JP2011013197A - Method and system for evaluating coal ash property - Google Patents
Method and system for evaluating coal ash property Download PDFInfo
- Publication number
- JP2011013197A JP2011013197A JP2009160200A JP2009160200A JP2011013197A JP 2011013197 A JP2011013197 A JP 2011013197A JP 2009160200 A JP2009160200 A JP 2009160200A JP 2009160200 A JP2009160200 A JP 2009160200A JP 2011013197 A JP2011013197 A JP 2011013197A
- Authority
- JP
- Japan
- Prior art keywords
- coal ash
- ash
- surface area
- density
- coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010883 coal ash Substances 0.000 title claims abstract description 390
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 228
- 239000002956 ash Substances 0.000 claims abstract description 184
- 230000000694 effects Effects 0.000 claims abstract description 138
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 238000011156 evaluation Methods 0.000 claims description 65
- 239000003245 coal Substances 0.000 claims description 58
- 238000009826 distribution Methods 0.000 claims description 47
- 238000012545 processing Methods 0.000 claims description 21
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 14
- 239000000446 fuel Substances 0.000 claims description 12
- 239000003513 alkali Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 14
- 238000003908 quality control method Methods 0.000 abstract description 9
- 210000004556 brain Anatomy 0.000 description 49
- 238000012360 testing method Methods 0.000 description 32
- 238000002485 combustion reaction Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 21
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 19
- 229910004298 SiO 2 Inorganic materials 0.000 description 19
- 239000004570 mortar (masonry) Substances 0.000 description 17
- 239000004568 cement Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000004567 concrete Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000009795 derivation Methods 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000012886 linear function Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は石炭灰性状の評価方法及び評価システムに関し、特に微粉炭焚きボイラで生成される石炭灰の品質管理を行う場合に適用して有用なものである。 The present invention relates to an evaluation method and evaluation system for coal ash properties, and is particularly useful when applied to quality control of coal ash produced by a pulverized coal-fired boiler.
微粉炭焚き火力発電所のボイラで生成される石炭灰は、現在、セメント用粘土代替材料や建材等へ有効利用されている。ところが、石炭灰のセメント用粘土代替材料等への利用量は、ほぼ限界に達してきている。そこで、石炭灰の新たな用途の拡大が重要な課題となってきている。石炭灰の新たな用途としては、セメント混和剤やコンクリート混和剤への拡大が有望視されている。 Coal ash generated in the boilers of pulverized coal-fired thermal power plants is currently being used effectively for cement clay substitutes and building materials. However, the amount of coal ash used for cement substitute materials for cement has almost reached its limit. Therefore, the expansion of new uses of coal ash has become an important issue. As a new application of coal ash, expansion to cement admixture and concrete admixture is promising.
一方、石炭灰を形成する微粉炭焚き火力発電所においては、様々な産地の石炭が利用されているため、石炭灰の性状も幅広く変化する。このため、上述の如く石炭灰の用途拡大を図るためには、用途に適した性状の石炭灰を供給できるように品質管理を行うことが肝要である。 On the other hand, in pulverized coal-fired thermal power plants that form coal ash, the properties of coal ash vary widely because coal from various production areas is used. For this reason, in order to expand the application of coal ash as described above, it is important to perform quality control so that coal ash having properties suitable for the application can be supplied.
なお、石炭灰の一般的な品質管理に関する公知文献として、例えば特許文献1が存在する。
In addition,
石炭灰の品質管理のためには石炭灰性状を知ることが重要であり、特にその用途としてコンクリート混和剤への適用を考える場合には、その品質管理基準であるコンクリート用フライアッシュJIS A 6201 の規格項目である密度、比表面積、フロー値比及び活性度指数を考慮することが好ましい。これらの性状は、分析装置で測定されているが、事前に予測できれば、品質管理に有用なデータを簡易且つ的確に提供することができ、速やかに用途に適した石炭灰であるか否かを判断できると考えられるからである。 It is important to know the properties of coal ash for quality control of coal ash, and especially when considering application to concrete admixture as its application, the fly ash for concrete JIS A 6201, which is the quality control standard, is used. It is preferable to consider the standard items of density, specific surface area, flow value ratio, and activity index. These properties are measured by an analyzer, but if they can be predicted in advance, data useful for quality control can be provided easily and accurately, and whether or not the coal ash is suitable for use promptly. This is because it can be judged.
しかし、石炭灰の密度等が石炭灰の粒径に影響される等の事実は知られているが、石炭灰の密度、比表面積、フロー値比及び活性度指数と石炭灰性状を特定するパラメータメータとの定量的な関係は知られていない。 However, the fact that the density of coal ash is affected by the particle size of coal ash is known, but the parameters specifying the coal ash density, specific surface area, flow value ratio, activity index and coal ash properties The quantitative relationship with the meter is not known.
かかる定量的な関係を知ることができれば特定の石炭灰に関してはその密度、比表面積、フロー値比及び活性度指数を推算することができる。 If such a quantitative relationship can be known, the density, specific surface area, flow value ratio and activity index can be estimated for a specific coal ash.
本発明は、上述の点に鑑み、石炭灰の密度、比表面積、フロー値比、活性度指数等と石炭灰性状との定量的な関係を明らかにし、石炭灰の品質管理に資することができる石炭灰性状の評価方法及び評価システムを提供することを目的とする。 In view of the above points, the present invention can clarify the quantitative relationship between coal ash density, specific surface area, flow value ratio, activity index, etc. and coal ash properties, and contribute to quality control of coal ash. An object is to provide an evaluation method and an evaluation system for coal ash properties.
上記目的を達成する本発明は次の知見を基礎とするものである。すなわち、石炭灰の密度等は灰粒径に影響されることが知られており、既に測定された灰粒径分布を基に影響項目との相関により様々な石炭灰性状を推算できる可能性がある。また、灰粒径分布は市販の測定装置で簡易に測定でき、石炭灰性状及び強熱減量(以下、未燃分濃度ともいう)に関するデータは、通常、各微粉炭焚き火力発電所で管理データとして測定・保管している。 The present invention that achieves the above object is based on the following knowledge. That is, it is known that the density of coal ash is affected by the ash particle size, and various coal ash properties may be estimated by correlation with the influence items based on the already measured ash particle size distribution. is there. In addition, the ash particle size distribution can be easily measured with a commercially available measuring device. Data on coal ash properties and loss on ignition (hereinafter also referred to as unburned component concentration) is usually managed at each pulverized coal-fired power plant. Measured and stored as
そこで、本発明では、石炭灰性状、灰粒径及び未燃分濃度が既知であることを前提として、石炭灰の品質管理基準の規格項目である密度、比表面積、フロー値比及び活性度指数を推算対象とし、これらに関連する主要な影響項目を抽出するとともに、定量的な相関関係を検討した。 Therefore, in the present invention, assuming that the coal ash properties, the ash particle size and the unburned component concentration are known, the density, specific surface area, flow value ratio and activity index, which are standard items of the quality control standard of coal ash, are assumed. The main impact items related to these were extracted, and quantitative correlation was examined.
かかる検討結果を基礎として上記目的を達成する本発明の第1の態様は、
各石炭灰成分の含有率及び各石炭灰成分の真密度に基づく仮想真密度と、所定の係数を含む各石炭灰成分の含有率とに基づく推算真密度で石炭灰の真密度を代替する一方、所定の係数を含む石炭灰の平均粒径に基づく見かけの空隙率で石炭灰の灰粒子の空隙率を代替して形成した石炭灰の密度を推算するための前記係数が未定の密度推算式に、
石炭灰の密度の実測値と、石炭灰性状から得られる各石炭灰成分の含有率と、各石炭灰成分の真密度と、石炭灰成分の含有率と、石炭灰の粒径分布の実測値から得られる平均粒径とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰の密度を推算するための前記係数が決定された密度推算式を形成し、
さらに評価対象である石炭灰に関する石炭灰性状から得られる各石炭灰成分の含有率と、各石炭灰成分の真密度と、石炭灰成分の含有率と、石炭灰の粒径分布の実測値から得られる平均粒径とを前記係数が決定された密度推算式の対応項目に代入して前記石炭灰の密度を推算することを特徴とする石炭灰性状の評価方法にある。
The first aspect of the present invention that achieves the above-mentioned object based on the results of such examinations
While replacing the true density of coal ash with the estimated true density based on the content of each coal ash component and the virtual true density based on the true density of each coal ash component and the content of each coal ash component including a predetermined coefficient The density estimation formula for determining the density of coal ash formed by substituting the porosity of coal ash particles with the apparent porosity based on the average particle diameter of coal ash including a predetermined coefficient. In addition,
Measured value of coal ash density, content of each coal ash component obtained from coal ash properties, true density of each coal ash component, content of coal ash component, and measured value of particle size distribution of coal ash The average particle size obtained from the above is substituted to create an equation with the coefficient as an unknown, and by solving this equation, the coefficient is determined and the coefficient for estimating the coal ash density is determined. Form a density estimation formula,
Furthermore, from the measured value of each coal ash component content, the true density of each coal ash component, the content rate of the coal ash component, and the particle size distribution of the coal ash obtained from the coal ash properties of the coal ash being evaluated. The coal ash property evaluation method includes estimating the density of the coal ash by substituting the obtained average particle diameter into a corresponding item of the density estimation formula in which the coefficient is determined.
本発明の第2の態様は、第1の態様に記載する石炭灰性状の評価方法において、
石炭灰の粒径分布により求めた体積当たりの粒子表面積を石炭灰の密度で除して得る粒径基準比表面積と、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数とに基づき形成した前記係数が未定の比表面積推算式に、
石炭灰の比表面積の実測値と、石炭灰の粒径分布の実測値より求めた体積当たりの粒子表面積と、石炭灰の密度の推算値又は実測値と、石炭灰中の未燃分濃度の実測値と、前記石炭灰性状から求めた石炭中の灰分含有率と、石炭灰の粒径分布の実測値から求めた表面積平均粒径とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰の比表面積を推算するための前記係数が決定された比表面積推算式を形成し、
さらに評価対象である石炭灰の粒径分布の実測値より求めた体積当たりの粒子表面積と、石炭灰の密度の推算値又は実測値と、石炭灰中の未燃分濃度の実測値と、前記石炭灰性状から求めた石炭中の灰分含有率と、石炭灰の粒径分布の実測値から求めた表面積平均粒径とを前記係数が決定された比表面積推算式の対応項目に代入して前記石炭灰の比表面積を推算することを特徴とする石炭灰性状の評価方法にある。
According to a second aspect of the present invention, in the method for evaluating coal ash properties according to the first aspect,
The particle size standard specific surface area obtained by dividing the particle surface area per volume determined by the particle size distribution of the coal ash by the density of the coal ash, and the unburnt concentration in the coal ash and the ash content in the coal including a predetermined coefficient The coefficient formed based on the apparent shape factor based on the surface area average particle size related to the content rate and the particle size of coal ash is an undetermined specific surface area estimation formula,
The measured value of the specific surface area of coal ash, the particle surface area per volume obtained from the measured value of the particle size distribution of coal ash, the estimated or measured value of the density of coal ash, and the unburned component concentration in the coal ash Create an equation with the coefficient as an unknown by substituting the measured value, the ash content in the coal obtained from the coal ash properties, and the surface area average particle size obtained from the measured value of the particle size distribution of the coal ash. And solving the equation to determine the coefficient to form a specific surface area estimation formula with the coefficient determined to estimate the specific surface area of the coal ash,
Furthermore, the particle surface area per volume obtained from the actual measurement value of the particle size distribution of the coal ash to be evaluated, the estimated value or the actual measurement value of the density of the coal ash, the actual measurement value of the unburned matter concentration in the coal ash, Substituting the ash content in the coal determined from the coal ash properties and the surface area average particle size determined from the measured value of the particle size distribution of the coal ash into the corresponding items of the specific surface area estimation formula in which the coefficient was determined It is in the evaluation method of the coal ash property characterized by estimating the specific surface area of coal ash.
本発明の第3の態様は、第1又は第2の態様に記載する石炭灰性状の評価方法において、
所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数と、所定の係数を含む前記未燃分濃度とに基づき形成した前記係数が未定のフロー値比推算式に、
石炭灰のフロー値比の実測値と、石炭灰中の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値から求めた表面積平均粒径又は推算した見かけの形状係数とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰のフロー値比を推算するための前記係数が決定されたフロー値比推算式を形成し、
さらに評価対象である石炭灰の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値から求めた表面積平均粒径、又は推算した見かけの形状係数とを前記係数が決定されたフロー値比推算式の対応項目に代入して前記石炭灰のフロー値比を推算することを特徴とする石炭灰性状の評価方法にある。
According to a third aspect of the present invention, in the method for evaluating coal ash properties according to the first or second aspect,
The unburned matter containing a predetermined coefficient and an apparent shape factor based on a surface area average particle size related to an unburned content concentration in coal ash, an ash content in coal, and a particle size of coal ash, and the unburned value including the predetermined coefficient Based on the partial concentration, the coefficient formed based on the uncertain flow value ratio estimation formula,
Surface area determined from the actual value of the flow value ratio of coal ash, the actual value of the unburned component concentration in the coal ash, the ash content in the coal determined from the coal ash properties, and the actual value of the particle size distribution of the coal ash Create an equation with the coefficient as an unknown by substituting the average particle size or the estimated apparent shape factor, and determine the coefficient by solving this equation to estimate the flow value ratio of the coal ash Forming a flow value ratio estimation formula in which the coefficient is determined;
Further, the actual value of the unburned component concentration of the coal ash to be evaluated, the ash content in the coal obtained from the coal ash properties, and the surface area average particle size obtained from the measured value of the particle size distribution of the coal ash, or were estimated The method for evaluating the coal ash properties includes substituting the apparent shape factor into a corresponding item of the flow value ratio estimation formula in which the coefficient is determined to estimate the flow value ratio of the coal ash.
本発明の第4の態様は、第1乃至第3の態様の何れか一つに記載する石炭灰性状の評価方法において、
所定の係数を含む石炭灰の比表面積と、石炭灰中の未燃分濃度と、石炭灰中のアルカリ成分の含有率とに基づき形成した前記係数が未定の活性度指数推算式に、
石炭灰の活性度指数の実測値と、石炭灰の比表面積の実測値又は推算値と、石炭灰中の未燃分濃度の実測値とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰の活性度指数を推算するための前記係数が決定された活性度指数推算式を形成し、
さらに評価対象である石炭灰の比表面積の推算値又は実測値と、石炭灰中の未燃分濃度の実測値とを前記係数が決定された活性度指数推算式の対応項目に代入して前記石炭灰の活性度指数を推算することを特徴とする石炭灰性状の評価方法にある。
According to a fourth aspect of the present invention, in the method for evaluating coal ash properties according to any one of the first to third aspects,
The coefficient formed based on the specific surface area of coal ash including a predetermined coefficient, the concentration of unburned coal in coal ash, and the content of alkali components in coal ash is an activity index estimation formula for which the coefficient is undetermined,
Create an equation with the coefficient as an unknown by substituting the measured value of the coal ash activity index, the measured or estimated value of the specific surface area of the coal ash, and the measured value of the unburned fuel concentration in the coal ash. , Solving the equation to determine the coefficient to form an activity index estimation formula with the coefficient determined to estimate the activity index of the coal ash,
Further, the estimated or measured value of the specific surface area of the coal ash to be evaluated and the measured value of the unburned component concentration in the coal ash are substituted into the corresponding items of the activity index estimation formula in which the coefficient is determined. It is in the evaluation method of coal ash properties characterized by estimating the activity index of coal ash.
本発明の第5の態様は、第1乃至第4の態様の何れか一つに記載する石炭灰性状の評価方法において、密度は、係数kd1、kd2、kd3、kd4を決定した式(1)及び(2)を式(3)に代入して得られる密度推算式を用いて求めることを特徴とする石炭灰性状の評価方法にある。 According to a fifth aspect of the present invention, in the coal ash property evaluation method according to any one of the first to fourth aspects, the density is determined by the coefficients kd 1 , kd 2 , kd 3 , and kd 4 . The evaluation method for coal ash properties is characterized in that it is obtained using a density estimation formula obtained by substituting Formulas (1) and (2) into Formula (3).
本発明の第6の態様は、第2乃至第4の態様の何れか一つに記載する石炭灰性状の評価方法において、比表面積は、係数ks1、ks2、ks3、ks4を決定した式(4)及び式(5)を式(6)に代入して得られる比表面積推算式を用いて求めることを特徴とする石炭灰性状の評価方法にある。 According to a sixth aspect of the present invention, in the coal ash property evaluation method according to any one of the second to fourth aspects, the specific surface area is determined by coefficients ks 1 , ks 2 , ks 3 , and ks 4 . In the method for evaluating coal ash characteristics, the specific surface area estimation formula obtained by substituting Formula (4) and Formula (5) into Formula (6) is used.
