WO2017183583A1 - Sealant for liquid crystal display element, method for manufacturing sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element - Google Patents

Sealant for liquid crystal display element, method for manufacturing sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element Download PDF

Info

Publication number
WO2017183583A1
WO2017183583A1 PCT/JP2017/015318 JP2017015318W WO2017183583A1 WO 2017183583 A1 WO2017183583 A1 WO 2017183583A1 JP 2017015318 W JP2017015318 W JP 2017015318W WO 2017183583 A1 WO2017183583 A1 WO 2017183583A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
meth
bisphenol
epoxy resin
Prior art date
Application number
PCT/JP2017/015318
Other languages
French (fr)
Japanese (ja)
Inventor
洋 小林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201780002831.4A priority Critical patent/CN107924093A/en
Priority to JP2017526724A priority patent/JP7053262B2/en
Priority to KR1020187006388A priority patent/KR20180129753A/en
Publication of WO2017183583A1 publication Critical patent/WO2017183583A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal display element that is excellent in adhesiveness and light-shielding part curability and that can reduce the burden on the environment. Moreover, this invention relates to the manufacturing method of this sealing compound for liquid crystal display elements, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. .
  • heating is performed to perform main curing, and a liquid crystal display element is manufactured.
  • a liquid crystal display element can be manufactured with extremely high efficiency by bonding the substrates under a reduced pressure, and this dropping method is currently the mainstream method for manufacturing liquid crystal display elements.
  • the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
  • the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. If the sealant is insufficiently cured in this manner, the uncured sealant component is eluted in the liquid crystal, and the curing reaction by the eluted sealant component proceeds in the liquid crystal, resulting in liquid crystal contamination. there were.
  • An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in adhesiveness and light-shielding part sclerosis
  • Another object of the present invention is to provide a manufacturing method of the sealing agent for liquid crystal display elements, and a vertical conduction material and a liquid crystal display element using the sealing agent for liquid crystal display elements.
  • the present invention is a liquid crystal display element sealing agent comprising a curable resin and a polymerization initiator and / or a thermosetting agent, wherein the curable resin is a bisphenol A type epoxy resin and / or (meth) acrylic. It is a sealing agent for liquid crystal display elements that contains a modified bisphenol A type epoxy resin and the content of bisphenol A is 50 ppm or less.
  • the present invention is described in detail below.
  • the present inventors have formulated a chemically and physically excellent bisphenol A type epoxy resin and / or (meth) acryl-modified bisphenol A type epoxy resin as the curable resin contained in the liquid crystal display element sealant. investigated. However, when such a curable resin is used, there is a problem that sufficient light-shielding part curability may not be obtained. The inventors of the present invention have the reason that the light-shielding part curability is deteriorated because bisphenol A slightly present in the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin inhibits the polymerization reaction. I thought that there was to be.
  • the present inventors have found that by making the content of bisphenol A not more than a specific value, it is possible to obtain a sealing agent for a liquid crystal display element that is excellent in adhesiveness and light-shielding part curability. It came to complete. Moreover, since the sealing agent for liquid crystal display elements of this invention has reduced content of bisphenol A, the environmental load by this bisphenol A can be reduced.
  • the sealing agent for liquid crystal display elements of this invention contains curable resin.
  • the curable resin contains a bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin.
  • the sealing agent for liquid crystal display elements of the present invention has excellent adhesiveness.
  • the “(meth) acryl” means acryl or methacryl.
  • the (meth) acryl-modified bisphenol A type epoxy resin may be a completely (meth) acryl-modified bisphenol A type epoxy resin obtained by (meth) acryl-modifying all the epoxy groups of the bisphenol A type epoxy resin, A partial (meth) acryl-modified bisphenol A type epoxy resin in which a part of epoxy groups is (meth) acryl-modified may be used.
  • the liquid crystal display element sealant of the present invention has a bisphenol A content of 50 ppm or less.
  • the content of the bisphenol A is set to 50 ppm or less, whereby the liquid crystal display element seal of the present invention is used.
  • the agent is excellent in adhesiveness and light-shielding part curability, and can reduce the burden on the environment.
  • the content of bisphenol A can be quantitatively measured using liquid chromatography by extracting bisphenol A from a sealing agent using an arbitrary solution such as a dimethyl sulfoxide solution.
  • the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin can be removed by washing with pure water.
  • the purification method include a method of purification by physical adsorption removal of bisphenol A using an adsorbent.
  • a method for producing a sealing agent for a liquid crystal display device comprising: a step and a step of mixing a purified bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin with at least a polymerization initiator and / or a thermosetting agent.
  • a step of purifying bisphenol A type epoxy resin and / or (meth) acryl-modified bisphenol A type epoxy resin by physical adsorption removal of bisphenol A using an adsorbent a purified bisphenol A type epoxy resin and / or Or (meth) acryl-modified bisphenol A type epoxy
  • Method of manufacturing a liquid crystal display device for sealing agent and a step of mixing with a resin at least a polymerization initiator and / or thermal curing agent is also one of the present invention, respectively.
  • the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin When purifying the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin by washing and removing bisphenol A with pure water, the bisphenol A type epoxy resin and In addition, the above (meth) acryl-modified bisphenol A type epoxy resin and pure water are added, and the mixture can be purified by repeatedly performing a washing operation for separating pure water after stirring while heating.
  • the removal by washing with water is preferably performed using hot water of 40 ° C. to 50 ° C.
  • the adsorbent used include charcoal, Carbon-based porous materials such as coal, activated carbon and carbon black, inorganic porous materials such as silica gel, alumina and magnesia, zirconia crosslinked material, alumina crosslinked material, chromium oxide crosslinked material, titanium oxide crosslinked material, iron oxide crosslinked material And clay-based porous bodies, porous glasses, zeolites, styrene-divinylbenzene copolymers, polyacrylic ester-based crosslinked bodies, and ion exchange resins obtained by chemically modifying these.
  • charcoal Carbon-based porous materials such as coal, activated carbon and carbon black
  • inorganic porous materials such as silica gel, alumina and magnesia, zirconia crosslinked material, alumina crosslinked material, chromium oxide crosslinked material, titanium oxide crosslinked material, iron oxide crosslinked material
  • the curable resin may contain other curable resins in addition to the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin.
  • the other curable resins include other (meth) acryl compounds other than the complete (meth) acryl-modified bisphenol A epoxy resin, the bisphenol A epoxy resin, and the partial (meth) acryl-modified bisphenol A epoxy.
  • examples include other epoxy compounds other than resins.
  • the curable resin contains the complete (meth) acryl-modified bisphenol A type epoxy resin and / or the other (meth) acrylic compound (these are also simply referred to as “(meth) acrylic compounds”). It is preferable to do.
  • Examples of the other (meth) acrylic compounds include, for example, (meth) acrylic acid ester compounds obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, (meth) acrylic acid and bisphenol A type epoxy resin Other complete (meth) acryl-modified epoxy resins obtained by reacting with an epoxy compound, urethane (meth) acrylate obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group, etc. .
  • the “(meth) acrylate” means acrylate or methacrylate.
  • Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl Phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaeryth Penta (meth) acrylate, dipentaeryth
  • the other complete (meth) acryl-modified epoxy resin can be obtained, for example, by reacting an epoxy compound other than bisphenol A type epoxy resin with (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. And the like.
  • Examples of the epoxy compound used as a raw material for synthesizing the other complete (meth) acryl-modified epoxy resin include, for example, bisphenol F type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type.
  • Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC). As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
  • Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.). Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032. (All manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
  • isocyanate compound used as the raw material for the urethane (meth) acrylate examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantrie Cyanate, and the like.
  • MDI '-Diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • tris (isocyanate) Phenyl) thiophosphate tetramethylxylylene diisocyanate, 1,6,11-und
  • the isocyanate compound is obtained by, for example, reacting a polyol such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and an excess isocyanate compound. It is also possible to use chain-extended isocyanate compounds.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane.
  • Mono (meth) acrylates of dihydric alcohols such as diols and polyethylene glycols
  • mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, glycerin, and others mentioned above Complete (meth) acryl-modified epoxy resin and the like.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U-
  • the (meth) acrylic compound preferably has a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing adverse effects on the liquid crystal.
  • the upper limit with the preferable ratio of the epoxy group with respect to the total amount of the epoxy group and (meth) acryloyl group in the said whole curable resin is 50 mol%.
  • the ratio of the epoxy group is 50 mol% or less, the resulting liquid crystal display element sealant is less soluble in the liquid crystal and the liquid crystal contamination is lower. It will be excellent.
  • a more preferable upper limit of the ratio of the epoxy group is 20 mol%.
  • Examples of the other epoxy compounds include, for example, the epoxy compounds mentioned as raw materials for synthesizing the other complete (meth) acryl-modified epoxy resins, and portions other than the partial (meth) acryl-modified bisphenol A type epoxy resins ( And a (meth) acryl-modified epoxy resin.
  • the sealing agent for liquid crystal display elements of the present invention contains the other curable resin, the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy in 100 parts by weight of the curable resin as a whole.
  • the preferable lower limit of the resin content is 10 parts by weight, and the preferable upper limit is 100 parts by weight.
  • the content of the bisphenol A-type epoxy resin and / or the (meth) acryl-modified bisphenol A-type epoxy resin is within this range, the obtained sealing agent for liquid crystal display elements has adhesiveness, applicability, and low liquid crystal contamination.
  • the minimum with more preferable content of the said bisphenol A type epoxy resin and / or the said (meth) acryl modified bisphenol A type epoxy resin is 20 weight part, and a more preferable upper limit is 90 weight part.
  • the sealing agent for liquid crystal display elements of this invention contains a polymerization initiator and / or a thermosetting agent.
  • a radical polymerization initiator is preferably used from the viewpoint of curing speed and the like.
  • the sealing agent for liquid crystal display elements of the present invention has such an extremely small content of bisphenol A that it inhibits such curing inhibition. It suppresses and becomes excellent in light-shielding part curability.
  • the radical polymerization initiator include a photo radical polymerization initiator that generates radicals by light irradiation, a thermal radical polymerization initiator that generates radicals by heating, and the like.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds, and the like.
  • photo radical polymerization initiators examples include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, all manufactured by Rusilin TPO ), NCI-930 (manufactured by ADEKA), SPEEDCURE EMK (manufactured by Nippon Sebel Hegner), benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
  • the polymer azo compound means a compound having an azo group and generating a radical capable of curing a (meth) acryloyl group by heat and having a number average molecular weight of 300 or more.
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • the said number average molecular weight is a value calculated
  • polymer azo initiator examples include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
  • Examples of azo compounds that are not polymers include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is within this range, the obtained sealing agent for liquid crystal display elements is excellent in storage stability and curability while suppressing liquid crystal contamination.
  • the minimum with more preferable content of the said polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
  • organic acid hydrazide examples include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • organic acid hydrazides examples include, for example, SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine Techno Co., Ltd.) Manufactured) and the like.
  • the content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit.
  • the thermosetting property can be further improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements.
  • content of the said thermosetting agent exceeds 50 weight part, the viscosity of the sealing compound for liquid crystal display elements obtained will become high, and applicability
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • the sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient, improving moisture permeability of cured products, and the like. preferable.
  • the filler examples include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide,
  • Organic fillers such as calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, and calcium silicate, and organic materials such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles A filler is mentioned.
  • the minimum with preferable content of the said filler in the sealing compound for liquid crystal display elements of this invention is 10 weight%, and a preferable upper limit is 70 weight%.
  • a preferable upper limit is 70 weight%.
  • the more preferable lower limit of the content of the filler is 20% by weight, and the more preferable upper limit is 60% by weight.
  • the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used.
  • the minimum with preferable content of the said silane coupling agent in the sealing compound for liquid crystal display elements of this invention is 0.1 weight%, and a preferable upper limit is 10 weight%.
  • a preferable upper limit is 10 weight%.
  • the minimum with more preferable content of the said silane coupling agent is 0.3 weight%, and a more preferable upper limit is 5 weight%.
  • the sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has sufficient light-shielding properties, and therefore has high contrast without light leakage A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between the board
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm
  • the more preferable upper limit is 200 nm
  • the still more preferable lower limit is 10 nm
  • the still more preferable upper limit is 100 nm.
  • the primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
  • the minimum with preferable content of the said light-shielding agent in the sealing compound for liquid crystal display elements of this invention is 5 weight%, and a preferable upper limit is 80 weight%.
  • the content of the light-shielding agent is within this range, the liquid crystal display element sealant can exhibit better light-shielding properties without reducing the adhesion to the substrate, the strength after curing, and the drawability. it can.
  • the more preferable lower limit of the content of the light-shielding agent is 10% by weight, the more preferable upper limit is 70% by weight, the still more preferable lower limit is 30% by weight, and the still more preferable upper limit is 60% by weight.
  • the sealing agent for liquid crystal display elements of the present invention is further added as necessary, stress relieving agent, reactive diluent, thixotropic agent, spacer, curing accelerator, antifoaming agent, leveling agent, polymerization inhibitor, etc.
  • An agent or the like may be contained.
  • a method for producing the sealing agent for liquid crystal display elements of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, a curable resin, and a polymerization
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, a curable resin, and a polymerization
  • examples thereof include a method of mixing an initiator and / or a thermosetting agent and an additive such as a silane coupling agent added as necessary.
  • the sealing agent for liquid crystal display elements of the present invention has a preferable lower limit of 50,000 mPa ⁇ s and a preferable upper limit of 700,000 mPa ⁇ s measured using an E-type viscometer at 25 ° C. and 1 rpm. When the viscosity is within this range, the obtained sealing agent for liquid crystal display elements has excellent coating properties.
  • a more preferable lower limit of the viscosity is 100,000 mPa ⁇ s, and a more preferable upper limit is 500,000 mPa ⁇ s.
  • As the E-type viscometer for example, 5XHBDV-III + CP (manufactured by Brookfield, rotor No. CP-51) can be used.
  • a vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used.
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
  • a liquid crystal dropping method is preferably used.
  • the liquid crystal display element sealant of the present invention is applied to one of two substrates such as a glass substrate with electrodes such as an ITO thin film or a polyethylene terephthalate substrate by screen printing, dispenser application, or the like.
  • the sealing compound for liquid crystal display elements which is excellent in adhesiveness and light-shielding part sclerosis
  • the manufacturing method of this sealing compound for liquid crystal display elements, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
  • Examples 1 to 5 and Comparative Examples 1 and 2 According to the mixing ratio described in Table 1, each material was mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Nertaro”), and then further mixed using three rolls. To 5 and Comparative Examples 1 and 2 were prepared.
  • Each liquid crystal display element sealing agent obtained in Examples and Comparative Examples was prepared to be a 0.1 wt / vol% dimethyl sulfoxide solution and shaken for 2 hours. Subsequently, the obtained solution was diluted 10-fold with methanol, filtered through a 0.2 ⁇ m filter, and the content of bisphenol A was measured by liquid chromatography using an external standard method.
  • the adhesive strength was measured using the tension gauge.
  • the resulting value obtained by dividing measured values (kgf) in the seal coating cross sectional area (cm 2) is a case was 35 kgf / cm 2 or more " ⁇ " was 30 kgf / cm 2 or more 35 kgf / cm less than 2 where " ⁇ ", the case was 25 kgf / cm 2 or more 30 kgf / cm less than 2 " ⁇ ", and evaluated the adhesiveness of the case was less than 25 kgf / cm 2 as " ⁇ ".
  • the obtained sealant is applied to the central part of the substrate A (boundary between the chromium vapor deposition part and the non-deposition part), and after the substrate B is bonded, the sealant is sufficiently applied.
  • 100 mW / cm 2 ultraviolet rays were irradiated for 5 seconds from the substrate A side using a metal halide lamp.
  • the substrates A and B are peeled off using a cutter, and the spectrum is measured by a microscopic IR method for the sealant on a point 50 ⁇ m away from the direct ultraviolet irradiation part (the part shielded from light by chromium vapor deposition).
  • the conversion rate of the inside (meth) acryloyl group was calculated
  • the conversion rate was 90% or more, “ ⁇ ”, 70% or more, but less than 90%, “ ⁇ ”, 50% or more, less than 70%, “ ⁇ ”, less than 50%.
  • the curability of the light-shielding part was evaluated with “ ⁇ ” as the sample.
  • TN liquid crystal manufactured by Chisso Corporation, “JC-5001LA”
  • JC-5001LA fine droplets of TN liquid crystal
  • the other transparent electrode substrate is 5 Pa with a vacuum bonding device. Bonding was performed under vacuum to obtain a cell.
  • the obtained cell was irradiated with 100 mW / cm 2 of ultraviolet rays for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant to obtain a liquid crystal display element.
  • the display unevenness generated in the liquid crystal (especially the corner portion) around the seal portion was visually observed, and when the display unevenness was not confirmed, “ ⁇ ”, slight display unevenness was confirmed.
  • the display performance of the liquid crystal display element (low liquid crystal contamination 1) was evaluated with “ ⁇ ” as the case, “ ⁇ ” when the display unevenness was clearly confirmed, and “X” when the severe display unevenness was confirmed. Note that the liquid crystal display elements evaluated as “ ⁇ ” and “ ⁇ ” are at a level that causes no problem in practical use.
  • the sealing compound for liquid crystal display elements which is excellent in adhesiveness and light-shielding part sclerosis
  • the manufacturing method of this sealing compound for liquid crystal display elements, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Abstract

