1 hour) using 10 g of particles: zirconia balls (10 mm ⁇ ZrO 2 ): 200 g. The evaluation criteria are shown below. When the specific gravity increase was 0.03 g / cm 3 or less, it was determined that the particle strength was excellent, and when the specific gravity increase exceeded 0.03 g / cm 3 , it was determined that the particle strength was inferior.
  • Alkali metal content The alkali metal content in the hollow silica particles was measured using ICP-MS (“7700S” manufactured by Agilent) in accordance with JIS-K0133. An aqueous solution in which hollow silica particles were completely dissolved with hydrofluoric acid was used as a sample. Here, the content of Na contained in the hollow silica particles was defined as the alkali metal content in the silica solution.
  • Example 1 The hollow silica particles are produced through two steps of a spray drying step (1) and a firing step (2).
  • a silica solution used in the spray drying step (1) was prepared. That is, in a reaction vessel equipped with a stirrer (pressure-resistant glass industry, TEM-D1500M), silica (Admatechs, Admafine SOE2): 200 g, tetramethylammonium hydroxide 25% aqueous solution (Sechem Asia, pH 14) ): 640 g and ion-exchanged water: 160 g, with stirring, heated to 180 ° C.
  • silica solution (silica concentration: 20 Mass%, molar ratio (silica / organic alkali): 1.9) was obtained (dissolution step).
  • the pressure in the reaction vessel being stirred at 180 ° C. was 0.85 MPa.
  • the prepared silica solution was directly used as a spray solution and spray-dried using a spray dryer (Tokyo Rika Kikai Co., Ltd., SD-1000) to obtain a dry powder (hollow silica precursor) (spray drying step ( 1)).
  • a spray nozzle of the spray dryer a two-fluid nozzle (sample discharge hole diameter: 0.4 mm) was used.
  • the spraying conditions were an inlet temperature: 130 ° C., an outlet temperature: 98 ° C., a spraying pressure: 250 kPa, an air volume: 0.7 m 3 / min, and a spraying volume: 10 mL / min.
  • the dry powder (hollow silica precursor) obtained by spray drying was heated to 1100 ° C. at 100 ° C./hour in an electric furnace (SK-2535E-OP, manufactured by Motoyama Co., Ltd.).
  • the hollow silica particles of Example 1 were obtained by maintaining the time and firing (firing step (2)).
  • FIG. 3 shows an SEM image of a fractured section of the outer shell of the hollow silica particles of Example 1.
  • black spots indicating closed pores were visually confirmed. That is, from FIG. 3, it was confirmed that closed pores were formed in the outer shell portion of the hollow silica particles of Example 1.
  • Example 2 to 33 Hollow silica particles of Examples 2 to 33 were obtained in the same manner as in Example 1 except that the concentration of each raw material in the silica solution and the spray drying conditions were changed as shown in Table 1. .
  • the physical property measurement results are shown in Table 1.
  • a silica solution used in the spray drying step (1) was prepared. That is, in a reaction vessel equipped with a stirrer (pressure-resistant glass industry, TEM-D1500M), silica (Admatechs, Admafine SOE2): 200 g, tetraethylammonium hydroxide 20% aqueous solution (TEAH) (Wako Pure Chemical Industries, Ltd.) (Industry Co., Ltd.): While stirring with 1287 g, the temperature was raised to 170 ° C. in 1 hour and 30 minutes, and then stirred at 170 ° C.
  • a stirrer pressure-resistant glass industry, TEM-D1500M
  • silica Admatechs, Admafine SOE2
  • TEAH tetraethylammonium hydroxide 20% aqueous solution
  • TEAH tetraethylammonium hydroxide 20% aqueous solution
  • Example 34 silica concentration: 13% by mass, molar ratio (silica / organic alkali): 1.9) was obtained (dissolution step).
  • the pressure in the reaction vessel being stirred at 170 ° C. was 1.20 MPa.
  • the hollow silica particles of Example 34 were obtained in the same manner as in Example 1 except that the silica solution of Example 34 was used as the spray liquid and the spraying conditions were changed as shown in Table 1.
  • the physical property measurement results of the hollow silica particles of Example 34 are shown in Table 1.
  • Comparative Example 2 By the same method as in Example 1 except that colloidal silica (manufactured by Nissan Chemical Industries, “Snowtex N”, silica concentration 20 mass%) was used as silica and silica was not dissolved in organic alkali.
  • the hollow silica particles of Comparative Example 2 were obtained.
  • the obtained hollow silica particles of Comparative Example 2 had a hollow structure, but the porosity was low.
  • the physical property measurement results of the hollow silica particles of Comparative Example 2 are shown in Table 1.
  • Example 3 No. 3 water glass (manufactured by Osaka Silicate Soda Co., Ltd.) was used as the silica, and spray drying was performed in the same manner as in Example 1. The obtained dry powder was fired at 500 ° C. for 1 hour to obtain a hollow silica powder of Comparative Example 4.
  • silica dissolves when fired at a temperature of 500 ° C. or higher due to the influence of sodium.
  • the obtained silica particles of Comparative Example 3 had a hollow structure.
  • the physical property measurement results of the hollow silica particles of Comparative Example 3 are shown in Table 1. And the SEM image of the broken surface of the outer shell part of the hollow silica particle of the comparative example 3 is shown in FIG. In FIG. 4, black spots indicating closed pores could not be confirmed. That is, FIG. 4 shows that closed pores are not formed in the outer shell portion of the hollow silica particles of Comparative Example 3.
  • Comparative Example 4 Hollow silica particles of Comparative Example 4 were obtained in the same manner as Comparative Example 1 except that the firing temperature was changed to 700 ° C.
  • the hollow silica particles of Comparative Example 4 were mesoporous silica.
  • the hollow silica particles of Comparative Example 4 had a bulk density of 2.20 g / cm 3 , a porosity of 0%, and a BET specific surface area of 718 m 3 / g.
  • the hollow silica particles of Examples 1-2, 11, 28-29, and 33 were hollow silica particles having a plurality of closed pores formed in the outer shell portion.