本発明の第7の態様は、第3又は第4の態様に記載する石炭灰性状の評価方法において、フロー値比は、係数kf1、kf2、kf3を決定した式(7)として得られるフロー値比推算式を用いて求めることを特徴とする石炭灰性状の評価方法にある。 According to a seventh aspect of the present invention, in the coal ash property evaluation method described in the third or fourth aspect, the flow value ratio is obtained as an equation (7) in which coefficients kf 1 , kf 2 , and kf 3 are determined. It is in the evaluation method of the coal ash property characterized by calculating | requiring using the flow value ratio estimation formula.
本発明の第8の態様は、第4の態様に記載する石炭灰性状の評価方法において、活性度指数は、式(8)を式(9)に代入するとともに係数ka1、ka2、ka3、ka4を決定して得られる活性度指数推算式を用いて求めることを特徴とする石炭灰性状の評価方法にある。 According to an eighth aspect of the present invention, in the coal ash property evaluation method described in the fourth aspect, the activity index substitutes the formula (8) into the formula (9) and the coefficients ka 1 , ka 2 , ka 3, in the evaluation method of coal ash properties, characterized in that determined using ka 4 activity index estimating equation obtained by determining the.
本発明の第9の態様は、第1乃至第8の態様の何れか一つに記載する石炭灰性状の評価方法において、各係数は最小自乗法により決定したことを特徴とする石炭灰性状の評価方法にある。 According to a ninth aspect of the present invention, in the coal ash property evaluation method according to any one of the first to eighth aspects, each coefficient is determined by a least square method. It is in the evaluation method.
本発明の第10の態様は、
石炭灰の密度を推算するための密度推算式のデータを記憶している推算式記憶手段と、前記密度推算式に基づき前記密度の推算のための演算処理を行う密度推算手段を備えた演算処理手段とを有するとともに、
前記推算式記憶手段は、各石炭灰成分の含有率及び各石炭灰成分の真密度に基づく仮想真密度と、所定の係数を含む各石炭灰成分の含有率とに基づく推算真密度で石炭灰の真密度を代替する一方、所定の係数を含む石炭灰の平均粒径に基づく見かけの空隙率で石炭灰の灰粒子の空隙率を代替して形成した石炭灰の密度を推算するための前記係数が未定の密度推算式における前記係数を決定して形成した密度推算式のデータを記憶しており、
前記密度推算手段は、評価対象である石炭灰に関する石炭灰性状から得られる各石炭灰成分の含有率と、各石炭灰成分の真密度と、石炭灰成分の含有率と、石炭灰の粒径分布の実測値から得られる平均粒径とを前記密度推算式の対応項目に代入して前記石炭灰の密度を推算するものであることを特徴とする石炭灰性状の評価システムにある。
The tenth aspect of the present invention provides
Arithmetic processing provided with estimation formula storage means storing density estimation formula data for estimating the density of coal ash and density estimation means for performing calculation processing for the density based on the density estimation formula Means,
The estimation formula storage means includes a coal ash having an estimated true density based on a virtual true density based on a content rate of each coal ash component and a true density of each coal ash component, and a content rate of each coal ash component including a predetermined coefficient. For estimating the density of coal ash formed by substituting the porosity of coal ash particles with an apparent porosity based on the average particle diameter of coal ash including a predetermined coefficient The density estimation formula data formed by determining the coefficient in the density estimation formula whose coefficient is undetermined is stored,
The density estimating means includes the content of each coal ash component obtained from the coal ash properties relating to the coal ash to be evaluated, the true density of each coal ash component, the content of the coal ash component, and the particle size of the coal ash. The coal ash property evaluation system is characterized in that the density of the coal ash is estimated by substituting the average particle diameter obtained from the measured value of the distribution into the corresponding item of the density estimation formula.
本発明の第11の態様は、第10の態様に記載する石炭灰性状の評価システムにおいて、
前記推算式記憶手段は、石炭灰の比表面積を推算するための比表面積推算式のデータをさらに記憶するとともに、前記演算処理手段は前記比表面積推算式に基づき前記比表面積の推算のための演算処理を行う比表面積推算手段をさらに備えており、
前記比表面積推算式は、石炭灰の粒径分布により求めた体積当たりの粒子表面積を石炭灰の密度で除して得る粒径基準比表面積と、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数とに基づき形成した前記係数が未定の比表面積推算式における前記係数を決定して形成したものであり、
前記比表面積推算手段は、評価対象である石炭灰の粒径分布の実測値より求めた体積当たりの粒子表面積と、石炭灰の密度の推算値又は実測値と、石炭灰中の未燃分濃度の実測値と、前記石炭灰性状から求めた石炭中の灰分含有率と、石炭灰の粒径分布の実測値から求めた表面積平均粒径とを前記比表面積推算式の対応項目に代入して前記石炭灰の比表面積を推算するものであることを特徴とする石炭灰性状の評価システムにある。
The eleventh aspect of the present invention is the coal ash property evaluation system according to the tenth aspect,
The estimation formula storage means further stores specific surface area estimation formula data for estimating the specific surface area of coal ash, and the calculation processing means calculates for the specific surface area based on the specific surface area estimation formula. It further comprises a specific surface area estimation means for processing,
The specific surface area estimation formula includes a particle size standard specific surface area obtained by dividing the particle surface area per volume determined by the particle size distribution of the coal ash by the density of the coal ash, a predetermined coefficient, and unburned in the coal ash. The coefficient formed based on the partial concentration, the ash content in the coal, and the apparent shape factor based on the average surface area particle size related to the particle size of the coal ash is determined by determining the coefficient in the specific surface area estimation formula to be determined And
The specific surface area estimating means includes a particle surface area per volume obtained from an actual measurement value of a particle size distribution of coal ash to be evaluated, an estimated value or an actual measurement value of the density of coal ash, and an unburned component concentration in the coal ash. Substituting the actual measured value of, the ash content in the coal determined from the coal ash properties, and the average surface area particle size determined from the measured value of the particle size distribution of the coal ash into the corresponding items of the specific surface area estimation formula It is in the coal ash property evaluation system characterized by estimating the specific surface area of the coal ash.
本発明の第12の態様は、第10又は第11の態様に記載する石炭灰性状の評価システムにおいて、
前記推算式記憶手段は、石炭灰のフロー値比を推算するためのフロー値比推算式のデータをさらに記憶するとともに、前記演算処理手段は前記フロー値比推算式に基づき前記フロー値比の推算のための演算処理を行うフロー値比推算手段をさらに備えており、
前記フロー値比推算式は、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数と、所定の係数を含む前記未燃分濃度とに基づき形成した前記係数が未定のフロー値比推算式における前記係数を決定して形成したものであり、
前記フロー値比推算手段は、評価対象である石炭灰の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値から求めた表面積平均粒径、又は推算した見かけの形状係数及び前記未燃分濃度の実測値を前記フロー値比推算式の対応項目に代入して前記石炭灰のフロー値比を推算するものであることを特徴とする石炭灰性状の評価システムにある。
The twelfth aspect of the present invention is the coal ash property evaluation system according to the tenth or eleventh aspect,
The estimation formula storage means further stores data of a flow value ratio estimation formula for estimating the flow value ratio of coal ash, and the calculation processing means estimates the flow value ratio based on the flow value ratio estimation formula. A flow value ratio estimating means for performing an arithmetic process for
The flow value ratio estimation formula includes a predetermined coefficient and an apparent shape factor based on an unburned component concentration in coal ash, an ash content in coal, and a surface area average particle size related to the particle size of coal ash, and The coefficient formed based on the unburned component concentration including a predetermined coefficient is determined by determining the coefficient in the undetermined flow value ratio estimation formula,
The flow value ratio estimating means is a surface area obtained from an actual measurement value of an unburned component concentration of coal ash to be evaluated, an ash content in coal obtained from the coal ash properties, and an actual measurement value of a particle size distribution of coal ash. The average particle size, or the estimated apparent shape factor and the actual measured value of the unburned component concentration are substituted into the corresponding item of the flow value ratio estimation formula, and the flow value ratio of the coal ash is estimated. It is in the evaluation system of coal ash properties.
本発明の第13の態様は、第10乃至第12の態様の何れか一つに記載する石炭灰性状の評価システムにおいて、
前記推算式記憶手段は、石炭灰の活性度指数を推算するための活性度指数推算式のデータをさらに記憶するとともに、前記演算処理手段は前記活性度指数推算式に基づき前記活性度指数の推算のための演算処理を行う活性度指数推算手段をさらに備えており、
前記活性度指数推算式は、所定の係数を含む石炭灰の比表面積と、石炭灰中の未燃分濃度と、石炭灰中のアルカリ成分の含有率とに基づき形成した前記係数が未定の活性度指数推算式における前記係数を決定して形成したものであり、
前記活性度指数推算手段は、評価対象である石炭灰の比表面積の推算値又は実測値と、石炭灰中の未燃分濃度の実測値とを前記活性度指数推算式の対応項目に代入して前記石炭灰の活性度指数を推算するものであることを特徴とする石炭灰性状の評価システムにある。
A thirteenth aspect of the present invention is the coal ash property evaluation system according to any one of the tenth to twelfth aspects,
The estimation formula storage means further stores data of an activity index estimation formula for estimating the activity index of coal ash, and the calculation processing means estimates the activity index based on the activity index estimation formula Further comprising activity index estimation means for performing arithmetic processing for
The activity index estimation formula is based on the specific surface area of coal ash including a predetermined coefficient, the unburned component concentration in coal ash, and the content of the alkali component in coal ash. It is formed by determining the coefficient in the degree index estimation formula,
The activity index estimating means substitutes the estimated value or actual value of the specific surface area of the coal ash to be evaluated and the actual value of the unburned component concentration in the coal ash into the corresponding items of the activity index estimation formula. The coal ash property evaluation system estimates the activity index of the coal ash.
本発明の第14の態様は、第10乃至第13の態様の何れか一つに記載する石炭灰性状の評価システムにおいて、密度推算式は、係数kd1、kd2、kd3、kd4を決定した式(1)及び(2)を式(3)に代入して得られるものであることを特徴とする石炭灰性状の評価システムにある。 According to a fourteenth aspect of the present invention, in the coal ash property evaluation system according to any one of the tenth to thirteenth aspects, the density estimation formula includes coefficients kd 1 , kd 2 , kd 3 , kd 4 . The evaluation system for coal ash properties is obtained by substituting the determined equations (1) and (2) into equation (3).
本発明の第15の態様は、第11乃至第13の態様の何れか一つに記載する石炭灰性状の評価システムにおいて、比表面積推算式は、係数ks1、ks2、ks3、ks4を決定した式(4)及び式(5)を式(6)に代入して得られるものであることを特徴とする石炭灰性状の評価システムにある。 A fifteenth aspect of the present invention is the coal ash property evaluation system according to any one of the eleventh to thirteenth aspects, wherein the specific surface area estimation formula is a coefficient ks 1 , ks 2 , ks 3 , ks 4. The evaluation system for coal ash properties is obtained by substituting Equation (4) and Equation (5) for determining Equation (6) into Equation (6).
本発明の第16の態様は、第12又は第13の態様に記載する石炭灰性状の評価システムにおいて、フロー値比推算式は、係数kf1、kf2、kf3を決定した式(7)として得られるものであることを特徴とする石炭灰性状の評価システムにある。 According to a sixteenth aspect of the present invention, in the coal ash property evaluation system described in the twelfth or thirteenth aspect, the flow value ratio estimation expression is an expression (7) in which coefficients kf 1 , kf 2 , and kf 3 are determined. It is in the evaluation system of the coal ash property characterized by what is obtained as follows.
本発明の第17の態様は、第13の態様に記載する石炭灰性状の評価システムにおいて、活性度指数推算式は、式(8)を式(9)に代入するとともに係数ka1、ka2、ka3、ka4を決定して得られるものであることを特徴とする石炭灰性状の評価システムにある。 According to a seventeenth aspect of the present invention, in the coal ash property evaluation system described in the thirteenth aspect, the activity index estimation formula substitutes the formula (8) into the formula (9) and the coefficients ka 1 and ka 2. , Ka 3 , and ka 4 are determined to obtain the coal ash property evaluation system.
本発明によれば、評価対象である石炭灰の石炭灰性状、灰粒径及び未燃分濃度が既知であることを前提に、石炭灰の密度、比表面積、フロー値比及び活性度指数を規定する重要な影響項目を抽出し、各影響項目との量的な関係を所定の係数を含む相関式として表し、各相関式の係数を石炭灰に関する既存のデータで決定したので、前記相関式に基づき特定のボイラにおいて燃焼させる石炭による石炭灰の密度、比表面積、フロー値比及び活性度指数を的確に表す推算式を形成することができる。 According to the present invention, the coal ash density, specific surface area, flow value ratio, and activity index of coal ash are assumed on the assumption that the coal ash properties, ash particle size, and unburned component concentration of the coal ash to be evaluated are known. The important impact items to be specified are extracted, the quantitative relationship with each impact item is expressed as a correlation equation including a predetermined coefficient, and the coefficient of each correlation equation is determined by existing data on coal ash. Based on the above, it is possible to form an estimation formula that accurately represents the density, specific surface area, flow value ratio, and activity index of coal ash by coal burned in a specific boiler.
この結果、石炭灰性状、灰粒径及び未燃分濃度に基づき各推算式により密度を推算し、推算密度を用いて比表面積、フロー値比及び活性度指数を逐次推算することができ、石炭灰性状の評価に資するデータを提供することができる。 As a result, the density can be estimated by each estimation formula based on the coal ash properties, ash particle size and unburned content concentration, and the specific surface area, flow value ratio and activity index can be estimated sequentially using the estimated density. Data contributing to the evaluation of ash properties can be provided.
以下、本発明の実施の形態を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本形態は、評価対象である石炭灰の石炭灰性状、灰粒径及び未燃分濃度が既知であることを前提に、石炭灰の密度、比表面積(以下、ブレーン値と称する)、フロー値比及び活性度指数を所定の推算式により求めることで前記石炭灰の性状を評価するものである。すなわち、石炭灰の密度を規定する重要な影響項目が、石炭灰の灰粒径及び灰組成であるという知見を得、前記影響項目と前記密度との定量的な関係を所定の係数を媒介として所定の推算式により定量的に表わした。 This form is based on the assumption that the coal ash properties, ash particle size, and unburned component concentration of the coal ash to be evaluated are known, the density of the coal ash, the specific surface area (hereinafter referred to as the brane value), and the flow value. The property of the coal ash is evaluated by obtaining the ratio and the activity index by a predetermined estimation formula. That is, the knowledge that the important influential items that define the density of coal ash are the ash particle size and ash composition of coal ash is obtained, and the quantitative relationship between the influential items and the density is mediated by a predetermined coefficient. It was expressed quantitatively by a predetermined estimation formula.
同様に、ブレーン値を規定する重要な影響項目が、石炭灰の灰粒径、石炭灰中の未燃分濃度、石炭中の灰分含有率である、フロー値比を規定する重要な影響項目が、石炭灰の灰粒子形状、石炭灰中の未燃分濃度である、活性度指数を規定する重要な影響項目が、ブレーン値、石炭灰中の未燃分濃度、塩基成分であるという知見を得、それぞれの影響項目と前記ブレーン値、フロー値比及び活性度指数との定量的な関係を所定の係数を媒介としてそれぞれ所定の推算式により定量的に表わした。 Similarly, the important impact items that define the flow value ratio are the important impact items that define the brane value: the ash particle size of coal ash, the unburnt concentration in coal ash, and the ash content in coal. , Ash particle shape of coal ash, unburned component concentration in coal ash, important influence items that define the activity index are brane value, unburned component concentration in coal ash, base component The quantitative relationship between each influence item and the brain value, flow value ratio, and activity index was quantitatively expressed by a predetermined estimation formula using a predetermined coefficient as a medium.
本形態における評価項目である密度、ブレーン値、フロー値比及び活性度指数とそれぞれの重要な影響項目との関係を図1に示す。 FIG. 1 shows the relationship among density, brain value, flow value ratio and activity index, which are evaluation items in this embodiment, and respective important influence items.
本形態では、図1に矢印で示すように、推算した密度を利用してブレーン値を推算するとともに、推算したブレーン値を利用してフロー値比及び活性度指数を推算する。 In this embodiment, as indicated by arrows in FIG. 1, the brane value is estimated using the estimated density, and the flow value ratio and the activity index are estimated using the estimated brain value.