The purpose of the present invention is to provide a sealant for a liquid crystal display element, the sealant having superior adhesion properties and light-blocking-section curing properties and serving to reduce environmental load. Another purpose of the present invention is to provide a method for manufacturing the sealant for a liquid crystal display element, as well as a vertical conduction material and a liquid crystal display element made by using the sealant for a liquid crystal display element. The present invention provides a sealant for a liquid crystal display element, the sealant containing a curable resin and a polymerization initiator and/or a heat curing agent, wherein the curable resin contains a bisphenol-A epoxy resin and/or a (meth)acrylic modified bisphenol-A epoxy resin, and the bisphenol A content is not more than 500 ppm.

Description

液晶表示素子用シール剤、液晶表示素子用シール剤の製造方法、上下導通材料、及び、液晶表示素子SEALING AGENT FOR LIQUID CRYSTAL DISPLAY ELEMENT, PROCESS FOR PRODUCING SEALING AGENT FOR LIQUID CRYSTAL DISPLAY ELEMENT, VERTICAL CONDUCTIVE MATERIAL, AND LIQUID CRYSTAL DISPLAY ELEMENT
本発明は、接着性及び遮光部硬化性に優れ、かつ、環境への負荷を低減できる液晶表示素子用シール剤に関する。また、本発明は、該液晶表示素子用シール剤の製造方法、並びに、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal display element that is excellent in adhesiveness and light-shielding part curability and that can reduce the burden on the environment. Moreover, this invention relates to the manufacturing method of this sealing compound for liquid crystal display elements, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements.
近年、液晶表示素子の製造方法としては、タクトタイム短縮、使用液晶量の最適化といった観点から、特許文献1、特許文献2に開示されているような、硬化性樹脂と光重合開始剤と熱硬化剤とを含有する光熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。 In recent years, as a method for manufacturing a liquid crystal display element, a curable resin, a photopolymerization initiator, and a heat as disclosed in Patent Document 1 and Patent Document 2 from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. A liquid crystal dropping method called a dropping method using a photothermal combined curing type sealing agent containing a curing agent is used.
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ね合わせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うことで極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。 In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame in a state where the sealant is uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays for temporary curing. . Thereafter, heating is performed to perform main curing, and a liquid crystal display element is manufactured. A liquid crystal display element can be manufactured with extremely high efficiency by bonding the substrates under a reduced pressure, and this dropping method is currently the mainstream method for manufacturing liquid crystal display elements.
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。装置の小型化の手法としては、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
しかしながら、狭額縁設計ではシール剤がブラックマトリックスの直下に配置されるため、滴下工法を行うと、シール剤を光硬化させる際に照射した光が遮られ、シール剤の内部まで光が到達せず硬化が不充分となるという問題があった。このようにシール剤の硬化が不充分となると、未硬化のシール剤成分が液晶中に溶出し、溶出したシール剤成分による硬化反応が液晶中において進行することで液晶汚染が発生するという問題があった。
By the way, in the present age when mobile devices with various liquid crystal panels such as mobile phones and portable game machines are widespread, downsizing of devices is the most demanded issue. As a method for reducing the size of the apparatus, there is a narrow frame of the liquid crystal display unit. For example, the position of the seal portion is arranged under the black matrix (hereinafter also referred to as a narrow frame design).
However, in the narrow frame design, the sealant is placed directly under the black matrix, so when the dripping method is used, the light irradiated when photocuring the sealant is blocked, and the light does not reach the inside of the sealant. There was a problem that the curing was insufficient. If the sealant is insufficiently cured in this manner, the uncured sealant component is eluted in the liquid crystal, and the curing reaction by the eluted sealant component proceeds in the liquid crystal, resulting in liquid crystal contamination. there were.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号International Publication No. 02/092718
本発明は、接着性及び遮光部硬化性に優れ、かつ、環境への負荷を低減できる液晶表示素子用シール剤を提供することを目的とする。また、本発明は、該液晶表示素子用シール剤の製造方法、並びに、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal display elements which is excellent in adhesiveness and light-shielding part sclerosis | hardenability, and can reduce the load to an environment. Another object of the present invention is to provide a manufacturing method of the sealing agent for liquid crystal display elements, and a vertical conduction material and a liquid crystal display element using the sealing agent for liquid crystal display elements.
本発明は、硬化性樹脂と、重合開始剤及び/又は熱硬化剤とを含有する液晶表示素子用シール剤であって、前記硬化性樹脂は、ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を含有し、ビスフェノールAの含有量が50ppm以下である液晶表示素子用シール剤である。
以下に本発明を詳述する。
The present invention is a liquid crystal display element sealing agent comprising a curable resin and a polymerization initiator and / or a thermosetting agent, wherein the curable resin is a bisphenol A type epoxy resin and / or (meth) acrylic. It is a sealing agent for liquid crystal display elements that contains a modified bisphenol A type epoxy resin and the content of bisphenol A is 50 ppm or less.
The present invention is described in detail below.
本発明者らは、液晶表示素子用シール剤に含まれる硬化性樹脂として、化学的、物理的に優れるビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を配合することを検討した。しかしながら、このような硬化性樹脂を用いた場合に特に遮光部硬化性が充分に得られないことがあるという問題があった。本発明者らは、遮光部硬化性を悪化させる原因が、ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂中に僅かに存在しているビスフェノールAが重合反応を阻害していることにあると考えた。そこで本発明者らは、ビスフェノールAの含有量を特定値以下となるようにすることにより、接着性及び遮光部硬化性に優れる液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。また、本発明の液晶表示素子用シール剤は、ビスフェノールAの含有量を少なくしていることから、該ビスフェノールAによる環境への負荷を低減できるものとなる。 The present inventors have formulated a chemically and physically excellent bisphenol A type epoxy resin and / or (meth) acryl-modified bisphenol A type epoxy resin as the curable resin contained in the liquid crystal display element sealant. investigated. However, when such a curable resin is used, there is a problem that sufficient light-shielding part curability may not be obtained. The inventors of the present invention have the reason that the light-shielding part curability is deteriorated because bisphenol A slightly present in the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin inhibits the polymerization reaction. I thought that there was to be. Accordingly, the present inventors have found that by making the content of bisphenol A not more than a specific value, it is possible to obtain a sealing agent for a liquid crystal display element that is excellent in adhesiveness and light-shielding part curability. It came to complete. Moreover, since the sealing agent for liquid crystal display elements of this invention has reduced content of bisphenol A, the environmental load by this bisphenol A can be reduced.
本発明の液晶表示素子用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を含有する。上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を含有することにより、本発明の液晶表示素子用シール剤は、接着性に優れるものとなる。
なお、本明細書において上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。また、上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂は、ビスフェノールA型エポキシ樹脂の全てのエポキシ基を(メタ)アクリル変性した完全(メタ)アクリル変性ビスフェノールA型エポキシ樹脂であってもよいし、一部のエポキシ基を(メタ)アクリル変性した部分(メタ)アクリル変性ビスフェノールA型エポキシ樹脂であってもよい。
The sealing agent for liquid crystal display elements of this invention contains curable resin.
The curable resin contains a bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin. By containing the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin, the sealing agent for liquid crystal display elements of the present invention has excellent adhesiveness.
In the present specification, the “(meth) acryl” means acryl or methacryl. The (meth) acryl-modified bisphenol A type epoxy resin may be a completely (meth) acryl-modified bisphenol A type epoxy resin obtained by (meth) acryl-modifying all the epoxy groups of the bisphenol A type epoxy resin, A partial (meth) acryl-modified bisphenol A type epoxy resin in which a part of epoxy groups is (meth) acryl-modified may be used.
上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂中にビスフェノールAが多く存在していると、得られる液晶表示素子用シール剤の遮光部硬化性及び環境に悪影響を与える。
本発明の液晶表示素子用シール剤は、ビスフェノールAの含有量が50ppm以下である。硬化性樹脂として上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を用いつつ、上記ビスフェノールAの含有量を50ppm以下とすることにより、本発明の液晶表示素子用シール剤は、接着性及び遮光部硬化性に優れ、かつ、環境への負荷を低減できるものとなる。
なお、上記ビスフェノールAの含有量は、シール剤から、ジメチルスルホキシド溶液等の任意の溶液を用いてビスフェノールAを抽出し、液体クロマトグラフィーを用いて定量測定することができる。
If a large amount of bisphenol A is present in the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin, the light-shielding part curability and environment of the resulting liquid crystal display element sealing agent are adversely affected. give.
The liquid crystal display element sealant of the present invention has a bisphenol A content of 50 ppm or less. By using the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin as the curable resin, the content of the bisphenol A is set to 50 ppm or less, whereby the liquid crystal display element seal of the present invention is used. The agent is excellent in adhesiveness and light-shielding part curability, and can reduce the burden on the environment.
The content of bisphenol A can be quantitatively measured using liquid chromatography by extracting bisphenol A from a sealing agent using an arbitrary solution such as a dimethyl sulfoxide solution.
上記ビスフェノールAの含有量を50ppm以下とする方法としては、例えば、上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、純水を用いたビスフェノールAの水洗除去により精製する方法、吸着剤を用いたビスフェノールAの物理的吸着除去により精製する方法等が挙げられる。
本発明の液晶表示素子用シール剤を製造する方法であって、ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、純水を用いたビスフェノールAの水洗除去により精製する工程と、精製したビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を少なくとも重合開始剤及び/又は熱硬化剤と混合する工程とを有する液晶表示素子用シール剤の製造方法、並びに、ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、吸着剤を用いたビスフェノールAの物理的吸着除去により精製する工程と、精製したビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を少なくとも重合開始剤及び/又は熱硬化剤と混合する工程とを有する液晶表示素子用シール剤の製造方法もまた、それぞれ本発明の1つである。
As a method of setting the content of the bisphenol A to 50 ppm or less, for example, the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin can be removed by washing with pure water. Examples of the purification method include a method of purification by physical adsorption removal of bisphenol A using an adsorbent.
