JP2019174240A - Calculation method of specific surface of fly ash in terms of ball, prediction method of activity index of fly ash, fly ash blended cement, and production method of fly ash blended cement - Google Patents

Calculation method of specific surface of fly ash in terms of ball, prediction method of activity index of fly ash, fly ash blended cement, and production method of fly ash blended cement Download PDF

Info

Publication number
JP2019174240A
JP2019174240A JP2018061569A JP2018061569A JP2019174240A JP 2019174240 A JP2019174240 A JP 2019174240A JP 2018061569 A JP2018061569 A JP 2018061569A JP 2018061569 A JP2018061569 A JP 2018061569A JP 2019174240 A JP2019174240 A JP 2019174240A
Authority
JP
Japan
Prior art keywords
fly ash
specific surface
surface area
activity index
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018061569A
Other languages
Japanese (ja)
Other versions
JP7089916B2 (en
Inventor
直人 中居
Naoto Nakai
直人 中居
引田 友幸
Tomoyuki Hikita
友幸 引田
俊一郎 内田
Shunichiro Uchida
俊一郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018061569A priority Critical patent/JP7089916B2/en
Publication of JP2019174240A publication Critical patent/JP2019174240A/en
Application granted granted Critical
Publication of JP7089916B2 publication Critical patent/JP7089916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a prediction method of an activity index of fly ash using a specific surface of fly ash in terms of ball obtained by calculation using a characteristic value of fly ash which is more easily obtained than the specific surface of fly ash in terms of ball.SOLUTION: A calculation method of a specific surface of fly ash in terms of ball is provided in which: regression analysis is performed using the following formula (1) on the basis of the specific surface of fly ash in terms of ball, Blaine's specific surface of the fly ash and residue of the fly ash after 45 μm sieving, thereby obtaining the following regression coefficients a, b and c; then the Blaine's specific surface area (actual measurement) of the fly ash with unknown specific surface of fly ash in terms of ball and residue of the fly ash after 45 μm sieving are substituted in the following formula (1) in which the values of the regression coefficients a, b, and c are substituted; and thus the specific surface of fly ash in terms of ball is calculated. S=a×B+b×R+c ... (1), where S is the specific surface of fly ash in terms of ball (cm/cm), Bis the Blaine's specific surface area of the fly ash (cm/g), and Ris the residue of the fly ash after 45 μm sieving (mass%).SELECTED DRAWING: Figure 1

Description

本発明は、フライアッシュの球換算比表面積を算出する方法、該球換算比表面積を用いてフライアッシュの活性度指数を予測する方法、該活性度指数に基づき選択したフライアッシュを含むフライアッシュ混合セメント、および該フライアッシュ混合セメントの製造方法に関する。   The present invention relates to a method for calculating the sphere equivalent specific surface area of fly ash, a method for predicting an activity index of fly ash using the sphere equivalent specific surface area, and a fly ash mixture containing fly ash selected based on the activity index The present invention relates to a cement and a method for producing the fly ash mixed cement.

セメントの一部をフライアッシュで置換したフライアッシュ混合セメントは、フライアッシュから溶出するSiやAlがフライアッシュ粒子の近傍にあるセメント水和物の中に取り込まれ、低Ca型のC−S−H(カルシウムシリケート水和物)相を生成する。この生成反応はポゾラン反応と呼ばれ、C−S−H相がアルカリシリカ反応(ASR)を抑制するなど、コンクリートの耐久性を高める効果がある。   In the fly ash mixed cement in which a part of the cement is replaced with fly ash, Si and Al eluted from the fly ash are incorporated into the cement hydrate in the vicinity of the fly ash particles, and the low Ca type CS— An H (calcium silicate hydrate) phase is produced. This generation reaction is called a pozzolanic reaction, and the C—S—H phase has an effect of enhancing the durability of the concrete, for example, suppressing the alkali silica reaction (ASR).