そこで、先ず特定の石炭灰に関しその粒径分布及びJIS A 6201に規定されている強熱減量(灰中の未燃分濃度)、密度、ブレーン値、フロー値比、活性度指数を測定しておく。ここで、粒径分布は、光回折・散乱法を用いた装置により測定した。未燃分濃度、密度、ブレーン値、フロー値比及び活性度指数はJISに規定された方法により求めた。ブレーン値は、石炭灰層に空気を透過させた時の圧力損失より測定するブレーン法を用いて測定されたものであり、真の灰粒子の外表面積を示すものではない。また、本形態における推算式の形成に利用する石炭灰性状(灰組成等)は既知のデータを利用する。 Therefore, first, by measuring the particle size distribution and ignition loss (unburned component concentration in ash), density, brane value, flow value ratio, and activity index specified in JIS A 6201 for a specific coal ash. deep. Here, the particle size distribution was measured by an apparatus using a light diffraction / scattering method. The unburned component concentration, density, brane value, flow value ratio, and activity index were determined by the methods defined in JIS. The brane value is measured using the brane method, which is measured from the pressure loss when air is passed through the coal ash layer, and does not indicate the outer surface area of the true ash particles. Moreover, known data is used for the coal ash property (ash composition etc.) utilized for formation of the estimation formula in this form.
ここで、本形態における密度、ブレーン値、フロー値比及び活性度指数の具体的な推算式及びこれらを用いた評価方法について各項目毎に説明する。 Here, a specific estimation formula of density, brain value, flow value ratio, and activity index in this embodiment and an evaluation method using these will be described for each item.
1.密度
石炭灰の密度を規定する重要な影響項目が石炭灰の灰粒径及び灰組成であることを利用して、これらの影響項目と前記密度との定量的な関係を所定の係数を媒介として定量的に表わすことにより式(10)を得る。
1. Density Utilizing the fact that the important influential items that define the density of coal ash are the ash particle size and ash composition of coal ash, the quantitative relationship between these influential items and the density is mediated by a predetermined coefficient. Expression (10) is obtained by expressing quantitatively.
上式(10)における推算真密度は、石炭灰性状により求まる各石炭灰成分の含有率及び各石炭灰成分の真密度を利用した石炭灰の仮想真密度と、所定の係数を含む各石炭灰成分の含有率との積により式(11)として得られる。 The estimated true density in the above equation (10) is calculated based on the coal ash component content rate and the virtual true density of coal ash using the true density of each coal ash component, and each coal ash including a predetermined coefficient. It is obtained as equation (11) by the product with the component content.
ここで、灰成分は、組成分析での成分より、SiO2(2.2)、3Al2O3(3.1)、Fe2O3(5.2)、CaO(3.4)、MgO(3.7)、P3O4(2.4)、TiO2(4.2)、Na2O(2.3)、K2O(2.4)を用いて近似した。括弧内は設定した真密度である。また、上式(11)において仮想真密度は、次式で求められる。 Here, the ash component is SiO 2 (2.2), 3Al 2 O 3 (3.1), Fe 2 O 3 (5.2), CaO (3.4), MgO based on the components in the composition analysis. (3.7), P 3 O 4 (2.4), TiO 2 (4.2), Na 2 O (2.3), K 2 O (2.4) were used for approximation. The set true density is in parentheses. In the above equation (11), the virtual true density is obtained by the following equation.
一方、上式(10)における見かけの空隙率は、石炭灰粒子の粒径分布に基づく灰の体積平均粒径に所定の係数をかけることにより式(12)として得られる。 On the other hand, the apparent porosity in the above equation (10) is obtained as equation (12) by multiplying the volume average particle size of ash based on the particle size distribution of coal ash particles by a predetermined coefficient.
この結果、式(11)で求めた推算真密度と式(12)で求めた見かけの空隙率を式(10)に代入することで所定の係数が不定ではあるが、石炭灰の密度を表わす仮の密度推算式を得る。 As a result, by substituting the estimated true density obtained by Expression (11) and the apparent porosity obtained by Expression (12) into Expression (10), the predetermined coefficient is indefinite, but represents the density of coal ash. A temporary density estimation formula is obtained.
かかる仮の密度推算式は、石炭灰の密度を与える理論式(後に詳述する)における石炭灰の真密度を式(11)の推算真密度で代替するとともに、空隙率を式(12)の見かけの空隙率で代替したものとなっている。 This temporary density estimation formula replaces the true density of coal ash in the theoretical formula (detailed later) giving the density of coal ash with the estimated true density of formula (11), and the porosity is calculated by formula (12). It is a substitute for the apparent porosity.
本形態では、式(10)に式(11)、(12)を代入した仮の推算式の各係数kd1、kd2、kd3、kd4を決定することにより密度推算式を完成する。すなわち、石炭灰の密度の実測値と、石炭灰性状から得られる各石炭灰成分の含有率及び各石炭灰成分の真密度と、石炭灰の粒子分布の実測値とを前記仮の密度推算式に代入して前記係数kd1、kd2、kd3、kd4を未知数とする方程式を作成し、この方程式を解くことにより前記係数kd1、kd2、kd3、kd4を決定する。この係数kd1、kd2、kd3、kd4の決定に際しては最小自乗法を適用する。 In this embodiment, the density estimation formula is completed by determining the coefficients kd 1 , kd 2 , kd 3 , and kd 4 of the temporary estimation formula obtained by substituting the formulas (11) and (12) into the formula (10). That is, the measured density value of coal ash, the content of each coal ash component obtained from the coal ash properties, the true density of each coal ash component, and the measured value of the particle distribution of coal ash are calculated using the provisional density estimation formula. Is substituted for the above-mentioned coefficients kd 1 , kd 2 , kd 3 , kd 4 and the equations kd 1 , kd 2 , kd 3 , kd 4 are determined by solving these equations. The least square method is applied to determine the coefficients kd 1 , kd 2 , kd 3 , and kd 4 .
評価対象である石炭灰の密度は、係数kd1、kd2、kd3、kd4を決定することにより形成された密度推算式を用い、当該石炭灰に関する各灰成分の含有率、各灰成分の真密度、SiO2の含有率、Al2O3の含有率及び体積平均粒径を前記密度推算式の対応項目に代入して推算する。ここで、各灰成分の含有率、各灰成分の真密度、SiO2の含有率、Al2O3の含有率及び体積平均粒径は、当該石炭灰に関する石炭灰性状及び粒子分布の実測値に基づいて求める。 The density of the coal ash to be evaluated is determined based on the density estimation formula formed by determining the coefficients kd 1 , kd 2 , kd 3 , and kd 4. The true density, the SiO 2 content, the Al 2 O 3 content, and the volume average particle size are substituted into the corresponding items of the density estimation formula for estimation. Here, the content rate of each ash component, the true density of each ash component, the content rate of SiO 2 , the content rate of Al 2 O 3 and the volume average particle size are measured values of coal ash properties and particle distribution regarding the coal ash. Ask based on.
2.ブレーン値
ブレーン値を規定する重要な影響項目が、石炭灰の灰粒径、石炭灰中の未燃分濃度、石炭中の灰分含有率であることを明らかにし、これらの影響項目と前記ブレーン値との定量的な関係を所定の係数を媒介として所定の推算式により定量的に表わすことにより式(13)を得る。
2. Brain value Clarified that the important impact items that define the brane value are the ash particle size of coal ash, the unburned component concentration in coal ash, and the ash content in the coal ash. Equation (13) is obtained by quantitatively expressing the quantitative relationship with the above by a predetermined estimation formula using a predetermined coefficient as a medium.
上式(13)における粒径基準比表面積は、石炭灰の粒径分布により求めた体積当たりの表面積を石炭灰の密度で除して式(14)として得られる。 The particle size reference specific surface area in the above equation (13) is obtained as equation (14) by dividing the surface area per volume determined by the particle size distribution of coal ash by the density of coal ash.
ここで、体積当たりの粒子表面積は粒子分布より形状が球と仮定して算出している。 Here, the particle surface area per volume is calculated from the particle distribution on the assumption that the shape is a sphere.
一方、上式(13)における見かけの形状係数は、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく値として式(15)で得られる。 On the other hand, the apparent shape factor in the above equation (13) includes a predetermined factor and is based on the surface area average particle size related to the unburned component concentration in coal ash, the ash content in coal ash, and the particle size of coal ash. The value is obtained by equation (15).
この結果、式(14)で求めた粒径基準比表面積と式(15)で求めた見かけの形状係数を式(13)に代入することで所定の係数が不定ではあるが、石炭灰のブレーン値を表わす仮のブレーン値推算式を得る。 As a result, the predetermined coefficient is indefinite by substituting the particle size reference specific surface area obtained by Equation (14) and the apparent shape factor obtained by Equation (15) into Equation (13). A temporary brain value estimation formula representing the value is obtained.
本形態では、式(13)に式(14)、(15)を代入した仮のブレーン値推算式の各係数ks1、ks2、ks3、ks4を決定することによりブレーン値推算式を形成する。すなわち、石炭灰の比表面積の実測値と、石炭灰の粒径分布の実測値及び石炭灰の密度により求めた粒径基準比表面積と、石炭灰中の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値により求めた表面積平均粒径を前記仮のブレーン値推算式に代入して前記係数ks1、ks2、ks3、ks4を未知数とする方程式を作成し、この方程式を解くことにより前記係数ks1、ks2、ks3、ks4を決定する。この係数ks1、ks2、ks3、ks4の決定に関しては最小自乗法を適用する。 In this embodiment, the brain value estimation formula is determined by determining the coefficients ks 1 , ks 2 , ks 3 , and ks 4 of the provisional brain value estimation formula obtained by substituting the formulas (14) and (15) into the formula (13). Form. That is, the measured value of the specific surface area of coal ash, the measured value of the particle size distribution of coal ash and the particle size standard specific surface area obtained from the density of coal ash, the measured value of unburned matter concentration in coal ash, the coal The coefficients ks 1 , ks 2 , ks 3 are obtained by substituting the ash content in the coal determined from the ash properties and the surface area average particle size obtained from the measured value of the particle size distribution of the coal ash into the provisional brane value estimation formula , Ks 4 is created as an unknown, and the coefficients ks 1 , ks 2 , ks 3 , ks 4 are determined by solving this equation. The least square method is applied to the determination of the coefficients ks 1 , ks 2 , ks 3 , and ks 4 .
評価対象である石炭灰のブレーン値は、係数ks1、ks2、ks3、ks4を決定することにより形成されたブレーン値推算式を用い、当該石炭灰に関する体積当たりの粒子表面積、密度、未燃分濃度、灰分含有率及び表面積平均粒径を前記ブレーン値推算式の対応項目に代入して推算する。ここで、当該石炭灰の体積当たりの粒子表面積、密度、未燃分濃度、灰分含有率及び表面積平均粒径は、石炭灰性状、粒子分布の実測値、密度の推算値、未燃分濃度の実測値に基づいて求める。また、石炭灰の密度に関してはその実測値を利用することもできるが、上述の如く密度推算式を用いて密度を推算しているのでこの推算値を用いるのが合理的である。 The brane value of the coal ash to be evaluated is calculated using the brane value estimation formula formed by determining the coefficients ks 1 , ks 2 , ks 3 , and ks 4 . The unburned component concentration, the ash content rate, and the surface area average particle size are substituted into the corresponding items of the brain value estimation formula for estimation. Here, the particle surface area per volume of the coal ash, the density, the unburned content concentration, the ash content and the surface area average particle size are the coal ash properties, the measured particle distribution value, the estimated density value, the unburned content concentration Obtained based on actual measurement values. Moreover, although the measured value can be utilized regarding the density of coal ash, since the density is estimated using the density estimation formula as described above, it is reasonable to use this estimated value.
3.フロー値比
フロー値比を規定する重要な影響項目が、石炭灰の灰粒子形状、石炭灰中の未燃分濃度であることを明らかにし、これらの影響項目と前記フロー値比との定量的な関係を所定の係数を媒介として所定の推算式により定量的に表わすことにより式(16)を得る。
3. Flow value ratio It is clarified that the important influential items that define the flow value ratio are the ash particle shape of coal ash and the unburned component concentration in the coal ash. Equation (16) is obtained by quantitatively expressing such a relationship by a predetermined estimation formula using a predetermined coefficient as a medium.
式(16)においては所定の係数が不定ではあるが、石炭灰のフロー値比を表わす仮のフロー値比推算式を得る。ここで、見かけの形状係数及び未燃分濃度はブレーン値の推算の際に式(15)で求めてあり、未燃分濃度も求めてあるのでこれらを利用して各係数kf1、kf2、kf3を未知数とする方程式を作成し、この方程式を解くことにより前記係数kf1、kf2、kf3を決定する。この係数kf1、kf2、kf3の決定に関しては最小自乗法を適用する。 In formula (16), although the predetermined coefficient is indefinite, a provisional flow value ratio estimation formula representing the flow value ratio of coal ash is obtained. Here, the apparent shape factor and the unburned component concentration are obtained by the equation (15) when the brane value is estimated, and the unburned component concentration is also obtained. Therefore, the coefficients kf 1 and kf 2 are used. , Kf 3 is an unknown equation, and the coefficients kf 1 , kf 2 , and kf 3 are determined by solving this equation. The least square method is applied for determining the coefficients kf 1 , kf 2 , and kf 3 .
評価対象であるフロー値比は、係数kf1、kf2、kf3を決定することにより形成されたフロー値比推算式を用い、当該石炭灰に関する見かけの形状係数及び未燃分濃度を前記フロー値比推算式の対応項目に代入して推算する。ここで、見かけの形状係数はブレーン値の推算の際に求めた推算値(式(15)参照)を、また未燃分濃度はブレーン値の推算の際に適用した実測値をそれぞれ用いることができる。 The flow value ratio to be evaluated is the flow value ratio estimation formula formed by determining the coefficients kf 1 , kf 2 , kf 3, and the apparent shape factor and unburned component concentration related to the coal ash Substituting into the corresponding item of the value ratio estimation formula, and estimating. Here, the apparent shape factor is the estimated value (see formula (15)) obtained when the brane value is estimated, and the unburned fuel concentration is the measured value applied when the brane value is estimated. it can.
4.活性度指数
活性度指数を規定する重要な影響項目が、ブレーン値、石炭灰中の未燃分濃度、塩基成分であることをそれぞれ明らかにし、これらの影響項目と前記活性度指数との定量的な関係を所定の係数を媒介として所定の推算式により定量的に表わすことにより式(17)を得る。
4). Activity index It is clarified that the important influence items that define the activity index are the brane value, the unburned component concentration in the coal ash, and the base component, respectively. Equation (17) is obtained by quantitatively expressing such a relationship by a predetermined estimation formula using a predetermined coefficient as a medium.
上式(17)における灰アルカリ成分含有率は石炭灰性状に基づき次式(18)により求まる。 The ash alkali component content in the above formula (17) is obtained by the following formula (18) based on the coal ash properties.
この結果、式(18)で求めた灰アルカリ成分含有率を式(17)に代入することで所定の係数が不定ではあるが、石炭灰の活性度指数を表わす仮の活性度指数推算式を得る。ここで、ブレーン値は既に推算されており、また未燃分濃度もブレーン値の推算の際に求めてあるのでこれらを利用するとともに石炭灰性状から求まる灰中アルカリ成分含有率を利用して各係数ka1、ka2、ka3、ka4を未知数とする方程式を作成し、この方程式を解くことにより前記係数ka1、ka2、ka3、ka4を決定する。この係数ka1、ka2、ka3、ka4の決定に関しては最小自乗法を適用する。 As a result, by substituting the ash / alkaline component content obtained in equation (18) into equation (17), the predetermined coefficient is indefinite, but a temporary activity index estimation formula representing the activity index of coal ash is obtained. obtain. Here, the brane value has already been estimated, and the unburned component concentration has also been determined at the time of the estimation of the brane value. Therefore, these values are used and the alkali component content in the ash determined from the coal ash properties is used. An equation having coefficients ka 1 , ka 2 , ka 3 , and ka 4 as unknowns is created, and the coefficients ka 1 , ka 2 , ka 3 , and ka 4 are determined by solving this equation. The least square method is applied to the determination of the coefficients ka 1 , ka 2 , ka 3 , and ka 4 .
評価対象である石炭灰の活性度指数は、係数ka1、ka2、ka3、ka4を決定することにより形成された活性度指数推算式を用い、当該石炭灰に関するブレーン値、未燃分濃度及び灰中アルカリ成分含有率を前記活性度指数推算式の対応項目に代入して推算する。ここで、ブレーン値はその推算値(式(13)参照)を、また未燃分濃度はブレーン値の推算の際に適用した実測値をそれぞれ用いるとともに、灰中アルカリ成分含有率は石炭灰性状に基づいて求める。 The activity index of the coal ash to be evaluated is calculated using the activity index estimation formula formed by determining the coefficients ka 1 , ka 2 , ka 3 , and ka 4. The concentration and the alkali component content in the ash are estimated by substituting them into the corresponding items of the activity index estimation formula. Here, the brane value is the estimated value (see equation (13)), the unburned component concentration is the actual value applied in the estimation of the brane value, and the alkali component content in the ash is the coal ash property. Ask based on.