A method for producing a sealing agent for a liquid crystal display element according to the present invention, wherein a bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin is purified by washing and removing bisphenol A with pure water. A method for producing a sealing agent for a liquid crystal display device, comprising: a step and a step of mixing a purified bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin with at least a polymerization initiator and / or a thermosetting agent. And a step of purifying bisphenol A type epoxy resin and / or (meth) acryl-modified bisphenol A type epoxy resin by physical adsorption removal of bisphenol A using an adsorbent, a purified bisphenol A type epoxy resin and / or Or (meth) acryl-modified bisphenol A type epoxy Method of manufacturing a liquid crystal display device for sealing agent and a step of mixing with a resin at least a polymerization initiator and / or thermal curing agent is also one of the present invention, respectively.
上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、純水を用いたビスフェノールAの水洗除去により精製する場合、フラスコ等の容器内に上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂と純水とを投入して、加熱しながら撹拌を行った後に純水を分液する水洗操作を繰り返し行うことで精製することができる。
また、上記水洗除去は、40℃~50℃の温水を用いて行うことが好ましい。
When purifying the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin by washing and removing bisphenol A with pure water, the bisphenol A type epoxy resin and In addition, the above (meth) acryl-modified bisphenol A type epoxy resin and pure water are added, and the mixture can be purified by repeatedly performing a washing operation for separating pure water after stirring while heating.
The removal by washing with water is preferably performed using hot water of 40 ° C. to 50 ° C.
上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、吸着剤を用いたビスフェノールAの物理的吸着除去により精製する場合、用いられる吸着剤としては、例えば、木炭、石炭、活性炭、カーボンブラック等の炭素系多孔質体類、シリカゲル、アルミナ、マグネシア等の無機系多孔質体類、ジルコニア架橋体、アルミナ架橋体、酸化クロム架橋体、酸化チタン架橋体、酸化鉄架橋体等の粘土系多孔質体類、多孔質ガラス類、ゼオライト類、スチレン-ジビニルベンゼン共重合体類、ポリアクリル酸エステル系架橋体類及びこれらを化学修飾したイオン交換樹脂類等が挙げられる。 When the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin is purified by physical adsorption removal of bisphenol A using an adsorbent, examples of the adsorbent used include charcoal, Carbon-based porous materials such as coal, activated carbon and carbon black, inorganic porous materials such as silica gel, alumina and magnesia, zirconia crosslinked material, alumina crosslinked material, chromium oxide crosslinked material, titanium oxide crosslinked material, iron oxide crosslinked material And clay-based porous bodies, porous glasses, zeolites, styrene-divinylbenzene copolymers, polyacrylic ester-based crosslinked bodies, and ion exchange resins obtained by chemically modifying these.
上記硬化性樹脂は、上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂に加えて、その他の硬化性樹脂を含有してもよい。
上記その他の硬化性樹脂としては、上記完全(メタ)アクリル変性ビスフェノールA型エポキシ樹脂以外のその他の(メタ)アクリル化合物や、上記ビスフェノールA型エポキシ樹脂及び上記部分(メタ)アクリル変性ビスフェノールA型エポキシ樹脂以外のその他のエポキシ化合物等が挙げられる。なかでも、上記硬化性樹脂は、上記完全(メタ)アクリル変性ビスフェノールA型エポキシ樹脂及び/又は上記その他の(メタ)アクリル化合物(これらを併せて単に「(メタ)アクリル化合物」ともいう)を含有することが好ましい。
上記その他の(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物、(メタ)アクリル酸とビスフェノールA型エポキシ樹脂以外のエポキシ化合物とを反応させることにより得られるその他の完全(メタ)アクリル変性エポキシ樹脂、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
The curable resin may contain other curable resins in addition to the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy resin.
Examples of the other curable resins include other (meth) acryl compounds other than the complete (meth) acryl-modified bisphenol A epoxy resin, the bisphenol A epoxy resin, and the partial (meth) acryl-modified bisphenol A epoxy. Examples include other epoxy compounds other than resins. Among them, the curable resin contains the complete (meth) acryl-modified bisphenol A type epoxy resin and / or the other (meth) acrylic compound (these are also simply referred to as “(meth) acrylic compounds”). It is preferable to do.
Examples of the other (meth) acrylic compounds include, for example, (meth) acrylic acid ester compounds obtained by reacting (meth) acrylic acid with a compound having a hydroxyl group, (meth) acrylic acid and bisphenol A type epoxy resin Other complete (meth) acryl-modified epoxy resins obtained by reacting with an epoxy compound, urethane (meth) acrylate obtained by reacting an isocyanate compound with a (meth) acrylic acid derivative having a hydroxyl group, etc. .
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。 Examples of the monofunctional compounds among the (meth) acrylic acid ester compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Myristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy Til (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, bicyclopentenyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2 -Butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, tetrahydrofur Furyl (meth) acrylate, ethyl carbitol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) ) Acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, glycidyl (meth) acrylate, Examples include 2- (meth) acryloyloxyethyl phosphate.
また、上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional compound among the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexane. Diol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) ) Acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, poly Ethylene glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyl di (meth) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol Di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, polybutadiene diol (Meth) acrylate.
また、上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等が挙げられる。 Further, among the above (meth) acrylic acid ester compounds, those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri ( (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, propylene oxide-added glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl Phosphate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaeryth Penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (meth) acrylate.
上記その他の完全(メタ)アクリル変性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂以外のエポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られるもの等が挙げられる。 The other complete (meth) acryl-modified epoxy resin can be obtained, for example, by reacting an epoxy compound other than bisphenol A type epoxy resin with (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. And the like.
上記その他の完全(メタ)アクリル変性エポキシ樹脂を合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。 Examples of the epoxy compound used as a raw material for synthesizing the other complete (meth) acryl-modified epoxy resin include, for example, bisphenol F type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type. Epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolac type epoxy resin, naphthalene phenol novolak Type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber-modified epoxy resin, glycidyl ester compound Etc. The.
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
As what is marketed among the said bisphenol F type epoxy resins, Epicoat 806, Epicoat 4004 (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include Epicoat YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032. (All manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。 The urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate compound used as the raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4. '-Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantrie Cyanate, and the like.
また、上記イソシアネート化合物としては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 The isocyanate compound is obtained by, for example, reacting a polyol such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and an excess isocyanate compound. It is also possible to use chain-extended isocyanate compounds.
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、上述したその他の完全(メタ)アクリル変性エポキシ樹脂等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane. Mono (meth) acrylates of dihydric alcohols such as diols and polyethylene glycols, mono (meth) acrylates or di (meth) acrylates of trivalent alcohols such as trimethylolethane, trimethylolpropane, glycerin, and others mentioned above Complete (meth) acryl-modified epoxy resin and the like.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6LPA、U-6HA、U-10H、U-15HA、U-122A、U-122P、U-108、U-108A、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4100、UA-4000、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AI-600、AH-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が挙げられる。 Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-2HA, U-2PHA, U-3HA, U- 4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U-122P, U-108, U-108A, U-324A, U-340A, U-340P, U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all Shin-Nakamura Chemical Industries Manufactured by Co., Ltd.), AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, A-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記(メタ)アクリル化合物は、液晶への悪影響を抑える点で、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。 The (meth) acrylic compound preferably has a hydrogen-bonding unit such as —OH group, —NH— group, and —NH 2 group from the viewpoint of suppressing adverse effects on the liquid crystal.
上記硬化性樹脂全体におけるエポキシ基と(メタ)アクリロイル基との合計量に対するエポキシ基の比率の好ましい上限は50モル%である。上記エポキシ基の比率が50モル%以下であることにより、得られる液晶表示素子用シール剤の液晶に対して溶解しにくくなって液晶汚染性がより低くなり、得られる液晶表示素子が表示性能により優れるものとなる。上記エポキシ基の比率のより好ましい上限は20モル%である。 The upper limit with the preferable ratio of the epoxy group with respect to the total amount of the epoxy group and (meth) acryloyl group in the said whole curable resin is 50 mol%. When the ratio of the epoxy group is 50 mol% or less, the resulting liquid crystal display element sealant is less soluble in the liquid crystal and the liquid crystal contamination is lower. It will be excellent. A more preferable upper limit of the ratio of the epoxy group is 20 mol%.
上記その他のエポキシ化合物としては、例えば、上記その他の完全(メタ)アクリル変性エポキシ樹脂を合成するための原料として挙げたエポキシ化合物や、上記部分(メタ)アクリル変性ビスフェノールA型エポキシ樹脂以外の部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。 Examples of the other epoxy compounds include, for example, the epoxy compounds mentioned as raw materials for synthesizing the other complete (meth) acryl-modified epoxy resins, and portions other than the partial (meth) acryl-modified bisphenol A type epoxy resins ( And a (meth) acryl-modified epoxy resin.