  • the hollow silica particles of Comparative Examples 1 to 3 were hollow silica particles in which closed pores were not formed in the outer shell portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

アルカリ金属含有量が低減された中空シリカ粒子を簡便に得ることができる中空シリカ粒子の製造方法を提供。 本開示は、下記工程(1)及び(2)を含む、中空シリカ粒子の製造方法に関する。 (1)シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程。 (2)前記中空シリカ前駆体を焼成し、中空シリカ粒子を得る工程。

Description

中空シリカ粒子及びその製造方法
 本開示は、中空シリカ粒子及びその製造方法に関する。
 内部空間を形成する外殻部を備え、外殻部がシリカを含む成分から構成される中空シリカ粒子は、低屈折率、低誘電率、低熱伝導率、低密度などの特性を有することから、反射防止材、低誘電材、断熱材、低密度フィラーとしての応用が期待でき注目を集めている。
 中空シリカ粒子の製造方法としては、粒子内部の空間となるテンプレート粒子(乳化油滴)の表面にシリカの前駆体を集合、縮合させ、テンプレート粒子の表面にシリカを含む成分から構成される外殻部を形成させた後、テンプレート粒子を除去して中空シリカ粒子を製造する方法(テンプレート法)が知られている(例えば、特許文献1及び2)。
 さらに、その他の中空シリカ粒子の製造方法として、珪酸ナトリウム(水ガラス)等のアルカリ金属珪酸塩の水溶液を噴霧乾燥してシリカ前駆体粒子を作製し、前記シリカ前駆体粒子を酸処理して該前駆体粒子中のアルカリ金属を除去し、中空シリカ粒子を製造する方法が知られている(例えば、特許文献3及び4)。
特開2009-203115号公報 特開2011-126761号公報 WO2013/121703 特開2015-155373号公報
 特許文献1及び2に開示されるテンプレート法は、工程が複雑で、シリカ濃度が低濃度での合成であるため、コストが高い。
 特許文献3及び4に開示される水ガラスの噴霧乾燥を用いた製造方法では、テンプレート法よりも低コストが可能であるが、噴霧乾燥後に酸処理をしてアルカリ金属を除去する必要がある。そして、電子材料の用途に用いる場合、アルカリ金属のさらなる低減化が求められる。
 本開示は、アルカリ金属含有量が低減された中空シリカ粒子を簡便に得ることができる中空シリカ粒子の製造方法を提供する。
 本開示は、一態様において、下記工程(1)及び(2)を含む、中空シリカ粒子の製造方法に関する。
(1)シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程。
(2)前記中空シリカ前駆体を焼成し、中空シリカ粒子を得る工程。
 本開示は、他の一態様において、内部空間を形成する外殻部を有し、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、前記外殻部は、閉気孔を有し、前記閉気孔は、前記外殻部の割断面を観察したとき、ピンドット状である、中空シリカ粒子に関する。
 本開示は、他の一態様において、内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、前記外殻部は、閉気孔を有し、前記中空シリカ粒子のBET比表面積が、20m2/g以下である、中空シリカ粒子に関する。
 本開示は、他の一態様において、内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、前記中空シリカ粒子は、シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程と、前記中空シリカ前駆体を焼成する工程とを順に経て得られるものであり、前記外殻部は、閉気孔を有する、中空シリカ粒子に関する。
 本開示は、他の一態様において、本開示に係る中空シリカ粒子の、触媒担体、酵素担体、吸着材料、分離材料、光学材料、絶縁材料、半導体封止材料、電子材料、低誘電率材料、断熱材用材料、遮蔽性材料、建築材料及び化粧料用材料から選ばれる少なくとも1種の材料への使用に関する。
 本開示は、アルカリ金属含有量が低減された中空シリカ粒子を簡便に得ることができるという効果を奏しうる。
図1は、実施例1の中空シリカ粒子のSEM画像の一例である。 図2は、実施例1の中空シリカ粒子を含む樹脂割断面のSEM画像の一例である。 図3は、実施例1の中空シリカ粒子の外殻部の割断面のSEM画像の一例である。 図4は、比較例3の中空シリカ粒子の外殻部の割断面のSEM画像の一例である。
 本開示は、シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥させることにより、アルカリ金属含有量が低減された中空シリカ粒子を簡便に得ることができるという知見に基づく。
 すなわち、本開示は、一態様において、下記工程(1)及び(2)を含む、中空シリカ粒子の製造方法(以下、「本開示に係る製造方法」ともいう。)に関する。
(1)シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程。
(2)前記中空シリカ前駆体を焼成し、中空シリカ粒子を得る工程。
 本開示に係る製造方法によれば、アルカリ金属含有量が低減された中空シリカ粒子を簡便に得ることができるという効果が奏されうる。
 本開示の効果が発現するメカニズムの詳細は明らかではないが、以下のように推定される。すなわち、シリカの溶解に有機アルカリ水溶液を用いることで、噴霧乾燥に用いるシリカ溶解液中のアルカリ金属含有量を減少させることができ、アルカリ金属含有量が減少した中空シリカ粒子を得ることができる。さらに、焼成工程で中空シリカ前駆体中の有機アルカリが消失又は蒸発することで、外殻部に微細で均一な閉気孔が形成され、中空シリカ粒子の空孔率が向上すると考えられる。ただし、本開示はこれらのメカニズムに限定して解釈されなくてもよい。
 本開示において、「中空シリカ粒子」とは、内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、外殻部によって形成される内部空間に空気等の気体が存在するシリカ粒子をいう。本開示において、「シリカを含む成分から構成される外殻部」とは、外殻部の骨格を形成する主成分がシリカであることをいい、外殻部の成分の好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上が二酸化ケイ素であることをいう。本開示において「中空シリカ前駆体」とは、シリカ溶解液を噴霧乾燥して得られた粉末粒子のことであり、工程(2)の焼成を行うことにより中空シリカ粒子となる粒子である。
 以下、上記工程(1)及び(2)の詳細とそこで用いる各成分等について説明する。
 [工程(1):噴霧乾燥]
 本開示に係る製造方法における工程(1)は、シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥して中空シリカ前駆体を得る噴霧乾燥工程である。シリカ溶解液を噴霧乾燥すると、シリカ溶解液の液滴表面は乾燥して緻密な膜になり、液滴内部は乾燥して空洞になり、中空構造の前駆体粒子(中空シリカ前駆体)が得られると考えられる。シリカ溶解液は、例えば、シリカを有機アルカリ水溶液と混合することにより調製できる。よって、本開示に係る製造方法における工程(1)は、例えば、シリカを有機アルカリ水溶液に混合し、シリカを有機アルカリ水溶液に溶解してシリカ溶解液を調製する溶解工程を含むことができる。
 <シリカ>
