WO2017183529A1 - Method for operating boiler and boiler equipment - Google Patents

Method for operating boiler and boiler equipment Download PDF

Info

Publication number
WO2017183529A1
WO2017183529A1 PCT/JP2017/014921 JP2017014921W WO2017183529A1 WO 2017183529 A1 WO2017183529 A1 WO 2017183529A1 JP 2017014921 W JP2017014921 W JP 2017014921W WO 2017183529 A1 WO2017183529 A1 WO 2017183529A1
Authority
WO
WIPO (PCT)
Prior art keywords
types
boiler
solid fuel
specific surface
surface area
Prior art date
Application number
PCT/JP2017/014921
Other languages
French (fr)
Japanese (ja)
Inventor
知朗 松宮
勝哉 秋山
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780023130.9A priority Critical patent/CN108884991B/en
Publication of WO2017183529A1 publication Critical patent/WO2017183529A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the present invention relates to a boiler operating method and boiler equipment.
  • a boiler that burns solid fuel such as coal generally includes a furnace that burns solid fuel using, for example, a burner, and a plurality of heat transfer tubes that are arranged in the furnace in the vertical direction to exchange heat.
  • the heat transfer tube is disposed in the primary heater, the primary reheater, and the economizer in the lower part of the furnace, and in the upper part of the furnace.
  • a secondary heater, a tertiary heater, a final heater, and an upper heat transfer section that exchange heat in the secondary reheater.
  • the upper heat transfer section has a structure in which the combustion gas flows between the heat transfer tubes arranged at a narrower interval than the lower heat transfer section to exchange heat, so that ash is formed in the upper heat transfer section. If it adheres, a large fluctuation of the furnace pressure and a blockage of the gas flow path are likely to occur, and the stable operation of the boiler is hindered. Further, in the vicinity of the burner, the temperature in the vicinity of the furnace wall becomes high due to the radiant heat of the pulverized coal combustion flame, so that ash tends to melt and adhere to a relatively low temperature heat transfer tube, and the heat recovery rate of the furnace tends to decrease.
  • This invention is made
  • the present inventors pay attention to the fact that the degree of decrease in the heat recovery rate varies depending on the solid fuel even if the mass of ash adhering to the heat transfer tube is the same, and the relationship between the solid fuel and the degree of decrease in the heat recovery rate As a result of intensive research by conducting detailed analysis, it was confirmed that the larger the specific surface area of solid fuel ashed, the more porous ash adhered to the heat transfer tube and the lower the heat recovery rate. did. And based on this knowledge, the present inventors determined the mixing ratio of multiple types of solid fuels so that the specific surface area after ashing is below the reference value, thereby suppressing the decrease in the furnace heat recovery rate. As a result, it was found that the boiler can be operated stably and the present invention was completed.
  • the invention made in order to solve the above-mentioned problems is a boiler operating method in which a plurality of types of solid fuels are mixed and burned, and the ash content in the plurality of types of solid fuels and the plurality of types of solid fuels A plurality of types of solid fuels based on the step of acquiring the specific surface area after ashing, the ash content of each of the plurality of types of solid fuel obtained in the acquisition step and the specific surface area after ashing And a step of determining a mixing ratio of the plurality of types of solid fuels so that a specific surface area after ashing of the whole mixture becomes equal to or less than a reference value.
  • the operation method of the boiler includes the step of acquiring the ash content in the plurality of types of solid fuels and the specific surface area after the ashing of the plurality of types of solid fuels, and the plurality of types of the plurality of types obtained in the acquisition step. Based on the ash content of each solid fuel and the specific surface area after ashing, the plurality of types of solid fuels so that the specific surface area after ashing of the mixture of the plurality of types of solid fuels is below the reference value. Therefore, the specific surface area of the ash generated by the combustion of the solid fuel can be reduced to a certain value or less, and the adhesion of the porous ash to the heat transfer tube can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the operation method of the said boiler can suppress the fall of a furnace heat recovery rate.
  • the reference value is preferably 5.5 m 2 / g.
  • the reference value is preferably 5.5 m 2 / g.
  • the solid fuel may be coal.
  • the furnace heat recovery rate tends to decrease. For this reason, the operating method of the said boiler which can suppress the fall of a furnace heat recovery rate can be used suitably.
  • the operation method of the boiler may be used for a thermal power plant.
  • the operation method of the boiler for a thermal power plant, it is possible to stably supply power while suppressing a decrease in the furnace heat recovery rate.
  • Another invention made to solve the above problems is a boiler facility for mixing and burning a plurality of types of solid fuels, each of which includes a plurality of mechanisms for supplying different types of the solid fuels, and A mechanism for mixing a plurality of types of solid fuel supplied from the supply mechanism, a mechanism for pulverizing the solid fuel mixed by the mixing mechanism, a boiler for burning the solid fuel pulverized by the pulverization mechanism, and the plurality of Based on the ash content of each type of solid fuel and the specific surface area after ashing of the plurality of types of solid fuel, the specific surface area after ashing of the mixture of the plurality of types of solid fuel is below the reference value.
  • a mechanism for determining the mixing ratio of the plurality of types of solid fuels, and the mixing mechanism that is introduced from the supply mechanism to the mixing mechanism so as to have a mixing ratio of the plurality of types of solid fuels determined by the determination mechanism A boiler equipment, characterized in that it comprises a mechanism for adjusting the supply amount of each several solid fuel.
  • the boiler facility includes a mechanism for determining the mixing ratio of the plurality of types of solid fuel so that the specific surface area after ashing of the whole mixture of the plurality of types of solid fuel is equal to or less than a reference value. Can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the said boiler installation can suppress the fall of a furnace heat recovery rate.
  • the “ash content” is a value measured according to JIS-M8812 (2006).
  • the “specific surface area” is a value measured according to JIS-Z8830 (2013).
  • the boiler operating method and the boiler equipment of the present invention can suppress a decrease in the furnace heat recovery rate.
  • the thermal power plant is equipped with the boiler equipment, steam turbine generator equipment and condensate water supply equipment.
  • the boiler facility shown in FIG. 1 is a boiler facility that mixes and burns a plurality of types of solid fuels.
  • the boiler equipment includes a hopper 1, a mixer 2, a pulverizer 3, a boiler 4, a calculator 5, and a supply amount adjusting device 6.
  • the hopper 1 is a mechanism that supplies solid fuel.
  • the boiler facility includes a plurality of hoppers 1 for supplying different types of solid fuel to supply a plurality of types of solid fuel.
  • FIG. 1 shows a case where two hoppers 1 are provided, three or more kinds of solid fuels may be used. In that case, the boiler equipment includes the same number of hoppers 1 as the type of solid fuel.
  • the hopper 1 has a storage tank for storing the solid fuel, and the solid fuel can be dropped and taken out from a bottom-open funnel-shaped mouth at the bottom of the storage tank.
  • the mixer 2 is a mechanism for mixing the solid fuel supplied from the hopper 1.
  • a known drum mixer or the like can be used as the mixer 2, for example, a known drum mixer or the like.
  • the pulverizer 3 is a mechanism for pulverizing the solid fuel mixed in the mixer 2.
  • a known vertical roller mill or the like can be used as the pulverizer 3.
  • the particle size of the solid fuel after pulverization is not particularly limited, and for example, the solid fuel can be pulverized so that the proportion of the solid fuel having a particle size of 75 ⁇ m or less is 75% by mass or more and 90% by mass or less.
  • the boiler 4 burns the solid fuel pulverized by the pulverizer 3.
  • the boiler 4 mainly includes a burner 7, a furnace, a heat transfer tube, and a chimney.
  • the boiler 4 burns solid fuel blown together with air in a furnace by means of a burner 7, and performs heat exchange using a large number of heat transfer tubes arranged in the vertical direction in the furnace. By this heat exchange, water supplied to the heat transfer tube is heated and pressurized to generate steam. Moreover, the combustion gas generated by the combustion is discharged from the chimney.
  • the heat transfer tube is appropriately configured according to the required steam temperature and pressure, for example, a lower heater including a primary heater, a primary reheater, and a economizer disposed in the lower part of the furnace, It can comprise with the upper heat-transfer part provided with the secondary heater, the tertiary heater, the final heater, and the secondary reheater which are arrange
  • the lower heat transfer section mainly preheats the feed water supplied to the boiler 4, and the upper heat transfer section mainly generates high-temperature and high-pressure steam.
  • the reheater reheats the steam that has worked in the steam turbine or the like, and creates steam that rotates the reheat cycle turbine.
  • the economizer preheats the feed water of the boiler 4 with the heat of the exhausted combustion gas.
