JP6568420B2 - Boiler operation method and boiler equipment - Google Patents

Boiler operation method and boiler equipment Download PDF

Info

Publication number
JP6568420B2
JP6568420B2 JP2015139986A JP2015139986A JP6568420B2 JP 6568420 B2 JP6568420 B2 JP 6568420B2 JP 2015139986 A JP2015139986 A JP 2015139986A JP 2015139986 A JP2015139986 A JP 2015139986A JP 6568420 B2 JP6568420 B2 JP 6568420B2
Authority
JP
Japan
Prior art keywords
boiler
solid fuel
content
types
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015139986A
Other languages
Japanese (ja)
Other versions
JP2017020739A (en
Inventor
秋山 勝哉
勝哉 秋山
知朗 松宮
知朗 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015139986A priority Critical patent/JP6568420B2/en
Priority to CN201610245260.4A priority patent/CN106352315B/en
Publication of JP2017020739A publication Critical patent/JP2017020739A/en
Application granted granted Critical
Publication of JP6568420B2 publication Critical patent/JP6568420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/22Methods of steam generation characterised by form of heating method using combustion under pressure substantially exceeding atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/16Over-feed arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

本発明は、ボイラの運転方法及びボイラ設備に関する。   The present invention relates to a boiler operation method and boiler equipment.

ボイラは、バーナー等により固体燃料を燃焼させる火炉及びこの火炉内に上下方向に複数配設され熱交換を行う伝熱管を備える。また、この伝熱管は火炉下部に配設される一次加熱器、一次再熱器及び節炭器を備える下部伝熱部と、火炉上部に配設される二次加熱器、三次加熱器、最終加熱器及び二次再熱器を備える上部伝熱部とにより構成される。   The boiler includes a furnace that burns solid fuel using a burner or the like, and a heat transfer tube that is disposed in the furnace in the vertical direction and performs heat exchange. In addition, this heat transfer tube has a primary heater, a primary reheater, and a lower heat transfer unit provided with a economizer, and a secondary heater, a tertiary heater, and a final heater. It is comprised by the upper heat-transfer part provided with a heater and a secondary reheater.

このようなボイラのうち、例えば石炭を固体燃料とする微粉炭ボイラでは、石炭の燃焼によって生じる燃焼ガス中の灰分が火炉の炉壁や伝熱管に付着し堆積するスラッギングやファウリングが発生し、灰付着層が形成される場合がある。このような灰付着が生じると、伝熱管の伝熱面での収熱率が大幅に低下し易い。また、炉壁に付着した灰(クリンカ)が巨大化すると、炉壁等から落下し、炉内圧の大幅な変動、伝熱管の損傷、ガス流路の閉塞等が発生する場合がある。   Among such boilers, for example, in a pulverized coal boiler using coal as a solid fuel, slagging or fouling occurs in which ash in the combustion gas generated by the combustion of coal adheres to and accumulates on the furnace wall and heat transfer tube of the furnace, An ash adhesion layer may be formed. When such ash adhesion occurs, the heat recovery rate at the heat transfer surface of the heat transfer tube is likely to be greatly reduced. Further, when the ash (clinker) adhering to the furnace wall becomes enormous, it may fall from the furnace wall or the like, resulting in a significant fluctuation in the furnace pressure, damage to the heat transfer tube, blockage of the gas flow path, or the like.

特に上部伝熱部は、下部伝熱部に比べて狭い間隔で配設した伝熱管の間を燃焼ガスが流動して熱交換を行う構造を有しているため、上部伝熱部に灰が付着すると、炉内圧の大幅な変動やガス流路の閉塞が発生し易く、ボイラの安定した運転が阻害される。また、バーナー近傍では微粉炭の燃焼火炎の放射熱により炉壁近傍の温度が高くなるため、比較的低温な伝熱管に灰が溶融付着し易くなり、火炉の収熱率が低下し易い。   In particular, the upper heat transfer section has a structure in which the combustion gas flows between the heat transfer tubes arranged at a narrower interval than the lower heat transfer section to exchange heat, so that ash is formed in the upper heat transfer section. If it adheres, a large fluctuation in the furnace pressure and a blockage of the gas flow path are likely to occur, and the stable operation of the boiler is hindered. Further, in the vicinity of the burner, the temperature in the vicinity of the furnace wall becomes high due to the radiant heat of the pulverized coal combustion flame, so that ash tends to melt and adhere to a relatively low temperature heat transfer tube, and the heat recovery rate of the furnace tends to decrease.

そこで、この灰付着が発生する可能性を指標として表し、その指標に基づいて灰付着を抑制するボイラの運転方法が提案されている(特許第5342355号公報)。この従来の運転方法では、炉壁や伝熱管群に付着する成分であるスラグに着目し、各固体燃料について算出したスラグ割合と灰成分の組成に基づいて、複数種類の固体燃料の混合比率を決定している。具体的には、従来のボイラの運転方法は、灰付着率が低くなるようにスラグ割合の基準値を決定し、スラグ割合がこの基準値以下になるように複数種類の固体燃料の混合比率を決定することにより、灰の付着を抑制している。   Then, the possibility that this ash adhesion occurs is expressed as an index, and a boiler operation method that suppresses ash adhesion based on the index has been proposed (Japanese Patent No. 5342355). In this conventional operation method, focusing on slag, which is a component adhering to the furnace wall and heat transfer tube group, the mixing ratio of multiple types of solid fuel is determined based on the slag ratio calculated for each solid fuel and the composition of the ash component. Has been decided. Specifically, in the conventional boiler operation method, a slag ratio reference value is determined so that the ash adhesion rate is low, and the mixing ratio of a plurality of types of solid fuels is set so that the slag ratio is less than this reference value. By determining, adhesion of ash is suppressed.

しかしながら、上記従来のボイラの運転方法では、灰の付着が抑制されているにも関わらず火炉の収熱率が低下する場合がある。このため、火炉の収熱率の低下を抑止できる新たなボイラの運転方法が望まれている。   However, in the conventional boiler operation method, the heat recovery rate of the furnace may be lowered in spite of the suppression of ash adhesion. For this reason, a new boiler operation method that can suppress a decrease in the heat recovery rate of the furnace is desired.

特許第5342355号公報Japanese Patent No. 5342355

本発明は、上述のような事情に基づいてなされたものであり、火炉の収熱率の低下を抑止できるボイラの運転方法及びボイラ設備の提供を目的とする。   This invention is made | formed based on the above situations, and aims at provision of the operating method and boiler equipment of a boiler which can suppress the fall of the heat recovery rate of a furnace.

本発明者らは、鋭意検討した結果、灰の付着が同程度である場合、含水鉱物の含有量の大きい固体燃料を用いた方が火炉収熱率の低下を起こし易いことから、複数種類の固体燃料の混合体全体の灰分中の含水鉱物の含有率に注目した。その結果、含水鉱物からの結晶水の放出に起因するポーラス状の灰の付着により灰付着層が断熱層化することで火炉収熱率が低下することが分かった。そして、本発明者らは、上記含水鉱物の含有率を基準値以下となるように複数種類の固体燃料の混合割合を決定することで火炉収熱率の低下を抑止できるためボイラを安定運用し易くなることを見出し、本発明を完成させた。   As a result of intensive studies, the inventors of the present invention have found that when the adhesion of ash is similar, the use of solid fuel with a high content of hydrous mineral tends to cause a decrease in furnace heat recovery rate, so We focused on the content of hydrous minerals in the ash content of the solid fuel mixture. As a result, it was found that the heat recovery rate of the furnace decreased due to the heat-insulating layer of the ash adhesion layer due to the adhesion of the porous ash resulting from the release of crystal water from the hydrous mineral. Then, the present inventors can stably operate the boiler because it is possible to suppress the decrease in the furnace heat recovery rate by determining the mixing ratio of a plurality of types of solid fuel so that the content of the hydrous mineral is not more than the reference value. The present invention has been completed by finding that it is easy.