 シリカ溶解液の調製に用いられるシリカとしては、例えば、結晶性シリカ、非晶質シリカ、ヒュームドシリカ、湿式シリカ、コロイダルシリカ等が挙げられ、シリカ溶解液の製造容易性、純度、コストの観点から、非晶質シリカが好ましい。
 有機アルカリ水溶液と混合される前のシリカの状態は、特に限定されなくてもよく、例えば、粉末状、ゾル状、又はゲル状が挙げられる。電子材料の用途に用いる観点からは、シリカは、高純度シリカが好ましく、超高純度シリカがより好ましい。
 <有機アルカリ水溶液>
 シリカ溶解液の調製に用いられる有機アルカリ水溶液は、シリカを溶解できるものであればよく、例えば、pH11以上の有機アルカリ水溶液が挙げられる。
 有機アルカリ水溶液に含まれる有機アルカリとしては、シリカを溶解できるものであればよく、中空シリカ粒子の粒子構造の均一化、外殻部の厚みの均一化、安定な外殻部形成、及び生産性向上の観点から、例えば、第二級アミン、第三級アミン、第四級アンモニウム塩等が挙げられ、シリカ溶解液の製造容易性の観点から、第四級アンモニウム塩が好ましい。有機アルカリは、1種単独または2種以上組み合わせて用いてもよい。
 第四級アンモニウム塩としては、中空シリカ粒子の粒子構造の均一化、外殻部の厚みの均一化、安定な外殻部形成、及び生産性向上の観点から、例えば、下記式(I)で表される、第四級アンモニウムカチオンとヒドロキシドとからなる塩が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(I)において、R1、R2、R3及びR4は、それぞれ独立に、炭素数が1以上22以下のアルキル基、ヒドロキシメチル基、ヒドロキシエチル基及びヒドロキシプロピル基から選ばれる少なくとも1種である。前記アルキル基の炭素数としては、中空シリカ粒子の粒子構造の均一化、外殻部の厚みの均一化、安定な外殻部形成、及び生産性向上の観点から、1以上12以下が好ましく、1以上3以下がより好ましい。前記アルキル基としては、直鎖状アルキル基又は分岐状アルキル基が挙げられるが、外殻部の厚みを均一にする観点から、直鎖状アルキル基が好ましい。
 第四級アンモニウム塩の具体例としては、テトラメチルアンモニウムヒドロキシド(以下、TMAHともいう)、テトラエチルアンモニウムヒドロキシド(以下、TEAHともいう)、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、及びトリメチルエチルアンモニウムヒドロキシドから選ばれる少なくとも1種が挙げられ、中空シリカ粒子の粒子構造の均一化、外殻部の厚みの均一化、安定な外殻部形成、及び生産性向上の観点から、TMAH又はTEAHが好ましい。
 第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジエタノールアミン、ジイソプロパノールアミン、ヘキサメチレンジアミン等が挙げられる。
 第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミントリエタノールアミン、テトラメチルヘキサンジアミン、ジメチルアミノヘキサノール、ブチルジエタノールアミン、テトラメチルエチレンジアミン等が挙げられる。
 <シリカ溶解液>
 シリカ溶解液は、例えば、シリカと有機アルカリ水溶液とを混合し、シリカを溶解させることにより得られうる。溶解方法は、シリカを溶解できれば特に制限されず、公知の溶解方法を用いることができる。溶解方法としては、例えば、加温処理、加圧処理、又は機械的粉砕処理等が挙げられ、これらを組み合わせて用いてもよい。加温条件としては、例えば、60~200℃と設定することができる。加圧条件としては、例えば、0~3MPaと設定することができる。機械的粉砕は、例えば、ボールミル等を用いて行うことができる。さらに、シリカを有機アルカリ水溶液に溶解させる際に、超音波振動が付与されていてもよい。
 シリカ溶解液中のシリカ濃度は、異形粒子の生成抑制の観点、及び生産性向上の観点から、2質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、そして、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。シリカ溶解液中のシリカの含有量は、例えば、熱重量測定装置を用いて測定できる。
 シリカ溶解液中の有機アルカリに対するシリカのモル比(シリカ/有機アルカリ)は、空孔率向上の観点から、0.5以上が好ましく、1.0以上がより好ましく、1.5以上が更に好ましく、そして、3.5以下が好ましく、3.0以下がより好ましく、2.5以下が更に好ましい。
 本開示において、シリカ溶解液は、水系溶媒を含んでいてもよい。水系溶媒としては、例えば、蒸留水、イオン交換水、超純水等が挙げられる。
 <噴霧乾燥法>
 噴霧乾燥法としては、例えば、回転ディスク法、加圧ノズル、2流体ノズル法、4流体ノズル法等の公知の方法が挙げられる。噴霧乾燥には、例えば、市販の噴霧乾燥装置を用いることができる。
 前記噴霧乾燥における熱風の入口温度としては、中空シリカ粒子の粒子構造の均一化、外殻部の厚みの均一化、安定な外殻部形成、及び生産性向上の観点から、80℃~250℃が好ましく、100℃~220℃がより好ましく、120℃~200℃が更に好ましい。同様の観点から、入口温度は、80℃以上が好ましく、100℃以上がより好ましく、120℃以上が更に好ましく、そして、250℃以下が好ましく、220℃以下がより好ましく、200℃以下が更に好ましい。
 前記噴霧乾燥における熱風の出口温度としては、同様の観点から、50℃~120℃が好ましく、60℃~110℃がより好ましく、70℃~100℃が更に好ましい。同様の観点から、出口温度は、50℃以上が好ましく、60℃以上がより好ましく、70℃以上が更に好ましく、そして、120℃以下が好ましく、110℃以下がより好ましく、100℃以下が更に好ましい。出口温度は、入口温度を制御することにより、調整可能である。
 前記噴霧乾燥の際の噴霧圧力、噴霧量、及び風量等については、使用する噴霧乾燥装置等に応じて適宜設定すればよい。
 工程(1)において、噴霧乾燥に用いるシリカ溶解液(以下、「噴霧液ともいう」)は、使用時に希釈して用いてもよい。シリカ溶解液を希釈したものを噴霧液とする場合、希釈には、例えば、蒸留水、イオン交換水、超純水等の水系溶媒を用いることができる。噴霧液中のシリカ濃度は、生産性向上の観点から、2質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、そして、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。噴霧液中のシリカの含有量は、例えば、上記シリカ溶解液と同じ方法により算出できる。
 本開示において、シリカ溶解液及び噴霧液には、本開示の効果が損なわれない範囲で、その他の成分を含むことができる。その他の成分としては、例えば、有機バインダ、活性剤等が挙げられる。
 本開示において、シリカ溶解液及び噴霧液には、中空シリカ粒子の電子材料用途への適用の観点からは、Na、K等のアルカリ金属を実質的に含まないことが好ましい。すなわち、シリカ溶解液又は噴霧液中のアルカリ金属の合計量は、同様の観点から、0.1質量%以下が好ましく、0.01質量%以下がより好ましく、0.005質量%以下が更に好ましい。シリカ溶解液又は噴霧液中のアルカリ金属含有量は、例えば、後述する中空シリカ粒子と同様の方法により測定できる。
 工程(1)で得られる中空シリカ前駆体は、例えば、空気分級により回収することができる。したがって、本開示に係る製造方法は、工程(1)と後述の工程(2)との間に、噴霧乾燥により得られた中空シリカ前駆体を空気分級して選択的に回収する空気分級工程を含むことができる。空気分級することで、粒径を均一にすることができ、使用目的に適した粒径の粒子が得られる。空気分級は、例えば、気流式分級機、バグフィルター等を用いた公知の方法で行うことができる。
[工程(2):焼成]