  • the calculator 5 is a mechanism that determines the mixing ratio of the above-described plural types of solid fuels. Specifically, based on the ash content of each of the plurality of types of solid fuels and the specific surface area after the ashing of the plurality of types of solid fuels (hereinafter simply referred to as specific surface area), the plurality of types of solid fuels The mixing ratio of the plurality of types of solid fuels is determined so that the specific surface area after ashing in the ash content of the entire fuel mixture is below a reference value.
  • the computing unit 5 calculates a mixing ratio of a plurality of types of solid fuels by a mixing ratio determining step (S2) of a boiler operation method described later. In addition, the calculator 5 controls the supply amount adjusting device 6 based on the calculated mixing ratio.
  • the supply amount adjusting device 6 adjusts the supply amount of each of the plurality of types of solid fuel introduced from the hopper 1 to the mixer 2 so that the mixing ratio of the plurality of types of solid fuel determined by the calculator 5 is obtained. It is a mechanism to do. That is, the boiler equipment includes a supply amount adjusting device 6 having the same number as the type of solid fuel, one for each pipe connected to the mixer 2 from each of the same number of hoppers 1 as the type of solid fuel.
  • the supply amount adjusting device 6 is not particularly limited, and for example, a chain conveyor that conveys solid fuel from the hopper 1 to the mixer 2 can be used. In this case, the supply amount is adjusted by adjusting the moving speed of the conveyor.
  • FIG. 2 shows a procedure of a boiler operating method using the boiler apparatus.
  • the boiler operation method is a boiler operation method in which a plurality of types of solid fuels are mixed and burned.
  • the operation method of the boiler is obtained by the step of acquiring the ash content in the plurality of types of solid fuel and the specific surface area after ashing of the plurality of types of solid fuel (S1: acquisition step), and the acquisition step.
  • the solid fuel used in the operation method of the boiler is not particularly limited as long as it is a fuel used in the boiler, and examples thereof include coal, sludge carbide, and biomass fuel. Among them, coal that generates a large amount of heat and is preferably used in a thermal power plant or the like is preferable.
  • the type of coal is not particularly limited.
  • the boiler operating method uses a solid fuel having a relatively large specific surface area that is likely to lower the furnace heat recovery rate and a solid fuel that has a relatively small specific surface area and is difficult to reduce the furnace heat recovery rate. Moreover, the fall of the furnace heat recovery rate can be suppressed.
  • coal having a relatively large specific surface area can be used as a part of the solid fuel.
  • the coal having a relatively large specific surface area include anthracite coal, bituminous coal, subbituminous coal, lignite, high silica coal, and high calcium coal.
  • the ash content of each of the plurality of types of solid fuels and the specific surface area after ashing of the plurality of types of solid fuels are acquired.
  • the acquisition of the ash content and the specific surface area after ashing in this acquisition step does not necessarily require analysis of solid fuel, but the ash content and the specific surface area after ashing measured in advance. May be entered from a storage device or the like or input by an operator.
  • the method for measuring the ash content of each solid fuel is not particularly limited, and for example, a measuring method based on JIS-M8812 (2006) can be used.
  • the ash content may be the same base value as the mixing ratio described later, and may be an anhydrous base or a water-containing base, but is preferably an anhydrous base that facilitates calculation of the mixing ratio.
  • a BET method based on JIS-Z8830 (2013) can be used with a solid fuel ashed in an electric furnace or the like as a sample.
  • a solid fuel used for measurement having a particle size distribution substantially equal to that when used as a fuel (at the time of combustion). Therefore, when pulverizing after mixing a plurality of types of solid fuels, it is preferable to measure the specific surface area by ashing the same pulverized solid fuel.
  • the calorific value of the solid fuel is a value measured by burning the solid fuel in accordance with, for example, a measurement method based on JIS-M8814 (2003).
  • the ash content of each solid fuel, the specific surface area, the calorific value of the solid fuel, and the like are recorded and stored as data in, for example, a storage device. By storing the data in this way, the data can be used thereafter.
  • the specific surface area after ashing of each solid fuel is Si
  • the mass ratio of each solid fuel to the whole mixture is Xi
  • the ratio after ashing of the whole mixture The surface area S can be calculated by the following formula (1).
  • the unit of the said ash content rate Wi, specific surface area Si, and mass ratio Xi should just be unified between fuels, and as shown to following formula (1), the unit of the specific surface area S of the whole mixture is each The unit is the same as the specific surface area Si of the solid fuel.
  • the mixing ratio of the plurality of types of solid fuels is determined so that the specific surface area S is not more than a reference value.
  • the operation method of the boiler can suppress a decrease in the furnace heat recovery rate by setting the specific surface area S to a reference value or less.
  • the specific surface area S is a measure of the porosity of ash generated by the combustion of solid fuel. Porous ash with a high porosity is considered to adhere to the heat transfer tube of the boiler, thereby inhibiting heat transfer and lowering the furnace heat recovery rate. For this reason, if the specific surface area S is set to a reference value or less, the porosity of the attached ash is reduced and the heat insulation is reduced, so that it is considered that the reduction in the furnace heat recovery rate can be suppressed.
  • the reference value of the specific surface area S of the solid fuel described above CCS, the imported coal is blended, preferably 5.5 m 2 / g, more preferably 5.0 m 2 / g, more preferably 4.7m 2 / g, 4.5m 2 / g Is particularly preferred.
  • the lower limit of the specific surface area S of the solid fuel described above CCS, the imported coal is blended preferably 2.5 m 2 / g, more preferably 2.8m 2 / g, 3.0m 2 / g is more preferred.
  • the specific surface area S is less than the above lower limit, the solid fuel that can be used is limited, so that the fuel cost may increase unnecessarily.
  • the mixing and supplying step (S3) the plurality of types of solid fuels are mixed and pulverized based on the mixing rate determined in the mixing rate determining step (S2), and then supplied to the furnace.
  • the supply amount adjusting device 6 is controlled by the calculator 5 of the boiler facility to adjust the amount of solid fuel sent from the hopper 1 to the mixer 2.
  • the mixed solid fuel is pulverized by the pulverizer 3 and then blown into the boiler 4 together with air to be burned.
  • the operation method of the boiler determines the mixing ratio of a plurality of types of solid fuel so that the specific surface area S is not more than a reference value, the heat insulation property of the ash adhering to the heat transfer tube is reduced. A decrease in rate can be suppressed.
  • the steam turbine generator facility mainly includes a steam turbine and a generator.
  • the steam turbine is an external combustion engine that converts steam energy into rotational motion via a turbine (impeller) and a shaft, and is driven by steam generated by the boiler equipment.
  • the steam turbine is not particularly limited, and can be constituted by, for example, a high-temperature high-pressure turbine, a high-temperature reheat turbine, and a low-pressure turbine.
  • the steam generated in the boiler facility first drives the high temperature and high pressure turbine.
  • the high-temperature reheat turbine is driven by the high-temperature steam heated by the reheater. Further, the steam whose temperature and pressure have been lost due to the driving of the high-temperature reheat turbine is guided to the condensate water supply facility after driving the low-pressure turbine.
  • the power of the high-temperature high-pressure turbine, high-temperature reheat turbine, and low-pressure turbine driven by this steam drives the generator to obtain electrical output.
  • the condensate water supply facility mainly includes a condenser, a pump, a heater, and a deaerator.
  • Condensate water supply equipment cools the steam that drives the steam turbine with a condenser and collects it as condensate.
  • This condensate is pressurized by a pump, heated by a heater, and deaerated by a deaerator.
  • the pressurized and heated condensate is supplied to the economizer of the boiler facility as water supply for the boiler facility.
  • the boiler equipment and the operation method of the boiler equipment may be applied to boiler equipment used other than the thermal power plant.
  • the configuration of the boiler may be different from that in the above embodiment.
  • Solid fuel First, three types of coal were prepared as solid fuels, and a small amount of each was sampled to measure the content of ash and the specific surface area after ashing in the ash.
  • the ash content of coal was measured by a measuring method based on JIS-M8812 (2006), and the water content value was calculated.
  • the specific surface area was measured according to JIS-Z8830 (2013). The results are shown in Table 1.
  • the furnace heat recovery rate is No. It is the value normalized in terms of the ratio of 1 to the furnace heat recovery rate.
  • Table 2 results of Table 2 are shown in a graph in FIG.
  • the specific surface area of ash and the furnace heat recovery rate are highly correlated regardless of the type of coal to be mixed, and it can be seen that the decrease in the furnace heat recovery rate can be suppressed by setting the specific surface area to a reference value or less.
  • the boiler operating method of the present invention can suppress a decrease in the furnace heat recovery rate. Therefore, the boiler equipment using the boiler operating method is easy to operate stably. Moreover, the boiler using the operating method of the said boiler is used suitably for a thermal power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