図2は本発明の実施の形態に係る石炭灰性状の評価システムを示すブロック線図である。同図に示すように、本形態に係る石炭灰性状の評価システム1は、演算処理部2と、推算式記憶部3と、入力装置4と出力装置5とを有している。ここで、演算処理部2は、密度推算部6、ブレーン値演推算部7、フロー値比推算部8及び活性度指数推算部9を有しており、推算式記憶部3に記憶されている各推算式に基づき所定の演算を行うことにより評価対象となっている石炭灰の密度、ブレーン値、フロー値比及び活性度指数を推算してそれぞれの推算値に関する情報を出力装置5に出力する。
FIG. 2 is a block diagram showing a coal ash property evaluation system according to an embodiment of the present invention. As shown in FIG. 1, the coal ash
入力装置4からは、評価対象となっている石炭灰の石炭灰性状、灰粒径及び未燃分濃度に関する情報が演算処理部2に供給される。ここで、推算式記憶部3には、式(10)乃至(12)に示す密度の推算に関する式、式(13)乃至(15)に示すブレーン値の推算に関する式、式(16)に示すフロー値比の推算に関する式、式(17)及び(18)に示す活性度指数に関する式の情報がそれぞれ記憶されており、各推算部6乃至9での所定の推算処理のための推算式に関する情報を提供している。このとき、各式における係数kd1乃至kd4、ks1乃至ks4、kf1乃至kf3、ka1乃至ka4は前述の如き最小自乗法による演算により別途与えられている。
From the
そこで、密度推算部6は、式(10)乃至(12)に基づく所定の演算を行うことで石炭灰の密度を推算する。ブレーン値推算部7は、密度推算部6が推算した密度を利用して式(13)乃至(15)に基づく所定の演算を行うことで石炭灰のブレーン値を推算する。フロー値比推算部8は、ブレーン値推算部7が推算した見かけの形状係数を利用して式(16)に基づく所定の演算を行うことで石炭灰のフロー値比を推算する。活性度指数推算部9は、ブレーン値推算部7が推算したブレーン値を利用して式(17)乃至(18)に基づく所定の演算を行うことで石炭灰の活性度指数を推算する。
Therefore, the
かかる一連の情報処理はプログラムとして作成したものを演算処理部2に読み込んで実行可能としても良いし、また各機能ブロックとして実装した電子回路の処理で実行しても良い。
Such a series of information processing may be executed by reading a program created as a program into the
上述の如き推算式は次のような試験及びこの試験結果の分析に基づく知見を基礎とするものである。そこで、本発明の基礎となった試験及びその分析結果に基づく推算式の導出過程に関して説明しておく。 The estimation formula as described above is based on knowledge based on the following test and analysis of the test result. Therefore, the test that is the basis of the present invention and the process of deriving the estimation formula based on the analysis result will be described.
〔試験装置及び試験方法〕
<石炭燃焼特性実証試験装置>
本試験に使用した石炭燃焼特性実証試験装置(以下、実証試験装置と略称する)の構成を図3に示す。同図に示すように本実証試験装置は、微粉炭製造装置、火炉、脱硝装置、電気集じん器(EP)、脱硫装置及び除害設備(ガスクーラ、バグフィルタ及びアルカリ洗浄塔)から構成されている。微粉炭製造装置では、原炭ホッパに貯蔵された石炭を粉砕し、ビンに貯蔵する。試験時には、微粉炭が空気搬送され、燃焼用2次・3次空気及び二段燃焼用空気によって火炉内で燃焼する。
[Test equipment and test method]
<Coal combustion characteristics demonstration test device>
FIG. 3 shows the configuration of a coal combustion characteristics demonstration test apparatus (hereinafter abbreviated as a demonstration test apparatus) used in this test. As shown in the figure, this demonstration test equipment is composed of pulverized coal production equipment, furnace, denitration equipment, electric dust collector (EP), desulfurization equipment and detoxification equipment (gas cooler, bag filter and alkali cleaning tower). Yes. In the pulverized coal production apparatus, coal stored in the raw coal hopper is pulverized and stored in a bottle. At the time of the test, the pulverized coal is conveyed by air and burned in the furnace by the combustion secondary / tertiary air and the two-stage combustion air.
火炉は縦型炉であり、上中下段の3本のバーナが設置されている。火炉への燃料の供給量は、バーナ1本当たり約100kg/h、火炉全体では約300kg/hとなる。本試験では微粉炭用低NOxバーナ(CI−αWRバーナ)を使用した。 The furnace is a vertical furnace with three upper, lower, and lower burners. The amount of fuel supplied to the furnace is about 100 kg / h per burner, and the whole furnace is about 300 kg / h. In this test, a low NO x burner for pulverized coal (CI-α WR burner) was used.
燃焼後の排ガスは、エアヒータによって冷却後、アンモニア選択接触還元法(SCR 法)の脱硝装置に流入する。その後、排ガスの約1/3 量が2基の温度調節器を経た後、電気集じん装置及び湿式石灰石-石膏法脱硫装置に導く。 The exhaust gas after the combustion is cooled by an air heater and then flows into a denitration apparatus of an ammonia selective catalytic reduction method (SCR method). Thereafter, about 1/3 of the exhaust gas passes through two temperature controllers, and is then led to an electrostatic precipitator and a wet limestone-gypsum desulfurization apparatus.
一方、約2/3量の排ガスは、水冷式ガスクーラによって冷却し、バグフィルタによりダストを除去した後、脱硫装置から排出した約1/3量の排ガスと合流し、再度アルカリ洗浄塔で脱硫した後、煙突から排出する。 On the other hand, about 2/3 amount of exhaust gas is cooled by a water-cooled gas cooler, dust is removed by a bag filter, and then merged with about 1/3 amount of exhaust gas discharged from the desulfurization device, and desulfurized again by an alkali cleaning tower. After that, discharge from the chimney.
<試験方法>
試験時では、まず、A重油の燃焼によって十分火炉を予熱した後、石炭へ切り替えた。その後、各装置の温度等が定常になったことを確認し、予熱時に生成した灰をすべて取り除いた。
<Test method>
At the time of the test, first, the furnace was sufficiently preheated by burning A heavy oil, and then switched to coal. After that, it was confirmed that the temperature of each device became steady, and all the ash generated during preheating was removed.
この後、設定した燃焼条件での測定を開始する。この時に生成した灰のみを試料とした。 Thereafter, measurement under the set combustion conditions is started. Only the ash produced at this time was used as a sample.
本試験において同一石炭銘柄での推定物性に及ぼす灰粒径や灰中未燃分濃度の影響を評価するため、微粉炭粒径を20〜70μm、二段燃焼率を0〜40%までに変化させた試験も実施した。生成灰試料に関しては、火炉の炉底に落ちる灰を除く、エアヒータ、温度調節器、電気集じん装置1〜4室、水冷式ガスクーラ、バグフィルタの各ホッパに捕集された灰を、各々捕集重量比で混合したものを用いた。 In order to evaluate the effects of ash particle size and unburned ash concentration on the estimated physical properties of the same coal brand in this test, the pulverized coal particle size is changed to 20 to 70 μm and the two-stage combustion rate is changed to 0 to 40%. The conducted tests were also conducted. Regarding the generated ash sample, the ash collected in the hoppers of the air heater, temperature controller, electric dust collectors 1-4, water-cooled gas cooler, and bag filter is removed. What was mixed by weight collection ratio was used.
<測定項目及び測定方法>
生成した石炭灰の測定項目は、灰の粒径分布及びJIS A 6201に規定されている灰中未燃分濃度、密度、ブレーン値、フロー値比及び活性度指数とした。
<Measurement item and measurement method>
The measurement items of the generated coal ash were ash particle size distribution and unburned ash concentration, density, brane value, flow value ratio and activity index defined in JIS A 6201.
粒径分布は、光回折・散乱法を用いた装置により測定した。灰中未燃分濃度、密度、ブレーン値、フロー値比及び活性度指数はJISに規定された方法により求めた。 The particle size distribution was measured with an apparatus using a light diffraction / scattering method. The unburned ash concentration, density, brane value, flow value ratio, and activity index were determined by methods defined in JIS.
ブレーン値は、生成灰層に空気を透過させた時の圧力損失より測定するブレーン法を用いて測定されたものであり、真の灰粒子の外表面積を示すものではない。 The brane value is measured using the brane method, which is measured from the pressure loss when air is passed through the product ash layer, and does not indicate the outer surface area of the true ash particles.
フロー値比及び活性度指数は、石炭灰のコンクリート混和材への適用を評価する指標である。ここで、フロー値比とは、石炭灰無添加の基準モルタルのフロー値に対する石炭灰を混和したモルタルのフロー値の比率(%)である。したがって、100%以上であれば基準モルタルより流動性が良くなることを示している。基準モルタルは、セメント450g、砂1,350g、水225gを練り合わせたもので、セメントの25%を石炭灰に置き換えたものが石炭灰混和モルタルである。フロー値は円筒状にしたモルタルに振動を与え、その広がりをはかったものである。活性度指数は、石炭灰無添加の基準モルタルの圧縮強度に対する石炭灰を混和したモルタルの圧縮強度の比率(%)を示したものである。活性度指数は、石炭灰混和モルタルを所定の条件で養成させ、基準モルタルの破壊強度の比率で表したものである。28日間所定の条件で養生した値と91日間養生した値の二種類が用いられている。フロー値と同様に100%以上であれば基準モルタルより固化性が良いことを示している。 The flow value ratio and the activity index are indicators for evaluating the application of coal ash to concrete admixture. Here, the flow value ratio is the ratio (%) of the flow value of the mortar mixed with coal ash to the flow value of the reference mortar without addition of coal ash. Therefore, if it is 100% or more, it has shown that fluidity | liquidity becomes better than a reference | standard mortar. The standard mortar is a mixture of 450 g of cement, 1,350 g of sand, and 225 g of water, and 25% of the cement is replaced with coal ash. The flow value is obtained by applying vibration to a cylindrical mortar and spreading it. The activity index indicates the ratio (%) of the compressive strength of the mortar mixed with coal ash to the compressive strength of the reference mortar without addition of coal ash. The activity index is obtained by cultivating a coal ash-mixed mortar under a predetermined condition and expressing it as a ratio of the breaking strength of the reference mortar. Two types are used: a value cured under predetermined conditions for 28 days and a value cured for 91 days. If it is 100% or more like the flow value, it indicates that the solidification is better than the reference mortar.
〔使用炭性状〕
<試験検討で用いた石炭の性状>
当該実証試験装置に使用した石炭の性状範囲を表1に示す。
[Used charcoal properties]
<Characteristics of coal used in test study>
Table 1 shows the property range of the coal used in the demonstration test apparatus.
本試験では16銘柄の瀝青炭を用いた。性状に関しては、燃焼性及び未燃分濃度に影響を与える燃料比(固定炭素/揮発分)、生成灰粒径などに影響を与える灰分含有率、灰の溶融性や密度に影響を与える灰組成を幅広く設定し、微粉炭火力発電所で使用されている石炭をほぼ網羅できるように選定した。 In this test, 16 brands of bituminous coal were used. In terms of properties, fuel ratio (fixed carbon / volatile content) that affects flammability and unburnt content, ash content that affects ash particle size, ash composition that affects ash meltability and density Was selected to cover almost all the coal used in pulverized coal-fired power plants.
本試験結果の検討においては、基準条件での燃焼試験、微粉炭粒径変化試験、二段燃焼率変化試験及び混炭試験などを含む様々な試験研究から得られた試料を総合して用いており、42の灰試料を基に検討した。また、異なる銘柄を混合せず、単一の銘柄を燃焼する専焼時の石炭灰を主に用いた。 In the examination of the results of this test, samples obtained from various test studies including combustion test under standard conditions, pulverized coal particle size change test, two-stage combustion rate change test and blended coal test are used in a comprehensive manner. Based on 42 ash samples. In addition, we used mainly coal ash at the time of exclusive combustion that burns a single brand without mixing different brands.
〔試験結果及び考察〕
<推算物性に対する影響項目とその相関>
本試験結果の検討においては、簡易に測定できる生成灰の粒径分布、燃焼管理などに使われている灰中未燃分濃度及び石炭灰性状を基に生成灰の密度、ブレーン値、フロー値比及び活性度指数を推定することを目的としており、影響項目を明らかにし、相関式の構築を試みた。
[Test results and discussion]
<Influence items on estimated physical properties and their correlation>
In examining the results of this test, the particle size distribution of ash that can be easily measured, the density of unburned ash used in combustion management, etc., and the density, brain value, and flow value of ash based on the properties of coal ash The purpose was to estimate the ratio and the activity index. The influence items were clarified and a correlation equation was constructed.
<密度>
(1)影響項目
石炭灰の粒径等、密度に対する影響項目について検討した。
<Density>
(1) Impact items The impact items on the density, such as the particle size of coal ash, were examined.
1)灰粒径
石炭灰の密度は、灰を構成する物質の密度(真密度)と灰中の空隙に影響される。一般的には、灰の粒径が大きくなるほど、密度が小さくなる傾向があることが指摘されている。本発明者等も石炭灰を分級し、その密度を測定した結果、粒径に影響していることが確認された。つまり、粒径が大きくなるほど空隙が多くなり、密度が低下することを示している。
1) Ash particle size The density of coal ash is affected by the density (true density) of the substances constituting the ash and the voids in the ash. In general, it is pointed out that the density tends to decrease as the particle size of ash increases. As a result of classifying coal ash and measuring its density, the present inventors have confirmed that the particle size is affected. That is, the larger the particle size, the more voids and the lower the density.
そこで、灰成分が同じとなる同一の石炭を用い、微粉炭粒径を変化させて、異なる平均粒径の灰を生成させて、灰粒径の影響を調べた。 Therefore, the same coal having the same ash component was used, the pulverized coal particle size was changed, ash having a different average particle size was generated, and the influence of the ash particle size was examined.
灰粒子は主に微粉炭粒子中の灰鉱物粒子が溶融結合して生成する。ここで、結合鉱物数が多いほど粒径が大きくなり、空隙もできやすくなると考えられ、粒子の体積と関係を持つ。そこで、指標として用いる平均粒径として式(19)に示す体積平均粒径Dv[μm]を用いた。 Ash particles are mainly produced by fusion bonding of ash mineral particles in pulverized coal particles. Here, it is considered that the larger the number of bound minerals, the larger the particle size and the easier the formation of voids, which is related to the volume of the particles. Therefore, the volume average particle diameter Dv [μm] shown in Formula (19) was used as the average particle diameter used as an index.
密度と生成灰粒径の関係を図4に示す。同図を参照すれば、石炭銘柄によらず、灰の粒径が大きくなるほど密度は低下することがわかる。また、微粉炭粒径を変化させた場合、鉱物粒子の結合数の変化に加え、燃焼の影響が加わる。微粉炭粒径が小さいほど燃え易く、高温になるため空隙が低下する可能性がある。そこで、燃焼性の影響を調べるため、二段燃焼率の影響についても調べた。図4に灰粒径の影響と一緒に示した結果では、データのばらつきの中に含まれ、明瞭な影響は示されず、当所の燃焼試験装置では、灰粒径の影響に比べて、その影響は小さいと考えられる。 The relationship between the density and the generated ash particle size is shown in FIG. Referring to the figure, it can be seen that the density decreases as the particle size of ash increases regardless of the coal brand. In addition, when the pulverized coal particle size is changed, the influence of combustion is added in addition to the change in the number of bonds of mineral particles. The smaller the pulverized coal particle size, the more likely it is to burn, and the higher the temperature, the lower the voids. Therefore, in order to investigate the effect of combustibility, the effect of the two-stage combustion rate was also investigated. The results shown together with the effect of ash particle size in Fig. 4 are included in the data variability and do not show a clear effect. In our combustion test equipment, the effect is compared to the effect of ash particle size. Is considered small.
さらに、実証試験装置での様々な石炭銘柄の灰データを基に、粒径と密度の関係を調べた。この結果、図5に示すように、ばらつきは大きいものの、粒径の影響が示され、粒径が密度に対する大きな影響項目であることを明確にできた。 Furthermore, the relationship between particle size and density was investigated based on ash data of various coal brands in a demonstration test device. As a result, as shown in FIG. 5, although the variation was large, the influence of the particle size was shown, and it was clarified that the particle size is a large influence item on the density.