ところで、一般社団法人石炭エネルギーセンターのフライアッシュ全国実態調査報告書によれば、平成27年度のフライアッシュの発生量は1272万トン(この発生量の内訳は、電気事業で934万トン、一般産業で338万トンである。)に達した。しかも、電源を火力発電に大きく依存せざるを得ない我が国では、フライアッシュが多量に発生する状況は、今後もしばらく続くと予想される。
このフライアッシュの内、セメント混合材やコンクリート混和材として有効活用された量は約15万トンであり、これはフライアッシュの発生量全体の1.2%に過ぎない。このように、フライアッシュのポゾラン反応性を積極的に活用する分野で、フライアッシュの利用率が低い理由の一つに、フライアッシュの化学組成や粉体特性に強く影響する炭種や燃焼プロセス等の因子が、石炭火力発電所のライン毎に異なるため、フライアッシュの品質(物理・化学的性質)が安定しないことが挙げられる。そのため、フライアッシュの品質を安定化する方法が研究されてきた。
By the way, according to the report on the nationwide survey of fly ash conducted by the Japan Coal Energy Center, the amount of fly ash generated in FY2015 was 12.72 million tons (the breakdown of this amount was 9.34 million tons in the electric business, general industry It was 3.38 million tons.) Moreover, in Japan, where the power source must largely depend on thermal power generation, the situation where a large amount of fly ash is generated is expected to continue for a while.
Of this fly ash, the amount effectively used as cement admixture or concrete admixture is about 150,000 tons, which is only 1.2% of the total amount of fly ash generated. In this way, one of the reasons for the low utilization rate of fly ash in the field of actively utilizing fly ash's pozzolanic reactivity is the type of coal and combustion process that strongly affect the chemical composition and powder characteristics of fly ash. This is because the quality (physical and chemical properties) of fly ash is not stable because factors such as these differ for each line of a coal-fired power plant. For this reason, methods for stabilizing the quality of fly ash have been studied.

例えば、非特許文献1に記載のフライアッシュの品質の安定化方法は、フライアッシュを分級して粗粒分を除去して、粒度を調整する方法である。また、これに関連して、非特許文献2では、分級により粒度を調整したフライアッシュの特性と、該フライアッシュの粒度の関係について報告している。該報告によれば、分級して粗粒分を除去して粒度を調整したフライアッシュの活性度指数と、球換算比表面積との間に直線関係があるとされている。ここで、活性度指数とは、JIS A 6201「コンクリート用フライアッシュ」の附属書Cに規定するフライアッシュのポゾラン反応性を評価するための特性値であって、フライアッシュを含まない基準モルタルに対するフライアッシュを含む試験モルタルの圧縮強度の比である。また、球換算比表面積とは、粒子の形状を球と仮定した場合に球の直径と密度から算出されるパラメータである。
しかし、球換算比表面積を測定するためには、高価なレーザー回折・散乱式 粒子径分布測定装置が必要なため、球換算比表面積に代えて、製造現場でより簡便に取得できるパラメータが求められる。
For example, the fly ash quality stabilization method described in Non-Patent Document 1 is a method of classifying fly ash to remove coarse particles and adjusting the particle size. In relation to this, Non-Patent Document 2 reports the relationship between the characteristics of fly ash whose particle size is adjusted by classification and the particle size of the fly ash. According to this report, it is said that there is a linear relationship between the activity index of fly ash, which is classified and coarse particles are removed to adjust the particle size, and the sphere equivalent specific surface area. Here, the activity index is a characteristic value for evaluating pozzolanic reactivity of fly ash as defined in Annex C of JIS A 6201 “Fly Ash for Concrete”, and is based on a reference mortar that does not include fly ash. Compressive strength ratio of test mortar containing fly ash. The spherical equivalent surface area is a parameter calculated from the diameter and density of the sphere when the shape of the particle is assumed to be a sphere.
However, in order to measure the specific surface area in terms of spheres, an expensive laser diffraction / scattering particle size distribution measuring device is required, so parameters that can be obtained more easily at the manufacturing site are required instead of the specific surface area in terms of spheres. .

濱田秀則ほか、「混和材として分級フライアッシュを用いたコンクリートの基礎物性および海洋環境下における耐久性」、土木学会論文集、No.571/V−36、pp69−78(1997)Hidenori Hamada et al., “Fundamental physical properties of concrete using classified fly ash as admixture and durability in marine environment”, Proceedings of Japan Society of Civil Engineers, No. 571 / V-36, pp69-78 (1997) 土肥浩第ほか、「分級により粒度調整したフライアッシュの諸特性」、第71回セメント技術大会 講演要旨 2017 pp.114−115Hiroshi Doi et al., “Various Properties of Fly Ash Adjusted in Particle Size by Classification”, 71st Cement Technology Conference Abstract 2017 pp. 114-115

したがって、本発明は、球換算比表面積よりも簡易に取得できるフライアッシュの特性値を用いて球換算比表面積を算出し、この算出した球換算比表面積を用いて活性度指数を予測する方法等を提供することを目的とする。   Therefore, the present invention calculates a sphere-equivalent specific surface area using fly ash characteristic values that can be obtained more easily than a sphere-equivalent specific surface area, and predicts an activity index using the calculated sphere-equivalent specific surface area. The purpose is to provide.