This method for operating a boiler includes: a step of acquiring ash content of a plurality of kinds of solid fuels and specific surface areas of the plurality of kinds of solid fuels after incineration; and a step of determining a mixing ratio of the plurality of kinds of solid fuels on the basis of the ash content and the specific surface area after incineration of each of the plurality of kinds of solid fuels acquired in the step of acquiring ash contents and specific surface areas so that the specific surface area after incineration of the entire mixture of the plurality of kinds of solid fuels is less than or equal to a reference value.

Description

ボイラーの運転方法及びボイラー設備Boiler operation method and boiler equipment
 本発明は、ボイラーの運転方法及びボイラー設備に関する。 The present invention relates to a boiler operating method and boiler equipment.
 例えば石炭等の固体燃料を燃焼させるボイラーは、一般に、例えばバーナー等により固体燃料を燃焼させる火炉及びこの火炉内に上下方向に複数配設され熱交換を行う伝熱管を備える。例えば火力発電所等で用いられるボイラーでは、上記伝熱管は、火炉下部に配設される一次加熱器、一次再熱器及び節炭器において熱交換する下部伝熱部と、火炉上部に配設される二次加熱器、三次加熱器、最終加熱器及び二次再熱器において熱交換する上部伝熱部とを有する。 For example, a boiler that burns solid fuel such as coal generally includes a furnace that burns solid fuel using, for example, a burner, and a plurality of heat transfer tubes that are arranged in the furnace in the vertical direction to exchange heat. For example, in a boiler used in a thermal power plant, the heat transfer tube is disposed in the primary heater, the primary reheater, and the economizer in the lower part of the furnace, and in the upper part of the furnace. A secondary heater, a tertiary heater, a final heater, and an upper heat transfer section that exchange heat in the secondary reheater.
 このようなボイラーのうち、例えば石炭を固体燃料とする微粉炭ボイラーでは、石炭の燃焼によって生じる燃焼ガス中の灰分が火炉の炉壁や伝熱管に付着し堆積するスラッギングやファウリングが発生し、灰付着層が形成される場合がある。このような灰付着が生じると、伝熱管の伝熱面での収熱率が大幅に低下し易い。また、炉壁に付着した灰(クリンカ)が巨大化すると、炉壁等から落下し、炉内圧の大幅な変動、伝熱管の損傷、ガス流路の閉塞等が発生する場合がある。 Among such boilers, for example, in pulverized coal boilers using coal as a solid fuel, slagging and fouling occurs in which ash in the combustion gas generated by the combustion of coal adheres to the furnace walls and heat transfer tubes of the furnace and accumulates, An ash adhesion layer may be formed. When such ash adhesion occurs, the heat recovery rate at the heat transfer surface of the heat transfer tube is likely to be greatly reduced. Further, when the ash (clinker) adhering to the furnace wall becomes enormous, it may fall from the furnace wall or the like, resulting in a significant fluctuation in the furnace pressure, damage to the heat transfer tube, blockage of the gas flow path, or the like.
 特に上部伝熱部は、下部伝熱部に比べて狭い間隔で配設した伝熱管の間を燃焼ガスが流動して熱交換を行う構造を有しているため、上部伝熱部に灰が付着すると、炉内圧の大幅な変動やガス流路の閉塞が発生し易く、ボイラーの安定した運転が阻害される。また、バーナー近傍では微粉炭の燃焼火炎の放射熱により炉壁近傍の温度が高くなるため、比較的低温な伝熱管に灰が溶融付着し易くなり、火炉の収熱率が低下し易い。 In particular, the upper heat transfer section has a structure in which the combustion gas flows between the heat transfer tubes arranged at a narrower interval than the lower heat transfer section to exchange heat, so that ash is formed in the upper heat transfer section. If it adheres, a large fluctuation of the furnace pressure and a blockage of the gas flow path are likely to occur, and the stable operation of the boiler is hindered. Further, in the vicinity of the burner, the temperature in the vicinity of the furnace wall becomes high due to the radiant heat of the pulverized coal combustion flame, so that ash tends to melt and adhere to a relatively low temperature heat transfer tube, and the heat recovery rate of the furnace tends to decrease.
 そこで、この灰付着が発生する可能性を指標として表し、その指標に基づいて灰付着を抑制するボイラーの運転方法が提案されている(日本国許第5342355号公報)。この従来の運転方法では、炉壁や伝熱管群に付着する成分であるスラグに着目し、各固体燃料について算出したスラグ割合と灰成分の組成とに基づいて、複数種類の固体燃料の混合比率を決定している。具体的には、従来のボイラーの運転方法は、灰付着率が低くなるようにスラグ割合の基準値を決定し、スラグ割合がこの基準値以下になるように複数種類の固体燃料の混合比率を決定することにより、灰の付着を抑制している。 Therefore, a method of operating a boiler that represents the possibility of occurrence of ash adhesion as an index and suppresses ash adhesion based on the index has been proposed (Japanese Patent No. 5342355). In this conventional operation method, focusing on slag, which is a component adhering to the furnace wall and heat transfer tube group, based on the slag ratio calculated for each solid fuel and the composition of the ash component, the mixing ratio of multiple types of solid fuel Is determined. Specifically, in the conventional boiler operation method, a reference value for the slag ratio is determined so that the ash adhesion rate is low, and the mixing ratio of a plurality of types of solid fuels is set so that the slag ratio is less than this reference value. By determining, adhesion of ash is suppressed.
 しかしながら、上記従来のボイラーの運転方法では、灰の付着が抑制されているにも関わらず火炉の収熱率が低下する場合がある。このため、火炉の収熱率の低下を抑制できる新たなボイラーの運転方法が望まれている。 However, in the above conventional boiler operation method, the heat recovery rate of the furnace may be lowered even though the adhesion of ash is suppressed. Therefore, a new boiler operation method that can suppress a decrease in the heat recovery rate of the furnace is desired.
日本国特許第5342355号公報Japanese Patent No. 5342355
 本発明は、上述のような事情に基づいてなされたものであり、火炉の収熱率の低下を抑制できるボイラーの運転方法及びボイラー設備を提供することを課題とする。 This invention is made | formed based on the above situations, and makes it a subject to provide the operating method and boiler equipment of a boiler which can suppress the fall of the heat recovery rate of a furnace.
 本発明者らは、伝熱管に付着する灰の質量が同じであっても、固体燃料によって収熱率が低下する度合いが異なることに着目し、固体燃料と収熱率の低下度合いとの関係を詳細に分析して鋭意研究を行った結果、固体燃料を灰化した場合の比表面積が大きいほど、伝熱管にポーラス状の灰が付着して、収熱率の低下が大きくなることを確認した。そして、本発明者らは、この知見を元に、灰化後の比表面積が基準値以下となるように複数種類の固体燃料の混合割合を決定することで火炉収熱率の低下を抑制してボイラーを安定運用し易くできることを見出し、本発明を完成させた。 The present inventors pay attention to the fact that the degree of decrease in the heat recovery rate varies depending on the solid fuel even if the mass of ash adhering to the heat transfer tube is the same, and the relationship between the solid fuel and the degree of decrease in the heat recovery rate As a result of intensive research by conducting detailed analysis, it was confirmed that the larger the specific surface area of solid fuel ashed, the more porous ash adhered to the heat transfer tube and the lower the heat recovery rate. did. And based on this knowledge, the present inventors determined the mixing ratio of multiple types of solid fuels so that the specific surface area after ashing is below the reference value, thereby suppressing the decrease in the furnace heat recovery rate. As a result, it was found that the boiler can be operated stably and the present invention was completed.
 上記課題を解決するためになされた発明は、複数種類の固体燃料を混合して燃焼させるボイラーの運転方法であって、上記複数種類の固体燃料中の灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積を取得する工程と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記灰化後の比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程とを備えることを特徴とするボイラーの運転方法である。 The invention made in order to solve the above-mentioned problems is a boiler operating method in which a plurality of types of solid fuels are mixed and burned, and the ash content in the plurality of types of solid fuels and the plurality of types of solid fuels A plurality of types of solid fuels based on the step of acquiring the specific surface area after ashing, the ash content of each of the plurality of types of solid fuel obtained in the acquisition step and the specific surface area after ashing And a step of determining a mixing ratio of the plurality of types of solid fuels so that a specific surface area after ashing of the whole mixture becomes equal to or less than a reference value.
 当該ボイラーの運転方法は、上記複数種類の固体燃料中の灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積を取得する工程と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記灰化後の比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程とを備えるので、固体燃料の燃焼によって生じる灰の比表面積を一定の値以下に低減して、伝熱管へのポーラス状の灰の付着を抑制することができる。これにより、当該ボイラーの運転方法は、付着灰の断熱性が低減されるため、火炉収熱率の低下を抑制することができる。 The operation method of the boiler includes the step of acquiring the ash content in the plurality of types of solid fuels and the specific surface area after the ashing of the plurality of types of solid fuels, and the plurality of types of the plurality of types obtained in the acquisition step. Based on the ash content of each solid fuel and the specific surface area after ashing, the plurality of types of solid fuels so that the specific surface area after ashing of the mixture of the plurality of types of solid fuels is below the reference value. Therefore, the specific surface area of the ash generated by the combustion of the solid fuel can be reduced to a certain value or less, and the adhesion of the porous ash to the heat transfer tube can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the operation method of the said boiler can suppress the fall of a furnace heat recovery rate.
 上記基準値としては、5.5m/gが好ましい。このように、上記基準値を5.5m/gとすることによって、火炉収熱率の低下をより確実に抑制することができる。 The reference value is preferably 5.5 m 2 / g. Thus, the fall of a furnace heat recovery rate can be suppressed more reliably by making the said reference value into 5.5 m < 2 > / g.
 上記固体燃料が石炭であるとよい。固体燃料を石炭とするボイラーでは特に火炉収熱率の低下が発生し易い。このため、火炉収熱率の低下を抑制できる当該ボイラーの運転方法を好適に用いることができる。 The solid fuel may be coal. In boilers using coal as solid fuel, the furnace heat recovery rate tends to decrease. For this reason, the operating method of the said boiler which can suppress the fall of a furnace heat recovery rate can be used suitably.