本発明の液晶表示素子用シール剤が上記その他の硬化性樹脂を含有する場合、上記硬化性樹脂全体100重量部中における上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂の含有量の好ましい下限は10重量部、好ましい上限は100重量部である。上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が接着性、塗布性、低液晶汚染性等により優れるものとなる。上記ビスフェノールA型エポキシ樹脂及び/又は上記(メタ)アクリル変性ビスフェノールA型エポキシ樹脂の含有量のより好ましい下限は20重量部、より好ましい上限は90重量部である。 When the sealing agent for liquid crystal display elements of the present invention contains the other curable resin, the bisphenol A type epoxy resin and / or the (meth) acryl-modified bisphenol A type epoxy in 100 parts by weight of the curable resin as a whole. The preferable lower limit of the resin content is 10 parts by weight, and the preferable upper limit is 100 parts by weight. When the content of the bisphenol A-type epoxy resin and / or the (meth) acryl-modified bisphenol A-type epoxy resin is within this range, the obtained sealing agent for liquid crystal display elements has adhesiveness, applicability, and low liquid crystal contamination. Etc. The minimum with more preferable content of the said bisphenol A type epoxy resin and / or the said (meth) acryl modified bisphenol A type epoxy resin is 20 weight part, and a more preferable upper limit is 90 weight part.
本発明の液晶表示素子用シール剤は、重合開始剤及び/又は熱硬化剤を含有する。
上記重合開始剤としては、硬化速度等の観点からラジカル重合開始剤が好適に用いられる。上記ラジカル重合開始剤を用いた場合、ビスフェノールAによる硬化阻害が特に生じやすくなるが、本発明の液晶表示素子用シール剤は、該ビスフェノールAの含有量が極めて少ないため、このような硬化阻害を抑制し、遮光部硬化性に優れるものとなる。
上記ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤や、加熱によりラジカルを発生する熱ラジカル重合開始剤等が挙げられる。
The sealing agent for liquid crystal display elements of this invention contains a polymerization initiator and / or a thermosetting agent.
As the polymerization initiator, a radical polymerization initiator is preferably used from the viewpoint of curing speed and the like. When the above radical polymerization initiator is used, the inhibition of curing by bisphenol A is particularly likely to occur. However, the sealing agent for liquid crystal display elements of the present invention has such an extremely small content of bisphenol A that it inhibits such curing inhibition. It suppresses and becomes excellent in light-shielding part curability.
Examples of the radical polymerization initiator include a photo radical polymerization initiator that generates radicals by light irradiation, a thermal radical polymerization initiator that generates radicals by heating, and the like.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン系化合物等が挙げられる。 Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthone compounds, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、NCI-930(ADEKA社製)、SPEEDCURE EMK(日本シーベルヘグナー社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, all manufactured by Rusilin TPO ), NCI-930 (manufactured by ADEKA), SPEEDCURE EMK (manufactured by Nippon Sebel Hegner), benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる開始剤(以下、「高分子アゾ開始剤」ともいう)が好ましい。
なお、本明細書において高分子アゾ化合物とは、アゾ基を有し、熱によって(メタ)アクリロイル基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, an initiator made of a polymer azo compound (hereinafter also referred to as “polymer azo initiator”) is preferable.
In the present specification, the polymer azo compound means a compound having an azo group and generating a radical capable of curing a (meth) acryloyl group by heat and having a number average molecular weight of 300 or more.
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量がこの範囲であることにより、液晶汚染を抑制しつつ、硬化性樹脂と容易に混合することができる。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymeric azo initiator is within this range, it can be easily mixed with a curable resin while suppressing liquid crystal contamination. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子ではないアゾ化合物の例としては、V-65、V-501(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
Examples of azo compounds that are not polymers include V-65 and V-501 (both manufactured by Wako Pure Chemical Industries, Ltd.).
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
上記重合開始剤の含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記重合開始剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤が液晶汚染を抑制しつつ、保存安定性や硬化性により優れるものとなる。上記重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。 The content of the polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the polymerization initiator is within this range, the obtained sealing agent for liquid crystal display elements is excellent in storage stability and curability while suppressing liquid crystal contamination. The minimum with more preferable content of the said polymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、有機酸ヒドラジドが好適に用いられる。 Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Of these, organic acid hydrazide is preferably used.
上記有機酸ヒドラジドとしては、例えば、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。
上記有機酸ヒドラジドのうち市販されているものとしては、例えば、SDH、ADH(いずれも大塚化学社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH、アミキュアUDH-J(いずれも味の素ファインテクノ社製)等が挙げられる。
Examples of the organic acid hydrazide include sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
Examples of commercially available organic acid hydrazides include, for example, SDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), Amicure VDH, Amicure VDH-J, Amicure UDH, Amicure UDH-J (all Ajinomoto Fine Techno Co., Ltd.) Manufactured) and the like.
上記熱硬化剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく、より熱硬化性に優れるものとすることができる。上記熱硬化剤の含有量が50重量部を超えると、得られる液晶表示素子用シール剤の粘度が高くなり、塗布性が悪くなることがある。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 The content of the thermosetting agent is preferably 1 part by weight with respect to 100 parts by weight of the curable resin, and 50 parts by weight with respect to the preferable upper limit. When the content of the thermosetting agent is within this range, the thermosetting property can be further improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. When content of the said thermosetting agent exceeds 50 weight part, the viscosity of the sealing compound for liquid crystal display elements obtained will become high, and applicability | paintability may worsen. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
本発明の液晶表示素子用シール剤は、粘度の向上、応力分散効果による接着性の改善、線膨張率の改善、硬化物の透湿防止性の向上等を目的として充填剤を含有することが好ましい。 The sealing agent for liquid crystal display elements of the present invention may contain a filler for the purpose of improving viscosity, improving adhesiveness due to stress dispersion effect, improving linear expansion coefficient, improving moisture permeability of cured products, and the like. preferable.
上記充填剤としては、例えば、シリカ、タルク、ガラスビーズ、石綿、石膏、珪藻土、スメクタイト、ベントナイト、モンモリロナイト、セリサイト、活性白土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化珪素、硫酸バリウム、珪酸カルシウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。 Examples of the filler include silica, talc, glass beads, asbestos, gypsum, diatomaceous earth, smectite, bentonite, montmorillonite, sericite, activated clay, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, Organic fillers such as calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, aluminum nitride, silicon nitride, barium sulfate, and calcium silicate, and organic materials such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles A filler is mentioned.
本発明の液晶表示素子用シール剤中における上記充填剤の含有量の好ましい下限は10重量%、好ましい上限は70重量%である。上記充填剤の含有量がこの範囲であることにより、塗布性等を悪化させることなく、接着性の改善等の効果により優れるものとなる。上記充填剤の含有量のより好ましい下限は20重量%、より好ましい上限は60重量%である。 The minimum with preferable content of the said filler in the sealing compound for liquid crystal display elements of this invention is 10 weight%, and a preferable upper limit is 70 weight%. When the content of the filler is within this range, the effect of improving adhesiveness and the like is improved without deteriorating applicability and the like. The more preferable lower limit of the content of the filler is 20% by weight, and the more preferable upper limit is 60% by weight.
本発明の液晶表示素子用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 It is preferable that the sealing compound for liquid crystal display elements of this invention contains a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。 As said silane coupling agent, since it is excellent in the effect which improves adhesiveness with a board | substrate etc. and it can suppress the outflow of curable resin in a liquid crystal by chemically bonding with curable resin, it is 3 for example. -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used.
本発明の液晶表示素子用シール剤中における上記シランカップリング剤の含有量の好ましい下限は0.1重量%、好ましい上限は10重量%である。上記シランカップリング剤の含有量がこの範囲であることにより、液晶汚染の発生を抑制しつつ、接着性を向上させる効果により優れるものとなる。上記シランカップリング剤の含有量のより好ましい下限は0.3重量%、より好ましい上限は5重量%である。 The minimum with preferable content of the said silane coupling agent in the sealing compound for liquid crystal display elements of this invention is 0.1 weight%, and a preferable upper limit is 10 weight%. When the content of the silane coupling agent is within this range, the effect of improving the adhesiveness is suppressed while suppressing the occurrence of liquid crystal contamination. The minimum with more preferable content of the said silane coupling agent is 0.3 weight%, and a more preferable upper limit is 5 weight%.
本発明の液晶表示素子用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶表示素子用シール剤は、遮光シール剤として好適に用いることができる。 The sealing agent for liquid crystal display elements of the present invention may contain a light shielding agent. By containing the said light shielding agent, the sealing compound for liquid crystal display elements of this invention can be used suitably as a light shielding sealing agent.
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。 Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶表示素子用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。本発明の液晶表示素子用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。 Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. The light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has sufficient light-shielding properties, and therefore has high contrast without light leakage A liquid crystal display element having excellent image display quality can be realized.
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N、14M-C(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。 Examples of commercially available titanium black include 12S, 13M, 13M-C, 13R-N, 14M-C (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like. Can be mentioned.
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5000nmである。上記遮光剤の一次粒子径がこの範囲であることにより、得られる液晶表示素子用シール剤の塗布性等を悪化させることなく遮光性により優れるものとすることができる。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
なお、上記遮光剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
Although the primary particle diameter of the said light-shielding agent will not be specifically limited if it is below the distance between the board | substrates of a liquid crystal display element, a preferable minimum is 1 nm and a preferable upper limit is 5000 nm. When the primary particle diameter of the light-shielding agent is within this range, the light-shielding property can be improved without deteriorating the applicability of the obtained sealing agent for liquid crystal display elements. The more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
The primary particle size of the light shielding agent can be measured by using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
本発明の液晶表示素子用シール剤中における上記遮光剤の含有量の好ましい下限は5重量%、好ましい上限は80重量%である。上記遮光剤の含有量がこの範囲であることにより、得られる液晶表示素子用シール剤の基板に対する密着性や硬化後の強度や描画性を低下させることなくより優れた遮光性を発揮することができる。上記遮光剤の含有量のより好ましい下限は10重量%、より好ましい上限は70重量%であり、更に好ましい下限は30重量%、更に好ましい上限は60重量%である。 The minimum with preferable content of the said light-shielding agent in the sealing compound for liquid crystal display elements of this invention is 5 weight%, and a preferable upper limit is 80 weight%. When the content of the light-shielding agent is within this range, the liquid crystal display element sealant can exhibit better light-shielding properties without reducing the adhesion to the substrate, the strength after curing, and the drawability. it can. The more preferable lower limit of the content of the light-shielding agent is 10% by weight, the more preferable upper limit is 70% by weight, the still more preferable lower limit is 30% by weight, and the still more preferable upper limit is 60% by weight.
本発明の液晶表示素子用シール剤は、更に、必要に応じて、応力緩和剤、反応性希釈剤、揺変剤、スペーサー、硬化促進剤、消泡剤、レベリング剤、重合禁止剤、その他添加剤等を含有してもよい。 The sealing agent for liquid crystal display elements of the present invention is further added as necessary, stress relieving agent, reactive diluent, thixotropic agent, spacer, curing accelerator, antifoaming agent, leveling agent, polymerization inhibitor, etc. An agent or the like may be contained.
本発明の液晶表示素子用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、重合開始剤及び/又は熱硬化剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for liquid crystal display elements of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, a curable resin, and a polymerization Examples thereof include a method of mixing an initiator and / or a thermosetting agent and an additive such as a silane coupling agent added as necessary.
本発明の液晶表示素子用シール剤は、E型粘度計を用いて25℃、1rpmの条件で測定した粘度の好ましい下限が5万mPa・s、好ましい上限が70万mPa・sである。上記粘度がこの範囲であることにより、得られる液晶表示素子用シール剤が塗布性に優れるものとなる。上記粘度のより好ましい下限は10万mPa・s、より好ましい上限は50万mPa・sである。
なお、上記E型粘度計としては、例えば、5XHBDV-III+CP(ブルックフィールド社製、ローターNo.CP-51)等を用いることができる。
The sealing agent for liquid crystal display elements of the present invention has a preferable lower limit of 50,000 mPa · s and a preferable upper limit of 700,000 mPa · s measured using an E-type viscometer at 25 ° C. and 1 rpm. When the viscosity is within this range, the obtained sealing agent for liquid crystal display elements has excellent coating properties. A more preferable lower limit of the viscosity is 100,000 mPa · s, and a more preferable upper limit is 500,000 mPa · s.
As the E-type viscometer, for example, 5XHBDV-III + CP (manufactured by Brookfield, rotor No. CP-51) can be used.
本発明の液晶表示素子用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶表示素子用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. Such a vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子としては、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 As the conductive fine particles, a metal ball, a resin fine particle formed with a conductive metal layer on the surface, or the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶表示素子用シール剤又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。 The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
本発明の液晶表示素子を製造する方法としては、液晶滴下工法が好適に用いられる。具体的には例えば、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の基板の一方に、本発明の液晶表示素子用シール剤を、スクリーン印刷、ディスペンサー塗布等により塗布して枠状のシールパターンを形成する工程、本発明の液晶表示素子用シール剤が未硬化の状態で液晶の微小滴を基板のシールパターンの枠内に滴下塗布し、真空下で別の基板を重ね合わせる工程、及び、本発明の液晶表示素子用シール剤のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。 As a method for producing the liquid crystal display element of the present invention, a liquid crystal dropping method is preferably used. Specifically, for example, the liquid crystal display element sealant of the present invention is applied to one of two substrates such as a glass substrate with electrodes such as an ITO thin film or a polyethylene terephthalate substrate by screen printing, dispenser application, or the like. A step of forming a frame-shaped seal pattern, in which the liquid crystal display element sealant of the present invention is in an uncured state, droplets of liquid crystal are dropped into the frame of the substrate seal pattern, and another substrate is stacked under vacuum. A step of aligning, a step of irradiating the seal pattern portion of the sealant for the liquid crystal display element of the present invention with light such as ultraviolet rays, and temporarily curing the sealant, and heating and temporarily curing the temporarily cured sealant. Examples thereof include a method having a step.
本発明によれば、接着性及び遮光部硬化性に優れ、かつ、環境への負荷を低減できる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤の製造方法、並びに、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in adhesiveness and light-shielding part sclerosis | hardenability, and can reduce the load to an environment can be provided. Moreover, according to this invention, the manufacturing method of this sealing compound for liquid crystal display elements, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(ビスフェノールA型エポキシ樹脂溶液の作製)
フラスコに10%水酸化ナトリウム水溶液1000重量部、ビスフェノールA230重量部、及び、エピクロルヒドリン180重量部を投入し、窒素雰囲気で80℃で3時間撹拌を行った。次いで、メチルイソブチルケトン600重量部を加えて反応物を溶解した後、静置し、水層を分離除去した。その後、0.1mol/Lの塩酸水溶液300重量部を投入し、撹拌を行った後、水層を分離除去し、ビスフェノールA型エポキシ樹脂溶液を得た。
(Preparation of bisphenol A type epoxy resin solution)
1000 parts by weight of a 10% aqueous sodium hydroxide solution, 230 parts by weight of bisphenol A and 180 parts by weight of epichlorohydrin were added to the flask, and the mixture was stirred at 80 ° C. for 3 hours in a nitrogen atmosphere. Next, 600 parts by weight of methyl isobutyl ketone was added to dissolve the reaction product, and then allowed to stand to separate and remove the aqueous layer. Thereafter, 300 parts by weight of 0.1 mol / L hydrochloric acid aqueous solution was added and stirred, and then the aqueous layer was separated and removed to obtain a bisphenol A type epoxy resin solution.
(ビスフェノールA型エポキシ樹脂A(精製品)の作製)
「(ビスフェノールA型エポキシ樹脂溶液の作製)」で得られたビスフェノールA型エポキシ樹脂溶液に純水500重量部を加えて50℃で30分間加熱撹拌を行った後に純水を分離除去する水洗操作を行った。更に、この水洗操作を4回繰り返した後、減圧蒸留により溶媒を取り除き、ビスフェノールA型エポキシ樹脂A(精製品)を得た。なお、上記水洗操作に用いた純水は、40℃~50℃の温水である。
(Preparation of bisphenol A type epoxy resin A (refined product))
A washing operation for separating and removing pure water after adding 500 parts by weight of pure water to the bisphenol A type epoxy resin solution obtained in “(Preparation of bisphenol A type epoxy resin solution)” and heating and stirring at 50 ° C. for 30 minutes. Went. Further, this water washing operation was repeated four times, and then the solvent was removed by distillation under reduced pressure to obtain bisphenol A type epoxy resin A (refined product). The pure water used for the washing operation is warm water of 40 ° C. to 50 ° C.
(ビスフェノールA型エポキシ樹脂B(精製品)の作製)
「(ビスフェノールA型エポキシ樹脂溶液の作製)」で得られたビスフェノールA型エポキシ樹脂溶液に、吸着剤としてキョーワード2000(協和化学工業社製、酸化アルミニウム・酸化マグネシウム固溶体)を10重量部加えて50℃で30分間加熱撹拌を行い、濾過によりキョーワード2000を分離した後、減圧蒸留により溶媒を取り除き、ビスフェノールA型エポキシ樹脂B(精製品)を得た。
(Preparation of bisphenol A type epoxy resin B (refined product))
To the bisphenol A type epoxy resin solution obtained in “(Preparation of bisphenol A type epoxy resin solution)”, 10 parts by weight of Kyoward 2000 (Kyowa Chemical Industry Co., Ltd., aluminum oxide / magnesium oxide solid solution) was added as an adsorbent. After heating and stirring at 50 ° C. for 30 minutes and separating Kyward 2000 by filtration, the solvent was removed by distillation under reduced pressure to obtain bisphenol A type epoxy resin B (purified product).
(ビスフェノールA型エポキシ樹脂C(未精製品)の作製)
「(ビスフェノールA型エポキシ樹脂溶液の作製)」で得られたビスフェノールA型エポキシ樹脂溶液から減圧蒸留によりメチルイソブチルケトンを取り除き、ビスフェノールA型エポキシ樹脂C(未精製品)を得た。
(Preparation of bisphenol A type epoxy resin C (unfinished product))
Methyl isobutyl ketone was removed from the bisphenol A type epoxy resin solution obtained in “(Preparation of bisphenol A type epoxy resin solution)” by vacuum distillation to obtain bisphenol A type epoxy resin C (unrefined product).
(ビスフェノールA型エポキシ樹脂D(精製品)の作製)
「(ビスフェノールA型エポキシ樹脂溶液の作製)」で得られたビスフェノールA型エポキシ樹脂溶液に純水500重量部を加えて50℃で30分間加熱撹拌を行った後に純水を分離除去する水洗操作を行った。更に、この水洗操作を2回繰り返した後、減圧蒸留により溶媒を取り除き、ビスフェノールA型エポキシ樹脂A(精製品)を得た。なお、上記水洗操作に用いた純水は、40℃~50℃の温水である。
(Preparation of bisphenol A type epoxy resin D (refined product))
A washing operation for separating and removing pure water after adding 500 parts by weight of pure water to the bisphenol A type epoxy resin solution obtained in “(Preparation of bisphenol A type epoxy resin solution)” and heating and stirring at 50 ° C. for 30 minutes. Went. Furthermore, after repeating this water washing operation twice, the solvent was removed by distillation under reduced pressure to obtain bisphenol A type epoxy resin A (refined product). The pure water used for the washing operation is warm water of 40 ° C. to 50 ° C.
(ビスフェノールA型エポキシ樹脂E(精製品)の作製)
「(ビスフェノールA型エポキシ樹脂溶液の作製)」で得られたビスフェノールA型エポキシ樹脂溶液に純水500重量部を加えて50℃で30分間加熱撹拌を行った後に純水を分離除去する水洗操作を行った。次いで、減圧蒸留により溶媒を取り除き、ビスフェノールA型エポキシ樹脂A(精製品)を得た。なお、上記水洗操作に用いた純水は、40℃~50℃の温水である。
(Preparation of bisphenol A type epoxy resin E (refined product))
A washing operation for separating and removing pure water after adding 500 parts by weight of pure water to the bisphenol A type epoxy resin solution obtained in “(Preparation of bisphenol A type epoxy resin solution)” and heating and stirring at 50 ° C. for 30 minutes. Went. Subsequently, the solvent was removed by distillation under reduced pressure to obtain bisphenol A type epoxy resin A (purified product). The pure water used for the washing operation is warm water of 40 ° C. to 50 ° C.
(アクリル変性ビスフェノールA型エポキシ樹脂(精製品)の作製)
「(ビスフェノールA型エポキシ樹脂溶液の作製)」で得られたビスフェノールA型エポキシ樹脂溶液にアクリル酸150重量部及びトリエチルベンジルアンモニウムクロリド5重量部を投入し、窒素雰囲気で80℃で3時間撹拌を行った。次いで、純水800重量部及びジエチルエ-テル800重量部を投入して撹拌した後に水層を分離除去する水洗操作を行った。更に、この水洗操作を4回繰り返した後、減圧蒸留により溶媒を取り除き、アクリル変性ビスフェノールA型エポキシ樹脂(精製品)を得た。なお、上記水洗操作に用いた純水は、40℃~50℃の温水である。
(Production of acrylic modified bisphenol A type epoxy resin (refined product))
150 parts by weight of acrylic acid and 5 parts by weight of triethylbenzylammonium chloride are added to the bisphenol A type epoxy resin solution obtained in “(Preparation of bisphenol A type epoxy resin solution)” and stirred at 80 ° C. for 3 hours in a nitrogen atmosphere. went. Next, 800 parts by weight of pure water and 800 parts by weight of diethyl ether were added and stirred, and then a water washing operation for separating and removing the aqueous layer was performed. Further, this washing operation was repeated 4 times, and then the solvent was removed by distillation under reduced pressure to obtain an acrylic-modified bisphenol A type epoxy resin (purified product). The pure water used for the washing operation is warm water of 40 ° C. to 50 ° C.
(実施例1~5、及び、比較例1、2)
表1に記載された配合比に従い、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~5、及び、比較例1、2の液晶表示素子用シール剤を調製した。
(Examples 1 to 5 and Comparative Examples 1 and 2)
According to the mixing ratio described in Table 1, each material was mixed using a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Nertaro”), and then further mixed using three rolls. To 5 and Comparative Examples 1 and 2 were prepared.
<評価>
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Table 1.
(ビスフェノールAの含有量)
実施例及び比較例で得られた各液晶表示素子用シール剤を、0.1wt/vol%のジメチルスルホキシド溶液となるように調製し、2時間振とうした。次いで、得られた溶液をメタノールで10倍に希釈した後、0.2μmフィルターでろ過し、外部標準法にて液体クロマトグラフィーを用いてビスフェノールAの含有量を測定した。
(Bisphenol A content)
Each liquid crystal display element sealing agent obtained in Examples and Comparative Examples was prepared to be a 0.1 wt / vol% dimethyl sulfoxide solution and shaken for 2 hours. Subsequently, the obtained solution was diluted 10-fold with methanol, filtered through a 0.2 μm filter, and the content of bisphenol A was measured by liquid chromatography using an external standard method.
(接着性)
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSP-2050」)1重量部を遊星式撹拌装置によって均一に分散させ、極微量をコーニングガラス1737(20mm×50mm×厚さ0.7mm)の中央部に取り、同型のガラスをその上に重ね合わせて液晶表示素子用シール剤を押し広げ、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射した後、120℃で1時間加熱してシール剤を硬化させ、接着試験片を得た。
得られた接着試験片について、テンションゲージを用いて接着強度を測定した。得られた測定値(kgf)をシール塗布断面積(cm)で除した値が、35kgf/cm以上であった場合を「◎」、30kgf/cm以上35kgf/cm未満であった場合を「○」、25kgf/cm以上30kgf/cm未満であった場合を「△」、25kgf/cm未満であった場合を「×」として接着性を評価した。
(Adhesiveness)
One part by weight of spacer particles (Sekisui Chemical Co., Ltd., “Micropearl SP-2050”) having an average particle diameter of 5 μm is used for 100 parts by weight of each sealing agent for liquid crystal display elements obtained in Examples and Comparative Examples. Disperse uniformly with a stirrer, take a trace amount in the center of Corning glass 1737 (20 mm x 50 mm x thickness 0.7 mm), and stack the same type of glass on top to spread the sealant for liquid crystal display elements After irradiating with 100 mW / cm 2 ultraviolet rays for 30 seconds using a metal halide lamp, the sealant was cured by heating at 120 ° C. for 1 hour to obtain an adhesion test piece.
About the obtained adhesion test piece, the adhesive strength was measured using the tension gauge. The resulting value obtained by dividing measured values (kgf) in the seal coating cross sectional area (cm 2) is a case was 35 kgf / cm 2 or more "◎" was 30 kgf / cm 2 or more 35 kgf / cm less than 2 where "○", the case was 25 kgf / cm 2 or more 30 kgf / cm less than 2 "△", and evaluated the adhesiveness of the case was less than 25 kgf / cm 2 as "×".
(遮光部硬化性)
まず、厚さ0.7mmのコーニングガラスの片面半分をクロム蒸着した基板Aと、片面全体をクロム蒸着した基板Bとを準備した。次に、実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー微粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を遊星式撹拌装置によって均一に分散させ、得られたシール剤を基板Aの中央部(クロム蒸着部と非蒸着部との境界)に塗布し、基板Bを貼り合わせてからシール剤を充分に押し潰し、基板A側からメタルハライドランプを用いて100mW/cmの紫外線を5秒照射した。
その後、カッターを用いて基板A及びBを剥がし、紫外線直接照射部の際から50μm離れた点(クロム蒸着により遮光されていた部分)上のシール剤について顕微IR法によってスペクトルを測定し、シール剤中の(メタ)アクリロイル基の転化率を以下の方法により求めた。即ち、815~800cm-1のピーク面積を(メタ)アクリロイル基のピーク面積とし、845~820cm-1のピーク面積をリファレンスピーク面積として、下記式により(メタ)アクリロイル基の転化率を算出し、転化率が90%以上であったものを「◎」、70%以上90%未満であったものを「○」、50%以上70%未満であったものを「△」、50%未満であったものを「×」として遮光部硬化性を評価した。
(メタ)アクリロイル基の転化率=(1-(紫外線照射後の(メタ)アクリロイル基のピーク面積/紫外線照射後のリファレンスピーク面積)/(紫外線照射前の(メタ)アクリロイル基のピーク面積/紫外線照射前のリファレンスピーク面積))×100
(Light-shielding part curability)
First, the board | substrate A which vapor-deposited one side half of the 0.7 mm thick Corning glass and the board | substrate B which vapor-deposited the whole single side | surface were prepared. Next, 1 part by weight of spacer fine particles having an average particle diameter of 5 μm (manufactured by Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) with respect to 100 parts by weight of the sealant for each liquid crystal display element obtained in Examples and Comparative Examples. Is uniformly dispersed by a planetary stirrer, and the obtained sealant is applied to the central part of the substrate A (boundary between the chromium vapor deposition part and the non-deposition part), and after the substrate B is bonded, the sealant is sufficiently applied. After crushing, 100 mW / cm 2 ultraviolet rays were irradiated for 5 seconds from the substrate A side using a metal halide lamp.
Thereafter, the substrates A and B are peeled off using a cutter, and the spectrum is measured by a microscopic IR method for the sealant on a point 50 μm away from the direct ultraviolet irradiation part (the part shielded from light by chromium vapor deposition). The conversion rate of the inside (meth) acryloyl group was calculated | required with the following method. That is, with the peak area of 815 to 800 cm −1 as the peak area of the (meth) acryloyl group and the peak area of 845 to 820 cm −1 as the reference peak area, the conversion ratio of the (meth) acryloyl group is calculated according to the following formula: The conversion rate was 90% or more, “◎”, 70% or more, but less than 90%, “◯”, 50% or more, less than 70%, “△”, less than 50%. The curability of the light-shielding part was evaluated with “×” as the sample.
Conversion rate of (meth) acryloyl group = (1- (peak area of (meth) acryloyl group after UV irradiation / reference peak area after UV irradiation) / (peak area of (meth) acryloyl group before UV irradiation / ultraviolet light) Reference peak area before irradiation)) x 100
(液晶表示素子の表示性能(低液晶汚染性1))
実施例及び比較例で得られた各液晶表示素子用シール剤100重量部に対して平均粒子径5μmのスペーサー粒子(積水化学工業社製、「ミクロパールSI-H050」)1重量部を遊星式撹拌装置によって均一に分散させ、得られたシール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行ってから、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)にて、2枚のITO薄膜付きの透明電極基板の一方にシール剤を枠状に塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にてシール剤の枠内に滴下塗布し、他方の透明電極基板を、真空貼り合わせ装置にて5Paの真空下にて貼り合わせ、セルを得た。得られたセルに、メタルハライドランプを用いて100mW/cmの紫外線を30秒照射した後、120℃で1時間加熱してシール剤を硬化させ、液晶表示素子を得た。
得られた液晶表示素子について、シール部周辺の液晶(特にコーナー部)に生じる表示むらを目視にて観察し、表示むらが確認されなかった場合を「◎」、わずかな表示むらが確認された場合を「○」、はっきりと表示むらが確認された場合を「△」、酷い表示むらが確認された場合を「×」として液晶表示素子の表示性能(低液晶汚染性1)を評価した。
なお、評価が「◎」、「○」の液晶表示素子は、実用に全く問題のないレベルである。 
(Display performance of liquid crystal display elements (low liquid crystal contamination 1))
One part by weight of spacer particles (Sekisui Chemical Co., Ltd., “Micropearl SI-H050”) having an average particle size of 5 μm is used for 100 parts by weight of each liquid crystal display element sealing agent obtained in Examples and Comparative Examples. After uniformly dispersing with a stirrer, the resulting sealant is filled into a dispensing syringe (Musashi Engineering, PSY-10E), defoamed, and dispenser (Musashi Engineering, The sealant was applied in a frame shape to one of the two transparent electrode substrates with an ITO thin film by using SHOTMASTER 300 "). Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso Corporation, “JC-5001LA”) are applied dropwise to the frame of the sealing agent with a liquid crystal dropping device, and the other transparent electrode substrate is 5 Pa with a vacuum bonding device. Bonding was performed under vacuum to obtain a cell. The obtained cell was irradiated with 100 mW / cm 2 of ultraviolet rays for 30 seconds using a metal halide lamp, and then heated at 120 ° C. for 1 hour to cure the sealant to obtain a liquid crystal display element.
Regarding the obtained liquid crystal display element, the display unevenness generated in the liquid crystal (especially the corner portion) around the seal portion was visually observed, and when the display unevenness was not confirmed, “◎”, slight display unevenness was confirmed. The display performance of the liquid crystal display element (low liquid crystal contamination 1) was evaluated with “◯” as the case, “△” when the display unevenness was clearly confirmed, and “X” when the severe display unevenness was confirmed.
Note that the liquid crystal display elements evaluated as “◎” and “、” are at a level that causes no problem in practical use.
(液晶表示素子の表示性能(低液晶汚染性2))
上記「(液晶表示素子の表示性能(低液晶汚染性1))」と同様の方法で作製した液晶表示素子について、40℃、50%RHの条件で180日間放置した後、シール部周辺の液晶(特にコーナー部)に生じる表示むらを目視にて観察し、表示むらが確認されなかった場合を「◎」、わずかな表示むらが確認された場合を「○」、はっきりと表示むらが確認された場合を「△」、酷い表示むらが確認された場合を「×」として液晶表示素子の表示性能(低液晶汚染性2)を評価した。
表示性能が初期(液晶表示素子の表示性能(低液晶汚染性1))と比べて悪化したものは、シール剤中の僅かな未硬化性分が徐々に液晶中に溶出したと推測される。
なお、評価が「◎」、「○」の液晶表示素子は、実用に全く問題のないレベルである。
(Display performance of liquid crystal display elements (low liquid crystal contamination 2))
A liquid crystal display device manufactured by the same method as “(Display performance of liquid crystal display device (low liquid crystal contamination 1))” was allowed to stand for 180 days at 40 ° C. and 50% RH, and then the liquid crystal around the seal portion. The display unevenness that occurs in the corners (especially in the corners) is visually observed. If no display unevenness is observed, “◎”, if slight display unevenness is confirmed, “○”, clearly display unevenness is confirmed. The display performance of the liquid crystal display element (low liquid crystal contamination 2) was evaluated with “△” when the case was severe and “x” when the severe display unevenness was confirmed.
If the display performance deteriorated compared to the initial stage (display performance of the liquid crystal display element (low liquid crystal contamination 1)), it is presumed that a slight uncured component in the sealant gradually eluted into the liquid crystal.
Note that the liquid crystal display elements evaluated as “◎” and “、” are at a level that causes no problem in practical use.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
本発明によれば、接着性及び遮光部硬化性に優れ、かつ、環境への負荷を低減できる液晶表示素子用シール剤を提供することができる。また、本発明によれば、該液晶表示素子用シール剤の製造方法、並びに、該液晶表示素子用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal display elements which is excellent in adhesiveness and light-shielding part sclerosis | hardenability, and can reduce the load to an environment can be provided. Moreover, according to this invention, the manufacturing method of this sealing compound for liquid crystal display elements, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal display elements can be provided.

Claims (6)

  1. 硬化性樹脂と、重合開始剤及び/又は熱硬化剤とを含有する液晶表示素子用シール剤であって、
    前記硬化性樹脂は、ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を含有し、
    ビスフェノールAの含有量が50ppm以下である
    ことを特徴とする液晶表示素子用シール剤。
    A sealing agent for a liquid crystal display element comprising a curable resin, a polymerization initiator and / or a thermosetting agent,
    The curable resin contains a bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin,
    A sealing agent for liquid crystal display elements, wherein the content of bisphenol A is 50 ppm or less.
  2. 硬化性樹脂は、(メタ)アクリル化合物を含有することを特徴とする請求項1記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1, wherein the curable resin contains a (meth) acrylic compound.
  3. 請求項1又は2記載の液晶表示素子用シール剤を製造する方法であって、
    ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、純水を用いたビスフェノールAの水洗除去により精製する工程と、
    精製したビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を少なくとも重合開始剤及び/又は熱硬化剤と混合する工程とを有することを特徴とする液晶表示素子用シール剤の製造方法。
    A method for producing a sealing agent for a liquid crystal display element according to claim 1 or 2,
    A step of purifying a bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin by washing and removing bisphenol A with pure water;
    And a step of mixing a purified bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin with at least a polymerization initiator and / or a thermosetting agent. Production method.
  4. 請求項1又は2記載の液晶表示素子用シール剤を製造する方法であって、
    ビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を、吸着剤を用いたビスフェノールAの物理的吸着除去により精製する工程と、
    精製したビスフェノールA型エポキシ樹脂及び/又は(メタ)アクリル変性ビスフェノールA型エポキシ樹脂を少なくとも重合開始剤及び/又は熱硬化剤と混合する工程とを有することを特徴とする液晶表示素子用シール剤の製造方法。
    A method for producing a sealing agent for a liquid crystal display element according to claim 1 or 2,
    A step of purifying bisphenol A type epoxy resin and / or (meth) acryl-modified bisphenol A type epoxy resin by physical adsorption removal of bisphenol A using an adsorbent;
    And a step of mixing a purified bisphenol A type epoxy resin and / or a (meth) acryl-modified bisphenol A type epoxy resin with at least a polymerization initiator and / or a thermosetting agent. Production method.
  5. 請求項1又は2記載の液晶表示素子用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for a liquid crystal display element according to claim 1 or 2 and conductive fine particles.
  6. 請求項1若しくは2記載の液晶表示素子用シール剤又は請求項5記載の上下導通材料を用いてなることを特徴とする液晶表示素子。 A liquid crystal display element comprising the sealant for a liquid crystal display element according to claim 1 or 2 or the vertical conduction material according to claim 5.
PCT/JP2017/015318 2016-04-20 2017-04-14 Sealant for liquid crystal display element, method for manufacturing sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element WO2017183583A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780002831.4A CN107924093A (en) 2016-04-20 2017-04-14 Sealing material for liquid crystal display device, the manufacture method of sealing material for liquid crystal display device, upper and lower conductive material and liquid crystal display element
JP2017526724A JP7053262B2 (en) 2016-04-20 2017-04-14 Manufacturing method of sealant for liquid crystal display element
KR1020187006388A KR20180129753A (en) 2016-04-20 2017-04-14 Sealant for liquid crystal display element, method for manufacturing sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084574 2016-04-20
JP2016-084574 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183583A1 true WO2017183583A1 (en) 2017-10-26

Family

ID=60116743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015318 WO2017183583A1 (en) 2016-04-20 2017-04-14 Sealant for liquid crystal display element, method for manufacturing sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7053262B2 (en)
KR (1) KR20180129753A (en)
CN (1) CN107924093A (en)
TW (1) TW201809055A (en)
WO (1) WO2017183583A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029893A1 (en) * 2006-09-07 2008-03-13 Mitsui Chemicals, Inc. Liquid crystal sealing agent, method for manufacturing liquid crystal display panel using the liquid crystal sealing agent, and liquid crystal display panel
WO2015178357A1 (en) * 2014-05-23 2015-11-26 積水化学工業株式会社 Sealant for one-drop filling process, vertically conductive material, and liquid crystal display element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483910B1 (en) * 2000-06-21 2005-04-18 미쯔이카가쿠 가부시기가이샤 Sealing material for plastic liquid crystal display cells
WO2004090621A1 (en) * 2003-04-08 2004-10-21 Nippon Kayaku Kabushiki Kaisha Liquid crystal sealing agent and liquid crystalline display cell using the same
JP2006099027A (en) * 2004-03-09 2006-04-13 Sekisui Chem Co Ltd Light shielding sealing agent for use in liquid crystal dropping construction method, vertical conduction material, and liquid crystal display device
JP2007079588A (en) * 2006-10-11 2007-03-29 Nippon Kayaku Co Ltd Liquid crystal sealant and liquid crystal cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029893A1 (en) * 2006-09-07 2008-03-13 Mitsui Chemicals, Inc. Liquid crystal sealing agent, method for manufacturing liquid crystal display panel using the liquid crystal sealing agent, and liquid crystal display panel
WO2015178357A1 (en) * 2014-05-23 2015-11-26 積水化学工業株式会社 Sealant for one-drop filling process, vertically conductive material, and liquid crystal display element

Also Published As

Publication number Publication date
JP7053262B2 (en) 2022-04-12
CN107924093A (en) 2018-04-17
JPWO2017183583A1 (en) 2019-02-21
KR20180129753A (en) 2018-12-05
TW201809055A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
CN107636524B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
JP6795400B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN108780249B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6523167B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2017073548A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
WO2016181840A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6216260B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6235766B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
CN107710060B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6126756B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2018062166A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
TWI746654B (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP7053262B2 (en) Manufacturing method of sealant for liquid crystal display element
JP2019184730A (en) Liquid crystal display element sealant, epoxy compound, method of manufacturing epoxy compound, vertical conduction material, and liquid crystal display element
WO2018110552A1 (en) Polymerizable compound, sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6609396B1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6630871B1 (en) Composition for electronic material, sealant for liquid crystal display element, vertical conductive material, and liquid crystal display element
CN107683435B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2019225376A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2019221044A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2019221026A1 (en) Liquid crystal display element sealing agent, liquid crystal display element, and liquid crystal display element production method
JP2017003989A (en) Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017526724

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006388

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785921

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785921

Country of ref document: EP

Kind code of ref document: A1