2)灰組成
灰の真密度に大きな影響を与える灰分組成について調べた。灰の密度に対して、空隙の影響と真密度の影響を完全に分離するのは困難である。ここでは、JISに規定されている石炭の灰組成分析値から真密度を想定して検討することとした。密度を推定する酸化物としては、SiO2(2.2)、3Al2O3(3.1)、Fe2O3(5.2)、CaO(3.4)、MgO(3.7)、P3O4(2.4)、TiO2(4.2)、Na2O(2.3)、K2O(2.4)とし、SO3等の他の物質は考慮せず、これらの総和が100%−重量となるようにした。また、カッコ内は、本検討で設定した酸化物の真密度(g/cm3)である。さらに、アルミニウム成分が主にカオリナイトやイライトなどの粘土鉱物に存在することからムライト(3Al2O3・2SiO2)が生成するとして扱った。
2) Ash composition The ash composition that greatly affects the true density of ash was investigated. It is difficult to completely separate the effects of voids and true density on the density of ash. Here, it was decided to consider the true density based on the ash composition analysis value of coal specified in JIS. As oxides for estimating the density, SiO 2 (2.2), 3Al 2 O 3 (3.1), Fe 2 O 3 (5.2), CaO (3.4), MgO (3.7) , P 3 O 4 (2.4), TiO 2 (4.2), Na 2 O (2.3), K 2 O (2.4) without considering other substances such as SO 3 , The sum of these was 100% -weight. The values in parentheses are the true oxide density (g / cm 3 ) set in this study. Further, since the aluminum component is mainly present in clay minerals such as kaolinite and illite, it was treated that mullite (3Al 2 O 3 .2SiO 2 ) was generated.
一方、含有量が多く密度に対する影響が強いと考えられるSiO2に関しては、非晶質SiO2や石英など様々な結晶形態を有し、密度も異なる。本検討においては、石炭灰で生成割合が多い非晶質SiO2の値を用いた。 On the other hand, SiO 2 , which has a large content and is considered to have a strong influence on the density, has various crystal forms such as amorphous SiO 2 and quartz, and the density is also different. In this examination, the value of amorphous SiO 2 having a large generation ratio of coal ash was used.
仮想の真密度ρa[g/cm3]は次式(20)より求められる。 The virtual true density ρa [g / cm 3 ] is obtained from the following equation (20).
粒径の影響を除くため、粒径がほぼ同じ灰を用いて検討した。図6に、式(20)で推算した仮想の真密度に対する実測した密度の割合を示す密度比(−)と、SiO2とAl2O3の含有率(SiO2+Al2O3)(%−重量)の関係を示す。仮想の真密度が実際の灰の真密度と同じであれば、密度比は含有量によらず一定であることになるが、実際には明瞭な相関が見られた。 In order to eliminate the influence of the particle size, ash having almost the same particle size was used for the examination. FIG. 6 shows the density ratio (−) indicating the ratio of the actually measured density to the virtual true density estimated by the equation (20), and the content ratio of SiO 2 and Al 2 O 3 (SiO 2 + Al 2 O 3 ) (% -Weight) relationship. If the virtual true density is the same as the actual density of the actual ash, the density ratio is constant regardless of the content, but a clear correlation was actually observed.
図6に示す特性は、SiO2+Al2O3が増加するほど、密度比は大きくなることを示しており、仮想密度が正しいとすれば、空隙への影響となり、空隙が減少することになる。既往の研究によれば、SiO2及びAl2O3の含有率が増えれば、灰の融点及び溶融時の粘度は上昇し、内部に気泡が残り易くなって、中空粒子(セノスフェア)の割合が多くなることが示されている。このことから、空隙への影響は考えにくい。 The characteristics shown in FIG. 6 indicate that the density ratio increases as SiO 2 + Al 2 O 3 increases. If the virtual density is correct, the voids are affected and the voids are reduced. . According to past studies, if the content ratio of SiO 2 and Al 2 O 3 increases, the melting point of ash and the viscosity at the time of melting increase, bubbles tend to remain inside, and the proportion of hollow particles (cenosphere) is increased. It has been shown to increase. For this reason, the influence on the air gap is unlikely.
一方、真密度への影響に関しては、ムライトを除いて単一の酸化物として扱った。実際にはSiO2を中心に様々な金属が固溶する非晶質の酸化物が生成することから、この影響が示された可能性がある。 On the other hand, the effect on the true density was treated as a single oxide except for mullite. Actually, an amorphous oxide in which various metals are solid-solved around SiO 2 is produced, and this influence may be shown.
さらに、図7に示すようにAl2O3に対するSiO2の比率(Al2O3/SiO2)に関しても相関が認められた。そこで、本検討では、SiO2及びAl2O3の割合により酸化物形態が変化するとして、真密度への影響項目として取り扱うこととした。 Further, as shown in FIG. 7, a correlation was also recognized with respect to the ratio of SiO 2 to Al 2 O 3 (Al 2 O 3 / SiO 2 ). Therefore, in this study, the oxide form changes depending on the ratio of SiO 2 and Al 2 O 3 and is treated as an item affecting the true density.
3)その他影響項目
その他の影響項目としては、灰中の空隙の生成に影響する、灰分の含有率、灰の溶融性、及び燃焼にかかわる燃料比などが考えられる。
3) Other influential items Other influential items may include ash content, ash meltability, and fuel ratio related to combustion, which affect the formation of voids in ash.
しかし、本検討では、上記項目に対しては明瞭に示されなかった。灰粒子の空隙への影響を明確にするためには、空隙を含まない灰粒子の真密度を把握することが必要である。 However, in this study, the above items were not clearly shown. In order to clarify the influence of the ash particles on the voids, it is necessary to grasp the true density of the ash particles not including the voids.
また、灰の密度への影響として灰の真密度とは異なる密度を有する未燃分の影響も考えられるが、本検討の未燃分濃度範囲では、影響は示されなかった。 Moreover, as an influence on the density of ash, an influence of unburned matter having a density different from the true density of ash is also considered, but no influence was shown in the unburned matter concentration range of this study.
(2)相関式の導出とその精度
灰の密度ρash [g/cm3]は、灰を構成する物質の真密度ρt [g/cm3] と灰粒子の空隙率ε[−]から理論式として次式(21)のように表わされる。
(2) Derivation of correlation equation and its accuracy Ash density ρash [g / cm 3 ] is a theoretical formula based on the true density ρt [g / cm 3 ] of the substance constituting ash and the porosity ε [−] of ash particles. Is expressed as the following equation (21).
次に、灰組成が真密度に影響し、灰粒径が空隙率に影響すると考える。また、各影響項目については、関数形は明確ではないが、影響項目との相関関係を見ると近似的に直線関係で代替できると考えられ、影響項目に対して1次の直線で近似することとした。次式(22)にその相関式を示す。 Next, it is considered that the ash composition affects the true density and the ash particle size affects the porosity. In addition, for each affected item, the function form is not clear, but when looking at the correlation with the affected item, it can be approximated by a linear relationship, and the affected item should be approximated by a linear line. It was. The correlation equation is shown in the following equation (22).
この相関式の精度に関して、実証試験装置のデータに基づき最小自乗法を用いて得られた係数kdiより、推算値と実測値の比較を行った。 Regarding the accuracy of this correlation equation, the estimated value and the actually measured value were compared based on the coefficient kd i obtained by using the least square method based on the data of the demonstration test apparatus.
相関結果を図8に示す。同図に示す結果からは、±3%の幅で推算できることが示された。相関の強さを示すR−2乗値は0.76となり、強い相関を示した。 The correlation result is shown in FIG. From the results shown in the figure, it was shown that it can be estimated with a width of ± 3%. The R-2 power value indicating the strength of correlation was 0.76, indicating a strong correlation.
<ブレーン値>
(1)影響項目
ブレーン値Sv[cm2/g]は、測定方法上、真の灰粒子の表面積を示すものではないが、灰の比表面積を表す指標としては重要であり、このブレーン値に対する影響項目について調べた。
<Brain value>
(1) Influence item Although the brain value Sv [cm 2 / g] does not indicate the surface area of the true ash particles in the measurement method, it is important as an index representing the specific surface area of the ash. The influence items were examined.
1)灰粒径
ブレーン値は、灰の粒径と密接に相関があると考えられる。そこで、式(23)に示すように灰粒子が球であることを前提に灰の粒径分布より体積当りの表面積を求め、この値を測定した灰の密度で除することにより、比表面積Sp[cm2/g](以降、粒径基準比表面積と呼ぶ)を求めた。
1) Ash particle size The brane value is considered to be closely related to the particle size of ash. Therefore, the specific surface area Sp is obtained by obtaining the surface area per volume from the particle size distribution of the ash on the assumption that the ash particles are spheres as shown in the equation (23), and dividing this value by the measured ash density. [cm 2 / g] (hereinafter referred to as a particle size reference specific surface area) was determined.
ブレーン値と粒径基準比表面積との相関を図9に示す。同図に示す結果からは、相関が弱いことが示された。これは、灰粒子の形状が球とは大きく異なり、この影響が強く出ていると考えられる。そこで、粒径基準比表面積に対するブレーン値の割合となる見かけの形状係数を求め、式(24)で求められる表面積平均径Ds−ash [μm]との関連を調べた。 FIG. 9 shows the correlation between the brain value and the particle size reference specific surface area. The results shown in the figure showed that the correlation was weak. This is because the shape of ash particles is very different from that of a sphere, and this effect is considered to be strong. Thus, an apparent shape factor that is the ratio of the brane value to the particle size reference specific surface area was determined, and the relationship with the surface area average diameter Ds-ash [μm] determined by Equation (24) was examined.
図10に示すように、見かけの形状係数と表面積平均径は強い相関があり、灰粒径が大きくなるほど見かけの形状係数も大きくなることがわかる。つまり、粒径が大きくなるほど粒子が歪になることを示している。灰粒子の生成を考えると灰の密度と同様に、灰粒子が大きいほど結合する鉱物粒子の数が多く、粒子が歪になり易いことがあげられる。
以上、ブレーン値に対しては灰の粒径が強い影響項目であることが分かった。
As shown in FIG. 10, the apparent shape factor and the surface area average diameter have a strong correlation, and it can be seen that the apparent shape factor increases as the ash particle size increases. That is, the larger the particle size, the more the particles become distorted. Considering the generation of ash particles, as with the density of ash, the larger the ash particles, the greater the number of mineral particles bound together, and the more likely the particles are distorted.
As described above, it was found that the grain size of ash is a strong influence item on the brain value.
2)灰中未燃分濃度
未燃分を含む粒子は灰分も含んでいると考えられるため、灰中未燃分濃度は低いが、その影響は大きいと考えられる。そこで、灰の粒径がほぼ同じ範囲において、その影響を調べた。未燃分濃度と見かけの形状係数の関係を図11に示す。同図に示すように、見かけの形状係数は、灰中未燃分濃度が高くなるほど大きくなることが示され、強い影響項目であることが明らかになった。
2) Concentration of unburned in ash Particles containing unburned matter are considered to contain ash, so the concentration of unburned ash in ash is low, but the effect is considered large. Therefore, the effect was examined in the range where the particle size of ash was almost the same. FIG. 11 shows the relationship between the unburned component concentration and the apparent shape factor. As shown in the figure, it was shown that the apparent shape factor increases as the unburned ash concentration increases, indicating that it is a strong influence item.
3)石炭中の灰分含有率
灰分含有率は、灰の粒径に影響を及ぼし、同じ微粉炭粒径であるとすれば、灰分含有率が増加すると鉱物粒子の結合数が増えて、灰の粒径は大きくなる。この結果、見かけの形状係数は大きくなる方向に働くと考えられる。この影響は、上述した灰粒径の影響に含まれて示されている。一方、灰粒径が同じものであれば、灰粒径の影響を除いた灰分含有率の影響が示される可能性がある。そこで、灰の粒径がほぼ同じものを選び、灰分含有率の影響を調べた。灰分含有率と見かけの形状係数の関係を図12に示す。同図には灰分含有率の影響は弱いが、灰分含有率が大きくなるに従って、見かけの形状係数も大きくなることが示され、灰分含有率を影響項目として、考慮する必要があることがわかった。
3) Ash content in coal The ash content affects the particle size of the ash. If the particle size of the pulverized coal is the same, if the ash content increases, the number of combined mineral particles increases. The particle size increases. As a result, the apparent shape factor is considered to increase. This effect is shown to be included in the effect of the ash particle size described above. On the other hand, if the ash particle diameter is the same, the influence of the ash content rate excluding the influence of the ash particle diameter may be shown. Then, the thing with the almost same particle diameter of ash was chosen, and the influence of the ash content rate was investigated. The relationship between the ash content and the apparent shape factor is shown in FIG. The figure shows that the effect of ash content is weak, but as the ash content increases, the apparent shape factor increases, indicating that the ash content needs to be considered as an influence item. .
灰分含有率の影響については、灰分含有率が大きくなると鉱物の結合割合も大きくなり、歪になりやすくなること、及び微粉炭中に可燃分を含まない灰分の大きな粒子(Exclude粒子)の割合が増えることなどが考えられる。 As for the effect of ash content, as the ash content increases, the proportion of mineral binding also increases and distortion tends to occur, and the proportion of large particles of ash (Exclude particles) that do not contain flammable components in pulverized coal It can be increased.
4)その他の影響項目
その他の影響項目としては、微粉炭粒子中の鉱物組成に関連した灰の溶融性、及び燃焼にかかわる燃料比や燃焼条件の影響が考えられる。灰の溶融性に関しては、他の影響項目の影響が強く明瞭に影響を確認することはできなかった。一方、燃焼性にかかわる燃料比や燃焼条件に関しても同様に、燃料比が変化すれば未燃分濃度が変わり、その影響が強く示され、二段燃焼率を変えれば、未燃分と粒径が変化し、その影響が表れる。このように、燃焼性の影響のみを取り出して評価することはできなかった。
4) Other influential items Other influential items are the ash meltability related to the mineral composition in the pulverized coal particles and the influence of the fuel ratio and combustion conditions related to combustion. Regarding the meltability of ash, the influence of other influence items was strong, and the influence could not be confirmed clearly. On the other hand, regarding the fuel ratio and combustion conditions related to combustibility, if the fuel ratio changes, the unburned fuel concentration changes, and the effect is strongly shown. Changes and the effect appears. Thus, it was not possible to evaluate only the influence of combustibility.
(2)相関式の導出とその精度
ブレーン値は、粒子の形状に大きく影響されており、式(25)に示すように見かけの形状係数と粒径基準比表面積を用いて表わされる。
(2) Derivation of correlation equation and its accuracy The brane value is greatly influenced by the shape of the particle, and is expressed using an apparent shape factor and a particle size reference specific surface area as shown in equation (25).
また、上記検討より見かけの形状係数は、表面積平均径、灰中未燃分濃度及び灰分含有率の影響を受ける。表面積平均径については、密度との直線関係が明瞭ではないことから、べき乗関数で表わした。 From the above examination, the apparent shape factor is affected by the average surface area diameter, the unburned ash concentration and the ash content. The surface area average diameter was expressed as a power function because the linear relationship with the density was not clear.
一方、灰中未燃分濃度及び灰分含有率については、本検討の範囲では直線的な相関が得られており、1次の関数とし、見かけの形状係数との相関式として式(26)を構築した。 On the other hand, for the unburned ash concentration and the ash content, a linear correlation was obtained within the scope of this study, and the equation (26) was used as a correlation function with the apparent shape factor as a linear function. It was constructed.
見かけの形状係数の推算値と実測値の相関を図13に示す。この結果から±15%の精度で推算できると共に、R−2乗値は、0.81と強い相関を示した。 The correlation between the estimated value of the apparent shape factor and the actually measured value is shown in FIG. From this result, it was possible to estimate with an accuracy of ± 15%, and the R-squared value showed a strong correlation with 0.81.
次に、推算した見かけの形状係数と粒径基準比表面積との積として求められるブレーン値推算値と実測値との相関を図14に示す。同図に示すように、推算されたブレーン値は、見かけの形状係数と同様の±15%の幅で推算できることが確認できた。また、R−2乗値は0.46と粒径基準比表面積の影響を受けて、見かけの形状係数のR−2乗値より低下した。 Next, FIG. 14 shows the correlation between the estimated value of the brane value obtained as the product of the estimated apparent shape factor and the particle size reference specific surface area, and the actually measured value. As shown in the figure, it was confirmed that the estimated brain value can be estimated with a width of ± 15% similar to the apparent shape factor. The R-2 power value was 0.46, which was lower than the R-2 power value of the apparent shape factor under the influence of the particle size standard specific surface area.
さらに、見かけの形状係数を経由せず、式(27)により直接、各項目の係数を求め、推算値と実測値を比較した。 Furthermore, the coefficient of each item was calculated | required directly by Formula (27), without passing through an apparent shape factor, and the estimated value and the measured value were compared.