 当該ボイラーの運転方法は、火力発電プラントに用いられるとよい。このように、当該ボイラーの運転方法を火力発電プラントに用いることによって、火炉収熱率の低下を抑制して安定的に電力を供給することができる。 The operation method of the boiler may be used for a thermal power plant. Thus, by using the operation method of the boiler for a thermal power plant, it is possible to stably supply power while suppressing a decrease in the furnace heat recovery rate.
 また、上記課題を解決するためになされた別の発明は、複数種類の固体燃料を混合して燃焼させるボイラー設備であって、異なる種類の上記固体燃料をそれぞれ供給する複数の機構と、上記複数の供給機構から供給される複数種類の固体燃料を混合する機構と、上記混合機構で混合された固体燃料を粉砕する機構と、上記粉砕機構で粉砕された固体燃料を燃焼するボイラーと、上記複数種類の固体燃料それぞれの灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決する機構と、上記決定機構で決定された上記複数種類の固体燃料の混合割合になるよう上記供給機構から混合機構に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構とを備えることを特徴とするボイラー設備である。 Another invention made to solve the above problems is a boiler facility for mixing and burning a plurality of types of solid fuels, each of which includes a plurality of mechanisms for supplying different types of the solid fuels, and A mechanism for mixing a plurality of types of solid fuel supplied from the supply mechanism, a mechanism for pulverizing the solid fuel mixed by the mixing mechanism, a boiler for burning the solid fuel pulverized by the pulverization mechanism, and the plurality of Based on the ash content of each type of solid fuel and the specific surface area after ashing of the plurality of types of solid fuel, the specific surface area after ashing of the mixture of the plurality of types of solid fuel is below the reference value. A mechanism for determining the mixing ratio of the plurality of types of solid fuels, and the mixing mechanism that is introduced from the supply mechanism to the mixing mechanism so as to have a mixing ratio of the plurality of types of solid fuels determined by the determination mechanism A boiler equipment, characterized in that it comprises a mechanism for adjusting the supply amount of each several solid fuel.
 当該ボイラー設備は、上記複数種類の固体燃料の混合体全体の灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する機構を備えるので、ポーラス状の灰の付着を抑制できる。これにより付着灰の断熱性が低減されるため、当該ボイラー設備は、火炉収熱率の低下を抑制することができる。 The boiler facility includes a mechanism for determining the mixing ratio of the plurality of types of solid fuel so that the specific surface area after ashing of the whole mixture of the plurality of types of solid fuel is equal to or less than a reference value. Can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the said boiler installation can suppress the fall of a furnace heat recovery rate.
 ここで、「灰分の含有率」とは、JIS-M8812(2006)に準拠して測定される値である。また、「比表面積」とは、JIS-Z8830(2013)に準拠して測定される値である。 Here, the “ash content” is a value measured according to JIS-M8812 (2006). The “specific surface area” is a value measured according to JIS-Z8830 (2013).
 以上説明したように、本発明のボイラーの運転方法及びボイラー設備は、火炉収熱率の低下を抑制できる。 As described above, the boiler operating method and the boiler equipment of the present invention can suppress a decrease in the furnace heat recovery rate.
本発明の一実施形態のボイラー設備を示す概念図である。It is a key map showing boiler equipment of one embodiment of the present invention. 本発明の一実施形態のボイラーの運転方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the operating method of the boiler of one Embodiment of this invention. 固体燃料の灰化後の比表面積と火炉収熱率との関係を示すグラフである。It is a graph which shows the relationship between the specific surface area after ashing of a solid fuel, and a furnace heat recovery rate.
 以下、本発明に係るボイラーの運転方法及びボイラー設備の実施形態について、火力発電プラントを用いて説明する。 Hereinafter, an embodiment of a boiler operating method and boiler equipment according to the present invention will be described using a thermal power plant.
 上記火力発電プラントは、当該ボイラー設備、蒸気タービン発電機設備及び復水給水設備を備える。 The thermal power plant is equipped with the boiler equipment, steam turbine generator equipment and condensate water supply equipment.
<ボイラー設備>
 図1に示すボイラー設備は、複数種類の固体燃料を混合して燃焼させるボイラー設備である。当該ボイラー設備は、ホッパー1、混合機2、粉砕機3、ボイラー4、演算機5、及び供給量調整装置6を備える。
<Boiler equipment>
The boiler facility shown in FIG. 1 is a boiler facility that mixes and burns a plurality of types of solid fuels. The boiler equipment includes a hopper 1, a mixer 2, a pulverizer 3, a boiler 4, a calculator 5, and a supply amount adjusting device 6.
(ホッパー)
 ホッパー1は、固体燃料を供給する機構である。当該ボイラー設備は、複数種類の固体燃料を供給するために、互いに異なる種類の固体燃料を供給する複数のホッパー1を備える。なお、図1では2基のホッパー1を備える場合を示しているが、固体燃料は3種類以上であってもよい。その場合、当該ボイラー設備は固体燃料の種類と同数のホッパー1を備える。
(hopper)
The hopper 1 is a mechanism that supplies solid fuel. The boiler facility includes a plurality of hoppers 1 for supplying different types of solid fuel to supply a plurality of types of solid fuel. Although FIG. 1 shows a case where two hoppers 1 are provided, three or more kinds of solid fuels may be used. In that case, the boiler equipment includes the same number of hoppers 1 as the type of solid fuel.
 ホッパー1は上記固体燃料を貯蔵する貯蔵槽を有し、この貯蔵槽の底部にある底開式のじょうご型の口から固体燃料を落下させて取り出すことができる。 The hopper 1 has a storage tank for storing the solid fuel, and the solid fuel can be dropped and taken out from a bottom-open funnel-shaped mouth at the bottom of the storage tank.
(混合機)
 混合機2は、上記ホッパー1から供給される固体燃料を混合する機構である。混合機2としては、例えば公知のドラムミキサ等を用いることができる。
(Mixer)
The mixer 2 is a mechanism for mixing the solid fuel supplied from the hopper 1. As the mixer 2, for example, a known drum mixer or the like can be used.
(粉砕機)
 粉砕機3は、混合機2で混合された固体燃料を粉砕する機構である。粉砕機3としては、公知の竪型ローラーミル等を用いることができる。
(Crusher)
The pulverizer 3 is a mechanism for pulverizing the solid fuel mixed in the mixer 2. As the pulverizer 3, a known vertical roller mill or the like can be used.
 粉砕後の固体燃料の粒子径は特に制限されるものではなく、例えば粒子径が75μm以下となる固体燃料の割合が75質量%以上90質量%以下となるように粉砕することができる。 The particle size of the solid fuel after pulverization is not particularly limited, and for example, the solid fuel can be pulverized so that the proportion of the solid fuel having a particle size of 75 μm or less is 75% by mass or more and 90% by mass or less.
(ボイラー)
 ボイラー4は、上記粉砕機3で粉砕された固体燃料を燃焼する。上記ボイラー4はバーナー7、火炉、伝熱管及び煙突を主に備える。上記ボイラー4は、空気と共に吹き込まれた固体燃料をバーナー7により火炉で燃焼し、この火炉内に上下方向に多数配設された伝熱管により熱交換を行う。この熱交換により上記伝熱管に供給される給水が加熱及び加圧され、蒸気が発生する。また、燃焼により発生した燃焼ガスは煙突から排出される。
(boiler)
The boiler 4 burns the solid fuel pulverized by the pulverizer 3. The boiler 4 mainly includes a burner 7, a furnace, a heat transfer tube, and a chimney. The boiler 4 burns solid fuel blown together with air in a furnace by means of a burner 7, and performs heat exchange using a large number of heat transfer tubes arranged in the vertical direction in the furnace. By this heat exchange, water supplied to the heat transfer tube is heated and pressurized to generate steam. Moreover, the combustion gas generated by the combustion is discharged from the chimney.
 上記伝熱管は、必要とする蒸気の温度及び圧力に応じて適宜構成されるが、例えば火炉下部に配設される一次加熱器、一次再熱器及び節炭器を備える下部伝熱部と、火炉上部に配設される二次加熱器、三次加熱器、最終加熱器及び二次再熱器を備える上部伝熱部とにより構成できる。下部伝熱部は主にボイラー4に供給される給水を予熱し、上部伝熱部は主に高温高圧の蒸気を生成する。また、再熱器は蒸気タービン等で仕事をした蒸気を再び加熱し、再熱サイクルタービンを回す蒸気を作る。また、節炭器は排出される燃焼ガスの熱でボイラー4の給水を予熱する。 The heat transfer tube is appropriately configured according to the required steam temperature and pressure, for example, a lower heater including a primary heater, a primary reheater, and a economizer disposed in the lower part of the furnace, It can comprise with the upper heat-transfer part provided with the secondary heater, the tertiary heater, the final heater, and the secondary reheater which are arrange | positioned at the furnace upper part. The lower heat transfer section mainly preheats the feed water supplied to the boiler 4, and the upper heat transfer section mainly generates high-temperature and high-pressure steam. In addition, the reheater reheats the steam that has worked in the steam turbine or the like, and creates steam that rotates the reheat cycle turbine. Further, the economizer preheats the feed water of the boiler 4 with the heat of the exhausted combustion gas.
(演算機)
 演算機5は、上記複数種類の固体燃料の混合割合を決定する機構である。具体的には、上記複数種類の固体燃料それぞれの灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積(以下、単に比表面積ということがある)に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する。
(Calculator)
The calculator 5 is a mechanism that determines the mixing ratio of the above-described plural types of solid fuels. Specifically, based on the ash content of each of the plurality of types of solid fuels and the specific surface area after the ashing of the plurality of types of solid fuels (hereinafter simply referred to as specific surface area), the plurality of types of solid fuels The mixing ratio of the plurality of types of solid fuels is determined so that the specific surface area after ashing in the ash content of the entire fuel mixture is below a reference value.
 演算機5は、後述するボイラーの運転方法の混合割合決定工程(S2)により、複数種類の固体燃料の混合割合を算出する。また、演算機5は算出した混合割合に基づき供給量調整装置6を制御する。 The computing unit 5 calculates a mixing ratio of a plurality of types of solid fuels by a mixing ratio determining step (S2) of a boiler operation method described later. In addition, the calculator 5 controls the supply amount adjusting device 6 based on the calculated mixing ratio.
(供給量調整装置)
 供給量調整装置6は、上記演算機5で決定された上記複数種類の固体燃料の混合割合になるよう上記ホッパー1から混合機2に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構である。つまり、当該ボイラー設備は、固体燃料の種類と同数のホッパー1それぞれから混合機2に接続される配管それぞれに1基ずつ、合計で固体燃料の種類と同数の供給量調整装置6を備える。この供給量調整装置6は特に限定されないが、例えばホッパー1から混合機2へ固体燃料を運搬するチェーンコンベアを用いることができる。この場合、供給量の調整は、このコンベアの移動速度を調整することで行う。
(Supply amount adjustment device)