そこで、本発明者は、前記目的に適う球換算比表面積を算出する方法を検討したところ、下記の構成を有する球換算比表面積の算出方法等は、前記目的を達成できることを見い出し、本発明を完成させた。
[1]フライアッシュの球換算比表面積(実測値)、該フライアッシュのブレーン比表面積(実測値)および45μm篩い残分(実測値)に基づき、下記(1)式を用いて回帰分析を行い、下記の回帰係数a、bおよびcの値を求めた後、回帰係数a、bおよびcの値を代入した下記(1)式に、球換算比表面積が未知のフライアッシュのブレーン比表面積(実測値)および45μm篩い残分(実測値)を代入して、フライアッシュの球換算比表面積を算出する、フライアッシュの球換算比表面積の算出方法。
S=a×B+b×R45+c ・・・(1)
ただし、(1)式中、Sはフライアッシュの球換算比表面積(cm/cm)、Bはフライアッシュのブレーン比表面積(cm/g)、R45はフライアッシュの45μm篩い残分(質量%)を表す。
[2]前記[1]で算出したフライアッシュの球換算比表面積と、フライアッシュの活性度指数(実測値)に基づき、下記(2)式を用いて回帰分析を行い、下記の回帰係数dおよびeの値を求めた後、回帰係数dおよびeの値を代入した下記(2)式に、活性度指数が未知のフライアッシュの球換算比表面積(計算値)を代入して、フライアッシュの活性度指数の予測値を算出して予測する、フライアッシュの活性度指数の予測方法。
=d×S+e ・・・(2)
ただし、(2)式中、Aはフライアッシュの活性度指数(%)、Sはフライアッシュの球換算比表面積(cm/cm)を表す。
[3]前記[2]に記載のフライアッシュの活性度指数の予測方法を用いて求めた、材齢91日のモルタル中のフライアッシュの活性度指数の予測値が70%以上のフライアッシュとセメントを含む、フライアッシュ混合セメント。
[4]前記[2]に記載の活性度指数の予測値が70%以上であるフライアッシュとセメントを混合する、フライアッシュ混合セメントの製造方法。
Therefore, the present inventor examined a method for calculating a sphere-equivalent specific surface area suitable for the above purpose, and found that a method for calculating a sphere-equivalent specific surface area having the following configuration can achieve the above object, and the present invention. Completed.
[1] Based on the fly ash equivalent surface area (measured value), the fly ash brain specific surface area (actual value), and the 45 μm sieve residue (actual value), regression analysis was performed using the following equation (1). After obtaining the values of the following regression coefficients a, b and c, the following formula (1) into which the values of the regression coefficients a, b and c were substituted, the fly ash brain specific surface area with unknown spherical equivalent surface area ( A method for calculating the fly ash equivalent surface area of the fly ash by substituting the actual measurement value) and the 45 μm sieve residue (actual value) to calculate the sphere equivalent specific surface area of the fly ash.
S = a × B L + b × R 45 + c (1)
However, in the formula (1), S is the fly ash equivalent surface area (cm 2 / cm 3 ), BL is the fly ash brain specific surface area (cm 2 / g), and R 45 is the fly ash 45 μm sieve residue. It represents minutes (mass%).
[2] Based on the fly ash equivalent surface area calculated in [1] above and the fly ash activity index (actual measurement value), regression analysis is performed using the following equation (2), and the regression coefficient d After calculating the values of e and e, the sphere equivalent specific surface area (calculated value) of fly ash with unknown activity index is substituted into the following equation (2) into which the values of regression coefficients d and e are substituted, and fly ash A method for predicting the activity index of fly ash, which calculates and predicts the predicted value of the activity index of the fly ash.
A I = d × S + e (2)
However, expressed through the equation (2), A I is the fly ash activity index (%), S is the fly ash spherical equivalent specific surface area (cm 2 / cm 3).
[3] A fly ash having a predicted activity index of fly ash in a mortar of 91 days of age having a predicted value of 70% or more obtained using the method for predicting an activity index of fly ash according to [2] above Fly ash mixed cement, including cement.
[4] A method for producing fly ash-mixed cement, comprising mixing fly ash and cement having a predicted activity index of 70% or more according to [2].