 本開示に係る製造方法における工程(2)は、前記工程(1)で得られた中空シリカ前駆体を焼成する焼成工程である。この工程(2)により、中空シリカ前駆体の外殻部に含まれる有機アルカリが消失又は蒸発するため、図3に示されるような、有機アルカリに起因する微細な閉気孔が複数形成された外殻部を有する中空シリカ粒子が得られうる。
 焼成温度は、細孔を適度に焼き締める観点、空孔率向上及び粒子強度向上の観点から、700℃以上が好ましく、800℃以上がより好ましく、900℃以上が更に好ましく、そして、1500℃以下が好ましく、1300℃以下がより好ましく、1200℃以下が更に好ましい。
 焼成は、例えば、電気炉等を用いて行うことができる。焼成時間は、焼成温度等により異なるが、通常、0.5~100時間に設定でき、生産性の観点から、0.5~48時間が好ましい。
 [中空シリカ粒子]
 本開示の製造方法によって得られる中空シリカ粒子は、一又は複数の実施形態において、図1に示すような球状粒子である。そして、一又は複数の実施形態において、本開示の製造方法によって得られる中空シリカ粒子は、該中空シリカ粒子を含む樹脂割断面のSEM画像を観察したとき、図2に示すような中空構造を有する粒子である。図2のSEM画像において、円形状の黒色部分が粒子内部の空間である。すなわち、本開示は、一又は複数の実施形態において、内部空間を形成する外殻部を有し、前記外殻部がシリカを含む成分から構成される中空シリカ粒子(以下、「本開示に係る中空シリカ粒子」ともいう)に関する。そして、本開示に係る中空シリカ粒子は、一又は複数の実施形態において、シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程(1)と、前記中空シリカ前駆体を焼成する工程(2)とを順に経て得られるものである。
 本開示に係る中空シリカ粒子の外殻部は、閉気孔を有するものである。そして、一又は複数の実施形態において、閉気孔は、外殻部の割断面をSEM観察したとき、図3に示されるようなピンドット状である。図3のSEM画像において、黒点として視認できる部分がピンドット状の閉気孔である。本開示において「閉気孔」とは、一又は複数の実施形態において、上述したように、図3に示されるような、有機アルカリに起因する気孔をいう。「有機アルカリに起因する気孔」とは、一又は複数の実施形態において、上述の工程(2)の焼成の際に、中空シリカ前駆体中の有機アルカリが消失又は蒸発することにより形成されるものである。一又は複数の実施形態において、外殻部の割断面をSEM観察したときの閉気孔の大きさは、例えば、5nm以上100nm以下である。本開示において、閉気孔は、空孔率向上及び粒子強度向上の観点から、外殻部に複数形成されていることが好ましい。本開示において、空孔率向上及び粒子強度向上の観点から、外殻部の割断面1μm2あたりの平均閉気孔数は、30個以上が好ましく、50個以上がより好ましく、80個以上が更に好ましく、そして、300個以下が好ましく、250個以下がより好ましく、200個以下が更に好ましい。平均閉気孔数は、例えば、実施例に記載の方法により測定できる。
 本開示に係る中空シリカ粒子によれば、外殻部に閉気孔を有する中空シリカ粒子が得られる。例えば、本開示の中空シリカ粒子は、外殻部に閉気孔を有するため、平均粒径及び外殻部の厚みが同じで、外殻部に閉気孔を有さない中空シリカ粒子に比べて、空孔率を向上でき、さらに、本開示の中空シリカ粒子が外殻部に多量の閉気孔を有する場合には、より空孔率を向上できると考えられる。さらに、本開示の中空シリカ粒子において、例えば、外殻部に形成される閉気孔の大きさが微小(例えば、5~30nm程度)である場合や、複数の閉気孔が外殻部に均一に分散している場合、外部からの衝撃等に起因する亀裂の伝播を抑制又は方向転換させ、粒子強度の低下を抑制できると考えられる。
 本開示に係る中空シリカ粒子の平均粒径は、用途等を考慮して適宜調整しうるが、中空シリカ粒子を樹脂添加フィラーなどに利用する際の樹脂への分散性の観点から、0.1μm以上が好ましく、0.5μm以上がより好ましく、1.0μm以上が更により好ましく、そして、50μm以下が好ましい。平均粒径は、例えば、レーザー回折/散乱式粒子径分布測定装置(堀場製作所社製「LA-750」)、又は、コールターカウンター(ベックマン・コールター社製「Multisizer 3」)を用いて測定できる。
 本開示に係る中空シリカ粒子のBET比表面積は、中空シリカ粒子の外殻部表面の緻密性を確保する観点から、20m2/g以下が好ましく、15m2/g以下がより好ましく、10m2/g以下が更に好ましい。「BET比表面積」は、例えば、後述の実施例に記載の方法により測定できる。
 本開示において、中空シリカ粒子の平均粒子径は、例えば、シリカ溶解液中の各成分の濃度、噴霧条件、焼成条件等により適宜調整することができる。
 本開示に係る中空シリカ粒子の嵩密度は、中空シリカ粒子の誘電率の低減化、及び粒子強度向上の観点から、0.44g/cm3以上が好ましく、0.66g/cm3以上がより好ましく、0.88g/cm3以上が更に好ましく、そして、1.98g/cm3以下が好ましく、1.76g/cm3以下がより好ましく、1.54g/cm3以下が更に好まし好ましい。本開示において「嵩密度」は、例えば、ガスピクノメータにより測定できる。具体的には、実施例に記載の方法により測定できる。
 本開示に係る中空シリカ粒子の空孔率は、中空シリカ粒子の誘電率を低減させる観点と強度の観点から、10%以上が好ましく、20%以上がより好ましく、30%以上が更に好ましく、そして、80%以下が好ましく、70%以下がより好ましく、60%以下が更に好ましい。空孔率は、例えば、真密度測定装置を用いて下記式により算出できる。具体的には、実施例に記載の方法により測定できる。
 空孔率(%)=[1-(中空シリカ粒子の真密度/シリカ粒子の真密度)]×100
 本開示に係る中空シリカ粒子は、電子材料の品質向上の観点から、Na、K等のアルカリ金属を実質的に含まないことが好ましい。すなわち、中空シリカ粒子中のアルカリ金属の合計含有量は、0.1質量%以下が好ましく、0.01質量%以下がより好ましく、0.005質量%以下が更に好ましい。中空シリカ粒子中のアルカリ金属含有量は、例えば、実施例に記載の方法により測定できる。
 本開示に係る中空シリカ粒子は、中空シリカ粒子を利用可能な各種分野で用いることができ、例えば、触媒担体;酵素担体;吸着材料;分離材料;光学材料;電子回路の多層配線構造に用いられる絶縁材料;半導体封止材料;電子材料;低誘電膜や低誘電膜用コーティング剤等に用いられる低誘電率材料;断熱材用材料;遮蔽性材料;建築材料;スキンケア化粧料、メークアップ化粧料、ボディケア化粧料、フレグランス化粧料等の化粧料用材料;として用いられうる。
 本開示は、さらに以下の製造方法、中空シリカ粒子、或いは用途を開示する。
<1> 下記工程(1)及び(2)を含む、中空シリカ粒子の製造方法。
(1)シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程。
(2)前記中空シリカ前駆体を焼成し、中空シリカ粒子を得る工程。
<2> 工程(1)は、シリカを有機アルカリ水溶液に混合し、シリカを有機アルカリ水溶液に溶解してシリカ溶解液を調製する溶解工程を含む、<1>に記載の製造方法。
<3> 有機アルカリは、第四級アンモニウム塩である、<1>又は<2>に記載の製造方法。
<4> 第四級アンモニウム塩は、下記式(I)で表される、第四級アンモニウムカチオンとヒドロキシドとからなる塩である、<3>に記載の製造方法。
Figure JPOXMLDOC01-appb-C000002
<5> 式(I)中、R1、R2、R3及びR4はそれぞれ独立に、炭素数が1以上22以下のアルキル基、ヒドロキシメチル基、ヒドロキシエチル基及びヒドロキシプロピル基から選ばれる少なくとも1種である、<4>に記載の製造方法。
<6> 式(I)中、前記アルキル基の炭素数は、1以上12以下が好ましく、1以上3以下がより好ましい、<5>に記載の製造方法。
<7> 式(I)中、前記アルキル基は、直鎖状アルキル基又は分岐状アルキル基であり、直鎖状アルキル基が好ましい、<5>又は<6>に記載の製造方法。
<8> 第四級アンモニウム塩は、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、及びトリメチルエチルアンモニウムヒドロキシドから選ばれる少なくとも1種であり、テトラメチルアンモニウムヒドロキシドが好ましい、<4>に記載の製造方法。
<9> シリカ溶解液中のシリカ濃度は、2質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましい、<1>から<8>のいずれかに記載の製造方法。
<10> シリカ溶解液中のシリカ濃度は、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい、<1>から<9>のいずれかに記載の製造方法。
<11> シリカ溶解液中のシリカ濃度は、2質量%以上30質量%以下である、<1>から<10>のいずれかに記載の製造方法。
<12> シリカ溶解液中の有機アルカリに対するシリカのモル比(シリカ/有機アルカリ)は、0.5以上が好ましく、1.0以上がより好ましく、1.5以上が更に好ましい、<1>から<11>のいずれかに記載の製造方法。
<13> シリカ溶解液中の有機アルカリに対するシリカのモル比(シリカ/有機アルカリ)は、3.5以下が好ましく、3.0以下がより好ましく、2.5以下が更に好ましい、<1>から<12>のいずれかに記載の製造方法。
<14> シリカ溶解液のアルカリ金属の合計量は、0.1質量%以下が好ましく、0.01質量%以下がより好ましく、0.005質量%以下が更に好ましい、<1>から<13>のいずれかに記載の製造方法。
<15> 工程(1)の噴霧乾燥における熱風の入口温度は、80℃~250℃が好ましく、100℃~220℃がより好ましく、120℃~200℃が更に好ましい、<1>から<14>のいずれかに記載の製造方法。
<16> 工程(1)の噴霧乾燥における熱風の出口温度は、50℃~120℃が好ましく、60℃~110℃がより好ましく、70℃~100℃が更に好ましい、<1>から<15>のいずれかに記載の製造方法。
<17> 工程(1)と工程(2)との間に、噴霧乾燥により得られた中空シリカ前駆体を空気分級して選択的に回収する空気分級工程をさらに含む、<1>から<16>のいずれかに記載の製造方法。
<18> 工程(2)における焼成温度は、700℃以上が好ましく、800℃以上がより好ましく、900℃以上が更に好ましい、<1>から<17>のいずれかに記載の製造方法。
<19> 工程(2)における焼成温度は、1500℃以下が好ましく、1300℃以下がより好ましく、1200℃以下が更に好ましい、<1>から<18>のいずれかに記載の製造方法。
<20> 内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、前記外殻部は、閉気孔を有し、前記閉気孔は、前記外殻部の割断面を観察したとき、ピンドット状である、中空シリカ粒子。
<21> 内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、前記外殻部は、閉気孔を有し、前記中空シリカ粒子のBET比表面積が、20m2/g以下である、中空シリカ粒子。
<22> 内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、前記中空シリカ粒子は、シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程と、前記中空シリカ前駆体を焼成する工程とを順に経て得られるものであり、前記外殻部は、閉気孔を有する、中空シリカ粒子。
<23> 外殻部の成分の好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、さらにより好ましくは95質量%以上が二酸化ケイ素である、<20>から<22>のいずれかに記載の中空シリカ粒子。
<24> 閉気孔は、有機アルカリに起因する気孔である、<20>から<23>のいずれかに記載の中空シリカ粒子。
<25> 中空シリカ粒子のBET比表面積が、20m2/g以下が好ましく、15m2/g以下がより好ましく、10m2/g以下が更に好ましい、<20>から<24>のいずれかに記載の中空シリカ粒子。
<26> 外殻部の割断面1μm2あたりの平均閉気孔数は、30個以上が好ましく、50個以上がより好ましく、80個以上が更に好ましい、<20>から<25>のいずれかに記載の中空シリカ粒子。
<27> 外殻部の割断面1μm2あたりの平均閉気孔数は、300個以下が好ましく、250個以下がより好ましく、200個以下が更に好ましい、<20>から<26>のいずれかに記載の中空シリカ粒子。
<28> 外殻部の割断面1μm2あたりの平均閉気孔数は、30個以上300個以下である、<20>から<27>のいずれかに記載の中空シリカ粒子。
<29> 外殻部の割断面を観察したときの閉気孔の大きさが、5nm以上100nm以下である、<20>から<28>のいずれかに記載の中空シリカ粒子。
<30> 中空シリカ粒子の空孔率は、10%以上が好ましく、20%以上がより好ましく、30%以上が更に好ましい、<20>から<29>のいずれかに記載の中空シリカ粒子。
<31> 中空シリカ粒子の空孔率が、80%以下が好ましく、70%以下がより好ましく、60%以下が更に好ましい、<20>から<30>のいずれかに記載の中空シリカ粒子。
<32> 中空シリカ粒子の空孔率が、10%以上80%以下である、<20>から<31>のいずれかに記載の中空シリカ粒子。
<33> 中空シリカ粒子の平均粒径は、0.1μm以上が好ましく、0.5μm以上がより好ましく、1.0μm以上が更により好ましい、<20>から<32>のいずれかに記載の中空シリカ粒子。
<34> 中空シリカ粒子の平均粒径は、50μm以下である、<20>から<33>のいずれかに記載の中空シリカ粒子。
<35> 中空シリカ粒子の平均粒径が、0.5μm以上50μm以下である、<20>から<34>のいずれかに記載の中空シリカ粒子。
<36> 中空シリカ粒子の嵩密度は、0.44g/cm3以上が好ましく、0.66g/cm3以上がより好ましく、0.88g/cm3以上が更に好ましい、<20>から<35>のいずれかに記載の中空シリカ粒子。
<37> 中空シリカ粒子の嵩密度は、1.98g/cm3以下が好ましく、1.76g/cm3以下がより好ましく、1.54g/cm3以下が更に好まし好ましい、<20>から<36>のいずれかに記載の中空シリカ粒子。
<38> 中空シリカ粒子中のアルカリ金属の合計含有量は、0.1質量%以下が好ましく、0.01質量%以下がより好ましく、0.005質量%が更に好ましい、<20>から<37>のいずれかに記載の中空シリカ粒子。
<39> <20>から<38>のいずれかに記載の中空シリカ粒子の、触媒担体、酵素担体、吸着材料、分離材料、光学材料、絶縁材料、半導体封止材料、電子材料、低誘電率材料、断熱材用材料、遮蔽性材料、建築材料及び化粧料用材料から選ばれる少なくとも1種の材料への使用。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
1.各パラメータの測定方法
 後述する実施例及び比較例の粒子の各種測定は、以下の方法により行った。
 [嵩密度の測定]
 ガスピクノメータ(カンタクローム・インスツルメンツ・ジャパン合同会社製「Ultrapyc1200e」)を用いて、1分間の脱気処理後に嵩密度の測定を行った。該測定を10回行い、その平均値を中空シリカ粒子の嵩密度(g/cm3)とした。
 [空孔率の測定]