The supply amount adjusting device 6 adjusts the supply amount of each of the plurality of types of solid fuel introduced from the hopper 1 to the mixer 2 so that the mixing ratio of the plurality of types of solid fuel determined by the calculator 5 is obtained. It is a mechanism to do. That is, the boiler equipment includes a supply amount adjusting device 6 having the same number as the type of solid fuel, one for each pipe connected to the mixer 2 from each of the same number of hoppers 1 as the type of solid fuel. The supply amount adjusting device 6 is not particularly limited, and for example, a chain conveyor that conveys solid fuel from the hopper 1 to the mixer 2 can be used. In this case, the supply amount is adjusted by adjusting the moving speed of the conveyor.
<ボイラーの運転方法>
 図2に当該ボイラー装置を用いたボイラーの運転方法の手順を示す。当該ボイラーの運転方法は、複数種類の固体燃料を混合して燃焼させるボイラーの運転方法である。当該ボイラーの運転方法は、上記複数種類の固体燃料中の灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積を取得する工程(S1:取得工程)と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程(S2:混合割合決定工程)と、決定した上記混合割合に基づいて上記複数種類の固体燃料の混合及び火炉への供給を行う工程(S3:混合供給工程)とを備える。
<How to operate the boiler>
FIG. 2 shows a procedure of a boiler operating method using the boiler apparatus. The boiler operation method is a boiler operation method in which a plurality of types of solid fuels are mixed and burned. The operation method of the boiler is obtained by the step of acquiring the ash content in the plurality of types of solid fuel and the specific surface area after ashing of the plurality of types of solid fuel (S1: acquisition step), and the acquisition step. Based on the ash content and the specific surface area of each of the plurality of types of solid fuel obtained, the plurality of types of the plurality of types of solid fuels so that the specific surface area in the ash content of the mixture of the plurality of types of solid fuels is below a reference value A step of determining the mixing ratio of the solid fuel (S2: mixing ratio determining step), and a step of mixing the plurality of types of solid fuels and supplying them to the furnace based on the determined mixing ratio (S3: mixing supply step) With.
 当該ボイラーの運転方法に用いられる固体燃料は、ボイラーに使用される燃料であれば特に限定されないが、例えば石炭、汚泥炭化物、バイオマス燃料等を挙げることができる。中でも発熱量が大きく、火力発電プラント等に好適に用いられる石炭が好ましい。 The solid fuel used in the operation method of the boiler is not particularly limited as long as it is a fuel used in the boiler, and examples thereof include coal, sludge carbide, and biomass fuel. Among them, coal that generates a large amount of heat and is preferably used in a thermal power plant or the like is preferable.
 上記石炭の種類は、特に限定されない。当該ボイラーの運転方法では、上記比表面積を基準値以下となるよう上記複数種類の固体燃料の混合割合を決定するので、ポーラス状の灰の付着によって生じる火炉収熱率の低下を抑制できる。つまり、当該ボイラーの運転方法は、比表面積が比較的大きく火炉収熱率を低下させ易い固体燃料を、比表面積が比較的小さく火炉収熱率を低下させ難い固体燃料と混合して使用するため、火炉収熱率の低下を抑制することができる。 The type of coal is not particularly limited. In the operation method of the boiler, since the mixing ratio of the plurality of types of solid fuels is determined so that the specific surface area is equal to or less than a reference value, it is possible to suppress a decrease in furnace heat recovery rate caused by adhesion of porous ash. In other words, the boiler operating method uses a solid fuel having a relatively large specific surface area that is likely to lower the furnace heat recovery rate and a solid fuel that has a relatively small specific surface area and is difficult to reduce the furnace heat recovery rate. Moreover, the fall of the furnace heat recovery rate can be suppressed.
 従って、当該ボイラーの運転方法では、比表面積が比較的大きい石炭等を固体燃料の一部として使用することができる。このような比表面積が比較的大きい石炭としては、例えば無煙炭、瀝青炭、亜瀝青炭、褐炭、高シリカ炭、高カルシウム炭等を挙げることができる。 Therefore, in the operation method of the boiler, coal having a relatively large specific surface area can be used as a part of the solid fuel. Examples of the coal having a relatively large specific surface area include anthracite coal, bituminous coal, subbituminous coal, lignite, high silica coal, and high calcium coal.
(取得工程)
 取得工程(S1)では、複数種類の固体燃料それぞれの灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積を取得する。なお、この取得工程における上記灰分の含有率及び上記灰化後の比表面積の取得は、固体燃料の分析を必須とするものではなく、予め測定された灰分の含有率及び灰化後の比表面積を記憶装置等から参照又はオペレーターが入力するものであってもよい。
(Acquisition process)
In the acquisition step (S1), the ash content of each of the plurality of types of solid fuels and the specific surface area after ashing of the plurality of types of solid fuels are acquired. The acquisition of the ash content and the specific surface area after ashing in this acquisition step does not necessarily require analysis of solid fuel, but the ash content and the specific surface area after ashing measured in advance. May be entered from a storage device or the like or input by an operator.
 固体燃料それぞれの灰分の含有率の測定方法としては、特に限定されないが、例えばJIS-M8812(2006)に準拠した測定方法を用いることができる。また、灰分の含有率は、後述する混合割合と同じベースの値であればよく、無水ベースでも含水ベースでもよいが、混合比の計算が容易となる無水ベースとすることが好ましい。 The method for measuring the ash content of each solid fuel is not particularly limited, and for example, a measuring method based on JIS-M8812 (2006) can be used. The ash content may be the same base value as the mixing ratio described later, and may be an anhydrous base or a water-containing base, but is preferably an anhydrous base that facilitates calculation of the mixing ratio.
 また、上記比表面積の測定方法としては、固体燃料を例えば電気炉等で灰化したものを試料として、JIS-Z8830(2013)に準拠したBET法を用いることができる。測定誤差を低減するために、測定に用いる固体燃料は、燃料として用いられるとき(燃焼時)と略等しい粒度分布としたものを使用することが好ましい。よって、複数種類の固体燃料を混合した後に粉砕する場合には、それぞれの固体燃料を同様に粉砕したものを灰化して比表面積を測定することが好ましい。 In addition, as a method for measuring the specific surface area, a BET method based on JIS-Z8830 (2013) can be used with a solid fuel ashed in an electric furnace or the like as a sample. In order to reduce the measurement error, it is preferable to use a solid fuel used for measurement having a particle size distribution substantially equal to that when used as a fuel (at the time of combustion). Therefore, when pulverizing after mixing a plurality of types of solid fuels, it is preferable to measure the specific surface area by ashing the same pulverized solid fuel.
 また、取得工程(S1)では、上記灰分の測定に加えて、固体燃料それぞれの発熱量の測定値を取得しておくとよい。このように固体燃料それぞれの発熱量を取得しておくことで、後述する混合供給工程(S3)において、ボイラーに投入される混合された固体燃料の熱量が所望量となるように固体燃料の供給量を調整し易いため、ボイラーの運転を効率よく行える。ここで、固体燃料の発熱量とは、例えばJIS-M8814(2003)に準拠した測定方法に従って固体燃料を燃焼させて測定される値である。 In addition, in the acquisition step (S1), in addition to the measurement of the ash content, it is preferable to acquire a measurement value of the calorific value of each solid fuel. By obtaining the calorific value of each solid fuel in this way, in the mixing and supplying step (S3) to be described later, the solid fuel is supplied so that the heat amount of the mixed solid fuel charged into the boiler becomes a desired amount. Since the amount is easy to adjust, the boiler can be operated efficiently. Here, the calorific value of the solid fuel is a value measured by burning the solid fuel in accordance with, for example, a measurement method based on JIS-M8814 (2003).
 また、固体燃料それぞれの灰分の含有率、上記比表面積及び固体燃料の発熱量等は、データとして例えば記憶装置等に記録して保存しておくことが好ましい。このようにデータを保存しておくことで、以後このデータを利用できる。 Further, it is preferable that the ash content of each solid fuel, the specific surface area, the calorific value of the solid fuel, and the like are recorded and stored as data in, for example, a storage device. By storing the data in this way, the data can be used thereafter.
(混合割合決定工程)
 混合割合決定工程(S2)では、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する。この工程は当該ボイラー設備の演算機5により行われる。
(Mixing ratio determination process)
In the mixing ratio determination step (S2), based on the ash content and the specific surface area of each of the plurality of types of solid fuel obtained in the acquisition step, A mixing ratio of the plurality of types of solid fuels is determined so that the specific surface area is equal to or less than a reference value. This step is performed by the calculator 5 of the boiler facility.
 各固体燃料の灰分の質量含有率をWi、各固体燃料の灰化後の比表面積をSi、各固体燃料の混合体全体に対する質量割合をXiとするとき、混合体全体の灰化後の比表面積Sは、下記式(1)により算出できる。なお、上記灰分含有率Wi、比表面積Si及び質量割合Xiの単位は燃料間で統一されていればよく、下記式(1)に示すように、混合体全体の比表面積Sの単位は、各固体燃料の比表面積Siと同じ単位となる。 When the mass content of ash in each solid fuel is Wi, the specific surface area after ashing of each solid fuel is Si, and the mass ratio of each solid fuel to the whole mixture is Xi, the ratio after ashing of the whole mixture The surface area S can be calculated by the following formula (1). In addition, the unit of the said ash content rate Wi, specific surface area Si, and mass ratio Xi should just be unified between fuels, and as shown to following formula (1), the unit of the specific surface area S of the whole mixture is each The unit is the same as the specific surface area Si of the solid fuel.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 混合割合決定工程(S2)では、上記比表面積Sが基準値以下となるよう、上記複数種類の固体燃料の混合割合を決定する。当該ボイラーの運転方法は、上記比表面積Sを基準値以下とすることで、火炉収熱率の低下を抑制できる。 In the mixing ratio determining step (S2), the mixing ratio of the plurality of types of solid fuels is determined so that the specific surface area S is not more than a reference value. The operation method of the boiler can suppress a decrease in the furnace heat recovery rate by setting the specific surface area S to a reference value or less.
 上記比表面積Sは、固体燃料の燃焼により発生する灰の気孔率の尺度となる。気孔率が大きいポーラス状の灰は、ボイラーの伝熱管に付着することで伝熱を阻害し火炉収熱率を低下させると考えられる。このため、上記比表面積Sを基準値以下とすれば、この付着灰の気孔率が小さくなり、断熱性が低減されるので、火炉収熱率の低下を抑制できると考えられる。 The specific surface area S is a measure of the porosity of ash generated by the combustion of solid fuel. Porous ash with a high porosity is considered to adhere to the heat transfer tube of the boiler, thereby inhibiting heat transfer and lowering the furnace heat recovery rate. For this reason, if the specific surface area S is set to a reference value or less, the porosity of the attached ash is reduced and the heat insulation is reduced, so that it is considered that the reduction in the furnace heat recovery rate can be suppressed.
 上記混炭した固体燃料の比表面積Sの基準値としては、5.5m/gが好ましく、5.0m/gがより好ましく、4.7m/gがさらに好ましく、4.5m/gが特に好ましい。上記基準値を上記値より大きくする場合、火炉収熱率が下がり過ぎるため、火炉収熱率の低下が十分に抑制できないおそれがある。 The reference value of the specific surface area S of the solid fuel described above CCS, the imported coal is blended, preferably 5.5 m 2 / g, more preferably 5.0 m 2 / g, more preferably 4.7m 2 / g, 4.5m 2 / g Is particularly preferred. When making the said reference value larger than the said value, since a furnace heat-recovery rate falls too much, there exists a possibility that the fall of a furnace heat-recovery rate cannot fully be suppressed.
 一方、上記混炭した固体燃料の比表面積Sの下限としては、2.5m/gが好ましく、2.8m/gがより好ましく、3.0m/gがさらに好ましい。比表面積Sが上記下限に満たない場合、使用できる固体燃料が限られるので燃料コストが不必要に増大するおそれがある。 Meanwhile, the lower limit of the specific surface area S of the solid fuel described above CCS, the imported coal is blended, preferably 2.5 m 2 / g, more preferably 2.8m 2 / g, 3.0m 2 / g is more preferred. When the specific surface area S is less than the above lower limit, the solid fuel that can be used is limited, so that the fuel cost may increase unnecessarily.
(混合供給工程)
 混合供給工程(S3)では、上記混合割合決定工程(S2)で決定した上記混合割合に基づいて上記複数種類の固体燃料を混合し、粉砕した後に火炉への供給を行う。具体的には、当該ボイラー設備の演算機5により供給量調整装置6を制御し、ホッパー1から混合機2に送られる固体燃料の量をそれぞれ調整する。混合された固体燃料は、粉砕機3で粉砕された後、空気と共にボイラー4に吹き込まれ、燃焼される。
(Mixed supply process)
In the mixing and supplying step (S3), the plurality of types of solid fuels are mixed and pulverized based on the mixing rate determined in the mixing rate determining step (S2), and then supplied to the furnace. Specifically, the supply amount adjusting device 6 is controlled by the calculator 5 of the boiler facility to adjust the amount of solid fuel sent from the hopper 1 to the mixer 2. The mixed solid fuel is pulverized by the pulverizer 3 and then blown into the boiler 4 together with air to be burned.
(利点)
 当該ボイラーの運転方法は、上記比表面積Sを基準値以下となるように複数種類の固体燃料の混合割合を決定するので、伝熱管への付着灰の断熱性が低減されるため、火炉収熱率の低下を抑制することができる。
(advantage)
Since the operation method of the boiler determines the mixing ratio of a plurality of types of solid fuel so that the specific surface area S is not more than a reference value, the heat insulation property of the ash adhering to the heat transfer tube is reduced. A decrease in rate can be suppressed.
<蒸気タービン発電機設備>
 蒸気タービン発電機設備は、蒸気タービン及び発電機を主に備える。
<Steam turbine generator equipment>
The steam turbine generator facility mainly includes a steam turbine and a generator.
 上記蒸気タービンは、蒸気のもつエネルギーを、タービン(羽根車)と軸とを介して回転運動へと変換する外燃機関であり、当該ボイラー設備で生成された蒸気により駆動される。 The steam turbine is an external combustion engine that converts steam energy into rotational motion via a turbine (impeller) and a shaft, and is driven by steam generated by the boiler equipment.
 上記蒸気タービンは、特に限定されないが、例えば高温高圧タービン、高温再熱タービン及び低圧タービンにより構成することができる。この場合、当該ボイラー設備で生成された蒸気は、まず高温高圧タービンを駆動する。高温高圧タービンの駆動により、そのエネルギーを失い温度及び圧力の下がった蒸気は、再び当該ボイラー設備の再熱器により加熱される。この再熱器により加熱された高温蒸気により高温再熱タービンが駆動される。さらに、高温再熱タービンの駆動により、そのエネルギーを失い温度及び圧力の下がった蒸気は、低圧タービンを駆動した後、復水給水設備に導かれる。 The steam turbine is not particularly limited, and can be constituted by, for example, a high-temperature high-pressure turbine, a high-temperature reheat turbine, and a low-pressure turbine. In this case, the steam generated in the boiler facility first drives the high temperature and high pressure turbine. By driving the high-temperature high-pressure turbine, the steam that has lost its energy and dropped in temperature and pressure is heated again by the reheater of the boiler equipment. The high-temperature reheat turbine is driven by the high-temperature steam heated by the reheater. Further, the steam whose temperature and pressure have been lost due to the driving of the high-temperature reheat turbine is guided to the condensate water supply facility after driving the low-pressure turbine.
 この蒸気により駆動された高温高圧タービン、高温再熱タービン及び低圧タービンの動力が発電機を駆動し、電気出力を得る。 The power of the high-temperature high-pressure turbine, high-temperature reheat turbine, and low-pressure turbine driven by this steam drives the generator to obtain electrical output.
<復水給水設備>
 復水給水設備は、復水器、ポンプ、加熱器、及び脱気器を主に備える。
<Condensate water supply equipment>
The condensate water supply facility mainly includes a condenser, a pump, a heater, and a deaerator.
 復水給水設備は、蒸気タービンを駆動した蒸気を復水器により冷却し、復水として回収する。この復水は、ポンプで加圧され、加熱器で加熱され、脱気器で脱気される。この加圧及び加熱された復水は、当該ボイラー設備の給水として当該ボイラー設備の節炭器に供給される。 Condensate water supply equipment cools the steam that drives the steam turbine with a condenser and collects it as condensate. This condensate is pressurized by a pump, heated by a heater, and deaerated by a deaerator. The pressurized and heated condensate is supplied to the economizer of the boiler facility as water supply for the boiler facility.
<利点>
 当該ボイラー設備を用いた火力発電プラントは、当該ボイラーの運転方法を用いるので、火炉収熱率が低下し難い。このため、当該ボイラー設備を用いた火力発電プラントは、安定運用し易い。
<Advantages>
Since the thermal power plant using the boiler equipment uses the operation method of the boiler, the furnace heat recovery rate is unlikely to decrease. For this reason, the thermal power plant using the boiler equipment is easy to operate stably.
[その他の実施形態]
 上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.
 当該ボイラー設備及び当該ボイラー設備の運転方法は、火力発電プラント以外に用いられるボイラー設備に適用されてもよい。 The boiler equipment and the operation method of the boiler equipment may be applied to boiler equipment used other than the thermal power plant.
 また、当該ボイラー設備において、ボイラーの構成は、上記実施形態とは異なるものであってもよい。 Further, in the boiler facility, the configuration of the boiler may be different from that in the above embodiment.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(固体燃料)
 まず、固体燃料として3種類の石炭を準備し、それぞれ少量をサンプリングして、灰分の含有率及びその灰分中の上記灰化後の比表面積を測定した。なお、石炭の灰分の含有率はJIS-M8812(2006)に準拠した測定方法により行って含水ベースの値を算出した。また、比表面積はJIS-Z8830(2013)に準拠して測定した。この結果を表1に示す。
(Solid fuel)
First, three types of coal were prepared as solid fuels, and a small amount of each was sampled to measure the content of ash and the specific surface area after ashing in the ash. The ash content of coal was measured by a measuring method based on JIS-M8812 (2006), and the water content value was calculated. The specific surface area was measured according to JIS-Z8830 (2013). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(No.1~No.7)
 次に、これらの3種類の石炭のうち2種類又は3種類の石炭を用い、表2に示すNo.1~No.7の石炭の混合割合(含水ベース)を選定し、灰化後の比表面積を算出した。また、表2の混合割合になるように石炭を混合した混炭を用いて、発電容量700MWの火力発電プラントの火力ボイラーを一定期間運用し、その期間内の火炉収熱率の平均値を求めた。結果を表2に示す。
(No. 1 to No. 7)
Next, among these three types of coal, two or three types of coal were used. 1-No. The mixing ratio (water-containing base) of coal No. 7 was selected, and the specific surface area after ashing was calculated. In addition, using a coal mixture in which coal is mixed so as to have the mixing ratio shown in Table 2, a thermal boiler of a thermal power plant with a power generation capacity of 700 MW was operated for a certain period, and the average value of the furnace heat recovery rate within that period was obtained. . The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表2において火炉収熱率は、No.1の火炉収熱率に対する比率に換算して規格化した値である。 In Table 2, the furnace heat recovery rate is No. It is the value normalized in terms of the ratio of 1 to the furnace heat recovery rate.
 また、図3に、表2の結果をグラフに示す。図示するように、混合する石炭の種類によらず灰分の比表面積と火炉収熱率とは相関が高く、比表面積を基準値以下とすることで火炉収熱率の低下を抑制できることが分かる。 Also, the results of Table 2 are shown in a graph in FIG. As shown in the figure, the specific surface area of ash and the furnace heat recovery rate are highly correlated regardless of the type of coal to be mixed, and it can be seen that the decrease in the furnace heat recovery rate can be suppressed by setting the specific surface area to a reference value or less.
 また、灰分中の比表面積が5.5m/g以下であるNo.1~No.6は火炉収熱率が0.95を超えるのに対し、比表面積が5.5m/gを超えるNo.7では火炉収熱率が0.95を下回る。このことから、比表面積の基準値を5.5m/gとすることで、0.95以上の高い火炉収熱率が得られることが分かる。 Moreover, No. whose specific surface area in ash is 5.5 m < 2 > / g or less. 1-No. No. 6 has a furnace heat recovery rate exceeding 0.95, while a specific surface area of No. 6 exceeding 5.5 m 2 / g. In 7, the furnace heat recovery rate is less than 0.95. From this, it is understood that a high furnace heat recovery rate of 0.95 or more can be obtained by setting the reference value of the specific surface area to 5.5 m 2 / g.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年4月19日出願の日本特許出願(特願2016-083884)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on April 19, 2016 (Japanese Patent Application No. 2016-083884), the contents of which are incorporated herein by reference.
 以上説明したように、本発明のボイラーの運転方法は、火炉収熱率の低下を抑制できる。従って、当該ボイラーの運転方法を用いたボイラー設備は安定運用し易い。また、当該ボイラーの運転方法を用いたボイラーは火力発電プラントに好適に用いられる。 As described above, the boiler operating method of the present invention can suppress a decrease in the furnace heat recovery rate. Therefore, the boiler equipment using the boiler operating method is easy to operate stably. Moreover, the boiler using the operating method of the said boiler is used suitably for a thermal power plant.
1 ホッパー
2 混合機
3 粉砕機
4 ボイラー
5 演算機
6 供給量調整装置
7 バーナー
S1 取得工程
S2 混合割合決定工程
S3 混合供給工程
DESCRIPTION OF SYMBOLS 1 Hopper 2 Mixer 3 Crusher 4 Boiler 5 Calculator 6 Supply amount adjusting device 7 Burner S1 Acquisition process S2 Mixing ratio determination process S3 Mixing supply process

Claims (5)

  1.  複数種類の固体燃料を混合して燃焼させるボイラーの運転方法であって、
     上記複数種類の固体燃料中の灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積を取得する工程と、
     上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記灰化後の比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程と
     を備えることを特徴とするボイラーの運転方法。
    A method of operating a boiler that mixes and burns multiple types of solid fuel,
    Obtaining the ash content in the plurality of types of solid fuels and the specific surface area after the ashing of the plurality of types of solid fuels;
    Based on the ash content of each of the plurality of types of solid fuel obtained in the acquisition step and the specific surface area after the ashing, the specific surface area after ashing of the whole mixture of the plurality of types of solid fuel is a standard And a step of determining a mixing ratio of the plurality of types of solid fuels so as to be equal to or lower than a value.
  2.  上記基準値が5.5m/gである請求項1に記載のボイラーの運転方法。 The boiler operating method according to claim 1, wherein the reference value is 5.5 m 2 / g.
  3.  上記固体燃料が石炭である請求項1又は請求項2に記載のボイラーの運転方法。 3. The boiler operating method according to claim 1 or 2, wherein the solid fuel is coal.
  4.  火力発電プラントに用いられる請求項1に記載のボイラーの運転方法。 The boiler operating method according to claim 1, which is used in a thermal power plant.
  5.  複数種類の固体燃料を混合して燃焼させるボイラー設備であって、
     異なる種類の上記固体燃料をそれぞれ供給する複数の機構と、
     上記複数の供給機構から供給される複数種類の固体燃料を混合する機構と、
     上記混合機構で混合された固体燃料を粉砕する機構と、
     上記粉砕機構で粉砕された固体燃料を燃焼するボイラーと、
     上記複数種類の固体燃料それぞれの灰分の含有率及び上記複数種類の固体燃料の灰化後の比表面積に基づき、上記複数種類の固体燃料の混合体全体の灰化後の比表面積が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する機構と、
     上記決定機構で決定された上記複数種類の固体燃料の混合割合になるよう上記供給機構から混合機構に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構と
     を備えることを特徴とするボイラー設備。
     
     
    A boiler facility that mixes and burns multiple types of solid fuel,
    A plurality of mechanisms for supplying different types of the above solid fuels;
    A mechanism for mixing a plurality of types of solid fuel supplied from the plurality of supply mechanisms;
    A mechanism for pulverizing the solid fuel mixed by the mixing mechanism;
    A boiler for burning the solid fuel pulverized by the pulverization mechanism;
    Based on the ash content of each of the plurality of types of solid fuels and the specific surface area of the plurality of types of solid fuels after ashing, the specific surface area of the mixture of the plurality of types of solid fuels after ashing is below a reference value A mechanism for determining the mixing ratio of the plurality of types of solid fuels to be
    A mechanism for adjusting the supply amount of each of the plurality of types of solid fuel introduced from the supply mechanism to the mixing mechanism so as to obtain a mixing ratio of the plurality of types of solid fuel determined by the determination mechanism. Boiler equipment.

PCT/JP2017/014921 2016-04-19 2017-04-12 Method for operating boiler and boiler equipment WO2017183529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780023130.9A CN108884991B (en) 2016-04-19 2017-04-12 Method for operating boiler and boiler plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016083884A JP6577407B2 (en) 2016-04-19 2016-04-19 Boiler operation method and boiler equipment
JP2016-083884 2016-04-19

Publications (1)

Publication Number Publication Date
WO2017183529A1 true WO2017183529A1 (en) 2017-10-26

Family

ID=60115936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014921 WO2017183529A1 (en) 2016-04-19 2017-04-12 Method for operating boiler and boiler equipment

Country Status (3)

Country Link
JP (1) JP6577407B2 (en)
CN (1) CN108884991B (en)
WO (1) WO2017183529A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205420A (en) * 2019-07-08 2019-09-06 内蒙古科技大学 High calcium bituminous coal based on ash fusion characteristic is used for the optimization method of blast furnace blowing
JP7471893B2 (en) 2020-03-31 2024-04-22 Ube三菱セメント株式会社 Method and apparatus for reforming coal ash
JP7415894B2 (en) 2020-11-27 2024-01-17 Jfeエンジニアリング株式会社 Fossil fuel alternative fuel transportation system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250708A (en) * 1996-03-14 1997-09-22 Babcock Hitachi Kk Operation method for pulverized coal burn boiler
JP2006084062A (en) * 2004-09-14 2006-03-30 Babcock Hitachi Kk Operation method and device for coal burning furnace
JP2008057892A (en) * 2006-08-31 2008-03-13 Central Res Inst Of Electric Power Ind Coal combustion device and coal combustion method
JP2011013197A (en) * 2009-07-06 2011-01-20 Central Res Inst Of Electric Power Ind Method and system for evaluating coal ash property
JP2011027281A (en) * 2009-07-22 2011-02-10 Kobe Steel Ltd Method for suppressing adhesion of ash and device for suppressing adhesion of ash in boiler
JP2011080727A (en) * 2009-10-09 2011-04-21 Kobe Steel Ltd Method for suppressing adhesion of ash to boiler, and device for suppressing adhesion of ash to the boiler
JP2011226756A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Boiler ash adhesion inhibition method, and boiler ash adhesion inhibition device
WO2013054903A1 (en) * 2011-10-13 2013-04-18 株式会社神戸製鋼所 Mixed coal fuel, combustion method for same, and coal fuel used for mixed coal fuel
JP2013156228A (en) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd Fuel evaluation method and fuel adjustment method for avoiding slagging of low-grade fuel
JP2016006363A (en) * 2014-06-20 2016-01-14 株式会社神戸製鋼所 Boiler ash adhesion restriction method and boiler ash adhesion restriction apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023653A (en) * 1999-07-12 2001-01-26 Toto Ltd Compact solid electrolyte film, solid electrolyte type fuel cell containing the same and manufacture thereof
CN104930534B (en) * 2014-03-19 2017-05-10 湖南宜化化工有限责任公司 Technology reducing carbon content of boiler fly ash

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250708A (en) * 1996-03-14 1997-09-22 Babcock Hitachi Kk Operation method for pulverized coal burn boiler
JP2006084062A (en) * 2004-09-14 2006-03-30 Babcock Hitachi Kk Operation method and device for coal burning furnace
JP2008057892A (en) * 2006-08-31 2008-03-13 Central Res Inst Of Electric Power Ind Coal combustion device and coal combustion method
JP2011013197A (en) * 2009-07-06 2011-01-20 Central Res Inst Of Electric Power Ind Method and system for evaluating coal ash property
JP2011027281A (en) * 2009-07-22 2011-02-10 Kobe Steel Ltd Method for suppressing adhesion of ash and device for suppressing adhesion of ash in boiler
JP2011080727A (en) * 2009-10-09 2011-04-21 Kobe Steel Ltd Method for suppressing adhesion of ash to boiler, and device for suppressing adhesion of ash to the boiler
JP2011226756A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Boiler ash adhesion inhibition method, and boiler ash adhesion inhibition device
WO2013054903A1 (en) * 2011-10-13 2013-04-18 株式会社神戸製鋼所 Mixed coal fuel, combustion method for same, and coal fuel used for mixed coal fuel
JP2013156228A (en) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd Fuel evaluation method and fuel adjustment method for avoiding slagging of low-grade fuel
JP2016006363A (en) * 2014-06-20 2016-01-14 株式会社神戸製鋼所 Boiler ash adhesion restriction method and boiler ash adhesion restriction apparatus

Also Published As

Publication number Publication date
JP6577407B2 (en) 2019-09-18
JP2017194207A (en) 2017-10-26
CN108884991B (en) 2020-09-25
CN108884991A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
CN102472484B (en) Method for suppressing adhesion of ash and device for suppressing adhesion of ash in boiler
Beér High efficiency electric power generation: The environmental role
RU2245446C2 (en) Combined cycle power plant and its operating process
US20120174836A1 (en) Method for reducing adhesion of ash in boiler and device for the same
JP5374453B2 (en) Boiler ash adhesion suppression method and ash adhesion suppression device
WO2017183529A1 (en) Method for operating boiler and boiler equipment
JP2010285564A (en) Coal gasification furnace, method and program for controlling the same, and coal gasification combined power generator equipped with the furnace
JP6568420B2 (en) Boiler operation method and boiler equipment
JP6577405B2 (en) Boiler operation method and boiler equipment
WO2023095579A1 (en) Combustion control method, combustion control device and combustion control program
JP5619674B2 (en) Method and apparatus for suppressing ash adhesion in a heating furnace
Ryabov et al. Application of the technology of combustion of solid fuels in a circulating fluidized bed
EP3415816B1 (en) A method and a system for extending the load range of a power plant comprising a boiler supplying steam to a steam turbine
Peters et al. Acceleration of load changes by controlling the operating parameters in CFB co-combustion
JP2006084062A (en) Operation method and device for coal burning furnace
Lakshminarasimhan et al. High sulfur lignite fired large CFB boilers-design and operating experience
JP5812575B2 (en) Boiler equipment
CN101639226B (en) Method for burning coal in boiler
TW202309391A (en) Ammonia fuel supply unit, power generation plant, and method for operating boiler
Shastri Study of Efficiency Improvement and Optimization in CFB
Higazy et al. Western coal combustion improvement in converted steam generator
Wolff Test of pulverized-fuel-fired boilers at the Lake Shore Station, Cleveland
JP2004197029A (en) Coke dry quenching method
Cushing et al. Direct-Fired Powdered-Fuel Boilers with Well-Type Furnaces at Charles R. Huntley Station
JP2006022224A (en) Method of controlling temperature of high temperature gasification oven

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785868

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785868

Country of ref document: EP

Kind code of ref document: A1