本発明のフライアッシュの球換算比表面積の算出方法は、セメントの製造現場で簡易に取得できるフライアッシュの特性値(フライアッシュのブレーン比表面積および45μm篩残分)を用いて、フライアッシュの球換算比表面積を精度よく算出できる。また、本発明のフライアッシュの活性度指数の予測方法は、算出したフライアッシュの球換算比表面積を用いてフライアッシュの活性度指数を精度よく予測できる。   The fly ash equivalent surface area of fly ash according to the present invention is calculated using fly ash characteristic values (fly ash specific surface area and 45 μm sieve residue) that can be easily obtained at the cement manufacturing site. The converted specific surface area can be calculated with high accuracy. In addition, the fly ash activity index predicting method according to the present invention can accurately predict the fly ash activity index using the calculated fly ash equivalent surface area of the sphere.

(1)式を用いて算出したフライアッシュの球換算比表面積と、フライアッシュの球換算比表面積の実測値の相関を示す図である。ただし、式中、xは球換算比表面積の計算値(cm/cm)、yは球換算比表面積の実測値(cm/cm)を表す。It is a figure which shows the correlation of the sphere conversion specific surface area of fly ash computed using (1) Formula, and the measured value of the sphere conversion specific surface area of fly ash. However, in the formula, x represents a calculated value (cm 2 / cm 3 ) of a sphere equivalent specific surface area, and y represents an actual measured value (cm 2 / cm 3 ) of a sphere equivalent specific surface area. (1)式を用いて算出したフライアッシュの球換算比表面積と、材齢91日のモルタル中の該フライアッシュの活性度指数(実測値)の相関を示す図である。なお、図2中の回帰式は前記(2)式に相当する。ただし、式中、xは球換算比表面積の計算値(cm/cm)、yは材齢91日の活性度指数の実測値(%)を表す。It is a figure which shows the correlation of the sphere conversion specific surface area of the fly ash calculated using (1) Formula, and the activity index (actual value) of this fly ash in the mortar of age 91 days. The regression equation in FIG. 2 corresponds to the equation (2). However, in the formula, x represents a calculated value (cm 2 / cm 3 ) of a sphere equivalent specific surface area, and y represents an actually measured value (%) of an activity index at 91 days of age.

以下、本発明について、フライアッシュの球換算比表面積の算出方法、フライアッシュの活性度指数の予測方法、フライアッシュ混合セメント、およびフライアッシュ混合セメントの製造方法に分けて具体的に説明する。   Hereinafter, the present invention will be specifically described by dividing it into a method for calculating a fly ash equivalent surface area of a fly ash, a method for predicting an activity index of fly ash, a fly ash mixed cement, and a method for producing a fly ash mixed cement.

1.フライアッシュの球換算比表面積の算出方法
本発明のフライアッシュの球換算比表面積の算出方法は、フライアッシュの球換算比表面積(実測値)、該フライアッシュのブレーン比表面積(実測値)および45μm篩い残分(実測値)に基づき、前記(1)式を用いて回帰分析を行い、回帰係数a、bおよびcの値を求めた後、回帰係数a、bおよびcの値を代入した前記(1)式に、球換算比表面積が未知のフライアッシュのブレーン比表面積(実測値)およびフライアッシュの45μm篩い残分(実測値)を代入して、フライアッシュの球換算比表面積を算出する方法である。
ここで、本発明の算出方法の対象であるフライアッシュは、特に限定されず、石炭火力発電所、石油精製工場、その他の化学工場等で微粉炭を燃焼したときに発生する燃焼ガスから、集塵器により捕集された微粉末である。
また、フライアッシュの球換算比表面積はレーザー回折・散乱式 粒子径分布測定装置を用いて求めることができる。また、フライアッシュのブレーン比表面積および45μm篩残分は、JIS A 6201「コンクリート用フライアッシュ」に準拠して測定する。
1. Calculation method of fly ash equivalent surface area of spheres The calculation method of fly ash equivalent surface area of spheres of the present invention is as follows: fly ash equivalent surface area (measured value), fly ash brain specific surface area (actual value), and 45 μm Based on the sieving residue (actual value), the regression analysis was performed using the equation (1) to obtain the values of the regression coefficients a, b and c, and then the values of the regression coefficients a, b and c were substituted. By substituting the fly ash brain specific surface area (actually measured value) and the fly ash 45 μm sieving residue (actually measured value) into the equation (1), the spherical equivalent surface area of fly ash is calculated. Is the method.
Here, the fly ash which is the object of the calculation method of the present invention is not particularly limited, and is collected from the combustion gas generated when pulverized coal is burned in a coal-fired power plant, an oil refinery plant, other chemical factories, etc. It is a fine powder collected by a duster.
The fly ash equivalent surface area in terms of sphere can be determined using a laser diffraction / scattering particle size distribution measuring apparatus. The specific surface area of the fly ash and the residue of the 45 μm sieve are measured according to JIS A 6201 “Fly Ash for Concrete”.

2.フライアッシュの活性度指数の予測方法
本発明のフライアッシュの活性度指数の予測方法は、前記算出したフライアッシュの球換算比表面積と、フライアッシュの活性度指数(実測値)に基づき、前記(2)式を用いて回帰分析を行い、回帰係数dおよびeの値を求めた後、回帰係数dおよびeの値を代入した前記(2)式に、活性度指数が未知のフライアッシュの球換算比表面積(計算値)を代入して、フライアッシュの活性度指数の予測値を算出して予測する方法である。
2. Fly Ash Activity Index Prediction Method The fly ash activity index prediction method according to the present invention is based on the calculated fly ash equivalent surface area of the fly ash and the fly ash activity index (actual value). 2) After performing regression analysis using the equation, the values of the regression coefficients d and e are obtained, and then the fly ash sphere whose activity index is unknown to the equation (2) in which the values of the regression coefficients d and e are substituted. This is a method of substituting the converted specific surface area (calculated value) to calculate and predict the predicted value of the fly ash activity index.

3.フライアッシュ混合セメント、およびフライアッシュ混合セメントの製造方法
本発明のフライアッシュ混合セメントは、前記フライアッシュの活性度指数の予測方法を用いて求めた、材齢91日のモルタル中のフライアッシュの活性度指数の予測値が70%以上のフライアッシュと、セメントを混合した混合セメントである。なお、前記フライアッシュの活性度指数の予測値は、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは100%以上である。
また、前記セメントは、特に制限されず、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、エコセメント、および高炉セメントから選ばれる1種以上が挙げられる。
また、本発明のフライアッシュ混合セメントの製造方法は、前記フライアッシュの活性度指数の予測方法を用いて求めた、材齢91日のモルタル中のフライアッシュの活性度指数の予測値が70%以上のフライアッシュと前記セメントを混合して製造する方法である。前記フライアッシュおよびセメントの混合に用いる混合装置は、セメント工場において混合セメントの製造に通常用いる装置であり、連続式またはバッチ式を問わず、容器回転型、容器固定型、粒体運動型等の各種混合装置を使用できる。
3. Fly ash mixed cement and method for producing fly ash mixed cement The fly ash mixed cement of the present invention is obtained by using the fly ash activity index predicting method described above, and the activity of fly ash in a 91-day-old mortar. This is a mixed cement obtained by mixing fly ash with a predicted value of the degree index of 70% or more and cement. The predicted value of the activity index of the fly ash is preferably 80% or more, more preferably 90% or more, and further preferably 100% or more.
The cement is not particularly limited, and is selected from ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, medium heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, eco-cement, and blast furnace cement. 1 type or more is mentioned.
Moreover, the manufacturing method of the fly ash mixed cement of the present invention has a predicted value of the activity index of fly ash in the mortar of 91 days of age obtained by the method for predicting the activity index of fly ash of 70%. This is a method for producing a mixture of the above fly ash and the cement. The mixing device used for mixing the fly ash and cement is a device that is usually used for manufacturing mixed cement in a cement factory, whether it is a continuous type or a batch type, such as a container rotating type, a container fixing type, and a particle motion type. Various mixing devices can be used.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.前記(1)式を用いた回帰分析
表1に示すフライアッシュの球換算比表面積(実測値)、該フライアッシュのブレーン比表面積(実測値)、および該フライアッシュの45μm篩い残分(実測値)に基づき、前記(1)式を用いて回帰分析を行い、回帰係数a、bおよびcの値を求め、下記(3)式を得た。
S=1.42B+99.12×R45+2729.44 ・・・(3)
なお、フライアッシュの球換算比表面積は、レーザー回折・散乱式 粒子径分布測定装置(製型番:MT3300 EX II、マイクロトラック・ベル社製)を用いて求めた。また、フライアッシュのブレーン比表面積、および該フライアッシュの45μm篩い残分は、JIS A 6201「コンクリート用フライアッシュ」に準拠して測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Regression analysis using the equation (1) The sphere equivalent specific surface area (actual measurement value) of fly ash shown in Table 1, the brain specific surface area (actual measurement value) of the fly ash, and the 45 μm sieve residue (actual measurement value) of the fly ash ) Based on the above equation (1), regression analysis was performed to determine the values of the regression coefficients a, b and c, and the following equation (3) was obtained.
S = 1.42B L + 99.12 × R 45 +2729.44 (3)
The spherical equivalent surface area of fly ash was determined using a laser diffraction / scattering particle size distribution measuring device (manufactured model: MT3300 EX II, manufactured by Microtrack Bell). Further, the specific surface area of fly ash and the residue of the fly ash sieved by 45 μm were measured according to JIS A 6201 “Fly Ash for Concrete”.

Figure 2019174240
Figure 2019174240

表1に示すフライアッシュの球換算比表面積(実測値)と、前記(3)式から求めた球換算比表面積(計算値)の相関を図1に示す。この決定係数(R)は0.75であるから、(3)式はフライアッシュの球換算比表面積を高い精度で算出することができる。 FIG. 1 shows the correlation between the sphere equivalent specific surface area (measured value) of fly ash shown in Table 1 and the sphere equivalent specific surface area (calculated value) obtained from the equation (3). Since this determination coefficient (R 2 ) is 0.75, Equation (3) can calculate the spherical equivalent surface area of fly ash with high accuracy.

2.前記(2)式を用いた回帰分析
表1に示すフライアッシュの活性度指数(実測値)と前記(3)式を用いて算出した球換算比表面積(計算値)に基づき、前記(2)式を用いて回帰分析を行い、回帰係数dおよびeの値を求め、下記(4)式を得た。
=0.0035S+73.98 ・・・(4)
また、フライアッシュの活性度指数(実測値)と前記(3)式を用いて算出した球換算比表面積(計算値)の相関を図2に示す。
図2に示すように、決定係数は(R)は0.78であり、フライアッシュの活性度指数(実測値)と球換算比表面積(計算値)の間には高い相関がある。
2. Regression analysis using the above equation (2) Based on the fly ash activity index (measured value) shown in Table 1 and the sphere equivalent specific surface area (calculated value) calculated using the above equation (3), the above (2) Regression analysis was performed using the equation to determine the values of the regression coefficients d and e, and the following equation (4) was obtained.
A I = 0.0035S + 73.98 (4)
Further, FIG. 2 shows the correlation between the fly ash activity index (actually measured value) and the sphere equivalent specific surface area (calculated value) calculated using the equation (3).
As shown in FIG. 2, the coefficient of determination (R 2 ) is 0.78, and there is a high correlation between the fly ash activity index (actual value) and the sphere equivalent specific surface area (calculated value).

前記(3)式を用いて表2に示すフライアッシュの球換算比表面積(表2中の球換算比表面積の計算値)を算出した。また、前記算出した球換算比表面積を用いて上記(4)式から表2に示すフライアッシュの活性度指数(表2中の活性度指数の予測値)を予測した。なお、表2に示すフライアッシュ11〜13は、表1に示すフライアッシュ1〜10とは異なるものである。
表2に示すように、本発明の方法は、フライアッシュの球換算比表面積を高い精度で算出でき、また、フライアッシュの活性度指数を高い精度で予測することができる。
Using the above equation (3), the sphere equivalent specific surface area of fly ash shown in Table 2 (calculated value of the sphere equivalent specific surface area in Table 2) was calculated. Moreover, the activity index of the fly ash shown in Table 2 (predicted value of the activity index in Table 2) was predicted from the above formula (4) using the calculated sphere-equivalent specific surface area. In addition, the fly ash 11-13 shown in Table 2 is different from the fly ash 1-10 shown in Table 1.
As shown in Table 2, the method of the present invention can calculate the fly ash equivalent surface area of spheres with high accuracy, and can predict the activity index of fly ash with high accuracy.

Figure 2019174240
Figure 2019174240

Claims (4)

フライアッシュの球換算比表面積(実測値)、該フライアッシュのブレーン比表面積(実測値)および45μm篩い残分(実測値)に基づき、下記(1)式を用いて回帰分析を行い、下記の回帰係数a、bおよびcの値を求めた後、回帰係数a、bおよびcの値を代入した下記(1)式に、球換算比表面積が未知のフライアッシュのブレーン比表面積(実測値)およびフライアッシュの45μm篩い残分(実測値)を代入して、フライアッシュの球換算比表面積を算出する、フライアッシュの球換算比表面積の算出方法。
S=a×B+b×R45+c ・・・(1)
ただし、(1)式中、Sはフライアッシュの球換算比表面積(cm/cm)、Bはフライアッシュのブレーン比表面積(cm/g)、R45はフライアッシュの45μm篩い残分(質量%)を表す。
Based on the fly ash equivalent surface area (measured value), the fly ash brain specific surface area (actual value) and the 45 μm sieve residue (actual value), regression analysis was performed using the following formula (1). After obtaining the values of the regression coefficients a, b and c, the fly ash brane specific surface area (actual measurement value) whose sphere equivalent specific surface area is unknown is substituted into the following equation (1) into which the values of the regression coefficients a, b and c are substituted. And the calculation method of the spherical equivalent specific surface area of fly ash which substitutes the 45 micrometer sieve residue (actual value) of fly ash, and calculates the spherical equivalent specific surface area of fly ash.
S = a × B L + b × R 45 + c (1)
However, in the formula (1), S is the fly ash equivalent surface area (cm 2 / cm 3 ), BL is the fly ash brain specific surface area (cm 2 / g), and R 45 is the fly ash 45 μm sieve residue. It represents minutes (mass%).
請求項1で算出したフライアッシュの球換算比表面積と、フライアッシュの活性度指数(実測値)に基づき、下記(2)式を用いて回帰分析を行い、下記の回帰係数dおよびeの値を求めた後、回帰係数dおよびeの値を代入した下記(2)式に、活性度指数が未知のフライアッシュの球換算比表面積(計算値)を代入して、フライアッシュの活性度指数の予測値を算出して予測する、フライアッシュの活性度指数の予測方法。
=d×S+e ・・・(2)
ただし、(2)式中、Aはフライアッシュの活性度指数(%)、Sはフライアッシュの球換算比表面積(cm/cm)を表す。
Based on the fly ash equivalent surface area calculated in claim 1 and the fly ash activity index (actual measurement value), regression analysis is performed using the following formula (2), and the values of the following regression coefficients d and e: After substituting the sphere equivalent specific surface area (calculated value) of fly ash with unknown activity index into the following equation (2) into which the values of regression coefficients d and e are substituted, the fly ash activity index is calculated. A method for predicting the activity index of fly ash that calculates and predicts the predicted value of.
A I = d × S + e (2)
However, expressed through the equation (2), A I is the fly ash activity index (%), S is the fly ash spherical equivalent specific surface area (cm 2 / cm 3).
請求項2に記載のフライアッシュの活性度指数の予測方法を用いて求めた、材齢91日のモルタル中のフライアッシュの活性度指数の予測値が70%以上のフライアッシュとセメントを含む、フライアッシュ混合セメント。   The fly ash activity index prediction method according to claim 2, which is calculated using the fly ash activity index prediction method, includes fly ash and cement having a predicted activity index of fly ash in a 91-day-old mortar that is 70% or more. Fly ash mixed cement. 請求項2に記載の活性度指数の予測値が70%以上であるフライアッシュとセメントを混合する、フライアッシュ混合セメントの製造方法。

The manufacturing method of the fly ash mixing cement which mixes the fly ash and the cement whose predicted value of the activity index of Claim 2 is 70% or more.

JP2018061569A 2018-03-28 2018-03-28 How to calculate the sphere-equivalent specific surface area of fly ash Active JP7089916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061569A JP7089916B2 (en) 2018-03-28 2018-03-28 How to calculate the sphere-equivalent specific surface area of fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061569A JP7089916B2 (en) 2018-03-28 2018-03-28 How to calculate the sphere-equivalent specific surface area of fly ash

Publications (2)

Publication Number Publication Date
JP2019174240A true JP2019174240A (en) 2019-10-10
JP7089916B2 JP7089916B2 (en) 2022-06-23

Family

ID=68168558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061569A Active JP7089916B2 (en) 2018-03-28 2018-03-28 How to calculate the sphere-equivalent specific surface area of fly ash

Country Status (1)

Country Link
JP (1) JP7089916B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187748A (en) * 2000-12-15 2002-07-05 Yokohama City Cement composition
JP2011013197A (en) * 2009-07-06 2011-01-20 Central Res Inst Of Electric Power Ind Method and system for evaluating coal ash property
US9290416B1 (en) * 2011-11-21 2016-03-22 Louisiana Tech Research Corporation Method for geopolymer concrete
JP2017066020A (en) * 2015-09-30 2017-04-06 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of fly ash cement
JP2017142140A (en) * 2016-02-09 2017-08-17 太平洋セメント株式会社 Fly ash activity index prediction method, and method for producing fly ash mixed cement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187748A (en) * 2000-12-15 2002-07-05 Yokohama City Cement composition
JP2011013197A (en) * 2009-07-06 2011-01-20 Central Res Inst Of Electric Power Ind Method and system for evaluating coal ash property
US9290416B1 (en) * 2011-11-21 2016-03-22 Louisiana Tech Research Corporation Method for geopolymer concrete
JP2017066020A (en) * 2015-09-30 2017-04-06 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of fly ash cement
JP2017142140A (en) * 2016-02-09 2017-08-17 太平洋セメント株式会社 Fly ash activity index prediction method, and method for producing fly ash mixed cement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
フライアッシュコンクリート Q & A, JPN6021052614, March 2015 (2015-03-01), pages 1 - 9, ISSN: 0004677535 *
依田 侑也 他: "国内外の高炉スラグ微粉末およびフライアッシュの品質評価法", 清水建設研究報告, JPN6021052616, January 2018 (2018-01-01), pages 17 - 24, ISSN: 0004677534 *
川端 雄一郎,松下 博通: "アルカリシリカ反応抑制の観点からのフライアッシュの品質評価に関する研究", 土木学会論文集E, vol. 63, no. 3, JPN6021052613, 20 July 2007 (2007-07-20), pages 379 - 395, ISSN: 0004677536 *

Also Published As

Publication number Publication date
JP7089916B2 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Rahhal et al. Complex characterization and behavior of waste fired brick powder-portland cement system
JP5414170B2 (en) Coal ash evaluation method
Kang et al. Predicting the compressive strength of fly ash concrete with the Particle Model
Nazari et al. Designing water resistant lightweight geopolymers produced from waste materials
JP2017066020A (en) Method for predicting quality or manufacturing condition of fly ash cement
CN109270255A (en) A method of prediction ready-mixed concrete intensity
JP6642916B2 (en) Method for predicting fly ash activity index and method for producing fly ash mixed cement
JP2006219312A (en) Solidifying material composition
El Fami et al. Rheology, calorimetry and electrical conductivity related-properties for monitoring the dissolution and precipitation process of cement-fly ash mixtures
Fioriti et al. Performance of mortars produced with the incorporation of sugar cane bagasse ash
JP2016003178A (en) Selection method of blast furnace slag, and production method of blast furnace cement
Shukla et al. Effect of Sodium Oxide on Physical and Mechanical properties of Fly-Ash based geopolymer composites
JP2019219231A (en) Prediction method of activity index of fly ash
JP2019174240A (en) Calculation method of specific surface of fly ash in terms of ball, prediction method of activity index of fly ash, fly ash blended cement, and production method of fly ash blended cement
JP7115881B2 (en) Prediction method of fly ash activity index
JP6722120B2 (en) Fly ash activity index prediction method and fly ash quality evaluation method
JP2017138178A (en) Method for estimating unit quantity of water of concrete or mortar
Vasudevan et al. Mechanical properties and sustainability of Palm Kernel Shell Powder (PKSP) as a partial replacement of cement
Rahman et al. Effect of mineral admixtures on characteristics of high strength concrete
Song et al. Analysis of evaluation possibility of fly ash fineness using hydrometer
JP6666816B2 (en) Method for predicting flow value ratio of fly ash and method for evaluating fly ash quality
JP2018131361A (en) Method for producing cement composition, and method for evaluating the cement composition
JP2011020867A (en) Method for selecting fly ash and method for producing cement using the same
Shanmuga Priya et al. Effect of coconut shell ash as an additive on the properties of green concrete
Ali et al. DEVELOPMENT OF SUSTAINABLE SELF-CONSOLIDATING HIGH PERFORMANCE CONCRETE INCORPORATING CEMENT KILN DUST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7089916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150