 空孔率は、ガスピクノメータ(カンタクローム・インスツルメンツ・ジャパン合同会社製「Ultrapyc1200e」)を用いて測定した密度より、下記式により算出した。シリカ粒子の真密度は2.2g/cm3である。
 空孔率(%)=[1-(中空シリカ粒子の真密度/シリカ粒子の真密度)]×100
 [BET比表面積の測定]
 比表面積測定装置(株式会社島津製作所製、商品名「フローソーブIII2305」)を使用し、中空シリカ粒子のBET比表面積を測定した。試料は、200℃で15分加熱する前処理を行った。
 [平均粒径]
 中空シリカ粒子の平均粒径は、レーザー回折/散乱式粒度分布測定装置(堀場製作所社製「LA-920」 相対屈折率を1.4に設定し測定)を使用し、体積基準のメジアン径(D50)として測定した。さらに、中空シリカ粒子の平均粒径は、コールターカウンター(Coulter Corporation社製、50μmアパチャーチューブを使用)を用いて測定した。
 [粒子強度]
 粒子強度は、粒子:10gをジルコニアボール(10mmφZrO2):200gを用いて粉砕処理(95rpm、1時間)し、粉砕前後の粒子の比重増加量から評価した。評価基準を以下に示す。比重増加量が0.03g/cm3以下の場合、粒子強度に優れると判断し、比重増加量が0.03g/cm3を超える場合、粒子強度が劣ると判断した。
 [アルカリ金属含有量]
 中空シリカ粒子中のアルカリ金属含有量は、JIS-K0133に準拠し、ICP-MS(アジレント製「7700S」)を用いて測定した。フッ化水素酸により中空シリカ粒子を完全溶解させた水溶液を試料として用いた。ここでは、中空シリカ粒子中に含まれるNaの含有量を、シリカ溶解液中のアルカリ金属含有量とした。
 [中空シリカ粒子の割断面のSEM観察と外殻部の平均厚みの測定]
 中空粒子をエポキシ樹脂に混練し、硬化した後、試料を割断した。そして、割断面を電界放射型走査電子顕微鏡(SEM)(日立製作所社製の「S-4000」)を用いて、3千倍に拡大して観察した。そして、50~100個の中空粒子の外殻部厚みを写真上で計測して外殻部の平均厚みを求めた。
 [外殻部の割断面のSEM観察と平均閉気孔数の測定]
 中空粒子をエポキシ樹脂に混練し、硬化した後、試料を割断した。そして、中空粒子の外殻部の割断面を、電界放射型走査電子顕微鏡(SEM)(日立製作所社製の「S-4000」)を用いて、5万倍に拡大して観察した。そして、3~10個の中空粒子のそれぞれの割断面1μm2当たりの閉気孔の個数から、平均閉気孔数を求めた。
2.中空シリカ粒子の製造(実施例1~34及び比較例1~4)
(実施例1)
 中空シリカ粒子は、噴霧乾燥工程(1)及び焼成工程(2)の2工程を経て製造される。
 まず、噴霧乾燥工程(1)に用いるシリカ溶解液を調製した。すなわち、撹拌機のついた反応槽(耐圧硝子工業社製、TEM-D1500M)に、シリカ(アドマテックス社製、アドマファインSOE2):200g、テトラメチルアンモニウムヒドロキシド25%水溶液(セイケムアジア社製、pH14):640g、及び、イオン交換水:160gを入れて撹拌しながら、1時間30分で180℃まで昇温し、その後、180℃で1時間撹拌することにより、シリカ溶解液(シリカ濃度:20質量%、モル比(シリカ/有機アルカリ):1.9)を得た(溶解工程)。180℃で撹拌中の反応槽内の圧力は0.85MPaであった。
 次いで、調製したシリカ溶解液をそのまま噴霧液として、噴霧乾燥機(東京理化器械社製、SD-1000)を用いて噴霧乾燥し、乾燥粉末(中空シリカ前駆体)を得た(噴霧乾燥工程(1))。噴霧乾燥機の噴霧ノズルには、2流体ノズル(試料吐出孔径:0.4mm)を用いた。噴霧条件は、入口温度:130℃、出口温度:98℃、噴霧圧力:250kPa、風量:0.7m3/分、噴霧量:10mL/分であった。
 次いで、噴霧乾燥により得られた乾燥粉末(中空シリカ前駆体)を電気炉(モトヤマ社製、SK-2535E-OP)にて1100℃まで100℃/時間で昇温し、その後、1100℃で1時間保持し焼成することで、実施例1の中空シリカ粒子を得た(焼成工程(2))。
 実施例1の中空シリカ粒子の物性測定結果を下記表1に示す。そして、実施例1の中空シリカ粒子のSEM画像を図1に示す。図1から、実施例1の中空シリカ粒子の形状は球状であることが分かった。さらに、実施例1の中空シリカ粒子の外殻部の割断面のSEM画像を図3に示す。図3において、閉気孔を示す黒点が目視で確認できた。すなわち、図3から、実施例1の中空シリカ粒子の外殻部には、閉気孔が形成されていることが確認できた。
(実施例2~33)
 シリカ溶解液中の各原料の濃度、及び、噴霧乾燥条件を表1に記載のとおり変更したこと以外は、上記実施例1と同様の方法により、実施例2~33の中空シリカ粒子を得た。各々の物性測定結果を表1に示す。
(実施例34)
 まず、噴霧乾燥工程(1)に用いるシリカ溶解液を調製した。すなわち、撹拌機のついた反応槽(耐圧硝子工業社製、TEM-D1500M)に、シリカ(アドマテックス社製、アドマファインSOE2):200g、テトラエチルアンモニウムヒドロキシド20%水溶液(TEAH)(和光純薬工業株式会社社製):1287gを入れて撹拌しながら、1時間30分で170℃まで昇温し、その後、170℃で1時間撹拌することにより、実施例34のシリカ溶解液(シリカ濃度:13質量%、モル比(シリカ/有機アルカリ):1.9)を得た(溶解工程)。170℃で撹拌中の反応槽内の圧力は1.20MPaであった。
 そして、噴霧液として実施例34のシリカ溶解液を用いたこと、及び噴霧条件を表1に記載のとおり変更したこと以外は、上記実施例1と同様の方法により、実施例34の中空シリカ粒子を得た。実施例34の中空シリカ粒子の物性測定結果を表1に示す。
(比較例1)
 撹拌機のついた反応槽にメタノール(和光純薬社製):23.9重量部、ドデシルトリメチルアンモニウムクロライド30%水溶液(第一工業製薬社製):1.0重量部、ヘキサン(和光純薬社製):1.0重量部、25%テトラメチルアンモニウムヒドロキシド(セイケムアジア社製):0.5重量部を入れて撹拌し、溶液Aを調製した。さらに、別の撹拌機のついた反応槽にイオン交換水:71.6重量部を入れて撹拌し、溶液Bとした。そして、溶液Aを攪拌しながら溶液Bを45秒で添加し、その後、25℃で10分撹拌することにより、O/W型乳化液を得た。
 次いで、O/W型乳化液に、テトラメトキシシラン(TMOS、多摩化学製):2.0重量部(溶液C)を30秒で添加し、その後、25℃で10分間撹拌し、白濁液を得た。
 次いで、得られた白濁液を5Cのろ紙を用いてろ別し、水洗いした後、100℃で乾燥することにより白色の乾燥粉末を得た。得られた乾燥粉末を1100℃で1時間焼成することで、比較例1の中空シリカ粒子を得た(テンプレート法)。比較例1の中空シリカ粒子の物性測定結果を表1に示す。
(比較例2)
 シリカとしてコロイダルシリカ(日産化学工業社製、「スノーテックス N」、シリカ濃度20質量%)を用いたこと、シリカを有機アルカリに溶解しなかったこと以外は、上記実施例1と同様の方法により、比較例2の中空シリカ粒子を得た。得られた比較例2の中空シリカ粒子は、中空構造を有していたが、空孔率は低かった。比較例2の中空シリカ粒子の物性測定結果を表1に示す。
(比較例3)
 シリカとして3号水ガラス(大阪珪酸曹達株式会社製)を用い、上記実施例1と同様の方法で噴霧乾燥を行った。得られた乾燥粉末を500℃で1時間焼成し、比較例4の中空シリカ粉末を得た。水ガラスを原料とした場合、ナトリウムの影響で500℃以上の温度で焼成するとシリカが溶解する。得られた比較例3のシリカ粒子は中空構造を有していた。比較例3の中空シリカ粒子の物性測定結果を表1に示す。そして、比較例3の中空シリカ粒子の外殻部の割断面のSEM画像を図4に示す。図4において、閉気孔を示す黒点は確認できなかった。すなわち、図4から、比較例3の中空シリカ粒子の外殻部には、閉気孔が形成されていないことが分かった。