すなわち、上記課題を解決するためになされた発明は、複数種類の固体燃料を混合して燃焼させるボイラの運転方法であって、上記複数種類の固体燃料中の灰分の含有率及びその灰分中の少なくとも1種の含水鉱物の含有率を取得する工程と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記少なくとも1種の含水鉱物の含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記少なくとも1種の含水鉱物の含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程とを備えることを特徴とする。   That is, the invention made to solve the above-mentioned problems is a boiler operation method for mixing and burning a plurality of types of solid fuels, the ash content in the plurality of types of solid fuels and the ash content in the ash content Based on the step of acquiring the content of at least one hydrous mineral, the content of the ash and the content of the at least one hydrous mineral in each of the plurality of types of solid fuel obtained in the acquisition step, Determining the mixing ratio of the plurality of types of solid fuels so that the content of the at least one type of hydrous mineral in the ash content of the entire mixture of the plurality of types of solid fuels is equal to or less than a reference value. To do.

当該ボイラの運転方法は、上記含水鉱物の含有率を基準値以下となるように複数種類の固体燃料の混合割合を決定するので、含水鉱物からの結晶水の放出に起因するポーラス状の灰の付着を抑止できる。これにより付着灰の断熱性が低減されるため、当該ボイラの運転方法は、火炉収熱率の低下を抑止できる。   Since the operation method of the boiler determines the mixing ratio of the plurality of types of solid fuel so that the content of the hydrous mineral is below the reference value, the porous ash caused by the release of crystal water from the hydrous mineral Adhesion can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the operation method of the boiler can suppress the fall of the furnace heat recovery rate.

上記少なくとも1種の含水鉱物がカオリン又は石膏であるとよい。カオリン及び石膏はボイラに使用される固体燃料が含有する含水鉱物に占める割合が大きく、火炉収熱率の低下の要因となり易い。このため、上記少なくとも1種の含水鉱物をカオリン又は石膏とすることで、より確実に火炉収熱率の低下を抑止できる。   The at least one water-containing mineral may be kaolin or gypsum. Kaolin and gypsum account for a large proportion of the hydrous minerals contained in the solid fuel used in boilers, and are likely to cause a decrease in furnace heat recovery rate. For this reason, the fall of a furnace heat recovery rate can be suppressed more reliably by making the said at least 1 sort (s) of hydrous mineral into kaolin or gypsum.

上記基準値としては、40質量%が好ましい。このように上記基準値を40質量%とすることで、火炉収熱率の低下をより確実に抑止できる。   As said reference value, 40 mass% is preferable. Thus, by making the said reference value into 40 mass%, the fall of a furnace heat recovery rate can be suppressed more reliably.

上記固体燃料が石炭であるとよい。固体燃料を石炭とするボイラでは特に火炉収熱率の低下が発生し易い。このため、火炉収熱率の低下を抑止できる当該ボイラの運転方法を好適に用いることができる。   The solid fuel may be coal. In boilers using solid fuel as coal, the furnace heat recovery rate is particularly likely to decrease. For this reason, the operation method of the said boiler which can suppress the fall of a furnace heat recovery rate can be used suitably.

従って、当該ボイラの運転方法は石炭を固体燃料とするボイラ設備を使用する火力発電プラントに好適に用いられる。   Therefore, the operation method of the boiler is suitably used for a thermal power plant using a boiler facility using coal as a solid fuel.

上記課題を解決するためになされた別の発明は、複数種類の固体燃料を混合して燃焼させるボイラ設備であって、上記複数種類の固体燃料をそれぞれ供給する複数の機構と、上記複数の供給機構から供給される複数種類の固体燃料を混合する機構と、上記混合機構で混合された固体燃料を粉砕する機構と、上記粉砕機構で粉砕された固体燃料を燃焼するボイラと、上記複数種類の固体燃料それぞれの灰分の含有率及びその灰分中の少なくとも1種の含水鉱物の含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記少なくとも1種の含水鉱物の含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する機構と、上記決定機構で決定された上記複数種類の固体燃料の混合割合になるよう上記供給機構から混合機構に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構とを備えることを特徴とする。   Another invention made to solve the above problems is a boiler facility for mixing and burning a plurality of types of solid fuels, a plurality of mechanisms for respectively supplying the plurality of types of solid fuels, and the plurality of supplies A mechanism for mixing a plurality of types of solid fuel supplied from the mechanism, a mechanism for crushing the solid fuel mixed by the mixing mechanism, a boiler for burning the solid fuel crushed by the crushing mechanism, and the plurality of types of the above Based on the ash content of each solid fuel and the content of at least one hydrous mineral in the ash, the content of the at least one hydrous mineral in the ash of the entire mixture of the multiple types of solid fuel is A mechanism for determining the mixing ratio of the plurality of types of solid fuels to be equal to or lower than a reference value, and a mixing ratio from the supply mechanism so as to be the mixing ratio of the plurality of types of solid fuels determined by the determination mechanism. Characterized in that it comprises a mechanism for adjusting the plurality of types of solid fuel respectively supply quantity introduced into structure.

当該ボイラ設備は、複数種類の固体燃料の混合体全体の灰分中の上記少なくとも1種の含水鉱物の含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を調整して固体燃料をボイラに供給する。従って、当該ボイラ設備は、火炉収熱率が低下し難いため、安定運用し易い。   The boiler facility adjusts the mixing ratio of the plurality of types of solid fuel so that the content of the at least one type of hydrous mineral in the ash content of the mixture of the plurality of types of solid fuel is not more than a reference value. Is supplied to the boiler. Therefore, the boiler equipment is easy to operate stably because the furnace heat recovery rate is unlikely to decrease.

ここで、「含水鉱物」とは、結晶構造中に水分子又は水酸基(OH)を成分として含み、脱水開始温度が1000℃以下の鉱物を意味する。また、「カオリン」とは、粘土鉱物の一群でカオリナイト、ナクライト、ディッカイトの総称で、化学成分がAlSi(OH)で表される鉱物を意味する。「石膏」とは、化学成分がCaSO・2HOで表される鉱物を意味する。 Here, the “hydrated mineral” means a mineral containing a water molecule or a hydroxyl group (OH) as a component in the crystal structure and having a dehydration start temperature of 1000 ° C. or less. “Kaolin” is a group of clay minerals and is a generic name for kaolinite, nacrite, and dickite, and means a mineral whose chemical component is represented by Al 2 Si 2 O 5 (OH) 4 . “Gypsum” means a mineral whose chemical component is represented by CaSO 4 .2H 2 O.

以上説明したように、本発明のボイラの運転方法及びボイラ設備は、火炉収熱率の低下を抑止できる。   As described above, the boiler operating method and boiler equipment of the present invention can suppress a decrease in furnace heat recovery rate.

本発明の一実施形態のボイラ設備を示す概念図である。It is a key map showing boiler equipment of one embodiment of the present invention. 本発明の一実施形態のボイラの運転方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the operating method of the boiler of one Embodiment of this invention. カオリン含有率と火炉収熱率との関係を示すグラフである。It is a graph which shows the relationship between a kaolin content rate and a furnace heat recovery rate.

以下、本発明に係るボイラの運転方法及びボイラ設備の実施形態について、火力発電プラントを用いて説明する。   Hereinafter, an embodiment of a boiler operation method and boiler equipment according to the present invention will be described using a thermal power plant.

上記火力発電プラントは、当該ボイラ設備、蒸気タービン発電機設備及び復水給水設備を備える。   The thermal power plant includes the boiler equipment, the steam turbine generator equipment, and the condensate water supply equipment.

<ボイラ設備>
図1に示すボイラ設備は、複数種類の固体燃料を混合して燃焼させるボイラ設備である。当該ボイラ設備は、ホッパー1、混合機2、粉砕機3、ボイラ4、演算機5、及び供給量調整装置6を備える。
<Boiler equipment>
The boiler facility shown in FIG. 1 is a boiler facility that mixes and burns multiple types of solid fuel. The boiler equipment includes a hopper 1, a mixer 2, a pulverizer 3, a boiler 4, a calculator 5, and a supply amount adjusting device 6.

(ホッパー)
ホッパー1は、固体燃料を供給する機構であり、当該ボイラ設備は複数種類の固体燃料をそれぞれ供給するホッパー1を備える。なお、図1では2種類の固体燃料をそれぞれ供給する2基のホッパー1を備える場合を示しているが、固体燃料は3種類以上であってもよい。その場合、当該ボイラ設備は固体燃料の種類と同数のホッパー1を備える。
(hopper)
The hopper 1 is a mechanism for supplying solid fuel, and the boiler equipment includes the hopper 1 for supplying a plurality of types of solid fuel. Although FIG. 1 shows a case where two hoppers 1 for supplying two kinds of solid fuels are provided, three or more kinds of solid fuels may be provided. In that case, the boiler equipment includes the same number of hoppers 1 as the type of solid fuel.

ホッパー1は上記固体燃料を貯蔵する貯蔵槽を有し、この貯蔵槽の底部にある底開式のじょうご型の口から固体燃料を落下させて取り出すことができる。   The hopper 1 has a storage tank for storing the solid fuel, and the solid fuel can be dropped and taken out from a bottom-open funnel-shaped mouth at the bottom of the storage tank.

(混合機)
混合機2は、上記ホッパー1から供給される固体燃料を混合する機構である。混合機2としては、例えば公知のドラムミキサ等を用いることができる。
(Mixer)
The mixer 2 is a mechanism for mixing the solid fuel supplied from the hopper 1. As the mixer 2, for example, a known drum mixer or the like can be used.

(粉砕機)
粉砕機3は、混合機2で混合された固体燃料を粉砕する機構である。粉砕機3としては、公知の竪型ローラミル等を用いることができる。
(Crusher)
The pulverizer 3 is a mechanism for pulverizing the solid fuel mixed in the mixer 2. As the pulverizer 3, a known vertical roller mill or the like can be used.

粉砕後の固体燃料の粒子径は特に制限されるものではなく、例えば粒子径が75μm以下となる固体燃料の割合が75%以上90%以下となるように粉砕することができる。   The particle size of the solid fuel after pulverization is not particularly limited. For example, the solid fuel can be pulverized so that the proportion of the solid fuel having a particle size of 75 μm or less is 75% or more and 90% or less.

(ボイラ)
ボイラ4は、上記粉砕機3で粉砕された固体燃料を燃焼する。上記ボイラ4はバーナー7、火炉、伝熱管及び煙突を主に備える。上記ボイラ4は、空気と共に吹き込まれた固体燃料をバーナー7により火炉で燃焼し、この火炉内に上下方向に多数配設された伝熱管により熱交換を行う。この熱交換により上記伝熱管に供給される給水が加熱及び加圧され、蒸気が発生する。また、燃焼により発生した燃焼ガスは煙突から排出される。
(boiler)
The boiler 4 burns the solid fuel pulverized by the pulverizer 3. The boiler 4 mainly includes a burner 7, a furnace, a heat transfer tube, and a chimney. The boiler 4 burns solid fuel blown together with air in a furnace with a burner 7 and performs heat exchange with a plurality of heat transfer tubes arranged in the vertical direction in the furnace. By this heat exchange, water supplied to the heat transfer tube is heated and pressurized to generate steam. Moreover, the combustion gas generated by the combustion is discharged from the chimney.

上記伝熱管は、必要とする蒸気の温度及び圧力に応じて適宜構成されるが、例えば火炉下部に配設される一次加熱器、一次再熱器及び節炭器を備える下部伝熱部と、火炉上部に配設される二次加熱器、三次加熱器、最終加熱器及び二次再熱器を備える上部伝熱部とにより構成できる。下部伝熱部は主にボイラ4に供給される給水を予熱し、上部伝熱部は主に高温高圧の蒸気を生成する。また、再熱器は蒸気タービン等で仕事をした蒸気を再び加熱し、再熱サイクルタービンを回す蒸気を作る。また、節炭器は排出される燃焼ガスの熱でボイラ4の給水を予熱する。   The heat transfer tube is appropriately configured according to the required steam temperature and pressure, for example, a lower heater including a primary heater, a primary reheater, and a economizer disposed in the lower part of the furnace, It can comprise with the upper heat-transfer part provided with the secondary heater, the tertiary heater, the final heater, and the secondary reheater which are arrange | positioned at the furnace upper part. The lower heat transfer section mainly preheats the feed water supplied to the boiler 4, and the upper heat transfer section mainly generates high-temperature and high-pressure steam. In addition, the reheater reheats the steam that has worked in the steam turbine or the like, and creates steam that rotates the reheat cycle turbine. The economizer preheats the feed water of the boiler 4 with the heat of the combustion gas discharged.

(演算機)
演算機5は、上記複数種類の固体燃料それぞれの灰分の含有率及びその灰分中のカオリンの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記カオリンの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する機構である。
(Calculator)
Based on the ash content of each of the plurality of types of solid fuel and the content of kaolin in the ash, the computing unit 5 is based on the content of the kaolin in the ash content of the mixture of the plurality of types of solid fuel. This is a mechanism for determining the mixing ratio of the plurality of types of solid fuels so as to be less than or equal to the value.

演算機5は、後述するボイラの運転方法の混合割合決定工程(S2)により、複数種類の固体燃料の混合割合を算出する。また、演算機5は算出した混合割合に基づき供給量調整装置6を制御する。   The computing unit 5 calculates the mixing ratio of the plurality of types of solid fuels in the mixing ratio determining step (S2) of the boiler operation method described later. In addition, the calculator 5 controls the supply amount adjusting device 6 based on the calculated mixing ratio.

(供給量調整装置)
供給量調整装置6は、上記演算機5で決定された上記複数種類の固体燃料の混合割合になるよう上記ホッパー1から混合機2に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構である。つまり、当該ボイラ設備は、固体燃料の種類と同数のホッパー1それぞれから混合機2に接続される配管それぞれに1基ずつ、合計で固体燃料の種類と同数の供給量調整装置6を備える。この供給量調整装置6は特に限定されないが、例えばホッパー1から混合機2へ固体燃料を運搬するチェーンコンベアを用いることができる。この場合、供給量の調整は、このコンベアの移動速度を調整することで行う。
(Supply amount adjustment device)
The supply amount adjusting device 6 adjusts the supply amount of each of the plurality of types of solid fuel introduced from the hopper 1 to the mixer 2 so that the mixing ratio of the plurality of types of solid fuel determined by the calculator 5 is obtained. It is a mechanism to do. That is, the boiler equipment includes a supply amount adjusting device 6 having the same number as the type of solid fuel, one for each pipe connected to the mixer 2 from the same number of hoppers 1 as the type of solid fuel. The supply amount adjusting device 6 is not particularly limited, and for example, a chain conveyor that conveys solid fuel from the hopper 1 to the mixer 2 can be used. In this case, the supply amount is adjusted by adjusting the moving speed of the conveyor.

<ボイラの運転方法>
図2に当該ボイラ装置を用いたボイラの運転方法を示す。当該ボイラの運転方法は、複数種類の固体燃料を混合して燃焼させるボイラの運転方法である。当該ボイラの運転方法は、上記複数種類の固体燃料中の灰分の含有率及びその灰分中の含水鉱物であるカオリンの含有率を取得する工程(S1)と、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記カオリンの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記カオリンの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程(S2)と、決定した上記混合割合に基づいて上記複数種類の固体燃料の混合及び火炉への供給を行う工程(S3)とを備える。
<Operation method of boiler>
FIG. 2 shows a boiler operation method using the boiler apparatus. The boiler operation method is a boiler operation method in which a plurality of types of solid fuels are mixed and burned. The operation method of the boiler includes the step (S1) of acquiring the content of ash in the plurality of types of solid fuel and the content of kaolin that is a hydrous mineral in the ash, and the plurality of obtained in the acquisition step. Based on the content of the ash and the content of the kaolin in each of the types of solid fuels, the content of the kaolin in the ash content of the entire mixture of the plurality of types of solid fuel is less than the reference value. A step (S2) of determining a mixing ratio of the solid fuel, and a step (S3) of mixing the plurality of kinds of solid fuels and supplying them to the furnace based on the determined mixing ratio.

当該ボイラの運転方法に用いられる固体燃料は、ボイラに使用される燃料であれば特に限定されないが、例えば石炭、汚泥炭化物、バイオマス燃料等を挙げることができる。中でも発熱量が大きく、火力発電プラント等に好適に用いられる石炭が好ましい。   The solid fuel used for the operation method of the boiler is not particularly limited as long as it is a fuel used for the boiler, and examples thereof include coal, sludge carbide, biomass fuel, and the like. Among them, coal that generates a large amount of heat and is preferably used in a thermal power plant or the like is preferable.

上記石炭の種類は、特に限定されない。当該ボイラの運転方法では、灰分中の含水鉱物の含有率を基準値以下となるよう上記複数種類の固体燃料の混合割合を決定するので、含水鉱物からの結晶水の放出に起因するポーラス状の灰の付着を抑止できる。このため、結晶水を比較的多く含む石炭であっても混合することができる。このような結晶水を比較的多く含む石炭としては、無煙炭、瀝青炭、亜瀝青炭、褐炭、高シリカ炭、高カルシウム炭等を挙げることができる。   The type of coal is not particularly limited. In the operation method of the boiler, since the mixing ratio of the plurality of types of solid fuels is determined so that the content of the hydrous mineral in the ash is not more than the standard value, the porous shape due to the release of crystal water from the hydrous mineral is determined. Ashes can be prevented. For this reason, even coal containing a relatively large amount of crystal water can be mixed. Examples of coal containing a relatively large amount of crystal water include anthracite, bituminous coal, subbituminous coal, lignite, high silica coal, and high calcium coal.

(含有率取得工程)
含有率取得工程(S1)では、複数種類の固体燃料それぞれの灰分の含有率及びその灰分中のカオリンの含有率を取得する。
(Content acquisition process)
In the content acquisition step (S1), the ash content of each of the multiple types of solid fuel and the kaolin content in the ash are acquired.

固体燃料それぞれの灰分の含有率の測定方法は特に限定されないが、例えばJIS−M−8812:2006に準拠した測定方法を用いることができる。   Although the measuring method of the content rate of the ash content of each solid fuel is not particularly limited, for example, a measuring method based on JIS-M-8812: 2006 can be used.

カオリンは含水鉱物の一種であり、灰分中の含水鉱物の含有率を測定する方法によりカオリンの含有率を求めることができる。灰分中の含水鉱物の含有率の測定方法は特に限定されないが、例えばCCSEM(Computer Controlled Scanning Electron Microscopy)分析を用いて測定することができる。具体的には、CCSEM分析では、以下の手順により含水鉱物の質量割合を定量化する。まず、固体燃料の反射電子像を取得し、二値化処理により灰粒子を認識する。次に、認識した個々の粒子について、長短比や真円度等の形状、粒子断面積から算出した円相当径等を取得すると共に、粒子の重心点の座標位置を認識する。これらの情報を元に個々の粒子の重心点において元素分析を行い、元素組成比から含水鉱物を判別し、質量割合を定量化する。CCSEM分析では、これらの一連の処理がソフトウェアにより自動化されており、従来の平均値を求める分析方法に比較して短時間で多量の個別粒子データが取得できるため、精度の高い測定が効率よく行える。このようにして灰分中の含水鉱物の含有率を算出できる。   Kaolin is a kind of hydrous mineral, and the kaolin content can be determined by a method of measuring the hydrous mineral content in the ash. Although the measuring method of the content rate of the hydrous mineral in ash is not specifically limited, For example, it can measure using CCSEM (Computer Controlled Scanning Electron Microscopy) analysis. Specifically, in the CCSEM analysis, the mass proportion of the hydrous mineral is quantified by the following procedure. First, a reflected electron image of solid fuel is acquired, and ash particles are recognized by binarization processing. Next, for each recognized particle, the shape such as the length / shortness ratio and the roundness, the equivalent circle diameter calculated from the particle cross-sectional area, and the like are acquired, and the coordinate position of the center of gravity of the particle is recognized. Based on this information, elemental analysis is performed at the center of gravity of each particle, the water-containing mineral is discriminated from the elemental composition ratio, and the mass ratio is quantified. In CCSEM analysis, a series of these processes are automated by software, and a large amount of individual particle data can be acquired in a short time compared to the conventional analysis method for obtaining an average value, so that highly accurate measurement can be performed efficiently. . In this way, the content of hydrous minerals in the ash can be calculated.

また、含有率取得工程(S1)では、上記灰分の測定に加えて、固体燃料それぞれの発熱量を測定しておくとよい。このように固体燃料それぞれの発熱量を測定しておくことで、後述する混合供給工程(S3)において、ボイラに投入される混合された固体燃料の熱量が所望量となるように固体燃料の供給量を調整し易いため、ボイラの運転を効率よく行える。ここで、固体燃料の発熱量は、例えばJIS−M−8814:2003に準拠した測定方法に従って固体燃料を燃焼させて測定できる。   In addition, in the content acquisition step (S1), in addition to the measurement of the ash content, the calorific value of each solid fuel may be measured in advance. By measuring the calorific value of each solid fuel in this way, in the mixing and supplying step (S3) described later, the solid fuel is supplied so that the amount of heat of the mixed solid fuel to be introduced into the boiler becomes a desired amount. Since it is easy to adjust the amount, the boiler can be operated efficiently. Here, the calorific value of the solid fuel can be measured by burning the solid fuel, for example, according to a measurement method based on JIS-M-8814: 2003.

なお、灰分の含有率、灰分中のカオリンの含有率及び固体燃料の発熱量等を得るには、各固体燃料をボイラにて燃焼させ灰分を生成する必要がある。この燃焼は必ずしも実際に使用される実缶ボイラを用いて行う必要はなく、例えば燃焼試験炉で行ってもよい。   In order to obtain the ash content, the kaolin content in the ash, the calorific value of the solid fuel, etc., it is necessary to burn the solid fuel in a boiler to generate ash. This combustion is not necessarily performed using an actual can boiler that is actually used, and may be performed, for example, in a combustion test furnace.

また、取得した固体燃料それぞれの灰分の含有率、灰分中のカオリンの含有率及び固体燃料の発熱量等は、データとして例えば記憶装置等に記録して保存しておくとよい。このようにデータを保存しておくことで、以後このデータを利用できる。また、上記データが既に保存されている固体燃料を用いる場合は、含有率取得工程(S1)での灰分の含有率、灰分中のカオリンの含有率及び固体燃料の発熱量等の取得をこのデータを用いて行うことで、測定が省略できる。   The ash content of each obtained solid fuel, the kaolin content in the ash, the calorific value of the solid fuel, and the like may be recorded and stored as data in, for example, a storage device. By storing the data in this way, the data can be used thereafter. In addition, when using a solid fuel in which the above data is already stored, the acquisition of the ash content, the kaolin content in the ash, the calorific value of the solid fuel, etc. in the content acquisition step (S1) is performed. Measurement can be omitted by using

(混合割合決定工程)
混合割合決定工程(S2)では、上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記カオリンの含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記カオリンの含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する。この工程は当該ボイラ設備の演算機5により行われる。
(Mixing ratio determination process)
In the mixing ratio determination step (S2), the ash content of the mixture of the plurality of types of solid fuels based on the ash content and the kaolin content of each of the types of solid fuel obtained in the acquisition step. The mixing ratio of the plurality of types of solid fuels is determined so that the content of kaolin in the mixture is below the reference value. This step is performed by the calculator 5 of the boiler facility.

各固体燃料の灰分の含有率をAi、灰分中のカオリンの含有率をKi、燃料全体に対する割合をWiとするとき、混合体全体の灰分中のカオリンの含有率Rは、下記式(1)により算出できる。

Figure 0006568420
Assuming that the ash content of each solid fuel is Ai, the kaolin content in the ash is Ki, and the ratio to the whole fuel is Wi, the kaolin content R in the ash of the entire mixture is expressed by the following formula (1). Can be calculated.
Figure 0006568420

混合割合決定工程(S2)では、上記カオリン含有率Rが基準値以下となるよう、上記複数種類の固体燃料の混合割合を決定する。当該ボイラの運転方法は、上記カオリン含有率Rを基準値以下とすることで、火炉収熱率の低下を抑止できる。   In the mixing ratio determining step (S2), the mixing ratio of the plurality of types of solid fuels is determined so that the kaolin content R is not more than a reference value. The operation method of the boiler can suppress a decrease in the furnace heat recovery rate by setting the kaolin content R to a reference value or less.

ここで、上記カオリン含有率Rを基準値以下とすることで、火炉収熱率の低下を抑止できる理由について説明する。ボイラ運転時、燃焼した固体燃料の灰分は火炉壁に付着する。この火炉壁に付着した灰分中に含まれる含水鉱物は、火炉の燃焼熱によりその鉱物中の結晶水を放出する。結晶水が放出された含水鉱物の粒子はポーラス構造となる。このようなポーラス状となった含水鉱物を含む灰は有効熱伝導率が極めて低い。従って、含水鉱物の含有率が高くなると上記ポーラス構造により付着灰が断熱層となって伝熱を阻害し、火炉収熱率が低下すると考えられる。これに対し、含水鉱物の含有率を基準値以下とすれば、この付着灰の断熱性が低減されるので、火炉収熱率の低下を抑止できると考えられる。ここで、カオリンはボイラに使用される固体燃料が含有する含水鉱物に占める質量割合が大きい。このため、上記カオリン含有率Rを基準値以下とすることで、上記火炉収熱率低下の抑止効果が得易い。   Here, the reason why the reduction in the furnace heat recovery rate can be suppressed by setting the kaolin content R below the reference value will be described. During boiler operation, the ash content of the burned solid fuel adheres to the furnace wall. The hydrated mineral contained in the ash adhering to the furnace wall releases crystal water in the mineral by the combustion heat of the furnace. The hydrous mineral particles from which crystal water has been released have a porous structure. The ash containing the hydrous mineral in such a porous shape has an extremely low effective thermal conductivity. Therefore, when the content rate of a hydrous mineral becomes high, it is thought that adhering ash becomes a heat insulation layer by the said porous structure, and heat transfer is inhibited, and a furnace heat recovery rate falls. On the other hand, if the content rate of the hydrous mineral is set to the reference value or less, the heat insulating property of the attached ash is reduced, so that it is considered that the decrease in the furnace heat recovery rate can be suppressed. Here, kaolin has a large mass ratio in the hydrous mineral contained in the solid fuel used in the boiler. For this reason, by making the said kaolin content rate R below a reference value, it is easy to obtain the suppression effect of the said furnace furnace heat rate fall.

本発明者は上記理論に基づいて、カオリン含有率Rの最適な基準値を確認すべく以下の試験を行った。まず、固体燃料として3種類の石炭を準備した。微粉炭火力ボイラ(発電容量700MW)を用いて石炭を燃焼させ、これら3種類の石炭の灰分の含有率及びその灰分中のカオリンの含有率を取得した。なお、石炭の灰分の含有率はJIS−M−8812:2006に準拠した測定方法により行った。また、灰分中のカオリンの含有率はCCSEM分析を用いて算出する方法により行った。   Based on the above theory, the present inventor conducted the following test to confirm the optimum reference value of the kaolin content R. First, three types of coal were prepared as solid fuels. Coal was burned using a pulverized coal fired boiler (power generation capacity 700 MW), and the ash content of these three types of coal and the kaolin content in the ash were obtained. In addition, the content rate of the ash content of coal was performed by the measuring method based on JIS-M-8812: 2006. Moreover, the content rate of the kaolin in ash was performed by the method of calculating using CCSEM analysis.

次に、これらの3種類の石炭のうち2種類又は3種類の石炭を用い、石炭の混合割合を8通り決定し、カオリンの含有率Rを算出した。また、この混合割合になるように石炭を混合した8通りの混炭について、それぞれ実缶ボイラを一定期間運用し、その期間内の火炉収熱率の平均値を求めた。   Next, two or three kinds of these three kinds of coal were used, eight kinds of coal mixing ratios were determined, and the kaolin content R was calculated. Moreover, about 8 types of mixed coal which mixed coal so that it might become this mixing ratio, the actual can boiler was each operated for a fixed period, and the average value of the furnace heat recovery rate in the period was calculated | required.

このようにしてカオリン含有率と火炉収熱率との関係を示す図3のグラフを得た。なお、火炉収熱率は、8通りの混炭のうちの1条件での火炉収熱率を1とした規格値で表しており、数値が大きいほど火炉収熱率が高いことを意味する。図3のグラフから分かるようにカオリン含有率と火炉収熱率とは相関があり、カオリン含有率を一定値以下とすることで火炉収熱率の低下が抑止できることが分かる。つまり、カオリン含有率が基準値以下となるよう固体燃料の混合割合を決定するとよいことが分かる。   Thus, the graph of FIG. 3 which shows the relationship between a kaolin content rate and a furnace heat recovery rate was obtained. The furnace heat recovery rate is represented by a standard value where the furnace heat recovery rate under one condition of the eight types of blended coal is 1, and the larger the value, the higher the furnace heat recovery rate. As can be seen from the graph in FIG. 3, the kaolin content rate and the furnace heat recovery rate are correlated, and it can be seen that the decrease in the furnace heat recovery rate can be suppressed by setting the kaolin content rate to a certain value or less. That is, it can be seen that the mixing ratio of the solid fuel should be determined so that the kaolin content is below the reference value.

上記基準値としては、40質量%が好ましく、38質量%がより好ましく、35質量%がさらに好ましく、30質量%が特に好ましい。図3のグラフから分かるように、上記基準値を上記値より大きくする場合、火炉収熱率が下がり過ぎるため、火炉収熱率の低下が十分に抑止できないおそれがある。   As said reference value, 40 mass% is preferable, 38 mass% is more preferable, 35 mass% is further more preferable, 30 mass% is especially preferable. As can be seen from the graph of FIG. 3, when the reference value is made larger than the above value, the furnace heat recovery rate is excessively lowered, and thus there is a possibility that the decrease in the furnace heat recovery rate cannot be sufficiently suppressed.

(混合供給工程)
混合供給工程(S3)では、上記混合割合決定工程(S2)で決定した上記混合割合に基づいて上記複数種類の固体燃料を混合し、粉砕した後に火炉への供給を行う。具体的には、当該ボイラ設備の演算機5により供給量調整装置6を制御し、ホッパー1から混合機2に送られる固体燃料の量をそれぞれ調整する。混合された固体燃料は、粉砕機3で粉砕された後、空気と共にボイラ4に吹き込まれ、燃焼される。
(Mixed supply process)
In the mixing and supplying step (S3), the plurality of types of solid fuels are mixed and pulverized based on the mixing rate determined in the mixing rate determining step (S2), and then supplied to the furnace. Specifically, the supply amount adjusting device 6 is controlled by the calculator 5 of the boiler facility, and the amount of solid fuel sent from the hopper 1 to the mixer 2 is adjusted. The mixed solid fuel is pulverized by the pulverizer 3 and then blown into the boiler 4 together with air to be burned.

(利点)
当該ボイラの運転方法は、上記含水鉱物の含有率を基準値以下となるように複数種類の固体燃料の混合割合を決定するので、含水鉱物からの結晶水の放出に起因するポーラス状の灰の付着を抑止できる。これにより付着灰の断熱性が低減されるため、当該ボイラの運転方法は、火炉収熱率の低下を抑止できる。
(advantage)
Since the operation method of the boiler determines the mixing ratio of the plurality of types of solid fuel so that the content of the hydrous mineral is below the reference value, the porous ash caused by the release of crystal water from the hydrous mineral Adhesion can be suppressed. Thereby, since the heat insulation of adhesion ash is reduced, the operation method of the boiler can suppress the fall of the furnace heat recovery rate.

<蒸気タービン発電機設備>
蒸気タービン発電機設備は、蒸気タービン及び発電機を主に備える。
<Steam turbine generator equipment>
The steam turbine generator facility mainly includes a steam turbine and a generator.

上記蒸気タービンは、蒸気のもつエネルギーを、タービン(羽根車)と軸を介して回転運動へと変換する外燃機関であり、当該ボイラ設備で生成された蒸気により駆動される。   The steam turbine is an external combustion engine that converts steam energy into rotational motion via a turbine (impeller) and a shaft, and is driven by steam generated by the boiler equipment.

上記蒸気タービンは、特に限定されないが、例えば高温高圧タービン、高温再熱タービン及び低圧タービンにより構成することができる。この場合、当該ボイラ設備で生成された蒸気は、まず高温高圧タービンを駆動する。高温高圧タービンの駆動により、そのエネルギーを失い温度及び圧力の下がった蒸気は、再び当該ボイラ設備の再熱器により加熱される。この再熱器により加熱された高温蒸気により高温再熱タービンが駆動される。さらに、高温再熱タービンの駆動により、そのエネルギーを失い温度及び圧力の下がった蒸気は、低圧タービンを駆動した後、復水給水設備に導かれる。   Although the said steam turbine is not specifically limited, For example, it can be comprised with a high temperature high pressure turbine, a high temperature reheat turbine, and a low pressure turbine. In this case, the steam generated in the boiler facility first drives the high-temperature and high-pressure turbine. The steam whose temperature and pressure has been lost due to the driving of the high-temperature and high-pressure turbine is heated again by the reheater of the boiler equipment. The high-temperature reheat turbine is driven by the high-temperature steam heated by the reheater. Further, the steam whose temperature and pressure have been lost due to the driving of the high-temperature reheat turbine is guided to the condensate water supply facility after driving the low-pressure turbine.

この蒸気により駆動された高温高圧タービン、高温再熱タービン及び低圧タービンの動力が発電機を駆動し、電気出力を得る。   The power of the high-temperature high-pressure turbine, high-temperature reheat turbine, and low-pressure turbine driven by the steam drives the generator to obtain an electrical output.

<復水給水設備>
復水給水設備は、復水器、ポンプ、加熱器、及び脱気器を主に備える。
<Condensate water supply equipment>
The condensate water supply facility mainly includes a condenser, a pump, a heater, and a deaerator.

復水給水設備は、蒸気タービンを駆動した蒸気を復水器により冷却し、復水として回収する。この復水は、ポンプで加圧され、加熱器で加熱され、脱気器で脱気される。この加圧及び加熱された復水は、当該ボイラ設備の給水として当該ボイラ設備の節炭器に供給される。   The condensate water supply facility cools the steam that drives the steam turbine with a condenser and collects it as condensate. This condensate is pressurized by a pump, heated by a heater, and deaerated by a deaerator. The pressurized and heated condensate is supplied to the economizer of the boiler equipment as feed water for the boiler equipment.

<利点>
当該ボイラ設備を用いた火力発電プラントは、当該ボイラの運転方法を用いるので、火炉収熱率が低下し難い。このため、当該ボイラ設備を用いた火力発電プラントは、安定運用し易い。
<Advantages>
Since the thermal power plant using the boiler facility uses the operation method of the boiler, the furnace heat recovery rate is unlikely to decrease. For this reason, the thermal power plant using the boiler equipment is easy to operate stably.

[その他の実施形態]
なお、本発明のボイラの運転方法及びボイラ設備は、上記実施形態に限定されるものではない。
[Other Embodiments]
In addition, the operation method and boiler equipment of the boiler of this invention are not limited to the said embodiment.

上記実施形態では、ボイラの運転方法及びボイラ設備としてカオリンの含有率に基づき複数種類の固体燃料の混合割合を決定する方法を説明したが、灰分中の石膏の含有率や他の含水鉱物の含有率に基づいて固体燃料の混合割合を決定してもよい。   In the above embodiment, the method of determining the mixing ratio of a plurality of types of solid fuel based on the content of kaolin as a boiler operation method and boiler equipment has been described, but the content of gypsum in ash and the content of other hydrous minerals The mixing ratio of the solid fuel may be determined based on the rate.

また、ボイラの運転方法及びボイラ設備として2種類以上の含水鉱物の含有率に基づいて混合割合を決定してもよい。2種類以上の含水鉱物の含有率に基づいて混合割合を決定する場合、含水鉱物の含有率割合の和を基準値以下となるように混合割合を決定してもよく、また個々の含水鉱物の含有率割合を基準値以下となるように混合割合を決定してもよい。また、個々の含水鉱物の含有率割合を基準値以下とする場合、その基準値は個々の含水鉱物ごとに異なってもよい。   Moreover, you may determine a mixing ratio based on the content rate of 2 or more types of hydrous minerals as a boiler operating method and boiler equipment. When determining the mixing ratio based on the content of two or more kinds of hydrous minerals, the mixing ratio may be determined so that the sum of the ratios of the hydrous minerals is less than the reference value. You may determine a mixing ratio so that a content rate ratio may become below a reference value. Moreover, when making the content rate of each water-containing mineral below a reference value, the reference value may differ for each water-containing mineral.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(固体燃料)
まず、固体燃料として3種類の石炭を準備した。微粉炭火力ボイラ(発電容量700MW)を用いて石炭を燃焼させ、これら3種類の石炭の灰分の含有率及びその灰分中のカオリンの含有率を取得した。なお、石炭の灰分の含有率はJIS−M−8812:2006に準拠した測定方法により行った。また、灰分中のカオリンの含有率はCCSEM分析を用いて取得したカオリンの質量を元に算出した。この結果を表1に示す。
(Solid fuel)
First, three types of coal were prepared as solid fuels. Coal was burned using a pulverized coal fired boiler (power generation capacity 700 MW), and the ash content of these three types of coal and the kaolin content in the ash were obtained. In addition, the content rate of the ash content of coal was performed by the measuring method based on JIS-M-8812: 2006. Moreover, the content rate of the kaolin in ash was computed based on the mass of the kaolin acquired using CCSEM analysis. The results are shown in Table 1.

Figure 0006568420
Figure 0006568420

(No.1〜No.7)
次に、これらの3種類の石炭のうち2種類又は3種類の石炭を用い、表2に示すNo.1〜No.7の石炭の混合割合を選定し、灰分中のカオリンの含有率を算出した。また、表2の混合割合になるように石炭を混合した混炭を用いて実缶ボイラを一定期間運用し、その期間内の火炉収熱率の平均値を求めた。結果を表2に示す。
(No. 1 to No. 7)
Next, among these three types of coal, two or three types of coal were used. 1-No. The mixing ratio of 7 coal was selected, and the kaolin content in the ash was calculated. Moreover, the actual can boiler was operated for a certain period using the coal blended with coal so that the mixing ratio shown in Table 2 was obtained, and the average value of the furnace heat recovery rate within that period was obtained. The results are shown in Table 2.

Figure 0006568420
Figure 0006568420

なお、表2において火炉収熱率は、No.2の火炉収熱率で規格化した値である。   In Table 2, the furnace heat recovery rate is No. The value normalized by the furnace heat recovery rate of 2.

表2から、混合する石炭の種類によらず灰中のカオリン含有率と火炉収熱率とは相関が高く、カオリン含有率を基準値以下とすることで火炉収熱率の低下を抑止できることが分かる。   From Table 2, regardless of the type of coal to be mixed, the kaolin content in the ash and the furnace heat recovery rate are highly correlated, and by reducing the kaolin content rate below the reference value, it is possible to suppress a decrease in the furnace heat recovery rate. I understand.

また、灰分中のカオリン含有率が40%以下であるNo.1〜No.6は火炉収熱率が0.95を超えるのに対し、カオリン含有率が40%を超えるNo.7では火炉収熱率が0.95を下回る。このことから、カオリン含有率の基準値を40%とすることで、0.95以上の高い火炉収熱率が得られることが分かる。   Moreover, the kaolin content rate in ash is 40% or less. 1-No. No. 6 has a furnace heat recovery rate exceeding 0.95, whereas the kaolin content exceeds 40%. In 7, the furnace heat recovery rate is less than 0.95. From this, it is understood that a high furnace heat recovery rate of 0.95 or more can be obtained by setting the reference value of the kaolin content rate to 40%.

以上説明したように、本発明のボイラの運転方法は、火炉収熱率の低下を抑止できる。従って、当該ボイラの運転方法を用いたボイラ設備は安定運用し易い。また、当該ボイラの運転方法を用いたボイラは火力発電プラントに好適に用いられる。   As described above, the boiler operating method of the present invention can suppress a decrease in the furnace heat recovery rate. Therefore, the boiler equipment using the boiler operation method is easy to operate stably. Moreover, the boiler using the operation method of the said boiler is used suitably for a thermal power plant.

1 ホッパー
2 混合機
3 粉砕機
4 ボイラ
5 演算機
6 供給量調整装置
7 バーナー
DESCRIPTION OF SYMBOLS 1 Hopper 2 Mixer 3 Crusher 4 Boiler 5 Calculator 6 Supply amount adjusting device 7 Burner

Claims (6)

複数種類の固体燃料を混合して燃焼させるボイラの運転方法であって、
上記複数種類の固体燃料中の灰分の含有率及びその灰分中の少なくとも1種の含水鉱物の含有率を取得する工程と、
上記取得工程で得られた上記複数種類の固体燃料それぞれの上記灰分の含有率及び上記少なくとも1種の含水鉱物の含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記少なくとも1種の含水鉱物の含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する工程と
を備えることを特徴とするボイラの運転方法。
A method of operating a boiler that mixes and burns multiple types of solid fuel,
Obtaining the ash content in the plurality of types of solid fuel and the content of at least one hydrous mineral in the ash; and
Based on the content of the ash in each of the plurality of types of solid fuel obtained in the acquisition step and the content of the at least one type of hydrous mineral, the at least the ash in the mixture of the plurality of types of solid fuels. And a step of determining a mixing ratio of the plurality of types of solid fuels so that the content of one type of hydrous mineral is equal to or less than a reference value.
上記少なくとも1種の含水鉱物がカオリン又は石膏である請求項1に記載のボイラの運転方法。   The boiler operation method according to claim 1, wherein the at least one hydrous mineral is kaolin or gypsum. 上記基準値が40質量%である請求項1又は請求項2に記載のボイラの運転方法。   The boiler operating method according to claim 1 or 2, wherein the reference value is 40% by mass. 上記固体燃料が、石炭である請求項1、請求項2又は請求項3に記載のボイラの運転方法。   The method for operating a boiler according to claim 1, wherein the solid fuel is coal. 火力発電プラントに用いられる請求項1から請求項4のいずれか1項に記載のボイラの運転方法。   The operation method of the boiler of any one of Claims 1-4 used for a thermal power plant. 複数種類の固体燃料を混合して燃焼させるボイラ設備であって、
上記複数種類の固体燃料をそれぞれ供給する複数の機構と、
上記複数の供給機構から供給される複数種類の固体燃料を混合する機構と、
上記混合機構で混合された固体燃料を粉砕する機構と、
上記粉砕機構で粉砕された固体燃料を燃焼するボイラと、
上記複数種類の固体燃料それぞれの灰分の含有率及びその灰分中の少なくとも1種の含水鉱物の含有率に基づき、上記複数種類の固体燃料の混合体全体の灰分中の上記少なくとも1種の含水鉱物の含有率が基準値以下となるよう上記複数種類の固体燃料の混合割合を決定する機構と、
上記決定機構で決定された上記複数種類の固体燃料の混合割合になるよう上記供給機構から混合機構に導入される上記複数種類の固体燃料それぞれの供給量を調整する機構と
を備えることを特徴とするボイラ設備。
A boiler facility that mixes and burns multiple types of solid fuel,
A plurality of mechanisms for supplying the plurality of types of solid fuels;
A mechanism for mixing a plurality of types of solid fuel supplied from the plurality of supply mechanisms;
A mechanism for pulverizing the solid fuel mixed by the mixing mechanism;
A boiler for burning the solid fuel pulverized by the pulverization mechanism;
Based on the ash content of each of the plurality of types of solid fuel and the content of at least one type of hydrous mineral in the ash, the at least one type of hydrous mineral in the ash of the entire mixture of the plurality of types of solid fuel A mechanism for determining the mixing ratio of the plurality of types of solid fuel so that the content of
A mechanism for adjusting the supply amount of each of the plurality of types of solid fuel introduced from the supply mechanism to the mixing mechanism so as to obtain a mixing ratio of the plurality of types of solid fuel determined by the determination mechanism. Boiler equipment.
JP2015139986A 2015-07-13 2015-07-13 Boiler operation method and boiler equipment Active JP6568420B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015139986A JP6568420B2 (en) 2015-07-13 2015-07-13 Boiler operation method and boiler equipment
CN201610245260.4A CN106352315B (en) 2015-07-13 2016-04-19 Method for operating boiler and boiler plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139986A JP6568420B2 (en) 2015-07-13 2015-07-13 Boiler operation method and boiler equipment