この相関においても図15に示すように、見かけの形状係数を推算した場合と同様に、±15%の精度で推算できることが示された。また、R−2乗値は大きな差はない。この結果より、本検討では粒子表面積も含めた 式(27)で直接係数を求める方法を提案する。 Also in this correlation, as shown in FIG. 15, it was shown that it can be estimated with an accuracy of ± 15% as in the case where the apparent shape factor is estimated. Moreover, there is no big difference in the R-2 power value. Based on this result, this study proposes a method for directly calculating the coefficient using equation (27) including the particle surface area.
<フロー値比>
(1)影響項目
フロー値比は石炭灰を混和した場合のモルタルの流動性を示す指標であり、流動性が高いほど値は大きくなる。この影響項目について検討した。
<Flow value ratio>
(1) Influence item The flow value ratio is an index indicating the fluidity of mortar when coal ash is mixed, and the higher the fluidity, the larger the value. This influence item was examined.
1)灰粒子形状
モルタルは、ペーストと細骨材(砂)で構成される。また、ペーストは、セメントや石炭灰などが混合した水スラリーである。このモルタルの流動性は粒子の形状に強く影響し、粒子が歪になるほど流動性は低下すると考えられる。そこで、見かけの形状係数とフロー値比の関係を調べた。見かけの形状係数とフロー値比の関係を図16に示す。同図に示すように、フロー値比は見かけの形状係数の増加に伴った減少し、粒子の形状が大きく影響することが確認でき、大きな影響項目であることが明らかになった。
1) Ash particle shape Mortar is composed of paste and fine aggregate (sand). The paste is a water slurry mixed with cement, coal ash, or the like. The fluidity of the mortar strongly affects the shape of the particles, and the fluidity is considered to decrease as the particles become distorted. Therefore, the relationship between the apparent shape factor and the flow value ratio was examined. The relationship between the apparent shape factor and the flow value ratio is shown in FIG. As shown in the figure, the flow value ratio decreased with an increase in the apparent shape factor, and it was confirmed that the shape of the particles had a great influence, and it became clear that this was a significant influence item.
2)灰中未燃分濃度
ブレーン値に関する検討では、灰中未燃分は粒子の形状に影響することが示された。また、未燃分を含有する粒子は、形状が歪で多孔質であるため、流動に関与する水分を捕捉して、流動性を悪化させる可能性がある。既往の研究においても、未燃分を取り除くと、フロー値比が大きくなるとする例もある。そこで、形状の影響を除くため、見かけの形状係数がほぼ同じデータを選定して、未燃分濃度の影響について調べた。
2) Concentration of unburned ash In the study on the brane value, it was shown that the unburned ash content affects the particle shape. Moreover, since the particle | grains containing an unburned part are a shape and are porous, they may capture | acquire the water | moisture content which concerns on a flow, and may deteriorate fluidity | liquidity. Even in past studies, there is an example where the flow value ratio increases when the unburned component is removed. Therefore, in order to eliminate the influence of the shape, data having almost the same apparent shape factor was selected, and the influence of the unburned component concentration was examined.
フロー値比と未燃分濃度の関係を図17に示す。同図に示すように、フロー値比は未燃分濃度の増加に従って小さくなることが確認でき、重要な影響項目であることが明らかになった。 The relationship between the flow value ratio and the unburned component concentration is shown in FIG. As shown in the figure, it was confirmed that the flow value ratio became smaller as the unburned component concentration increased, and it became clear that this was an important influence item.
3)その他の影響項目
灰の粒径分布の影響が考えられる。モルタル中の固体粒子の充填構造を最密充填構造に近づけ、粒子間に入る水分をできるだけ少なくして、自由水を増やすことが、流動性の向上につながる。見かけの形状係数及び未燃分濃度がほぼ同じものを選定して、その相関を調べたが、明瞭な相関関係は得られなかった。また、灰粒子の粒径分布の影響を明確にするには、未燃分を除くと共に、セメント粒子や砂粒子の粒径分布を含めて検討する必要があると考える。
3) Other influence items The influence of the particle size distribution of ash is considered. Increasing the amount of free water by bringing the packed structure of the solid particles in the mortar closer to the closest packed structure and reducing the amount of water entering between the particles as much as possible leads to improved fluidity. When the apparent shape factor and unburned component concentration were almost the same, the correlation was examined, but no clear correlation was obtained. In addition, in order to clarify the influence of the particle size distribution of ash particles, it is necessary to consider the particle size distribution of cement particles and sand particles as well as removing unburned components.
(2)相関式の導出とその精度
フロー値比は、見かけの形状係数及び灰中未燃分濃度が大きくなると低下することが示された。この影響項目に関しても、本検討範囲では直線的な関係がみられ、影響項目に対して1次の関数として 式(28)で表わした。
(2) Derivation of correlation equation and its accuracy It was shown that the flow value ratio decreases as the apparent shape factor and unburned ash concentration increase. This influence item also has a linear relationship in this examination range, and is expressed by Equation (28) as a linear function with respect to the influence item.
見かけの形状係数と灰中未燃分濃度を用いて求めた推算値と実測値の相関を図18に示す。この結果からフロー値比は±5%の精度で推算できることが示された。相関の強さを示すR−2乗値は0.66であった。 FIG. 18 shows the correlation between the estimated value obtained using the apparent shape factor and the unburned ash concentration and the actually measured value. From this result, it was shown that the flow value ratio can be estimated with an accuracy of ± 5%. The R-2 power value indicating the strength of the correlation was 0.66.
<活性度指数>
(1)影響項目
石炭灰中のSiやAlが主成分の非晶質酸化物は、Si成分やAl成分をモルタルの細孔溶液に溶出させ易い性質を有する。この溶出した成分とセメント由来の水酸化カルシウム(Ca(OH)2)が反応し、水に難溶性のカルシウム・シリケート水和物などの水和物を作り、コンクリート強度を高める。この反応はポゾラン反応と呼ばれている。この固化の影響を評価する指標が活性度指数である。活性化指数への影響を厳密に評価するためには、非晶質物質の割合など反応メカニズムに伴う検討が必要であるが、本検討においては、既に記したように石炭灰性状、灰粒径及び未燃分濃度の範囲で影響項目について検討する。
<Activity index>
(1) Influence item The amorphous oxide which has Si and Al as a main component in coal ash has a property which is easy to elute Si component and Al component in the pore solution of mortar. This eluted component reacts with calcium hydroxide derived from cement (Ca (OH) 2 ) to form a hydrate such as calcium silicate hydrate which is hardly soluble in water, thereby increasing the concrete strength. This reaction is called a pozzolanic reaction. An index for evaluating the influence of solidification is an activity index. In order to strictly evaluate the effect on the activation index, it is necessary to investigate the reaction mechanism such as the ratio of amorphous substances. In this study, as described above, the coal ash properties, ash particle size The impact items will be examined in the range of unburned fuel concentration.
1)ブレーン値
石炭灰中の非晶質のSiO2、Al2O3からのSi、Al成分の溶出に関しては、灰粒子の表面積が大きく関与することが示されており、本試験においても確認を試みた。ブレーン値と活性度指数の関係を図19に示す。図19に示す結果から、ブレーン値は活性度指数に影響を与えていることが確認できる。
1) Blaine value It has been shown that the surface area of ash particles is greatly involved in the elution of Si and Al components from amorphous SiO 2 and Al 2 O 3 in coal ash. Tried. The relationship between the brain value and the activity index is shown in FIG. From the results shown in FIG. 19, it can be confirmed that the brain value affects the activity index.
2)灰中未燃分濃度
未燃分が多くなると固化反応に関与する灰分を減らすことが考えられる。また、明瞭ではないが、未燃分を取り除くと活性度指数が高くなる可能性があることを示唆した研究もある。そこで、ブレーン値の影響が無いように、ブレーン値がほぼ同程度のものを選定して、その影響を調べた。
2) Concentration of unburned ash in ash If the amount of unburned fuel increases, the ash content involved in the solidification reaction can be reduced. There is also a study that, though not clear, suggests that removing the unburned content may increase the activity index. Therefore, in order to avoid the influence of the brain value, those having approximately the same brain value were selected, and the influence was examined.
活性度指数と未燃分濃度の関係を図20に示す。活性度指数は、未燃分濃度が高くなると低下する傾向が示し、重要な影響項目であることが明らかになった。 FIG. 20 shows the relationship between the activity index and the unburned component concentration. The activity index showed a tendency to decrease as the unburned component concentration increased, and it became clear that it was an important influence item.
3)塩基成分
塩基成分は固化反応に関与する非晶質SiO2及びAl2O3の生成、並びにSi、Al成分の溶出に関与することが指摘されている。非晶質SiO2の生成に関しては、Al2O3に対するK2Oのモル比との相関があり、このモル比が高くなると非晶質SiO2が増加することが報告されている。一方、溶出・固化に関しては、非晶質に含まれるCaOの量が多いほどポゾラン反応性を高めること、CaO、MgO、Na2O、K2Oの含有量が多いほど、Siの溶出速度が高まることなどが報告されている。
3) Base component It has been pointed out that the base component is involved in the formation of amorphous SiO 2 and Al 2 O 3 involved in the solidification reaction and the elution of Si and Al components. Regarding the formation of amorphous SiO 2 , there is a correlation with the molar ratio of K 2 O to Al 2 O 3 , and it has been reported that the amorphous SiO 2 increases as this molar ratio increases. On the other hand, with respect to elution and solidification, the greater the amount of CaO contained in the amorphous material, the higher the pozzolanic reactivity, and the greater the content of CaO, MgO, Na 2 O, and K 2 O, the greater the elution rate of Si. It has been reported to increase.
これらの指標と活性度指数との相関を調べたところ、図21に示すようにCaO、MgO、Na2O、K2Oの総含有率(%−重量)との関係が最も明瞭に示された。 When the correlation between these indices and the activity index was examined, the relationship with the total content (% -weight) of CaO, MgO, Na 2 O, and K 2 O was most clearly shown as shown in FIG. It was.
4)その他の相関項目
既に述べたように固化反応には様々な物質が関与する。反応に対して重要となる非晶質SiO2及びAl2O3に関しては、灰組成や燃焼条件に影響されると考えられるが、本検討においては考慮していない。
4) Other correlation items As already mentioned, various substances are involved in the solidification reaction. Amorphous SiO 2 and Al 2 O 3 that are important for the reaction are considered to be affected by the ash composition and combustion conditions, but are not considered in this study.
(2)相関式の導出とその精度
活性度指数は、モルタル固化に関する様々な影響項目があり、本検討における適用項目の範囲においては、ブレーン値、灰中未燃分濃度及びCaO、MgO、Na2O、K2Oの総含有率に影響されることを明らかにした。ブレーン値、灰中未燃分濃度は活性度指数を低下させ、CaO、MgO、Na2O、K2Oの総含有率は、上昇させる。これらの影響項目に関しても、本検討範囲では直線的な相関がみられ、近似的に、影響項目に対して1次の関数として式(29)で表わした。
(2) Derivation of correlation equation and its accuracy The activity index has various influence items related to solidification of mortar, and within the scope of applicable items in this study, brane value, unburned ash concentration, CaO, MgO, Na It was clarified that it was influenced by the total content of 2 O and K 2 O. The brane value and the unburned ash concentration decrease the activity index and increase the total content of CaO, MgO, Na 2 O and K 2 O. These affected items also have a linear correlation in this examination range, and are approximately expressed by the equation (29) as a linear function with respect to the affected items.
活性度指数(28日)の推算値と実測値の相関を図22に示す。この結果から活性度指数は±5%の精度で推算できることが示された。相関の強さを示すR−2 乗値は0.58であった。 FIG. 22 shows the correlation between the estimated value of the activity index (28 days) and the actually measured value. From this result, it was shown that the activity index can be estimated with an accuracy of ± 5%. The R-2 power value indicating the strength of the correlation was 0.58.
次に活性度指数(91日)の推算値と実測値の相関を図23に示す。活性度指数(28日)と同様に±5%の精度で推算できることが示された。R−2乗値は0.57であり、活性度指数(28日)の0.58と同様の相関の強さを示した。 Next, FIG. 23 shows the correlation between the estimated value of the activity index (91 days) and the actually measured value. It was shown that it can be estimated with an accuracy of ± 5% similarly to the activity index (28 days). The R-squared value was 0.57, indicating a correlation strength similar to the activity index (28 days) of 0.58.
また、灰のブレーン値及び未燃分濃度はボイラでの燃焼の影響を反映した物性値であり、CaO、MgO、Na2O、K2Oの総含有率は灰の性状であることから、ボイラの種別に関係なく推算できる可能性がある。そこで、フロー値比と同様に実証試験装置と発電所ボイラを合わせた活性度指数(28日)のデータより相関式の係数を求め、推算値と実測値との相関について調べた。推算値と実測値の相関を図24に示す。同図に示すように、±5%程度の精度で、ほとんどのデータが収まることが確認できた。相関の強さを示すR−2乗値は0.80と低下するが、十分な相関はある。 Moreover, since the brane value and unburnt content concentration of ash are physical property values reflecting the influence of combustion in the boiler, the total content of CaO, MgO, Na 2 O, and K 2 O is the property of ash. There is a possibility that it can be estimated regardless of the type of boiler. Therefore, as with the flow value ratio, the coefficient of the correlation equation was obtained from the activity index data (28 days) combining the demonstration test apparatus and the power plant boiler, and the correlation between the estimated value and the actual measurement value was examined. FIG. 24 shows the correlation between the estimated value and the actually measured value. As shown in the figure, it was confirmed that most of the data fits within an accuracy of about ± 5%. The R-square value indicating the strength of the correlation decreases to 0.80, but there is a sufficient correlation.
以上、灰の密度、ブレーン値、フロー値比及び活性度指数に影響を与える項目を明らかにし、それに基づいて相関式を構築した。この相関式において、密度は±3%、ブレーン値は±15%、フロー値比は±5%及び活性度指数は±5%の精度で推算できることが確認できた。 As described above, the items affecting the density of ash, the brain value, the flow value ratio, and the activity index have been clarified, and the correlation equation was constructed based on the items. In this correlation equation, it was confirmed that the density can be estimated with an accuracy of ± 3%, the brain value is ± 15%, the flow value ratio is ± 5%, and the activity index is ± 5%.
<推算手法>
上記検討により、実測値に基づき、密度、ブレーン値、フロー値比及び活性度指数に対する影響項目を抽出し、上式(19)乃至(29)(本形態における式(10)乃至(18)に相当する)を導出した。
<Estimation method>
Based on the above examination, the influence items on the density, the brain value, the flow value ratio, and the activity index are extracted based on the actually measured values, and the above equations (19) to (29) (the equations (10) to (18) in this embodiment are Equivalent).
そして、式(19)乃至(22)(本形態における式(10)乃至(12)に相当する)に基づき推算した密度を用いて式(23)乃至(27)(本形態における式(13)乃至(15)に相当する)により求めたブレーン値の推算値と実測値との相関を図25に示す。同図に示すように,この場合の相関精度はほぼ±15%内に収まり、R−2乗値は0.76と、図15に示した実測の密度を使った値に対して、ほとんど変化はなく、実測の密度を使った場合と同様に実測値を推算できることが確認できた。 Then, using the density estimated based on the equations (19) to (22) (corresponding to the equations (10) to (12) in this embodiment), the equations (23) to (27) (equation (13) in this embodiment). FIG. 25 shows the correlation between the estimated value of the brain value obtained by the above (corresponding to (15)) and the actually measured value. As shown in the figure, the correlation accuracy in this case is approximately within ± 15%, and the R-2 power value is 0.76, which is almost the same as the value using the actual density shown in FIG. It was confirmed that the measured value can be estimated in the same manner as when the measured density was used.
次に、推算したブレーン値より見かけの形状係数を求め、これを基に式(28)(本形態における式(16)に相当する)に基づきフロー値比を推算した。この場合の、推算値と実測値の相関を図26に示す。同図に示すように,この場合の相関精度に関しては、ほぼ±5%程度に収まることが確認できた。R−2乗値は0.66であった。 Next, an apparent shape factor was obtained from the estimated brain value, and based on this, the flow value ratio was estimated based on the equation (28) (corresponding to the equation (16) in this embodiment). FIG. 26 shows the correlation between the estimated value and the actually measured value in this case. As shown in the figure, it was confirmed that the correlation accuracy in this case was within about ± 5%. The R-2 power value was 0.66.
最後に、推算したブレーン値を用いて式(28)及び(29)(本形態における式(17)及び(18)に相当する)により求めた活性度指数(28日)の推算値と実測値の相関を図27に示す。相関精度はほぼ±5%内に収まり、R−2乗値は0.58となった。 Finally, the estimated value and actual value of the activity index (28 days) obtained by the formulas (28) and (29) (corresponding to the formulas (17) and (18) in this embodiment) using the estimated brain value The correlation is shown in FIG. The correlation accuracy was approximately within ± 5%, and the R-2 power value was 0.58.