(比較例4)
 焼成温度を700℃に変更したこと以外は、比較例1と同様にして、比較例4の中空シリカ粒子を得た。比較例4の中空シリカ粒子は、メソポーラスシリカであった。比較例4の中空シリカ粒子は、嵩密度が2.20g/cm3、空孔率が0%、BET比表面積が718m3/gであった。
Figure JPOXMLDOC01-appb-T000003
 上記表1に示すとおり、実施例1~34では、アルカリ金属が実質的に含まれない中空シリカ粒子を簡便に製造できた。
 さらに、実施例1~2、11、28~29、33の中空シリカ粒子の外殻部の平均厚み及び平均閉気孔数、並びに比較例1~3の中空シリカ粒子の外殻部の平均閉気孔数を、表2に示す。さらに表2に、中空シリカ粒子の物性を表1から一部抜粋したものも示す。
Figure JPOXMLDOC01-appb-T000004
 上記表2に示すとおり、実施例1~2、11、28~29、33の中空シリカ粒子は、外殻部に複数の閉気孔が形成された中空シリカ粒子であった。一方、比較例1~3の中空シリカ粒子は、外殻部に閉気孔が形成されていない中空シリカ粒子であった。
 本開示によれば、例えば、中空シリカ粒子を利用可能な、触媒担体、吸着剤、物質分離剤、酵素や機能性有機化合物の固定化担体、電子材料等を扱う分野において有用である。

Claims (18)

  1.  下記工程(1)及び(2)を含む、中空シリカ粒子の製造方法。
    (1)シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程。
    (2)前記中空シリカ前駆体を焼成し、中空シリカ粒子を得る工程。
  2.  前記工程(1)は、シリカを有機アルカリ水溶液に混合し、シリカを有機アルカリ水溶液に溶解してシリカ溶解液を調製する溶解工程を含む、請求項1に記載の中空シリカ粒子の製造方法。
  3.  前記有機アルカリは、第四級アンモニウム塩である、請求項1又は2に記載の中空シリカ粒子の製造方法。
  4.  前記第四級アンモニウム塩は、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、及びトリメチルエチルアンモニウムヒドロキシドから選ばれる少なくとも1種である、請求項3に記載の中空シリカ粒子の製造方法。
  5.  前記シリカ溶解液中のシリカ濃度は、2質量%以上30質量%以下である、請求項1から4のいずれかに記載の中空シリカ粒子の製造方法。
  6.  前記シリカ溶解液中の有機アルカリに対するシリカのモル比(シリカ/有機アルカリ)は、0.5以上である、請求項1から5のいずれかに記載の中空シリカ粒子の製造方法。
  7.  前記工程(1)と前記工程(2)との間に、噴霧乾燥により得られた中空シリカ前駆体を空気分級して選択的に回収する空気分級工程をさらに含む、請求項1から6のいずれかに記載の中空シリカ粒子の製造方法。
  8.  前記工程(2)における焼成温度は、700℃以上である、請求項1から7のいずれかに記載の中空シリカ粒子の製造方法。
  9.  内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、
     前記外殻部は、閉気孔を有し、
     前記閉気孔は、前記外殻部の割断面を観察したとき、ピンドット状である、中空シリカ粒子。
  10.  内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、
     前記外殻部は、閉気孔を有し、
     前記中空シリカ粒子のBET比表面積が、20m2/g以下である、中空シリカ粒子。
  11.  内部空間を形成する外殻部を備え、前記外殻部がシリカを含む成分から構成される中空シリカ粒子であって、
     前記中空シリカ粒子は、シリカを有機アルカリ水溶液に溶解したシリカ溶解液を噴霧乾燥し、中空シリカ前駆体を得る工程と、前記中空シリカ前駆体を焼成する工程とを順に経て得られるものであり、
     前記外殻部は、閉気孔を有する、中空シリカ粒子。
  12.  前記閉気孔は、有機アルカリに起因する気孔である、請求項9から11のいずれかに記載の中空シリカ粒子。
  13.  前記外殻部の割断面1μm2当たりの平均閉気孔数が、30個以上300個以下である、請求項9から12のいずれかに記載の中空シリカ粒子。
  14.  前記外殻部の割断面を観察したときの閉気孔の大きさが、5nm以上100nm以下である、請求項9から13のいずれかに記載の中空シリカ粒子。
  15.  中空シリカ粒子の空孔率が、10%以上80%以下である、請求項9から14のいずれかに記載の中空シリカ粒子。
  16.  中空シリカ粒子の平均粒径が、0.1μm以上50μm以下である、請求項9から15のいずれかに記載の中空シリカ粒子。
  17.  中空シリカ粒子中のアルカリ金属の合計含有量は、0.1質量%以下である、請求項9から16のいずれかに記載の中空シリカ粒子。
  18.  請求項9から17のいずれかに記載の中空シリカ粒子の、触媒担体、酵素担体、吸着材料、分離材料、光学材料、絶縁材料、半導体封止材料、電子材料、低誘電率材料、断熱材用材料、遮蔽性材料、建築材料及び化粧料用材料から選ばれる少なくとも1種の材料への使用。
PCT/JP2017/015722 2016-04-20 2017-04-19 中空シリカ粒子及びその製造方法 WO2017183657A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780019297.8A CN109071239B (zh) 2016-04-20 2017-04-19 中空二氧化硅粒子及其制造方法
KR1020187024668A KR102052893B1 (ko) 2016-04-20 2017-04-19 중공 실리카 입자 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084437A JP6255053B2 (ja) 2016-04-20 2016-04-20 中空シリカ粒子及びその製造方法
JP2016-084437 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183657A1 true WO2017183657A1 (ja) 2017-10-26

Family

ID=60116803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015722 WO2017183657A1 (ja) 2016-04-20 2017-04-19 中空シリカ粒子及びその製造方法

Country Status (5)

Country Link
JP (1) JP6255053B2 (ja)
KR (1) KR102052893B1 (ja)
CN (1) CN109071239B (ja)
TW (1) TWI713729B (ja)
WO (1) WO2017183657A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084128A (ja) * 2018-11-30 2020-06-04 花王株式会社 電子材料用封止剤
WO2023282158A1 (ja) * 2021-07-07 2023-01-12 Agc株式会社 光散乱性シリカ粒子及び光散乱性シリカ粒子の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020002743A (es) 2017-09-11 2020-10-01 Harvard College Microesferas que comprenden nanoesferas polimericas polidispersas y microesferas de oxido de metal poroso.