Publications (2)

Publication Number Publication Date
JP2017020739A JP2017020739A (en) 2017-01-26
JP6568420B2 true JP6568420B2 (en) 2019-08-28

Family

ID=57843106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139986A Active JP6568420B2 (en) 2015-07-13 2015-07-13 Boiler operation method and boiler equipment

Country Status (2)

Country Link
JP (1) JP6568420B2 (en)
CN (1) CN106352315B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108442986A (en) * 2018-04-26 2018-08-24 东方电气集团东方锅炉股份有限公司 A kind of combustion gas and the double coupled electricity-generation method and system of Thermal generation unit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907674A (en) * 1974-04-24 1975-09-23 Dorr Oliver Inc Fluid bed incineration of wastes containing alkali metal chlorides
US4480593A (en) * 1982-07-09 1984-11-06 Robinson Insulation Co. Method and composition to avoid ash build-up
JPS59193151A (en) * 1983-04-18 1984-11-01 バブコツク日立株式会社 Prevention of clogging of coal supply pipe
JPS60185010A (en) * 1984-03-01 1985-09-20 Kobe Steel Ltd Compounding method of coal
JPS62186955A (en) * 1986-02-07 1987-08-15 パトリシア ダンカン ステフアノフ Jet type crushing system
US4917024A (en) * 1989-05-24 1990-04-17 Florida Institute Of Phosphate Research Coal fired power plant with pollution control and useful byproducts
SU1766857A1 (en) * 1990-11-30 1992-10-07 Сибирский Филиал Всесоюзного Теплотехнического Научно-Исследовательского Института Им.Ф.Э.Дзержинского Method for hydration of free calcium oxide in ashes with high calcium oxide in ashes with high calcium content
JPH09250708A (en) * 1996-03-14 1997-09-22 Babcock Hitachi Kk Operation method for pulverized coal burn boiler
JP3464208B2 (en) * 2001-10-30 2003-11-05 ユニレックス株式会社 Method and apparatus for producing composite solid fuel
JP4732740B2 (en) * 2003-11-27 2011-07-27 Jfeスチール株式会社 Method of blowing used plastic into furnace, used plastic particles for blowing furnace, and method for producing the same
US8196533B2 (en) * 2008-10-27 2012-06-12 Kentucky-Tennessee Clay Co. Methods for operating a fluidized-bed reactor
JP5342355B2 (en) * 2009-07-22 2013-11-13 株式会社神戸製鋼所 Boiler ash adhesion suppression method and ash adhesion suppression device
JP5374453B2 (en) * 2010-03-31 2013-12-25 株式会社神戸製鋼所 Boiler ash adhesion suppression method and ash adhesion suppression device
JP5713813B2 (en) * 2010-07-14 2015-05-07 株式会社神戸製鋼所 Method and apparatus for suppressing ash adhesion in a heating furnace
ES2778907T3 (en) * 2011-04-22 2020-08-12 Accordant Energy Llc A process to cogasify and burn in conjunction with designer fuel coal
JP6175028B2 (en) * 2014-06-20 2017-08-02 株式会社神戸製鋼所 Boiler ash adhesion suppression method and boiler ash adhesion suppression device
CN204328983U (en) * 2014-11-25 2015-05-13 中国东方电气集团有限公司 A kind of CFB radiation mixed type boiler alleviating high alkalinity coal and stain

Also Published As

Publication number Publication date
CN106352315B (en) 2021-04-20
JP2017020739A (en) 2017-01-26
CN106352315A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN102472484B (en) Method for suppressing adhesion of ash and device for suppressing adhesion of ash in boiler
Elled et al. Composition of agglomerates in fluidized bed reactors for thermochemical conversion of biomass and waste fuels: Experimental data in comparison with predictions by a thermodynamic equilibrium model
JP5374453B2 (en) Boiler ash adhesion suppression method and ash adhesion suppression device
CN108456556A (en) A kind of gasification of biomass coupling coal-burning boiler electricity generation system and method
JP2017040414A (en) Biomass utilization method and biomass utilization apparatus
JP6577407B2 (en) Boiler operation method and boiler equipment
Seepana et al. Evaluation of feasibility of pelletized wood co-firing with high ash Indian coals
JP6568420B2 (en) Boiler operation method and boiler equipment
WO2023095579A1 (en) Combustion control method, combustion control device and combustion control program
Tugov et al. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry
CN203880691U (en) Chimney-free multifunctional oil/gas-fired boiler
Rahman Optimisation of Solid Fuel In-furnace Blending for an Opposed-firing Utility Boiler: A Numerical Analysis
JP6577405B2 (en) Boiler operation method and boiler equipment
Kobyłecki Unburned carbon in the circulating fluidised bed boiler fly ash
Ryabov et al. Application of the technology of combustion of solid fuels in a circulating fluidized bed
Pleshanov et al. Combustion of bark and wood waste in the fluidized bed boiler
JP5619674B2 (en) Method and apparatus for suppressing ash adhesion in a heating furnace
JP2006084062A (en) Operation method and device for coal burning furnace
Gibson Present status of fluidised-bed combustion
Supranov et al. Studying the possibility of running the TPE-208 boiler of unit 1 at the Smolensk district power station on off-design coals
JP2012241971A (en) Biomass combusting boiler
Puzyrev et al. Tornado Technology for Power Boilers
Kim et al. Possibility of Using Spent Coffee Grounds as a Fuel for Co-Firing Application
Marx et al. Conventional firing systems
JPH05256424A (en) Method of burning dusts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190802

R150 Certificate of patent or registration of utility model

Ref document number: 6568420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150