次に活性度指数(91日)の同様の推算値と実測値の相関を図28に示す。同図に示すように、活性度指数(28日)と同様に、推算値は、±5%内に収まることが確認できた。R−2乗値は0.54と、活性度指数(28日)の実証試験装置の値(0.58)と同程度であり、十分相関があることが示された。 Next, FIG. 28 shows a correlation between a similar estimated value and an actually measured value of the activity index (91 days). As shown in the figure, as with the activity index (28 days), it was confirmed that the estimated value was within ± 5%. The R-2 power value is 0.54, which is similar to the value (0.58) of the demonstration test apparatus for the activity index (28 days), indicating that there is a sufficient correlation.
以上、実証試験装置における相関式の係数が求められていることを前提とし、その推算精度について検討した。推算密度を用いてブレーン値を推算するなどの逐次計算を行っても、概ね密度±3%、ブレーン表面積±15%、フロー値比及び活性度指数±5%程度の精度で推定できることが確認できた。 Based on the assumption that the coefficient of the correlation equation in the demonstration test equipment has been obtained, the accuracy of the estimation was examined. Even if sequential calculation such as estimating the brain value using the estimated density is performed, it can be confirmed that it can be estimated with accuracy of density ± 3%, brain surface area ± 15%, flow value ratio and activity index ± 5%. It was.
<まとめ>
上述の実験結果及びその検討結果より明らかになった各推算物性への影響項目は次の通りである。
<Summary>
The influence items on each estimated physical property clarified from the above experimental results and the examination results are as follows.
密度は、粒径が大きくなるほど低下し、粒径が大きくなると灰粒子内の空隙が大きくなり易いことが確認できた。一方、密度は、非晶質酸化物などの灰を構成する物質の真密度に影響される。 It has been confirmed that the density decreases as the particle size increases, and that the voids in the ash particles tend to increase as the particle size increases. On the other hand, the density is affected by the true density of a substance constituting ash such as an amorphous oxide.
この点を踏まえ、本発明では、密度推算式としてSiO2及びAl2O3の含有率及びSiO2/Al2O3を指標とした相関式を提案した。 In view of this point, the present invention has proposed a correlation formula using SiO 2 and Al 2 O 3 content ratios and SiO 2 / Al 2 O 3 as indices as a density estimation formula.
ブレーン値は、粒径基準比表面積に対するブレーン値の比率で表わされる「見かけの形状係数」を用いることにより、影響項目が明瞭になった。この見かけの形状係数は、粒径、未燃分濃度及び灰分含有率に影響され、これらの増加により形状が歪な粒子が増え、値は小さくなった。 By using the “apparent shape factor” represented by the ratio of the brane value to the particle size reference specific surface area, the influence item became clear. This apparent shape factor was affected by the particle size, unburned component concentration, and ash content, and as a result, the number of particles having a distorted shape increased and the value decreased.
この点を踏まえ、本発明では、ブレーン値推算式として粒径基準比表面積と見かけの形状係数とを用いた相関式を提案した。 In view of this point, the present invention has proposed a correlation equation using a particle size standard specific surface area and an apparent shape factor as a brain value estimation equation.
フロー値比は、見かけの形状係数及び未燃分濃度に影響され、これらが大きくなるほど低下した。これは歪な粒子がモルタルの流動性を悪化させ、多孔質の未燃分が水分を吸収し、流動に関与する水分を減らすためと考えられる。 The flow value ratio was affected by the apparent shape factor and unburned component concentration, and decreased as they increased. This is presumably because the distorted particles deteriorate the fluidity of the mortar, and the porous unburned component absorbs moisture and reduces the moisture involved in the flow.
この点を踏まえ、本発明では、フロー値比推算式として見かけの形状係数と未燃分濃度とを用いた相関式を提案した。 In view of this point, the present invention has proposed a correlation equation using an apparent shape factor and unburned component concentration as a flow value ratio estimation equation.
活性度指数は、固化反応に関与する灰のブレーン値及び塩基成分(CaO+MgO+Na2O+K2O)含有率の増加に従って大きくなった。一方、未燃分濃度が増加するほど低下した。未燃分濃度が高くなると反応に関与しない炭素分が増えることによると考えられる。 The activity index increased as the ash brane value and base component (CaO + MgO + Na 2 O + K 2 O) content increased in the solidification reaction. On the other hand, it decreased as the unburned component concentration increased. This is thought to be due to an increase in the carbon content not involved in the reaction as the unburned component concentration increases.
この点を踏まえ、本発明では、活性度指数推算式としてブレーン値と未燃分濃度と灰中アルカリ成分含有率とを用いた相関式を提案した。 Based on this point, the present invention has proposed a correlation formula using the brane value, the unburned component concentration, and the alkali component content in ash as the activity index estimation formula.
本発明は微粉炭焚きボイラで石炭灰が生成される電力業界や、生成される石炭灰を利用する建築、土木業界等で有効に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be effectively used in the electric power industry where coal ash is generated by a pulverized coal-fired boiler, the construction using the generated coal ash, the civil engineering industry, and the like.
1 石炭灰性状の評価システム
2 演算処理部
3 推算式記憶部
6 密度推算部
7 ブレーン値推算部
8 フロー値比推算部
9 活性度指数推算部
DESCRIPTION OF
Claims (17)
石炭灰の密度の実測値と、石炭灰性状から得られる各石炭灰成分の含有率と、各石炭灰成分の真密度と、石炭灰成分の含有率と、石炭灰の粒径分布の実測値から得られる平均粒径とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰の密度を推算するための前記係数が決定された密度推算式を形成し、
さらに評価対象である石炭灰に関する石炭灰性状から得られる各石炭灰成分の含有率と、各石炭灰成分の真密度と、石炭灰成分の含有率と、石炭灰の粒径分布の実測値から得られる平均粒径とを前記係数が決定された密度推算式の対応項目に代入して前記石炭灰の密度を推算することを特徴とする石炭灰性状の評価方法。 While replacing the true density of coal ash with the estimated true density based on the content of each coal ash component and the virtual true density based on the true density of each coal ash component and the content of each coal ash component including a predetermined coefficient The density estimation formula for determining the density of coal ash formed by substituting the porosity of coal ash particles with the apparent porosity based on the average particle diameter of coal ash including a predetermined coefficient. In addition,
Measured value of coal ash density, content of each coal ash component obtained from coal ash properties, true density of each coal ash component, content of coal ash component, and measured value of particle size distribution of coal ash The average particle diameter obtained from the above is substituted to create an equation with the coefficient as an unknown, and by solving this equation, the coefficient is determined and the coefficient for estimating the coal ash density is determined. Form a density estimation formula,
Furthermore, from the measured value of each coal ash component content, the true density of each coal ash component, the content rate of the coal ash component, and the particle size distribution of the coal ash obtained from the coal ash properties of the coal ash being evaluated. A method for evaluating a coal ash property, comprising substituting the obtained average particle size into a corresponding item of a density estimation formula in which the coefficient is determined to estimate the density of the coal ash.
石炭灰の粒径分布により求めた体積当たりの粒子表面積を石炭灰の密度で除して得る粒径基準比表面積と、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数とに基づき形成した前記係数が未定の比表面積推算式に、
石炭灰の比表面積の実測値と、石炭灰の粒径分布の実測値より求めた体積当たりの粒子表面積と、石炭灰の密度の推算値又は実測値と、石炭灰中の未燃分濃度の実測値と、前記石炭灰性状から求めた石炭中の灰分含有率と、石炭灰の粒径分布の実測値から求めた表面積平均粒径とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰の比表面積を推算するための前記係数が決定された比表面積推算式を形成し、
さらに評価対象である石炭灰の粒径分布の実測値より求めた体積当たりの粒子表面積と、石炭灰の密度の推算値又は実測値と、石炭灰中の未燃分濃度の実測値と、前記石炭灰性状から求めた石炭中の灰分含有率と、石炭灰の粒径分布の実測値から求めた表面積平均粒径とを前記係数が決定された比表面積推算式の対応項目に代入して前記石炭灰の比表面積を推算することを特徴とする石炭灰性状の評価方法。 In the evaluation method of the coal ash property according to claim 1,
The particle size standard specific surface area obtained by dividing the particle surface area per volume determined by the particle size distribution of the coal ash by the density of the coal ash, and the unburnt concentration in the coal ash and the ash content in the coal including a predetermined coefficient The coefficient formed based on the apparent shape factor based on the surface area average particle size related to the content rate and the particle size of coal ash is an undetermined specific surface area estimation formula,
The measured value of the specific surface area of coal ash, the particle surface area per volume obtained from the measured value of the particle size distribution of coal ash, the estimated or measured value of the density of coal ash, and the unburned component concentration in the coal ash Create an equation with the coefficient as an unknown by substituting the measured value, the ash content in the coal obtained from the coal ash properties, and the surface area average particle size obtained from the measured value of the particle size distribution of the coal ash. And solving the equation to determine the coefficient to form a specific surface area estimation formula with the coefficient determined to estimate the specific surface area of the coal ash,
Furthermore, the particle surface area per volume obtained from the actual measurement value of the particle size distribution of the coal ash to be evaluated, the estimated value or the actual measurement value of the density of the coal ash, the actual measurement value of the unburned matter concentration in the coal ash, Substituting the ash content in the coal determined from the coal ash properties and the surface area average particle size determined from the measured value of the particle size distribution of the coal ash into the corresponding items of the specific surface area estimation formula in which the coefficient was determined A method for evaluating the properties of coal ash, wherein the specific surface area of coal ash is estimated.
所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数と、所定の係数を含む前記未燃分濃度とに基づき形成した前記係数が未定のフロー値比推算式に、
石炭灰のフロー値比の実測値と、石炭灰中の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値から求めた表面積平均粒径又は推算した見かけの形状係数とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰のフロー値比を推算するための前記係数が決定されたフロー値比推算式を形成し、
さらに評価対象である石炭灰の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値から求めた表面積平均粒径、又は推算した見かけの形状係数とを前記係数が決定されたフロー値比推算式の対応項目に代入して前記石炭灰のフロー値比を推算することを特徴とする石炭灰性状の評価方法。 In the evaluation method of the coal ash property according to claim 1 or claim 2,
The unburned matter containing a predetermined coefficient and an apparent shape factor based on a surface area average particle size related to an unburned content concentration in coal ash, an ash content in coal, and a particle size of coal ash, and the unburned value including the predetermined coefficient Based on the partial concentration, the coefficient formed based on the uncertain flow value ratio estimation formula,
Surface area determined from the actual value of the flow value ratio of coal ash, the actual value of the unburned component concentration in the coal ash, the ash content in the coal determined from the coal ash properties, and the actual value of the particle size distribution of the coal ash Create an equation with the coefficient as an unknown by substituting the average particle size or the estimated apparent shape factor, and determine the coefficient by solving this equation to estimate the flow value ratio of the coal ash Forming a flow value ratio estimation formula in which the coefficient is determined;
Further, the actual value of the unburned component concentration of the coal ash to be evaluated, the ash content in the coal obtained from the coal ash properties, and the surface area average particle size obtained from the measured value of the particle size distribution of the coal ash, or were estimated A method for evaluating a coal ash property, comprising substituting an apparent shape factor into a corresponding item of a flow value ratio estimation formula in which the coefficient is determined to estimate a flow value ratio of the coal ash.
所定の係数を含む石炭灰の比表面積と、石炭灰中の未燃分濃度と、石炭灰中のアルカリ成分の含有率とに基づき形成した前記係数が未定の活性度指数推算式に、
石炭灰の活性度指数の実測値と、石炭灰の比表面積の実測値又は推算値と、石炭灰中の未燃分濃度の実測値とを代入して前記係数を未知数とする方程式を作成し、この方程式を解くことにより前記係数を決定して前記石炭灰の活性度指数を推算するための前記係数が決定された活性度指数推算式を形成し、
さらに評価対象である石炭灰の比表面積の推算値又は実測値と、石炭灰中の未燃分濃度の実測値とを前記係数が決定された活性度指数推算式の対応項目に代入して前記石炭灰の活性度指数を推算することを特徴とする石炭灰性状の評価方法。 In the evaluation method of the coal ash property as described in any one of Claims 1 thru | or 3,
The coefficient formed based on the specific surface area of coal ash including a predetermined coefficient, the concentration of unburned coal in coal ash, and the content of alkali components in coal ash is an activity index estimation formula for which the coefficient is undetermined,
Create an equation with the coefficient as an unknown by substituting the measured value of the coal ash activity index, the measured or estimated value of the specific surface area of the coal ash, and the measured value of the unburned fuel concentration in the coal ash. , Solving the equation to determine the coefficient to form an activity index estimation formula with the coefficient determined to estimate the activity index of the coal ash,
Further, the estimated or measured value of the specific surface area of the coal ash to be evaluated and the measured value of the unburned component concentration in the coal ash are substituted into the corresponding items of the activity index estimation formula in which the coefficient is determined. An evaluation method for coal ash properties, characterized by estimating an activity index of coal ash.
密度は、係数kd1、kd2、kd3、kd4を決定した式(1)及び(2)を式(3)に代入して得られる密度推算式を用いて求めることを特徴とする石炭灰性状の評価方法。
The density is obtained using a density estimation formula obtained by substituting Formulas (1) and (2) for determining the coefficients kd 1 , kd 2 , kd 3 , and kd 4 into Formula (3). Evaluation method for ash properties.
比表面積は、係数ks1、ks2、ks3、ks4を決定した式(4)及び式(5)を式(6)に代入して得られる比表面積推算式を用いて求めることを特徴とする石炭灰性状の評価方法。
The specific surface area is obtained using a specific surface area estimation formula obtained by substituting Formula (4) and Formula (5) for determining the coefficients ks 1 , ks 2 , ks 3 , and ks 4 into Formula (6). Evaluation method of coal ash properties.
フロー値比は、係数kf1、kf2、kf3を決定した式(7)として得られるフロー値比推算式を用いて求めることを特徴とする石炭灰性状の評価方法。
The method for evaluating coal ash properties, wherein the flow value ratio is obtained using a flow value ratio estimation formula obtained as an equation (7) for determining the coefficients kf 1 , kf 2 , and kf 3 .
活性度指数は、式(8)を式(9)に代入するとともに係数ka1、ka2、ka3、ka4を決定して得られる活性度指数推算式を用いて求めることを特徴とする石炭灰性状の評価方法。
The activity index is obtained by substituting equation (8) into equation (9) and using an activity index estimation formula obtained by determining the coefficients ka 1 , ka 2 , ka 3 , and ka 4. Evaluation method of coal ash properties.
各係数は最小自乗法により決定したことを特徴とする石炭灰性状の評価方法。 In the evaluation method of the coal ash property as described in any one of Claims 1 thru | or 8,
Each coefficient is determined by the least square method.
前記推算式記憶手段は、各石炭灰成分の含有率及び各石炭灰成分の真密度に基づく仮想真密度と、所定の係数を含む各石炭灰成分の含有率とに基づく推算真密度で石炭灰の真密度を代替する一方、所定の係数を含む石炭灰の平均粒径に基づく見かけの空隙率で石炭灰の灰粒子の空隙率を代替して形成した石炭灰の密度を推算するための前記係数が未定の密度推算式における前記係数を決定して形成した密度推算式のデータを記憶しており、
前記密度推算手段は、評価対象である石炭灰に関する石炭灰性状から得られる各石炭灰成分の含有率と、各石炭灰成分の真密度と、石炭灰成分の含有率と、石炭灰の粒径分布の実測値から得られる平均粒径とを前記密度推算式の対応項目に代入して前記石炭灰の密度を推算するものであることを特徴とする石炭灰性状の評価システム。 Arithmetic processing provided with estimation formula storage means storing density estimation formula data for estimating the density of coal ash and density estimation means for performing calculation processing for the density based on the density estimation formula Means,
The estimation formula storage means includes a coal ash having an estimated true density based on a virtual true density based on a content rate of each coal ash component and a true density of each coal ash component, and a content rate of each coal ash component including a predetermined coefficient. For estimating the density of coal ash formed by substituting the porosity of coal ash particles with an apparent porosity based on the average particle diameter of coal ash including a predetermined coefficient The density estimation formula data formed by determining the coefficient in the density estimation formula whose coefficient is undetermined is stored,
The density estimating means includes the content of each coal ash component obtained from the coal ash properties relating to the coal ash to be evaluated, the true density of each coal ash component, the content of the coal ash component, and the particle size of the coal ash. A coal ash property evaluation system characterized by substituting an average particle diameter obtained from an actual measurement value of distribution into a corresponding item of the density estimation formula to estimate the density of the coal ash.