CN111315566A (zh) 2017-09-11 2020-06-19 哈佛大学 多孔金属氧化物微球
JP6905446B2 (ja) * 2017-10-24 2021-07-21 花王株式会社 中空シリカ粒子の製造方法
JP7132827B2 (ja) * 2018-11-12 2022-09-07 花王株式会社 中空シリカ粒子及びその製造方法
JP7261570B2 (ja) * 2018-11-30 2023-04-20 花王株式会社 中空シリカ粒子及びその製造方法
JP7433022B2 (ja) * 2019-11-13 2024-02-19 日鉄ケミカル&マテリアル株式会社 中空シリカ粒子とその製造方法およびそれを用いた樹脂複合組成物並びに樹脂複合体
KR20210072200A (ko) 2019-12-06 2021-06-17 삼성디스플레이 주식회사 표시 장치
JP2022103683A (ja) * 2020-12-28 2022-07-08 日揮触媒化成株式会社 シリカ系中空粒子及びその製造方法、並びに樹脂組成物
JPWO2022210920A1 (ja) * 2021-03-31 2022-10-06
CN116867738A (zh) * 2021-03-31 2023-10-10 日挥触媒化成株式会社 粉体及其制造方法、以及树脂组合物的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342010A (ja) * 2000-05-30 2001-12-11 Kyocera Corp 無機質中空粉体とその製造方法
JP2004224673A (ja) * 2003-01-27 2004-08-12 Hitachi Chem Co Ltd 中空微粒子集合体の製造方法及び中空微粒子集合体
JP2008110905A (ja) * 2006-10-31 2008-05-15 Kao Corp 中空シリカ粒子
JP2009114010A (ja) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd 球状シリカ粒子およびその製造方法
JP2011041869A (ja) * 2009-08-19 2011-03-03 Nagasaki Prefecture 無機中空体及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210837A1 (de) * 1972-03-07 1973-09-20 Bayer Ag Verfahren zur herstellung von schaumstofformkoerpern
WO2000077148A1 (fr) * 1999-06-14 2000-12-21 Kao Corporation Granules destines a porter un tensioactif et leur procede de production
JP4643314B2 (ja) * 2005-03-10 2011-03-02 独立行政法人科学技術振興機構 規則的に配列したナノ粒子状シリカ、及びその製造方法
JP5364276B2 (ja) 2008-02-28 2013-12-11 花王株式会社 中空シリカ粒子及びその製造方法
JP5603063B2 (ja) * 2009-12-21 2014-10-08 花王株式会社 複合シリカ粒子の製造方法
JP5762120B2 (ja) 2010-05-11 2015-08-12 日揮触媒化成株式会社 シリカ系粒子の製造方法
KR102104097B1 (ko) 2012-02-13 2020-04-23 가부시키가이샤 도쿠야마 신규한 특성 프로파일을 갖는 실리카 벌룬 재료
CN103468030B (zh) * 2013-08-23 2016-05-18 确成硅化学股份有限公司 一种高分散性二氧化硅的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342010A (ja) * 2000-05-30 2001-12-11 Kyocera Corp 無機質中空粉体とその製造方法
JP2004224673A (ja) * 2003-01-27 2004-08-12 Hitachi Chem Co Ltd 中空微粒子集合体の製造方法及び中空微粒子集合体
JP2008110905A (ja) * 2006-10-31 2008-05-15 Kao Corp 中空シリカ粒子
JP2009114010A (ja) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd 球状シリカ粒子およびその製造方法
JP2011041869A (ja) * 2009-08-19 2011-03-03 Nagasaki Prefecture 無機中空体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084128A (ja) * 2018-11-30 2020-06-04 花王株式会社 電子材料用封止剤
WO2023282158A1 (ja) * 2021-07-07 2023-01-12 Agc株式会社 光散乱性シリカ粒子及び光散乱性シリカ粒子の製造方法

Also Published As

Publication number Publication date
CN109071239A (zh) 2018-12-21
CN109071239B (zh) 2020-07-31
KR102052893B1 (ko) 2019-12-06
KR20180134848A (ko) 2018-12-19
JP2017193462A (ja) 2017-10-26
TWI713729B (zh) 2020-12-21
JP6255053B2 (ja) 2017-12-27
TW201738178A (zh) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6255053B2 (ja) 中空シリカ粒子及びその製造方法
US8889044B2 (en) Method for producing mesoporous silica particles
JP5457179B2 (ja) 中空粒子の製造方法
TWI516447B (zh) 氣凝膠及其製造方法
US20120264599A1 (en) Method for producing composite silica particles
JP5148971B2 (ja) 球状シリカ粒子およびその製造方法
JP6552387B2 (ja) 中空シリカ粒子の製造方法
US20150274538A1 (en) Core-shell silica nanoparticles, method for manufacturing the same, method for manufacturing hollow silica nanoparticles therefrom, and hollow silica nanoparticles manufactured thereby
JP6008642B2 (ja) 平板状結晶性アルミナ複合酸化物微粒子集合体、平板状結晶性アルミナ複合酸化物微粒子集合体からなる結晶性アルミナ複合酸化物粒子ならびに該平板状結晶性アルミナ複合酸化物微粒子集合体および該結晶性アルミナ複合酸化物粒子の製造方法
JP6905446B2 (ja) 中空シリカ粒子の製造方法
JP6032591B2 (ja) シリカナノ中空粒子の製造方法
JP7261570B2 (ja) 中空シリカ粒子及びその製造方法
JP5480497B2 (ja) 表面封止シリカ系粒子の製造方法、表面封止シリカ系粒子および該粒子を混合してなる半導体封止用樹脂組成物
JP7132827B2 (ja) 中空シリカ粒子及びその製造方法
JP2014055083A (ja) 中空シリカ粒子の製造方法
JP5334884B2 (ja) 塗料組成物
US11964253B2 (en) Production method for core-shell porous silica particles
JP2014055082A (ja) 中空シリカ粒子の製造方法
JP2010030791A (ja) 中空シリカ粒子の製造方法
TWI310321B (en) Mesoporous inorganic nanoparticle, inorganic nanoparticle/polymer composite and transparent substrate
JP2013103860A (ja) メソ細孔を有するシリカ殻からなるナノ中空粒子の製造方法
TWI833391B (zh) 經表面處理之二氧化矽粒子分散溶膠及其製造方法
JPH04214022A (ja) 偏平シリカゾルの製造法
KR20200101758A (ko) 층상 실리케이트 합성방법 및 이로부터 합성된 층상 실리케이트
JP2013227177A (ja) コロイダルシリカおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785995

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785995

Country of ref document: EP

Kind code of ref document: A1