前記推算式記憶手段は、石炭灰の比表面積を推算するための比表面積推算式のデータをさらに記憶するとともに、前記演算処理手段は前記比表面積推算式に基づき前記比表面積の推算のための演算処理を行う比表面積推算手段をさらに備えており、
前記比表面積推算式は、石炭灰の粒径分布により求めた体積当たりの粒子表面積を石炭灰の密度で除して得る粒径基準比表面積と、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数とに基づき形成した前記係数が未定の比表面積推算式における前記係数を決定して形成したものであり、
前記比表面積推算手段は、評価対象である石炭灰の粒径分布の実測値より求めた体積当たりの粒子表面積と、石炭灰の密度の推算値又は実測値と、石炭灰中の未燃分濃度の実測値と、前記石炭灰性状から求めた石炭中の灰分含有率と、石炭灰の粒径分布の実測値から求めた表面積平均粒径とを前記比表面積推算式の対応項目に代入して前記石炭灰の比表面積を推算するものであることを特徴とする石炭灰性状の評価システム。 In the evaluation system of the coal ash property according to claim 10,
The estimation formula storage means further stores specific surface area estimation formula data for estimating the specific surface area of coal ash, and the calculation processing means calculates for the specific surface area based on the specific surface area estimation formula. It further comprises a specific surface area estimation means for processing,
The specific surface area estimation formula includes a particle size standard specific surface area obtained by dividing the particle surface area per volume determined by the particle size distribution of the coal ash by the density of the coal ash, a predetermined coefficient, and unburned in the coal ash. The coefficient formed based on the partial concentration, the ash content in the coal, and the apparent shape factor based on the average surface area particle size related to the particle size of the coal ash is determined by determining the coefficient in the specific surface area estimation formula to be determined And
The specific surface area estimating means includes a particle surface area per volume obtained from an actual measurement value of a particle size distribution of coal ash to be evaluated, an estimated value or an actual measurement value of the density of coal ash, and an unburned component concentration in the coal ash. Substituting the actual measured value of, the ash content in the coal determined from the coal ash properties, and the average surface area particle size determined from the measured value of the particle size distribution of the coal ash into the corresponding items of the specific surface area estimation formula A coal ash property evaluation system characterized by estimating a specific surface area of the coal ash.
前記推算式記憶手段は、石炭灰のフロー値比を推算するためのフロー値比推算式のデータをさらに記憶するとともに、前記演算処理手段は前記フロー値比推算式に基づき前記フロー値比の推算のための演算処理を行うフロー値比推算手段をさらに備えており、
前記フロー値比推算式は、所定の係数を含むとともに石炭灰中の未燃分濃度、石炭中の灰分含有率及び石炭灰の粒径に関連する表面積平均粒径に基づく見かけの形状係数と、所定の係数を含む前記未燃分濃度とに基づき形成した前記係数が未定のフロー値比推算式における前記係数を決定して形成したものであり、
前記フロー値比推算手段は、評価対象である石炭灰の未燃分濃度の実測値、前記石炭灰性状から求めた石炭中の灰分含有率及び石炭灰の粒径分布の実測値から求めた表面積平均粒径、又は推算した見かけの形状係数及び前記未燃分濃度の実測値を前記フロー値比推算式の対応項目に代入して前記石炭灰のフロー値比を推算するものであることを特徴とする石炭灰性状の評価システム。 In the evaluation system of the coal ash property according to claim 10 or claim 11,
The estimation formula storage means further stores data of a flow value ratio estimation formula for estimating the flow value ratio of coal ash, and the calculation processing means estimates the flow value ratio based on the flow value ratio estimation formula. A flow value ratio estimating means for performing an arithmetic process for
The flow value ratio estimation formula includes a predetermined coefficient and an apparent shape factor based on an unburned component concentration in coal ash, an ash content in coal, and a surface area average particle size related to the particle size of coal ash, and The coefficient formed based on the unburned component concentration including a predetermined coefficient is determined by determining the coefficient in the undetermined flow value ratio estimation formula,
The flow value ratio estimating means is a surface area obtained from an actual measurement value of an unburned component concentration of coal ash to be evaluated, an ash content in coal obtained from the coal ash properties, and an actual measurement value of a particle size distribution of coal ash. The average particle size, or the estimated apparent shape factor and the actual measured value of the unburned component concentration are substituted into the corresponding item of the flow value ratio estimation formula, and the flow value ratio of the coal ash is estimated. An evaluation system for coal ash properties.
前記推算式記憶手段は、石炭灰の活性度指数を推算するための活性度指数推算式のデータをさらに記憶するとともに、前記演算処理手段は前記活性度指数推算式に基づき前記活性度指数の推算のための演算処理を行う活性度指数推算手段をさらに備えており、
前記活性度指数推算式は、所定の係数を含む石炭灰の比表面積と、石炭灰中の未燃分濃度と、石炭灰中のアルカリ成分の含有率とに基づき形成した前記係数が未定の活性度指数推算式における前記係数を決定して形成したものであり、
前記活性度指数推算手段は、評価対象である石炭灰の比表面積の推算値又は実測値と、石炭灰中の未燃分濃度の実測値とを前記活性度指数推算式の対応項目に代入して前記石炭灰の活性度指数を推算するものであることを特徴とする石炭灰性状の評価システム。 In the coal ash property evaluation system according to any one of claims 10 to 12,
The estimation formula storage means further stores data of an activity index estimation formula for estimating the activity index of coal ash, and the calculation processing means estimates the activity index based on the activity index estimation formula Further comprising activity index estimation means for performing arithmetic processing for
The activity index estimation formula is based on the specific surface area of coal ash including a predetermined coefficient, the unburned component concentration in coal ash, and the content of the alkali component in coal ash. It is formed by determining the coefficient in the degree index estimation formula,
The activity index estimating means substitutes the estimated value or actual value of the specific surface area of the coal ash to be evaluated and the actual value of the unburned component concentration in the coal ash into the corresponding items of the activity index estimation formula. And estimating the activity index of the coal ash.
密度推算式は、係数kd1、kd2、kd3、kd4を決定した式(1)及び(2)を式(3)に代入して得られるものであることを特徴とする石炭灰性状の評価システム。
The density estimation formula is obtained by substituting the formulas (1) and (2) for determining the coefficients kd 1 , kd 2 , kd 3 , and kd 4 into the formula (3). Evaluation system.
比表面積推算式は、係数ks1、ks2、ks3、ks4を決定した式(4)及び式(5)を式(6)に代入して得られるものであることを特徴とする石炭灰性状の評価システム。
The specific surface area estimation formula is obtained by substituting the formulas (4) and (5) for determining the coefficients ks 1 , ks 2 , ks 3 , and ks 4 into the formula (6). Evaluation system for ash properties.
フロー値比推算式は、係数kf1、kf2、kf3を決定した式(7)として得られるものであることを特徴とする石炭灰性状の評価システム。
The flow value ratio estimation formula is obtained as a formula (7) in which coefficients kf 1 , kf 2 , and kf 3 are determined.
活性度指数推算式は、式(8)を式(9)に代入するとともに係数ka1、ka2、ka3、ka4を決定して得られるものであることを特徴とする石炭灰性状の評価システム。
The activity index estimation formula is obtained by substituting formula (8) into formula (9) and determining coefficients ka 1 , ka 2 , ka 3 , ka 4 . Evaluation system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009160200A JP5522652B2 (en) | 2009-07-06 | 2009-07-06 | Coal ash properties evaluation method and evaluation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009160200A JP5522652B2 (en) | 2009-07-06 | 2009-07-06 | Coal ash properties evaluation method and evaluation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011013197A true JP2011013197A (en) | 2011-01-20 |
JP5522652B2 JP5522652B2 (en) | 2014-06-18 |
Family
ID=43592236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009160200A Expired - Fee Related JP5522652B2 (en) | 2009-07-06 | 2009-07-06 | Coal ash properties evaluation method and evaluation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5522652B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012194113A (en) * | 2011-03-17 | 2012-10-11 | Tokyo Electric Power Co Inc:The | Method for evaluating quality of fly ash |
JP2016125833A (en) * | 2014-12-26 | 2016-07-11 | 太平洋セメント株式会社 | Fluidity evaluation method of fly ash, high fluidity fly ash, and fly ash mixed cement |
JP2016125845A (en) * | 2014-12-26 | 2016-07-11 | 太平洋セメント株式会社 | Discrimination method of high-fluidity fly ash, high-fluidity fly ash, and fly ash-mixed cement |
JP2016221472A (en) * | 2015-06-01 | 2016-12-28 | 一般財団法人電力中央研究所 | Screening method of coal ash |
JP2017023895A (en) * | 2015-07-16 | 2017-02-02 | 株式会社トクヤマ | Management method of coal ash |
JP2017190908A (en) * | 2016-04-14 | 2017-10-19 | 株式会社神戸製鋼所 | Boiler operation method and boiler equipment |
JP2017194207A (en) * | 2016-04-19 | 2017-10-26 | 株式会社神戸製鋼所 | Operation method of boiler, and boiler equipment |
JP2018044802A (en) * | 2016-09-13 | 2018-03-22 | 太平洋セメント株式会社 | Method for predicting flow value ratio of fly ash and method for evaluating quality of fly ash |
JP2018112498A (en) * | 2017-01-13 | 2018-07-19 | 太平洋セメント株式会社 | Method of predicting fly ash activity index and method of evaluating quality of fly ash |
JP2019168433A (en) * | 2018-03-26 | 2019-10-03 | 太平洋セメント株式会社 | Method for predicting activity index of fly ash |
JP2019174240A (en) * | 2018-03-28 | 2019-10-10 | 太平洋セメント株式会社 | Calculation method of specific surface of fly ash in terms of ball, prediction method of activity index of fly ash, fly ash blended cement, and production method of fly ash blended cement |
JP2021133325A (en) * | 2020-02-28 | 2021-09-13 | 福島エコクリート株式会社 | Quality control method for coal ash-mixed material |
JP2021159827A (en) * | 2020-03-31 | 2021-10-11 | 三菱マテリアル株式会社 | Modification method and modification device for coal ash |
CN114047734A (en) * | 2021-12-24 | 2022-02-15 | 西安阿尔特测控技术有限公司 | Coal quality on-line detection data acquisition and control system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002114547A (en) * | 2000-10-03 | 2002-04-16 | Kobe Steel Ltd | Method for producing artificial lightweight aggregate |
JP2002114548A (en) * | 2000-10-03 | 2002-04-16 | Kobe Steel Ltd | Method for estimating property of coal ash and method for producing artificial lightweight aggregate |
JP2003177095A (en) * | 2001-12-11 | 2003-06-27 | Mitsubishi Heavy Ind Ltd | Coal ash content-analyzing apparatus |
-
2009
- 2009-07-06 JP JP2009160200A patent/JP5522652B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002114547A (en) * | 2000-10-03 | 2002-04-16 | Kobe Steel Ltd | Method for producing artificial lightweight aggregate |
JP2002114548A (en) * | 2000-10-03 | 2002-04-16 | Kobe Steel Ltd | Method for estimating property of coal ash and method for producing artificial lightweight aggregate |
JP2003177095A (en) * | 2001-12-11 | 2003-06-27 | Mitsubishi Heavy Ind Ltd | Coal ash content-analyzing apparatus |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012194113A (en) * | 2011-03-17 | 2012-10-11 | Tokyo Electric Power Co Inc:The | Method for evaluating quality of fly ash |
JP2016125833A (en) * | 2014-12-26 | 2016-07-11 | 太平洋セメント株式会社 | Fluidity evaluation method of fly ash, high fluidity fly ash, and fly ash mixed cement |
JP2016125845A (en) * | 2014-12-26 | 2016-07-11 | 太平洋セメント株式会社 | Discrimination method of high-fluidity fly ash, high-fluidity fly ash, and fly ash-mixed cement |
JP2016221472A (en) * | 2015-06-01 | 2016-12-28 | 一般財団法人電力中央研究所 | Screening method of coal ash |
JP2017023895A (en) * | 2015-07-16 | 2017-02-02 | 株式会社トクヤマ | Management method of coal ash |
JP2017190908A (en) * | 2016-04-14 | 2017-10-19 | 株式会社神戸製鋼所 | Boiler operation method and boiler equipment |
WO2017179551A1 (en) * | 2016-04-14 | 2017-10-19 | 株式会社神戸製鋼所 | Boiler operating method and boiler equipment |
JP2017194207A (en) * | 2016-04-19 | 2017-10-26 | 株式会社神戸製鋼所 | Operation method of boiler, and boiler equipment |
WO2017183529A1 (en) * | 2016-04-19 | 2017-10-26 | 株式会社神戸製鋼所 | Method for operating boiler and boiler equipment |
JP2018044802A (en) * | 2016-09-13 | 2018-03-22 | 太平洋セメント株式会社 | Method for predicting flow value ratio of fly ash and method for evaluating quality of fly ash |
JP2018112498A (en) * | 2017-01-13 | 2018-07-19 | 太平洋セメント株式会社 | Method of predicting fly ash activity index and method of evaluating quality of fly ash |
JP2019168433A (en) * | 2018-03-26 | 2019-10-03 | 太平洋セメント株式会社 | Method for predicting activity index of fly ash |
JP7115881B2 (en) | 2018-03-26 | 2022-08-09 | 太平洋セメント株式会社 | Prediction method of fly ash activity index |
JP2019174240A (en) * | 2018-03-28 | 2019-10-10 | 太平洋セメント株式会社 | Calculation method of specific surface of fly ash in terms of ball, prediction method of activity index of fly ash, fly ash blended cement, and production method of fly ash blended cement |
JP7089916B2 (en) | 2018-03-28 | 2022-06-23 | 太平洋セメント株式会社 | How to calculate the sphere-equivalent specific surface area of fly ash |
JP2021133325A (en) * | 2020-02-28 | 2021-09-13 | 福島エコクリート株式会社 | Quality control method for coal ash-mixed material |
JP2021159827A (en) * | 2020-03-31 | 2021-10-11 | 三菱マテリアル株式会社 | Modification method and modification device for coal ash |
JP7471893B2 (en) | 2020-03-31 | 2024-04-22 | Ube三菱セメント株式会社 | Method and apparatus for reforming coal ash |
CN114047734A (en) * | 2021-12-24 | 2022-02-15 | 西安阿尔特测控技术有限公司 | Coal quality on-line detection data acquisition and control system |
CN114047734B (en) * | 2021-12-24 | 2022-04-08 | 西安阿尔特测控技术有限公司 | Coal quality on-line detection data acquisition and control system |
Also Published As
Publication number | Publication date |
---|---|
JP5522652B2 (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522652B2 (en) | Coal ash properties evaluation method and evaluation system | |
Golewski | Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure | |
Andrade et al. | Influence of coal bottom ash as fine aggregate on fresh properties of concrete | |
CN102574742B (en) | Cement additire is prepared by the combustion product of hydrocarbon fuel and strength enhancing metal oxides | |
Kadir et al. | Effect of heating rate on gas emissions and properties of fired clay bricks and fired clay bricks incorporated with cigarette butts | |
Thy et al. | Bed agglomeration in fluidized combustor fueled by wood and rice straw blends | |
Sinthaworn et al. | Quick monitoring of pozzolanic reactivity of waste ashes | |
Berenguer et al. | Durability of concrete structures with sugar cane bagasse ash | |
CN109354445A (en) | A kind of preparation method of non-sintered lytag | |
El Fami et al. | Rheology, calorimetry and electrical conductivity related-properties for monitoring the dissolution and precipitation process of cement-fly ash mixtures | |
WO2014146173A1 (en) | Assessment method | |
Wons et al. | Thermal studies of fly ashes expansion | |
Spörel et al. | Investigations on the influence of fly ash on the formation and stability of artificially entrained air voids in concrete | |
JP2017142140A (en) | Fly ash activity index prediction method, and method for producing fly ash mixed cement | |
Ganesh et al. | Investigation on the effect of ultra fine rice husk flashover slag based geopolymer concrete | |
Schrader | An investigation into the effects of fly ash on freeze-thaw durability prediction | |
Roslan et al. | Feasibility study of palm boiler ash as cement and sand replacement in concrete | |
Ahmed et al. | Fly ash iodine number for measuring adsorption capacity of coal fly ash | |
Palaniappan | Study on type C coal fly ash as an additive to molding sand for steel casting | |
Ramanathan et al. | Reducing Greenhouse Gas Emissions Using Cellulose Nanocrystals, Ordinary Portland Cement, and Limestone. | |
Dirgantara | Development of brown coal fly ash geopolymer concrete | |
Mohamed et al. | A review on fly ash as a sustainable material to reinforce the mechanical properties of concrete | |
Kurtulus et al. | An essential study of strength development in geopolymer materials using the JMAK method | |
JP6666816B2 (en) | Method for predicting flow value ratio of fly ash and method for evaluating fly ash quality | |
Kalina | Evaluation of test methods and specifications for supplementary cementitious materials for concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5522652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |